
Toward Predictable Performance in Decision Tree
based Packet Classification Algorithms

Peng He∗†, Hongtao Guan∗, Laurent Mathy§, Kavé Salamatian‡ Gaogang Xie∗
∗Institute of Computing Technology, Chinese Academy of Sciences, China

†Graduate University of Chinese Academy of Sciences, China
‡LISTIC-PolyTech, Université de Savoie, France

§University of Liège, Belgium

Abstract—Packet classification has been studied extensively
in the past decade. While many efficient algorithms have been
proposed, the lack of deterministic performance has hindered the
adoption and deployment of these algorithms: the expensive and
power-hungry TCAM is still the de facto standard solution for
packet classification. In this work, in contrast to proposing yet
another new packet classification algorithm, we present the first
steps to understand this unpredictability in performance for the
existing algorithms. We focus on decision-tree based algorithms
in this paper. In order to achieve the predictability, we firstly
revisit the classical and many state-of-art packet classification
algorithms. Through a detailed analysis, we conclude that two
features of ruleset usually dominate the performance results: 1)
the uniformity of the range distribution in different dimensions of
the rules; 2) the existence and the number of “orthogonal struc-
ture” and wildcard rules in the ruleset. We conduct experiments
to show the correctness of these observations, and discribe some
potential applications for those results. Our work provides some
insight to make the packet classification algorithms a credible
alternative to the TCAM-only solutions.

Index Terms—Predictability, Packet Classification, Decision
Tree Algorithms.

I. INTRODUCTION

Packet classification is a key functionality for both routers
and network middleboxes to provide advanced network ser-
vices. Although it has been studied extensively in the past
decade, the growing size of classifier encourages a renewed
interest in the study of packet classification[3][9]. On one
hand, because of the need for a finer grained processing in
traditional network applications, such as VPN, load balancer,
firewall, traffic engineering etc, the size of classifier is be-
coming larger and larger. According to a recent study[3], the
number of packet classification rules in a typical ISP network
has grown to 15K. On the other hand, the current trend of
moving network services, such as the firewalling, into the
cloud[2], requires consolidating multiple rulesets from differ-
ent customers, potentially increasing the size of classifiers.
This growing size and complexity of rulesets causes issues
for packet classification systems.

Previous packet classification solutions can be categorized
into two types: RAM-based and TCAM-based. RAM-based
solutions, also known as algorithmic solutions, through build-
ing compact and efficient data structures for classification
rules in fast and cheap memory, can usually achieve a better
price/performance ratio and lower power-consumption than

TABLE I
PERFORMANCE COMPARISON ON DIFFERENT RULESETS

algorithm ruleset(num) memory size tree depth or
mem. accesses

HyperSplit[5] fw1 10K(9396) 770MB 33
fw2 10K(9616) 23MB 24
fw2 1K(965) 221KB 15
fw3 1K(792) 221KB 19

HyperCuts[6] fw2 1K(965) 150KB 6
fw3 1K(792) 6MB 22

EffiCuts[9] fw1 10K(9396) 610KB 73

TCAM-based solutions. However, because TCAMs guarantee
deterministic performance, these expensive and power-hungry
devices are still the de facto standard solution for packet
classification. As the size of the classifier continues to grow,
network device vendors have to spend more to enlarge the
volume of TCAM, which increases both the cost and power-
consumption of their products. In this paper, we argue that
the lack of an effective method to predict the performance
of different rulesets is the key problem which prevents the
deployment of RAM-based solutions. By performance, we
mean the number of the worst case memory accesses (which
ultimately governs feasible data rates) and memory size re-
quired by one algorithm. We begin with a simple example to
illustrate this unpredictability issue.

Table I gives the performance results of different algo-
rithms on different rulesets. Results are clearly vastly different.
For two firewall rulesets, fw1 10K and fw2 10K, containing
nearly equal number of rules, the memory size of fw1 10K
is around 30 times larger than fw2 10K. For ruleset fw2 1K,
HyperCuts and HyperSplit achieve nearly equal memory con-
sumption, however, HyperSplit needs around 2x more memory
accesses than HyperCuts. For another ruleset fw3 1K, the
performance of HyperCuts is worse than HyperSplit again.
Although the memory size of EffiCuts on ruleset fw1 10K
is small, it requires around 2x more memory accesses. This
unpredictability in performance is an issue for both network
device vendors and users alike.

A naive method to overcome this problem is to simply
compare the performance of the various algorithms on a given
ruleset. However, network systems often do not have enough
resources to carry out such comparison, not to mention that



F1

Node 1

00*

0
1
*

11*

1
0
*

R3 R4

R5

R3 R4

R5

R3 R4

R5

F2

00*

0
1
* 1

0
*

11*

R1 R2

R5

R1 R2

R3 R4

R5

R1 R2

R5

R1 R2

R5

Node 2 Node 3

(a) HiCuts

F2 F2

F1

[0
,1

3]
[14,15]

[0
, 5

]

[6
,
1
5
] [0

,
5
] [6, 15]

R2 R3

R5

R1 R3

R5

R2 R4

R5

R1 R4

R5

(b) HyperSplit

R2 R1

R5

F1

F2

[1
2,

13
] [14,15]

[12,15]

[4,7]

R3 R4

Tree 1

Tree 2

Tree 3

[4
,5

] [6,7]

(c) EffiCuts

Fig. 1. The built decision trees by different algorithms

some algorithms have very long preprocessing times (accord-
ing to [5], the HiCuts[1] algorithm needs more than 24 hours
for some large rulesets). Meanwhile, such method cannot
provide answers to the following related questions either: 1)
Why the performance on different rulesets is so different? 2)
Which features of rulesets dominate the result of performance?
How can we measure these features? 3) For a specific ruleset,
how can we make an algorithm recommendation by using the
measurement results of these features ? 4) Can we propose a
hybrid RAM-based solution by splitting rulesets into subsets,
and choosing the right algorithm for the subsets? Or can we
build a hybrid TCAM and SRAM packet classification engine?
Which subset of rules need to be put on TCAM, and which
subset of rules should be put on SRAM using algorithms?

In order to make headways towards increased performance
predictability and answers to these questions, we firstly revisit
the classical and most efficient state-of-art Decision-Tree (DT)
based algorithms, and investigate what the key features of
rulesets are and how they affect performance. We have found
that: 1) the uniformity of the range distribution in the rulesets
can affect the number of memory accesses dramatically; 2)
the existence and the numbers of “orthogonal structures”
and wildcard rules can affect the memory size significantly.
We use ClassBench[8] to generated the synthetic rules, and
validate our results through experiments. We also describe
some potential applications based on the measurement results
in the end of this paper.

The rest of this paper is organized as follows: Section 2
provides some background on the DT (decision-tree) based
algorithms. The key observations of the ruleset features are
presented in Section 3, and the measurement results are shown
in Section 4. We provide some potential applications and
discuss the future work in Section 5.

II. BACKGROUND

In this section, we introduce the basic idea of different
DT algorithms with one example ruleset. We make a detailed
comparison between these algorithms before we introduce the
key observations in the next section.

TABLE II
AN EXAMPLE CLASSIFICATION RULESET

Field 1 Field 2 Action

111* * DROP
110* * PERMIT

* 010* DROP
* 011* PERMIT
* * PERMIT

A packet classification ruleset can be viewed as a combi-
nation of different ranges on different fields. To note, in this
paper, we use the term field and dimension interchangeably.
Table II shows one example of one two dimensional classifi-
cation ruleset. Each field has 4 bits, which means the the value
in each field can be from [0, 15]. On Field 1, we have three
unique ranges, which are [14, 15], [12, 13], [0, 15] and Field 2
also has three: [4, 5], [6, 7], [0, 15].

Figure 1 shows the built decision trees of different algo-
rithms on this example ruleset.

A. HiCuts and HyperCuts

We begin with two classic DT algorithms: HiCuts and
HyperCuts. Since they are related, we only show the HiCuts
decision tree in Figure 1(a). The HiCuts algorithm builds
the decision tree by choosing a single dimension of rules
to separate rules. As shown in Figure 1(a), in the HiCuts
decision tree, Field 1 is cut into four equal-sized sub-space
— [0, 3], [4, 7], [8, 11], [12, 15]. We call this kind of cutting
scheme the equal-sized cutting. Since the ranges in the Field
1 are aggregated with prefix 11*, 4 equal-sized cuts cannot
separate R1 and R2. More cuts are needed on the fourth
children of the root node, which brings more memory accesses.
However, since the ranges in Field 2 are also aggregated
with prefix 01*, four equal-sized cuts still cannot separate
R1 and R2 rules. As shown in Figure 1(a), in the process
of cutting fields, because of the skewed distribution of ranges,
we have created a lot of identical nodes. For example, the
first three child nodes of the root node, (from left to right),
all contains rules R3, R4 and R5. While HiCuts algorithm can



use the Node Reuse optimization technique to merge these
three nodes, but the extra pointer array required by the node
merging would also increase the memory size. According to
[9], about 30% ∼ 50% of total memory usage is caused by
the storage of the child pointer arrays.

HyperCuts extends HiCuts by allowing multiple fields to
be cut in one node. However, since HyperCuts still adopts an
equal-sized cutting strategy, it still suffers from inefficiencies
when the distribution of ranges in the chosen dimension is
skewed. Because realistic packet classification rules are used to
filter a small amount of packets in the traffic, they are usually
very specific, or in other words, the distribution of the ranges is
usually skewed. This skewness makes HiCuts and HyperCuts
inefficient on realistic ruleset.

B. HyperSplit

In order to overcome the skewness problem of HiCuts
and HyperCuts, HyperSplit[5] adopts a different method to
separate rules. It picks a single point in the chosen field to split
the space into two unequal-sized sub-spaces which contain
nearly equal number of rules. As shown in Figure 1(b), the
HyperSplit algorithm splits the Field 1 into two unequal-sized
intervals: [0, 13] and [14, 15]. Thus R1 and R2 are separated
at the cost of only one memory access. Comparing to HiCuts,
which needs at least 3 times as many memory accesses,
HyperSplit is obviously more efficient. This binary cut on one
single dimension, can also bring other benefits. Because each
time, HyperSplit only performs a binary cut, wildcard rules
like R5 will yield fewer duplicates, and thus a smaller memory
size can be achieved. Note however that the average number
of memory accesses for each search is usually larger than in
HyperCuts due to this binary cut on a single dimension.

C. EffiCuts

Instead of building a single decision tree with all the rules,
EffiCuts builds multiple trees for one ruleset to avoid rule
duplication. EffiCuts categorizes the ranges into two types,
small range and large range. One range can be formed as
[min, max]. A large range is actually a range whose interval
length max − min is comparable with the maximal value on
the dimension. For example, the ruleset shown in Table II
has one large range: [0, 15] and two small ranges: [14, 15]
and [12, 13]. We represent a small range as Rs and a large
range as R∗. After this classification of ranges, each rules can
be represented as a large-small ranges combination pattern.
For example, the toy ruleset in Table II has three patterns:
{Rs, R∗}, {R∗, Rs} and {R∗, R∗}.

Before constructing the decision tree, EffiCuts first classifies
the rules into different groups, each group having one or only
a few combination patterns. As shown in Figure 1(c), building
decision trees on these groups will not lead to rule duplication,
thus reducing the memory footprint. Besides, by using the
Range Compaction optimization technique from HyperCuts,
the boundary of Field 1 is shrunk to [12, 15]. The same effect
has also impacted on the Field 2 in the second tree. This

will reduce the memory accesses in each tree. In theory, 5-
tuple packet classification rules can be divided into 25 = 32
groups. In realistic rulesets, it usually ends up with 10 trees.
After using the Tree Merge technique of EffiCuts, there are
still 4 ∼ 5 trees. Although EffiCuts has almost eliminated
rule replication, the memory accesses brought by traversing
multiple trees can reduce throughput significantly. According
to [9], EffiCuts needs 2 ∼ 3x times more memory accesses
compared to the single tree HyperCuts algorithm.

III. THE KEY OBSERVATIONS

In this section, we first propose the key observations about
the features of the ruleset. Then, we present our measurement
results of these features and the actual performance results on
the rulesets.

A. Skewness of ranges distribution in different dimensions

Although we have discussed the inefficiency of the equal-
sized cutting when the rulesets are skewed, we further discuss
the issue here.

Why more memory accesses? One reason is that large range
rules enlarge the boundary of nodes, which undoes the ef-
fectiveness of the Range Compaction optimization techniques
in HyperCuts. The other reason is related to how HyperCuts
calculates the number of cuts: HyperCuts uses a cost function
when calculating the number of cuts. In each node, HyperCuts
maximizes the cut number K so that after K cuts, the number
of rules in the child node Nrule, the number of child nodes
Nchild, and the number of rules in the parent node Nparent

satisfy:

∑
Nrule +

∑
Nchild < spfac×Nparent (1)

Since at each round cuttings along a dimension are cut into
two pieces of equal sizes, Nchild is doubled as the number of
cutings increases. If the distribution of ranges is not uniform,
more cuts do not separate the rules, but only increase the
duplication of rules. Since the Nchild increase quickly, soon
the Formula 1 will not be satisfied. However, more cuts on
child nodes are still needed to separate the rules.

Why more memory? The skewness of ruleset not only
increases the memory accesses of HiCuts and HyperCuts, it
also increases the memory consumption. As shown in Figure
1, it is easy to discover that there are many rule duplications
inside the decision tree. This is because more cuts on one field
usually lead to more duplication of rules which have wildcard
range on that field. Decision-tree based algorithms use pointers
to represent one rule, thus, a lot of rule duplication usually
leads to a large amount of memory for the storage of these
pointers. In the implementation of many DT algorithms, the
memory consumption for pointers usually accounts for around
50% ∼ 90% of the total memory size. Thus this skewness has
a significant affect on performance. In other words, the degree
of uniformity of the distribution of ranges is a key feature to
capture for predictable performance.



(a) sparse rules (b) orthogonal structure

Fig. 2. Geometric view of packet classification rules

TABLE III
THE “ORTHOGONAL STRUCTURE” RULES

Field 1 Field 2

S1 *
... *
Sn *
* D1

* ...
* Dn

B. “Orthogonal structure” and wildcard rules

Packet classification rules can be viewed as a set of hy-
percubes in a multi-dimension space. Fig 2(a) shows the
geometric view of a 2-dimension rule-set. We call this rule-
set sparse because the number of disjoint sub-regions is linear
in the number of rules. This kind of ruleset is suitable for
the decision-tree based algorithms. Figure 2(b) shows another
type ruleset. In this kind of ruleset, the number of disjoint sub-
regions are much larger than the number of rules. We say that
such ruleset has an “orthogonal structure”. Table III shows the
form of this ruleset. In the worst case, A K-dimension ruleset
with N rules will generate O(NK) disjoint sub-regions, which
renders the efficient separation of the ruleset by decision-tree
based algorithm difficult. From the Figure 2(b), we can deduce
that it’s impossible to perform smart cutting to separate these
rules without incurring any rule duplication. Unfortunately,
this structure is common in the many firewall rulesets. Firewall
rulesets usually contain a lot of distinct small range on both
source and destination IP fields. They also contain a lot of
large range rules on these fields. When preprocessing these
rulesets, HyperCuts or HiCuts will usually choose either the
source IP or the destination IP field to cut, While this separates
the rules which have small range on the corresponding field,
this also causes the duplication of other rules which have
wildcard on this field. Even worse, the rules which have
large range on both the source and destination fields will get
duplicated whenever there is any cuts on either field. We call
these rules wildcard rules for short.

When EffiCuts groups rules by the combination of the
small range and large range, it has also removed this kind of
structure in the ruleset. This is the key reason why EffiCuts can
reduce the memory footprint by several orders of magnitude.

C. The connection between two features

We have shown two important features that determine the
performance of the decision-tree based algorithms. Here, we
show how these two features interact with each other. If

TABLE IV
UNIFORM DIMENSION HIDES THE “ORTHOGONAL STRUCTURE”

Field 1 Field 2 Field 3

00* * 01
01* 01 *
10* * 10
11* 10 *

R1 R3

R1 R4

F2

[0
, 3

] [4,7]

F2

[2
, 4

] [5, 7]

F2

00*

01
* 10*

11*

R1 R2 R3 R4

(a) EffiCuts (b) HyperCuts

Fig. 3. Decision Trees of EffiCuts and HyperCuts on Table IV

on one dimension, the distribution of the prefixes or the
ranges is not skewed (or is very uniform), the HyperCuts
algorithm or other decision-tree based algorithm can use only
this dimension to separate all the rules, while ignoring any
“orthogonal structure” that might exist on other dimensions
(see Table IV).

On this ruleset, cutting on Field 1 is enough to separate the
rules into four small groups, so the “orthogonal structure” on
Field 2 and Field 3 does not have any impact on the algorithm
performance. However, previous work ignores this uniformity
feature, resulting in more memory accesses. For example,
since there are two patterns inside this ruleset: {Rs, R∗, Rs}
and {Rs, Rs, R∗}, EffiCuts will simply divides all the rules
into two groups, thus generating two trees. Although the depth
of each tree is only one, it takes two memory accesses to
traverse two trees. However if we build one decision tree, only
one memory access is needed. Figure 3 shows the decision
trees of both EffiCuts and HyperCuts.

IV. THE MEASUREMENT RESULTS

We use ClassBench[8] to generate synthetic classifiers for
various classification applications such as accesses control list
(ACL), firewall (FW) and IP chain (IPC). For our experiment,
we have generated 1K and 10K rule scenarios.

For comparison, we implement two algorithms in this paper:
HyperCuts and HyperSplit. For the HyperCuts algorithm, we
adopt the implementation in [7]. It disables the Range Com-
paction and Node merging optimization techniques, and only
allows at most 64 cuttings in one node. It uses 64-bits EPB
(external pointer bitmap) to store the child node index, thus
eliminating the pointer array of the original implementation.
We use the HyperSplit code from [4]. For a fair comparison,
we set the parameter binth for both algorithms to 16. We set
the spfac of HyperCuts to 4. Note that the HyperSplit code
does not account for the memory used for the rule pointer in
the leaf. We add these part of memory in our comparison.



TABLE V
THE DISTRIBUTION OF THE CUTS NUMBER

ruleset(num) algo. sIP dIP sPort dPort Protocol

ACL1K(953) HyperSplit 42% 46% 0% 7% 4%
HyperCuts 49% 46% 0% 4% 0

ACL1K(989) HyperSplit 25% 34% 0% 23% 18%
HyperCuts 34% 45% 0% 21% 0%

ACL10K(9792) HyperSplit 46% 15% 0% 2% 37%
HyperCuts 22% 74% 0% 1% 2%

ACL10K(9453) HyperSplit 30% 37% 1% 21% 11%
HyperCuts 12% 65% 0% 18% 6%

FW1K(815) HyperSplit 40% 22% 6% 29% 3%
HyperCuts 74% 5% 5% 5% 12%

FW1K(964) HyperSplit 38% 42% 0% 0% 20%
HyperCuts 64% 35% 1% 0% 0%

IPC1K(963) HyperSplit 43% 31% 0% 4% 22%
HyperCuts 49% 29% 1% 21% 0%

IPC1K(644) HyperSplit 49% 31% 0% 0% 19%
HyperCuts 2% 98% 0% 0% 0%

IPC10K(9515) HyperSplit 33% 29% 4% 28% 6%
HyperCuts 17% 55% 8% 10% 11%

IPC10K(10000) HyperSplit 51% 47% 0% 0% 2%
HyperCuts 29% 71% 0% 0% 0%

A. The cuts distribution

Before we start to measure these features of rulesets, we
should first ask whether we need to measure all the dimensions
of the rulesets? Here we present the cuts distribution of two
algorithms. Since all the performance metrics are related to the
cuts on the specific dimensions, studying the cuts distribution
can help us to find the principal components that determine
the performance.

From Table V, we can conclude that, although the cutting
schemes of HyperSplit and HyperCuts are very different, their
cuts distribution are similar. In both algorithms, around 50% ∼
90% cuts are performed on the IP fields. Especially for the
FW and IPC rules, the number of cuts on IP fields is the
largest component in the total cuts number. This is because
in many packet classification rulesets, IP fields usually have
most unique ranges, which leads the algorithm to cut on the
IP fields.

Also, in our experiment, we have found that, almost 90%
of memory are used for the storage of rule pointers in the leaf
node. We do not show the results here due to the space limit.

B. The “orthogonal structure” and wildcard rules in IP fields

Since we have found that the largest part of cuts are
performed on the IP fields, we now analyze the “orthogonal
structure” in the IP fields of the rulesets. According to the
large range and small range combinations on IP fields, we
first split all the rulesets into four groups. We use the methods
listed in [9] to determine whether a range is large or small.
We named these four groups of rules as {R∗, Rs}, {Rs, R∗},
{Rs, Rs} and {R∗, R∗}, and use four values ws, sw, ss, ww,
respectively, to represent the number of rules in these four
groups.

As shown in Table VI, the memory consumption of the
HyperCuts and HyperSplit, is related to the number of “or-
thogonal structure” and wildcard rules in IP fields. For ACL

TABLE VI
THE DISTRIBUTION OF THE CUTS NUMBER

ruleset(num) ss sw ws ww HyperCuts HyperSplit
mem. mem.

ACL1K(953) 927 19 5 2 36K 7K
ACL1K(989) 738 128 118 5 86K 19K

ACL10K(9792) 9570 176 37 9 2.0M 133K
ACL10K(9449) 7304 757 1217 171 134M 2.5G

FW1K(815) 104 208 448 55 12M 125K
FW1K(964) 187 631 133 13 151K 221K

FW10K(9395) 974 2423 5691 307 - 770M
FW10K(9615) 1801 6501 1279 25 14M 24M
IPC1K(963) 777 74 106 6 243K 27K
IPC1K(644) 302 84 258 0 124K 33K

IPC10K(9515) 7617 809 1050 39 66.8M 11M
IPC10K(10000) 3671 1077 5252 0 9.8M 5.5M

rules, from 1K to 10K, we can see that the number of sw,
ws and ww is fairly small compared to the total number of
rules. Thus the memory consumption of ACL rules is usually
small compared to FW rules. The ACL10K(9449) ruleset is
a particular case. The memory size of ACL10K(9449) is far
larger than the memory size of other rulesets. This is because
the ww of this ruleset is relative larger. As presented above,
during the building process of the decision tree, most cuts are
performed on the IP fields and will leads to more duplications
of {R∗, R∗} rules. A large ww means that when algorithms
perform cuts on IP fields, a large amount of rules will get
duplicated, resulting in a large memory consumption.

All the FW rules seem to have large sw, ws and ww. For
example, the FW10K(9395) ruleset has a large ww and also
has a large ws, so its memory consumption is beyond 500MB.
A counterexample is the FW10K(9615) ruleset: its ww is only
25, which makes its memory consumption around 30x smaller
than the memory consumption of FW10K(9615).

C. The uniformity of range distribution in IP fields

We use a simple method to test the uniformity of range
distribution in IP fields. We transform the range representation
on IP fields into the prefix representation. So by measuring the
prefix distribution, we can measure the range distribution on
IP fields.

For each ruleset, we form a counter array with 210 = 1024
entries to measure the distribution of the first 10-bits of source
IP prefixes. For each prefix, if the prefix length p is equal
or larger than 10, we extract the first 10-bits of this prefix,
use these 10 bits to index one counter, and add one to that
counter. If the prefix length p is smaller than 10, we expand
the prefix into a 10-bit prefix, and add one into all the counters
whose indexes share the first p bits. Therefore, by checking
the distribution of the value inside the counter array, we can
have a sketch of the uniformity of the prefix distribution. In
our experiments, we only measure the rules which have small
ranges on the source IP field, as rules with large ranges do
not separate and simply get duplicated. Figure 4 shows the
counter value distribution of 1K rulesets.

In Figure 4, the X axis shows the counter index, and the
Y axis shows the corresponding counter value for the specific



0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

(a) fw1 1K

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

(b) fw2 1K

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

(c) acl1 1K

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

(d) ipc1 1K

Fig. 4. The built decision trees by different algorithms

TABLE VII
THE TREE DEPTH OF THE FOUR RULESETS

Ruleset(num) HyperCuts HyperSplit

fw1 1K(815) 27 18
fw2 1K(964) 6 15
acl1 1K(953) 15 11
ipc1 1K(963) 18 13

index. As shown in Figure 4, the distribution of the ranges
on the source IP fields of fw1 1K, acl1 1K and ipc1 1K is
highly skewed. Most of the counter values are 0, and a lot of
non-zero values are aggregated in a narrow index range. In
contrast to these rulesets, fw2 1K has a wide non-zero range,
so compared to the other three rulesets, the fw2 1K ruleset is
more uniform.

We present the Tree Depth of the decision tree built on
four rulesets in Table VII. The fw2 1K ruleset is the only
ruleset which has fewer memory accesses when using the
HyperCuts algorithm. According to Table VI, the memory size
of HyperCuts on fw2 1K is also smaller than the memory
size of HyperSplit. These results show the correctness of our
observation that when the range distribution of the ruleset is
skewed, it is better to use the HyperSplit algorithm for this
ruleset. Otherwise, it is better to use HyperCuts algorithm as it
results in fewer memory accesses and thus higher throughput.

V. IMPLICATION DISCUSSION AND FUTURE WORK

In Figure 5, we have found that the range distribution of
both source IP and destination IP fields of fw1 10K ruleset is
uniform. We thus split the rulesets into three groups {Rs, R∗},
{{R∗, Rs}, {Rs, Rs}} and {R∗, R∗}, and build HyperCuts
tree on these three sub-ruleset. We find that this ruleset split
method can achieve 2x less memory accesses than EffiCuts
while still maintaining memory efficiency.

Further, by using these measurement results, one can:
1) Recommend algorithms for a specific ruleset according

to the uniformity of the range distribution of the ruleset. For
example, if the range distribution in one ruleset is skewed,
then algorithms using the unequal-sized cutting scheme are
preferred, like HyperSplit. If the range distribution is uniform,
algorithms using the equal-sized cutting scheme are preferred,
like HyperCuts.

2) Split ruleset based on the observation on the “orthogonal

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

(a) sip fw10K

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

(b) dip fw1K

Fig. 5. The prefix distribution of source and destination IP fields in fw1 10K

structure” on IP fields. For example, if the number of “or-
thogonal structure” rules is large, we should split the ruleset
to reduce the memory consumption. Further, by measuring the
uniformity of the range distribution, we can choose the right
algorithm for the split sub-rulesets.

3) If we can capture the uniformity inside one ruleset, we
can split one ruleset into several parts, leading to a hybrid
TCAM and SRAM packet classification engine.

As future work, we will be performing the same experiments
on the rulesets from production networks. The measurement
method described in this paper will also be refined. Future
work is needed to design finer grained metric to characterize
ruleset features, and an automatic method will be designed for
algorithm recommendation and rule splitting.

ACKNOWLEDGMENT

This work was supported in part by National Basic Re-
search Program of China with Grant 2012CB315801, by
National Natural Science Foundation of China (NSFC) with
Grants 61133015 and 61202411, by National High-tech R&D
Program of China with Grant 2013AA013501, by Strategic
Priority Research Program of CAS with Grant XDA06010303,
by the Instrument Developing Project of CAS with Grant
YZ201229 and the ANR-NSFC pFLower project.

REFERENCES

[1] P. Gupta and N. McKeown. Packet classification using hierarchical
intelligent cuttings. In Hot Interconnects VII, pages 34–41, 1999.

[2] A. Khakpour and A. Liu. First step toward cloud-based firewalling.
In Proceedings of the 31st IEEE International Symposium on Reliable
Distributed Systems (SRDS), Irvine, California. IEEE, 2012.

[3] Y. Ma and S. Banerjee. A smart pre-classifier to reduce power consump-
tion of tcams for multi-dimensional packet classification. In Proceedings
of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, pages 335–346.
ACM, 2012.

[4] Y. Qi. Hypersplit source code.
Online: http://security.riit.tsinghua.edu.cn/share/index.html, 2009.

[5] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet classification algorithms:
From theory to practice. In INFOCOM 2009, IEEE, pages 648–656.
IEEE, 2009.

[6] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 213–224. ACM, 2003.

[7] H. Song. Evaluation of packet classification algorithms.
http://www.arl.wustl.edu/ hs1/PClassEval.html.

[8] D. Taylor and J. Turner. Classbench: A packet classification benchmark.
In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, volume 3, pages
2068–2079. IEEE, 2005.

[9] B. Vamanan, G. Voskuilen, and T. Vijaykumar. Efficuts: optimizing
packet classification for memory and throughput. In ACM SIGCOMM,
volume 40, pages 207–218. ACM, 2010.


