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1. Abstract

This paper extends previous work on structural optimization with the eXtended Finite Element Method
(X-FEM) and the Level Set description of the geometry. The proposed method takes advantage of fixed
mesh approach by using an X-FEM structural analysis method and from the geometrical shape represen-
tation of the Level Set description. In order to allow the optimization of complex geometries represented
with a Level Set description, we apply here a Constructive Solid Geometry (CSG) approach with the
Level Set geometrical representation. Hence, this extension allows to optimize any boundary of the struc-
ture that is defined with a coumpound Level Set. Design variables are the parameters of basic geometric
primitives which are described with a Level Set representation and/or the control points of the NURBS
curves that act as the definition of an advanced Level Set primitive. The number of design variables of
this formulation remains small whereas global (i.e. compliance or eigenfrequency) and local constraints
(i.e. stresses) can be considered. Our results illustrate that fixed grid optimization with X-FEM coupled
to a Level Set geometrical description is a promising technique to achieve structural shape optimization.

2. Keywords: Shape optimization, Level Set description, Extended Finite Element Method.

3. Introduction

To achieve the research of the optimal design, the optimization of structures relies generally on the
modification of the boundaries, the topology or the material distribution of the model. In shape op-
timization, the internal and external boundaries of the model are modified while keeping a fixed intial
topology. In the classical Finite Element Method (FEM), the modification of these boundaries implies
successive adaptation and remeshing step of the mesh to follow the evolution of the model. While shape
optimization has reached a certain degree of robustness and sophistication, a major difficulty appear in
the mesh management coming from the large shape modifications. The main technical problems comes
from the sensitivity analysis. Derivatives have to be regarded as material derivatives and the sensitivity
analysis requires the calculation of the so-called velocity field [16]. Actually, 2-D problems are quite well
mastered but 3-D problems are still difficult to handle in the most general way. It turns out that shape
optimization remains generally quite fragile and delicate to use in industrial context. However, compared
to topology optimization this method generally present few design variables and is therefore able to treat
various criteria such as restricted displacements, stress criteria, eigenfrequencies, etc.

To circumvent the technical difficulties coming from successive mesh generation and adaptation, various
authors have proposed a couple of methods based on fixed grid approach such as the fictitious domain
[6], the fixed grid finite elements [7] and the projection methods[10]. In this paper, to avoid the main
problems encountered with the classical shape optimization technique, we use another fixed grid approach:
the extended finite element method (X-FEM [9]). Besides the advantage of working with of a fixed mesh,
this technique allow to treat the void as real zero stiffness material whereas other methods generally
simulates void as a weak material such as SIMP in topology optimization. Indeed, this method deals
with a clearly defined interface between void and solid part whereas many other techniques do not.
Finally, the successive mesh adaptation and generation is suppressed and the same mesh is kept during
the whole optimization process.

The X-FEM method is naturally associated with the Level Set description of the geometry to provide
an efficient treatment of problems involving moving boundaries or discontinuities. The description of the
geometry is represented by the zero iso-contour of an implicit function called the Level Set function [12].



This method is very convenient for the topology optimization as it allows deep and complex changes of the
global shape of the model while presenting the smooth curves representation of the Level Set description.
In order to provide the structural optimization with the ability to modify any boundary of the structure,
we extend here previous Level Set description with a CSG-like approach to build complex geometries.
Hence, the whole structure can be implicitly modelled with a Level Set and be modified during the
optimization. This work differs from other papers on the subject as we do not use the equation of motion
of the Level Set method like [13], [15], [1] nor the nodal Level Set value as design variables like Belytschko
et al. in [2]. In our work, the design variables are the parameters of basic level set primitives (circles,
rectangles, etc.) or NURBS control points defining an advanced Level Set primitive, while various global
(compliance, eigenfrequencies) and local responses (stress) can be considered in the formulation.
Numerical applications illustrate the great interest of using X-FEM and level set description on several
2D and 3D applications involving compliance, volume or structural stresses as objective or constraints
functions. The outline of this paper is as follows. In the next section, we give a brief introduction
of the Level Set Description and the Constructive Solid Geometry applied to Level Set. Then, follows
an introduction to the X-FEM. Section 6 details the optimization approach and the applications are
presented in section 7.

4. The Level Set Description

In the classical Finite Element Method, the geometry of the structure is generally explicitly defined and
the topology of the structure is therefore fixed. Hence, only small geometrical modifications can be taken
into account while preserving a correct topology. Moreover, any transformation of this topology usually
asks for a wide modification of the model geometry definition. For example, any creation (removal)
of holes needs the insertion (suppression) of a new geometrical entity in the model. These limitations
are generally considered as the main reason of the low performance generally associated to the shape
optimization compared to the performance obtained with a topology optimization method. In order
to be able to treat large shape and topological modifications, the present work relies on the Level Set
description. This method, which has been developed by Osher and Sethian [12], consists in representing
the boundary of the structure with an implicit method thus allowing deep changes of boundaries.

The Level Set method is a numerical technique first developed for tracking moving interfaces. It is based
upon the idea of representing implicitly the interfaces as a Level Set curve of a higher dimension function
1(x,t). The boundaries of the structure is then conventionnally represented by the zero level (¥(x,t)=0)
of this function 1, whereas the filled region is then attached to the negative or the positive part of the
1 function. In practice, this function is approximated on a fixed mesh by a discrete function which is
usually a signed distance function:

bx,t) =+ min_[x—xr| 1)
xI‘GF(t)

The sign is positive (negative) if x is inside (outside) the boundary defined by I'(¢). The evolution of the

interfaces is then embedded in the evolution equation for ), which is given in [12] by:

WD 4 p vl =0 )
P(x,t) =0 given (3)

where F' is the speed function defined on the interface I'(t) in the outward normal direction to the
interface. Applied to the XFEM framework, the Level Set is defined on the structural mesh and each
finite element node is associated a geometrical degree of freedom representing its Level Set function value.
The Level Set is then interpolated on the whole design domain with the classical FEM shape function:

P(x,t) = Ni(x)¢s (4)

When more than one Level Set is defined on the structural mesh, it is possible to combine them with
three different simple Boolean operators: union, intersection and difference. Hence, the union of two
Level Set can be directly obtained from the nodal values by computing the minimum of the two Level
Sets (see Fig. 1).

4.1. Constructive geometry based on the Level Set Description
The constructive solid geometry (CSG) is a technique widely used in solid modelling and Computer
Aided Desgin (CAD). The idea of this technique is to combine relatively simple objects called primitives
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Figure 1: Example of the union of two Level Set

in order to define complex geometries. Typically, the primitives have a very simple shape such as cuboids,
cylinders, prisms or spheres . ..but this set of shapes can be extended to hold more complex geometries
such as curved objects. Each combination of primitives is obtained by using Boolean operators: union,
intersection, difference. These operators generally act upon two objects and produce a single compound
object results. The union of two objects results in an object that encloses the space occupied by the two
primitives. Intersection results in an object that encloses the common space of the two given objects.
Then, the difference is an order dependent operator; it results in the first object minus the space where
the second intersected the first (see Fig. 2).

(a) Union of a cube and a (b) Difference cube - (c) Intersection be-
sphere sphere tween the cube
and the sphere

Figure 2: Boolean operations in constructive solid geometry

As one can see, in constructive solid geometry, the primitives always divide the space in 2 distinct parts
and the related Boolean operators are used to combine or extract different space region surrounded by the
primitives. Indeed, one can easily see that Level Set function also split a domain in 2 parts with respect
to its sign value and that the Level Set operators act just as the Boolean CSG operators. Therefore,
these operators can be used together with several Level Set primitives to represent complex geometries.
Practically, following the methods used in CSG, the structure geometry is procedurally modelled as a
compound of different Level Sets and organized as a binary tree where all leaves are Level Set primitive.
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Figure 3: Example of a CSG Level Set Model

5. The extended finite element method

The extended finite element method developed by Moes, Belytschko and co-workers[9] is a recent method
whose been firstly developed for the simulation and the analysis of structures presenting crack growth.
The principal strength of this method is its capacity of including discontinuities inside the finite elements.
Hence, this method enables the model to include geometric boundaries, material or phase changes that
are not coincident with the mesh.

5.1. Basis of the method

In order to allow any types of discontinuities inside the elements and therefore to be able of representing
discontinuities in the physics field of the problem’s solution, it is necessary to add special properties
to the shape functions. For example, in the case of cracked structures, the physical discontinuous field
is the displacement field, hence, if one want to be able of modelling this discontinuity, we have to add
discontinuous shape functions. The classical finite element approximation used is then extended to embed
discontinuous shape function as in the following equation:

u(x) = Z u; N;(x) + Z a; N;(x)H (x) (5)

where N; are the classical shape functions associated to degree of freedom w;. The N;(x)H (x) are the
discontinuous shape functions constructed by multiplying a classical N;(x) shape function with a Heavi-
side function presenting a switch value where the discontinuity lies.

In our case, we are only interested in modelling material-void interfaces with X-FEM (see [14]). To this
end, the displacement field is then approximated by:

u(x) = Z uiNi (x)V (x) (6)

where
0 if xevoid

Vix) = { 1 if x € material

The elements lying outside the material zone are removed from the system of equations, whereas the par-
tially filled elements are integrated using the X-FEM integration procedure (see [8] and [14]). Modelling
holes with the XFEM is a very appealing method for the shape optimization but also for the topology
optimization as no remeshing is needed and no approximation is done on the nature of the voids in
opposition to the SIMP method. The elements lying fully outside the material are removed from the
system of equations, whereas the others are kept. One can observe that using a quadrature rule would
lead to a totally unsatisfactory result even when increasing dramatically the number of Gauss points. At



first, one has to notice that because of the zero displacement field in the void domain, the void part of
the element does not contribute to the stiffness matrix. Thus the integration procedure is restricted to
the solid sub-domain of the element (see Fig. 4).

Figure 4: Triangle real space, reference space and second reference space

In the case of a triangular element, we now have to deal with an integration domain that is not any-
more the reference triangle in space £,n. Hence, we divide the solid part of the element into several
sub-triangles (with the barycenter P as one vertex for instance) conforming to the interface and the
boundaries of the element itself. Then, a second reference space s,t is introduced in which we successively
map the sub-triangles of space £,n. The classical FEM shape functions defined in this space are then
integrated over each sub-triangles which define the integration domain. Therefore, the stiffness matrix is
now given by:

K = B"HBAV =Y K = Z/ BTHB | Jy||J2| dsdt (7)

A A A

Qsolid

where Qgoiq is the solid zone, A is a sub-triangle, |Ji| and |J3| are the Jacobian of the transformation
of x,y space to £, n and &, 7 to s,t respectively. Notice that the shape functions are still defined in the
space &,n whereas the integration domain is defined by the second mapping in the space s,t. In case of 3D
elements, the preceding method is extended to the third dimension and the sub-division of an element is
then composed of sub-tetrahedrals domains. The following figures (Fig. 5) illustrate the sub-division of
a 3D tetrahedron element for various intersecting plane positions (the positive nodes lie in the material
whereas negative nodes are in the void part).

{

(a) One negative node (b) Two negative nodes (c) One negative node
and one zero node

Figure 5: Intersection of a plane and a tetrahedron and sub-division

When using a complex model built with more than one Level set, each extended finite element is sub
divided in order to conform the iso zero of the resulting Level Set defining the model. Hence, the
sub division algorithm is called recursively on the element until all sub cells are conforming the model
boundaries.

6. Formulation of optimization problem

The formulation of the optimization problem can be seen as a classical shape optimization problem for-
mulation. Hence, the variables are geometrical parameters that modify the shape of structure. However,
these parameters do not directly modify the geometry but change one of the Level Set used to define the



model. The research of an optimal solution is simplified thanks to the use of X-FEM and a Level Set
description as no velocity field and/or mesh perturbation are needed. The geometry and the material
repartition are specified using Level Sets representations. The positive part of the Level Set represents
the region where lies the material and the negative part the void. To describe the structure, the user
has a library of basic geometric primitives (in Level Sets) that can be combined to create almost any
structural geometry. Beside these pre-defined Level Set shapes, the user can also build a Level Set from
a Nurbs curve or a general set of points and combine them with Level Set operators union, intersection
and difference. The optimization problem aims at finding the best shape for minimizing a given objective
function while satisfying mechanical and geometrical design restrictions. The mechanical constraints can
either be global responses (e.g. compliance, volume or eigenfrequency) or local ones such as displacements
or stress constraints. The number of design variables is generally small as in shape optimization. However
the number of constraints may be large if local stress restrictions (e.g. stress constraints) are considered.
Nonetheless, large scale problems as in topology optimization are avoided.

The design problem is stated as a general constrained optimization problem:

min  go(x)
X
mam

st gi(x) < gj j=1l...m
z, <z <7 i1=1...n

The solution to this problem is obtained using the so-called sequential convexr programming [5]. At each
iteration, the X-FEM analysis problem is solved and a sensitivity analysis is performed. The solution
of the optimization problem is then found by using a CONvex LINearization approximation scheme of
each constraint functions (CONLIN [4]). The solution becomes the new design and the procedure is
repeated until convergence. Because of the X-FEM characteristics, the geometry has not to coincide
with the mesh and the shape optimization problem is carried out on a fized mesh. One works here in an
Eulerian approach and not in a Lagrangian approach. This circumvents the mesh perturbation problems
of classical shape optimization. Sensitivity analysis does not require the velocity field anymore. The
present formulation is then, up to a certain point, simpler. However, some technical difficulties can be
encountered if a finite difference or a semi-analytical scheme is used for sensitivity analysis. Basically,
the problem is that the perturbation must not change the number of degrees of freedom of the X-FEM
stiffness matrix (see [3] for more details). The Level Set approach is very convenient to modify the
geometry because the Level Sets (and so the holes) can penetrate each other or disappear. Creation of
new holes is more problematic since it leads to a non smooth problem. Topological derivatives (see [11])
have then to be used for a rigorous treatment of the problem. This capability has not been implemented
in this study.

6.1. The sensitivity analysis method

As in classical shape optimization, the sensitivity analysis of mechanical responses (such as compliance,
displacement, stress, ...) is carried out using a semi-analytic approach. In this approach the derivative
of stiffness matrix (K) is calculated by finite differences with respect to a small perturbation dz of Level
Set parameters:

K  K(z+dz) - K(z)

or ox
In the case of invariant loading forces, the derivative of static equilibrium equation gives the expression
of the generalized displacements sensitivity as a function of the stiffness matrix derivative:

ou 0K

— = K!'(—=—u) (8)
Ox Ox

If the objective function or constraint involves the stresses of the problem, the sensitivity of this response

is needed. In this work, we compute this sensitivities with a finite difference over the stresses while the
perturbed displacements are computed using eq. (8):

o(z) = HBju(x)
o(x+dx) ~ HBju(z+ dz)
do oz +dr)—o(z)
or Ox

where H is the Hooke’s matrix and Bj the matrix of the derivated shape functions of the element j.



7. Applications

The X-FEM method for the modelling of material-void discontinuity and its level set description have
been implemented in an object-oriented (C++), multiphysics finite element code, OOFELIE, which is
commercialized by Open Engineering (information available on the web site www.open-engineering.com).
In this software, various mechanical responses can be chosen as objective functions and design restric-
tions, that is, compliance and potential energy, all stress components and Von Mises equivalent stress,
displacements, eigenfrequencies and geometric results. The implementation of the X-FEM method is
available in 2 and 3D, with a library of first degree quadrangle, triangle and tetrahedron elements. The
level set description can be defined in different ways. They can be constructed classically from functions
(circle, quadrangles, ellipses, ...) or from a set of points which are interpolated by a NURBS curve. The
CONLIN optimizer by C. Fleury described in [4] has been coupled in the OOFELIE environment to
realize the numerical applications.

7.1. Shape optimization of a 3D rod in traction and bending

The following application presents an example of shape optimization where the model is designed with a
complex CSG Level Set built as a compound of simple and NURBS Level Set primitives. The geometry
of the domain and the description of the Level Set primitive is presented on figure 6. The rod is clamped
on the left circle C; while the loading is applied on the circle C with values F, equal to 220 kN and F),
60kN. To obtain a symmetry with the zy-plane, we only study a half rod by applying symmetry condition
in this plane and we prescribe a width along z axis of 20 mm. The circles C; and C5 have a radius of 5
mm, d=25 mm, e=30 mm a=60 mm and b=200 mm.

0OOfelie Graph
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(a) Geometry of domain (b) Parametrization of the rod with 7 Level Set
primitives

Figure 6: Representation of the rod

The goal of the optimization is to minimize the mass (the volume) by modifying the exterior contour
shape. The restriction the structure should verify is a limitation on the Von Mises stress (103 kN /mm?)
and prescribed side constraints on the design variables. The constraint on the stresses is carried out by
selecting only a certain number of elements. In this case, we select at each iteration 50% of the total
number of elements that present the highest value of the Von Mises stress. As mentioned before, the
contour of the structure is described with a compound of simple and advanced Level Set primitives.
Two cylinders aligned with circle C7 and Cy are placed at both extremity of the rod while the arm is
modelled with two NURBS curve extruded in the z direction and a plane parallel to zy plane. Two planes
are also placed to limit the arm length. The optimization variables are the external radius of the two
cylinders, the control points of the Nurbs curves and the elevation z of the Level Set plane (xy) . The
internal diameters of the two circles C7 and C5 are fixed. Hence, the mesh is conforming the geometry
described in figure 6 (a). This enables us to apply the boundary conditions on these surfaces. We obtain
the following shape (see Fig.7(b) after 22 iterations. The volume reduction is equal to 25% and the
prescribed maximum Von Mises stress is respected. It is also interesting to remark that the connectivity
of the geometry has been modified as the xzy plane primitive has moved to obtain a thicker arm. We can
see here an advantage of the Level Set representation as this kind of change could not be achieved with
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Figure 7: Initial model and solution obtained

(b) Solution obtained

(a) Initial geometry of rod

a classical shape optimization method.

7.2. Shape optimization of a 2D dam
The second test case illustrates the application of a shape optimization with loads depending on the shape

of the structure i.e. configurational loads. Here, the objective is to minimize the compliance of the dam
which is subject to an hydrostatic pressure pgh. This pressure is applied on the iso-zero Level Set and
acts perpendicularly to the structure (h is aligned with line ca). The geometry of the model is depicted
in figure 8 (¢) with the mesh corresponding to the initial shape and the displacement field representing
the optimal boundary obtained. The line ab has a length of 1.5, ac is equal to 1 and cd=1. The interface
is modelled with a NURBS curve primitive with 7 control points K; placed at y=0,0.1,0.3,0.5,0.7,0.9,1.
The optimization variables are these control points with a movement limited to the x axis. Moreover,
the volume is constrained to be less or equal to 40% of the initial volume. The figure 8 (a) and (b) shows
the evolution of the constraint and the objective function respectively.
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Figure 8: Optimization of a 2D dam

7.3. Shape optimization of a 3D dam
This last application is the extension of the previous one in 3D. The model geometry is described in figure

9 (a). The Level Set boundary is represented by a NURBS curve that is extruded in the z direction.
As a consequence, the iso-zero surface of the Level Set can only be modified in the x,y plane which is a
limitation related to the set of primitive currently available. The variables of the optimization problem
are the control points K; (see Fig. 9 (a)). The objective function is to minimize the compliance with
a constrain on the volume V' <0.3V;, where V; is the initial volume. The applied load is the hydrostatic



pressure pgz.
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Figure 9: Geometry and solution of the 3D dam

8. Conclusions and perspectives

The approach presented here takes place between shape and topology optimization as it presents some
characteristics of both methods. Hence, this method can be related to shape optimization as it relies
on a geometric representation of the structure thus limiting the number of variables introduced in the
optimization problem. Moreover, the geometric modeller is based on a Level Set description that allows
more freedom than a classical geometry definition. Like the topology optimization, this method shares also
the interesting advantage of working on a fixed grid thanks to the X-FEM method but do not approximate
void as a smooth material. Finally, the Level Set is able to represent smooth curves description. This
feature is seen to be very interesting when a load has to be applied on an evolving boundary. In the
present paper, we have presented an application of the Constructive Solid Geometry approach applied to
a Level Set Description to model complex geometries with Level Sets. The geometrical primitives from
CSG are replaced by primitives described with Level Sets while the CSG Boolean operators are the Level
Set combination operators. Some applications have been presented to illustrate the advantages of using
both X-FEM and Level Set in shape optimization. The semi-analytic sensitivity analysis with X-FEM
and level set has been developed for the majority of common objective function such as the compliance,
the stresses or the displacements.

The fixed grid approach is a very interesting feature in shape optimization as it removes all mesh prob-
lems occurring when Finite Element method. However, when using an implicit representation of the
boundaries, it can be necessary to modify the mesh in order to obtain accurate representation. Hence,
our future work should consider the introduction of an automatic mesh refinement in order to avoid shape
presenting a very poor level of refinement during the evolution of the structure. Moreover, to take fully
advantage of the fixed grid approach, hexahedral elements should be developed to use octree meshing
technique to improve the performance of the method in terms of CPU time. The optimization should
also be improved to be able to take into account geometrical constraint between Level Set. Finally, the
enrichment of Level Set primitives and the generation of these primitives should be studied.
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