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Abstract 

In this article, the ability of the 2D shallow water equations to model meandering flows in 

shallow rectangular reservoirs is discussed. Four meandering flows, of various shallowness, 

were modelled using the academic flow model WOLF 2D, which includes a depth-averaged 

k- model accounting for the horizontal and vertical turbulent length-scales. The bottom 

friction was modelled with the Colebrook-White formula and different roughness heights 

were considered. A Proper Orthogonal Decomposition (POD) was applied to the simulation 

results to extract the behaviour of the main structures responsible for the meandering flow. 

The same POD analysis was also performed for the reference experimental flow fields, 

obtained by Large-Scale Particle Image Velocimetry. The first two POD modes obtained 

from the numerical simulations assuming a smooth bottom are in good agreement with the 

experimental modes in terms of energy, as well as temporal and spatial variations, whatever 

the shallowness. In contrast, the remaining simulated modes are not well rendered. The effect 

of an increased roughness height in the simulations is finally discussed. It leads to an 



improved reproduction of the first two modes and of the following modes, except when 

significant viscous effects govern in the flow.  

 

Keywords: Shallow rectangular reservoir, meandering jet, Proper Orthogonal 

Decomposition, shallowness, friction modelling, shallow water equations 

Introduction 

Shallow rectangular reservoirs are common structures in natural and built environments. 

They are used as storage reservoirs (flood-control, hydropower) or as settling reservoirs to 

trap pollutants and/or sediments (stormwater treatment, protection of irrigation systems).  

In their studies, Dufresne et al. (2010a), Dufresne et al. (2012) and Peltier et al. (2013) 

emphasized that the optimal management of reservoirs (in terms of sediment transport and 

water storage) cannot be achieved without the detailed knowledge of the complex flow fields 

developing in such reservoirs. Indeed, regions with distinct mean velocities occur and large-

scale horizontal coherent structures develop in the flow (Camnasio et al., 2011, Dewals et al., 

2008, Dufresne et al., 2010b, Kantoush et al., 2008, Peltier et al., 2014a, b). The flow fields 

in shallow rectangular reservoirs can be classified into four different flow patterns (Peltier et 

al., 2014a), depending on the Froude number at the reservoir inlet, F, and on the geometry of 

the reservoir, characterized by the shape factor defined by Dufresne et al. (2010b) as 

SF = L/B
0.6

b
0.4 

(L the reservoir length, b the width of the inlet channel and B the width of 

the sudden expansion). For SF < 6.2, the flow is symmetric and the jet remains straight when 

F < 0.21; whereas it meanders for F > 0.21  (Peltier et al., 2014a). When SF > 8.1, the flow 

is asymmetric whatever the Froude number and the jet impinges one or several times the side 

walls. Finally, for F > 0.21 and 6.2 < SF < 8.1, the flow pattern is unstable and randomly 

switches between symmetric and asymmetric configurations, the jet being either straight or 



meandering. 

The hydraulic conditions and the geometries leading to symmetric and asymmetric flows 

are now relatively well documented in the literature (Aloui and Souhar, 2000, Camnasio et 

al., 2011, Canbazoglu and Bozkir, 2004, Dufresne et al., 2010b, Kantoush et al., 2008, 

Mullin et al., 2003, Oca and Masaló, 2007) and numerical models have demonstrated their 

ability to reproduce such flow features (Camnasio et al., 2013, Dewals et al., 2008, Dufresne 

et al., 2011, Khan et al., 2013, Peng et al., 2011, Stovin and Saul, 2000). By contrast, very 

few experimental and numerical studies dealt with meandering flows in shallow rectangular 

reservoirs (Camnasio et al., 2012, Kantoush, 2008, Peltier et al., 2014a, b). As highlighted by 

Peltier et al. (2014b) by using a Proper Orthogonal Decomposition, the meandering jet is 

constituted by large-scale energetic turbulent structures, which contribute to increase the 

lateral momentum transfer between the jet and the rest of the flow (Chen and Jirka, 1999). 

When considering sediment transport in a shallow rectangular reservoir, this additional 

transfer of momentum is responsible for a wider spreading of the sediments on both sides of 

the jet compared to a configuration without meandering jet (Peltier et al., 2013). This results 

in a significant rise in the overall trapping efficiency of the reservoir. However, this aspect is 

not taken into account in the current practice of reservoir design, as the standard approaches 

are mostly based on geometrical relationships alone. Serious price over-costs in the reservoir 

management may be avoided by a better consideration of the physics at the design stage, 

particularly through the use of numerical flow models. Therefore, assessing the predictive 

capacity of operational numerical models to simulate these meandering flows is of high 

practical relevance.  

In the present article, we discuss the ability of the academic numerical model WOLF 2D 

(Dewals et al., 2008), based on the shallow water equations, to reproduce meandering jets in 

shallow rectangular reservoir. The four flow configurations detailed in Peltier et al. (2014b) 



were numerically modelled using WOLF 2D with a k-model accounting for two different 

turbulent length-scales (Erpicum et al., 2009): the horizontal turbulence mixing is modelled 

by two additional transport equations (k and , while the vertical turbulence mixing is 

treated with an algebraic model (Elder formula). As the meandering jets are influenced by the 

bottom friction (Peltier et al., 2014a), we also tested three different roughness heights. As the 

meandering flows are unsteady flows, experimental and numerical results were compared 

using a Proper Orthogonal Decomposition (Holmes et al., 2012, Peltier et al., 2014b) of the 

fluctuating velocity fields. Six major parameters characterizing the meandering behaviour 

were extracted from this analysis: the mean fluctuating kinetic energy distribution of the POD 

modes, the mean total fluctuating kinetic energy, the frequency and the mean amplitude of 

the first four temporal POD coefficients, as well as the longitudinal and lateral extensions of 

the first four spatial POD modes. 

Experiments 

Experimental setup and data-set 

The experiments were carried out in a flume at the laboratory of engineering hydraulics 

of the University of Liege (ULg), Belgium. The experimental setup is shown in Figure 1 and 

a complete description of the experimental facility is provided by Peltier et al. (2014a) and 

Peltier et al. (2014b). The inlet and outlet channels are respectively 2 m and 1.5 m long. The 

dimensions of the reservoir were selected based on the criteria of Peltier et al. (2014a) for the 

occurrence of meandering flows in shallow rectangular reservoirs (SF < 6.1 and 

F /inU gH  > 0.21 with Uin the mean velocity at the inlet and g the gravity acceleration). 

The width of the inlet and outlet channels was set to 0.08 m. The reservoir length, L, was 

equal to 1 m and the width of the sudden expansion, B, was chosen equal to 0.45 m. The 

discharges and the water depths were selected to obtain the desired Froude numbers and for 



covering a broad range of friction numbers, S / 8f B H   (f the Darcy-Weisbach coefficient) 

(Chu et al., 1983). In each experiment, the discharge, Q, was regulated to be kept constant. 

The water depth, H, was measured in three positions in the reservoir using an ultrasonic 

probe and was constant to the measurement uncertainty (1% of H). Their values are 

summarized in Table 1 together with the corresponding friction and Froude numbers. The 

Reynolds number in the inlet channel, R /inU D   (D the hydraulic diameter of the inlet 

channel and  the kinematic viscosity of the water at 20°C), is also given in Table 1. It ranges 

between 4,766 and 24,267, which means that the jet can be considered as turbulent, but the 

flows are hydrodynamically smooth and some viscous effects may be expected. 

As demonstrated by Peltier et al. (2014a), the characteristic lengths and frequency of the 

meandering jet show a strong dependence on the friction number S, which is an indicator of 

the shallowness of the flow. Depending on the value of S, different types of structures 

develop in the flow and affect the meandering of the jet (Peltier et al., 2014b). The four 

different flow-cases considered here are named according to their friction regime, as defined 

by Chu et al. (2004). The turbulence-scale in the flow-case F (S = 0.18) is mainly driven by 

the water depth and the bed friction has a stabilizing effect on the development of the 

structures (Chu and Babarutsi, 1988). This type of flow belongs to the “frictional” regime. In 

contrast, the turbulence scale is mostly driven by the horizontal length-scale, i.e. the sudden 

expansion width B, for flow-case NF (S = 0.03), which belongs to the “non-frictional” 

regime. The transition between the frictional and the non-frictional cases was found for S in-

between 0.05 and 0.1 for sudden enlargements (Chu et al., 2004). For meandering flows, 

Peltier et al. (2014a) indicate that a transition was observed around S = 0.07. The flow case 

corresponding to S = 0.10, is therefore referred as “frictional close to transition” (FT), while 

the flow case corresponding to S = 0.06 is called “non-frictional close to transition” (NFT).  



In the present paper, x, y and z designate the streamwise, spanwise and vertical directions 

of the Cartesian frame of reference; x = 0 immediately downstream from the inlet channel 

and y = 0 at the right bank of the reservoir. z = 0 at the bottom of the reservoir.  

Velocity measurements 

In the experiments, only the surface flow was reasonably accessible. The surface 

dynamics was therefore estimated using the surface velocity fields measured by Large-Scale 

Particle Image Velocimetry (LSPIV)Peltier et al. (2014b). This assumption was supported by 

the measurements of Rowland et al. (2009), who observed in a similar configuration (acrylic 

bed, R = 27,000, H/B = 0.2, with H constant in the reservoir) that the characteristics of the jet 

near the free surface are close to those of the mid-flow. This assumption is also supported by 

Peltier et al. (2013) and Mariotti et al. (2013), who showed a remarkable agreement between 

the measured surface characteristics of the jet and those predicted by a depth-averaged flow 

model (based on the shallow water equations). These results indeed suggest that the measured 

surface velocity fields are fairly representative of the large-scale instabilities. Some 

discrepancies between experiments and numerical modelling may nonetheless arise as a 

result of vertical secondary currents influencing the vertical distribution of velocity until x/H 

= 10 (Foss and Jones, 1968, Holdeman and Foss, 1975) and bottom generated turbulence that 

affects the flow close to the bottom.  

Sawdust of 2 mm in diameter was used as seeding material in experiments. The sawdust 

was introduced at the surface of the flow, 3 m upstream from the converging zone (Figure 1), 

i.e. 5 m upstream from the reservoir inlet. The sawdust was regularly added to the surface so 

that a homogenous zone of 3 m × B of sawdust was advected into the reservoir. The video 

sequence used for the LSPIV calculation started as soon as the surface was homogenously 

occupied by the sawdust. A region of 1 m², containing the entrance of the reservoir (Figure 



1), was video recorded at a rate of 25 Hz during 6 min using a commercial video-camera 

(Canon
©

 HD-HG20). The recorded images were corrected for deformations and were 

orthorectified so that one pixel was equal to a square of 1 mm side. Using a LSPIV code 

based on the work of Hauet et al. (2008) and Hauet (2009), the surface velocity fields were 

worked out every centimetre along the x and y direction. The resulting velocity fields were 

finally corrected and low-pass filtered (Peltier et al., 2014b).  

Numerical modelling  

WOLF 2D 

The numerical modelling was performed using the academic model WOLF 2D 

developed at the University of Liege. It solves the shallow-water equations (Dewals et al., 

2008) by means of a finite volume scheme. The model was earlier validated for simulating 

flows in shallow reservoirs (Camnasio et al., 2013, Dewals et al., 2008, Dufresne et al., 2011, 

Peltier et al., 2013).  

Second-order space accuracy is obtained by means of linear reconstruction at cells 

interfaces, combined with a slope limiter. The convective fluxes are computed by a Flux 

Vector Splitting (FVS) method (Erpicum et al., 2010). This FVS method requires low 

computational cost, offers the advantage of being Froude-independent and enables a well-

balanced discretization of the bottom slope term. The time integration is performed by means 

of a 3-step third-order accurate Runge-Kutta algorithm. The time step is adaptive and is 

constrained by the Courant-Friedrichs-Lewy (CFL) stability condition.  

The turbulent fluxes were evaluated by means of a centred scheme and a two length-

scale depth-averaged turbulence model accounting for horizontal and vertical turbulent 

mixing (Babarutsi and Chu, 1998, Erpicum et al., 2009). A depth-averaged k- model was 

used for modelling the horizontal mixing, while the vertical mixing, associated to the bottom-



generated turbulence, the length-scale of which is of the order of magnitude of the water 

depth H, was treated with an algebraic model (Elder formula Model: T,3D = Hu*, t the 

eddy viscosity related to the vertical turbulent mixing and u* the friction velocity). Though 

the k- model may not model the near-wall flow satisfactorily, it was preferred as k- model 

remains the most widely used two-equation turbulence closure model. The coefficients in the 

turbulence model were kept at their standard value (Erpicum et al., 2009). 

The standard Colebrook-White formula was used for modelling the friction (Camnasio et 

al., 2013, Dufresne et al., 2011). 

Numerical data-set 

The simulations were conducted using three roughness heights. The bottom and side-

walls were first assumed to be smooth (ks = 0 mm). The influence of the friction was next 

investigated based on additional simulations considering mildly rough (ks = 0.1 mm) or rough 

(ks = 1 mm) bottom conditions. In the simulation, the 2 m-long inlet channel (Figure 1) was 

reproduced to keep the injection in the reservoir as close as possible to the experimental 

configuration (Peltier et al., 2014b). The discharge read on the flow-meter, with an accuracy 

of ±0.025 L/s, was prescribed as inflow condition upstream from the inlet channel. As 

prescribed by Dewals et al. (2008), a slightly uneven transverse distribution of the inflow 

discharge was used as a seed for asymmetry. The disturbance varied linearly from -1% to 

+1% across the inflow section. The water depth measured 13 cm downstream from the outlet 

of the reservoir was prescribed as downstream boundary condition.  

For each simulation, the initial condition and the boundary conditions were obtained 

from an unsteady computation performed until temporally and spatially stable oscillations of 

the jet were obtained. Once this regime state was reached, the results were recorded at a rate 

of 25Hz to enable direct comparisons with the experiments. The grid spacing was set to 



0.01 m, and with a CFL value of 0.2, the time step was between 1.5 × 10
-3

 s and 4 × 10
-3

 s, 

the resulting sampling being actually equal to 25 Hz ± 2.3 Hz. The choice of the grid spacing 

was guided by the grid independence tests presented in Dufresne et al. (2011) and Camnasio 

et al. (2012), which are based on the grid convergence index introduced by Roache (1994). 

Although Dufresne et al. (2011) highlighted the great sensitivity of reattaching flows to the 

grid resolution, Camnasio et al. (2012) showed that the main characteristic frequency of the 

meandering jet is weakly affected.  

For comparing the numerical results with experiments, we considered that the depth-

averaged velocities were close to the velocity at the free surface in most parts of the reservoir. 

No surface coefficient accounting for the difference between the surface velocity and the 

depth-averaged velocity was applied on the experimental velocity fields (Le Coz et al., 2010).  

Results 

The meandering jet is characterised by spatial and temporal periodical oscillations. These 

oscillations are the sum of the contribution of various sizes of energetic coherent structures, 

which are convected in the flow and are mainly generated by the geometry of the reservoir 

(Peltier et al., 2014a, b). As a consequence, the standard flow variables (velocity fields, 

Reynolds shear stresses …) usually used for describing and comparing flows together are not 

the most appropriate here.  

Therefore, the description of the flows is based there on the results of a Proper 

Orthogonal Decomposition (POD) of the experimental and numerical fluctuating velocity 

fields (Berkooz et al., 1993, Holmes et al., 2012). The POD enables the identification of the 

flow structures contributing most to the flow energy (Brevis and García-Villalba, 2011), 

gives their temporal evolutions and sorts the modes by decreasing energy (see appendix). 

This decomposition is optimal in average on the time interval covered by the data (Couplet et 



al., 2003), i.e. there is no better decomposition for discriminating the structures with respect 

to their respective energy contributions (Cavar and Meyer, 2012, Perrin et al., 2007).  

In the present work, the snapshot method (Sirovich, 1987) was applied to 9,000 flow 

fields extracted from the experimental measurements and numerical simulation results of 

each of the flow-cases listed in Table 1 (see appendix for the description of the snapshot 

method). The size of the computation grid equals ~10,000 points in each case. The area of 

analysis is limited to the reservoir and does not extend to the inlet and outlet channels 

(Figure 1). In the experiments, the velocity field was not available close to the downstream 

end of the reservoir, because of the position of the video camera.  

Temporal coefficients 

The temporal coefficients calculated with Eq. 4 are represented in Figure 2 for the flow-

case FT. For the first two modes, results from experiments and numerical simulations are 

very similar, in terms of both frequency and amplitude. Moreover, the phase-shift between 

the temporal coefficients of modes 1 and 2 is the same for the simulation and for the 

experiments. This indicates that the modes of the computed results are representative of the 

same type of coherent structures as in the experiments (Rempfer and Fasel, 1994). In 

contrast, for the next modes, significant differences are observed. In all the experiments, 

Peltier et al. (2014b) observed that the third mode represents a low-motion of the flow and is 

probably due to the experimental set-up. Here, in the simulations, this mode was obviously 

not observed. As a consequence, we do not consider this mode in the comparisons and the 

fourth and fifth experimental modes were systematically compared with the third and fourth 

modes of the numerical simulations. This comparison reveals that although the amplitudes of 

the temporal coefficients are comparable, the frequencies are different. Nonetheless, a 

constant phase-shift between the consecutive modes is observed in both the experimental and 



numerical results. This indicates that, as experimentally observed, coherent structures are also 

rendered by the numerical model for these modes. The experimental observations emphasized 

that, from m = 6, the POD modes had low effects on the flow. We therefore restrain the 

present analysis to the four first modes for the numerical simulations.  

The frequencies and the mean amplitudes of the first four temporal coefficients of the 

numerical simulations are summarised in Table 2 for all flow-cases. For the modes 1 and 2, 

the frequencies match exactly only for the flow-case FT. They are overestimated by 49% for 

F and by 39% for NFT, and they are underestimated by 28% for NF. Concerning the mean 

amplitudes, they are between -35% and 35 % of the experimental amplitudes. For the 

remaining modes, except for F, the frequencies do not match, although the mean amplitudes 

are close.  

From these results, no clear links can be identified between the frequency/amplitude, the 

shallowness and the ability of the numerical model to reproduce the flow.  

Spatial modes 

One of the stakes in this article is to verify whether 2D-H shallow water equations can 

reproduce the flow patterns observed within the reservoir. We choose to characterise these 

flow patterns using the vorticity contours of the spatial modes calculated with Eq. 5 as 

described by Peltier et al. (2014b).  

Figure 3 represents the vorticity fields of the mode 1 (exp. and num.) and mode 

3 (num.)/4 (exp.) for each flow-case. The physical difference between m = 1 and m = 3 can be 

found in Peltier et al. (2014b). The paired modes 1 and 2 are the expression of a convective 

instability called sinuous, which is responsible for the meandering of the jet, while modes 3 

and 4 are the expression of an instability called varicose, which is responsible for the local 

mixing. The opposite sign of the vortical structures as ks increases for a given POD mode 



must be related to the POD transformation and to the correlation matrix of the velocity (see 

appendix), which can slightly differ from one simulation to another. When the eigenvalue 

problem is solved for finding the modes, the modes are ranked by decreasing value of the 

eigenvalues. When POD modes are paired, the spatial mode of m = i+1 is always opposite to 

the one of m = i so as it can be seen for the temporal coefficients. Depending on the 

simulation, the eigenvalue corresponding to a sign of the spatial mode can be larger or 

smaller than the eigenvalue corresponding to the opposite spatial mode. Regarding the 

breakdown of the structures for the modes 3 and 4, it may be related to the influence of the 

bottom friction and therefore of the bottom generated turbulence, which prevent the lateral 

spreading of the structures. 

The comparison of the numerical results with experiments emphasizes that in mode 1 the 

small upstream vortices, located symmetrically on either sides of the reservoir centreline, are 

well represented by the model. In the sequel, the emergence of the large counter vortices 

occurs at almost the same streamwise distance and the width of the patterns is well 

reproduced. On the other hand, the streamwise distribution differs in terms of number of 

vortical structures. In the simulation, the number of vortices is higher than in experiments. 

This difference decreases with decreasing friction number (from F to NF). This discrepancy 

between simulations and experiments may be attributed to the inability of the shallow water 

equations to reproduce three-dimensional structures. For high friction numbers (i.e. frictional 

regime), the length scales of the structures developing in the reservoir are of the same order 

as the water depth and are therefore three-dimensional. In contrast, when the friction number 

is decreased, mainly horizontal structures develop in the flow and they are more easily 

rendered by the shallow water equations.     

For the vorticity distribution of mode 3/4 no clear trend between the shallowness and the 

shape of the vortical structures is identified. Nevertheless the width of the vortical zone is 



globally well rendered and the results are consistent with those presented in subsection 

“temporal coefficients” in terms of frequency (Table 2). Indeed, in the flow cases where the 

computed frequencies overestimate the experimental ones (FT and NF for modes 3/4 and 

4/5), the spatial scale of the vortical structures obtained here are smaller than those 

experimentally observed (Figure 3). The opposite is also observed in the case where the 

computed frequencies underestimate the experimental ones (Figure 3). 

From the previous observations, it results that the first two modes are relatively well 

represented by the numerical model. In contrast, the numerical model does not succeed in 

representing the less energetic modes 3 and 4. This may have an incidence on the estimation 

of the momentum transfer within the jet.  

Energy 

By construction, the m
th

 eigenvalue obtained from the resolution of Eq. (3) corresponds 

to the mean fluctuating kinetic energy per unit mass captured by the m
th

 mode, Em, and the 

sum of all non-zero eigenvalues is equal to the total mean fluctuating kinetic energy per unit 

mass, ET.  

The mean fluctuating kinetic energy per mode was calculated for each case and is 

represented in Figure 4. In Figure 5, the sum of the mean fluctuating kinetic energy of the ten 

first modes, E10, is given as an indicator of the ability of the numerical model to represent the 

energy of the dominant modes and the contribution of the first five modes is displayed. In 

each figure, the results were normalised by the square of the inlet velocity (U²in), which 

reflects the mean kinetic energy injected in the flume. For all cases, the two first modes are 

well paired in term of energy, which is consistent with the previous observations made for the 

temporal coefficients and spatial modes (subsections “temporal coefficients” and “spatial 



modes”). The mean fluctuating kinetic energy of the modes 1 and 2 is reproduced with an 

error ranging between -56 % and 65 %.  

When looking at the energy of the higher modes, the ratio Em/U²in  in the Frictional case 

(F) is reasonably well represented up to m = 30, with however some overestimations for the 

first ten modes. This leads to an overestimation by 77% of the ratio E10/U²in (Figure 5). For 

the transition case FT, the first four modes are very well represented (very slight 

overestimation), the others being underestimated. Nevertheless the energy of the dominant 

modes is well captured, as E10/U²in is only 13% higher than in the experiment. This is 

consistent with the property of the first modes to contain most of the flow energy (Figure 5). 

For the transition case NFT, the three first modes are underestimated and the next three are 

overestimated, leading to an underestimation of E10/U²in by 41% compared to the experiment, 

as the first two modes are dominant in the overall flow energy. Finally for the non-frictional 

case, the first two modes are well represented, while modes 3 and 4 are underestimated 

E10/U²in being underestimated by 26%.  

As shown by these results, the numerical model succeeds in capturing the energy of the 

first two modes, which are overwhelmingly dominant for such flows (Figure 5) (Peltier et al., 

2014b). In the sequel, the number of modes, for which the energy is well represented, 

decreases with the friction number (i.e. with decreasing shallowness).    

Discussion 

In most operational numerical models, the roughness height in the friction formula is the 

main adjustable parameter. Hence, in this section, we discuss the influence of the roughness 

height on the numerical results and we identify the possible causes of differences with the 

experiments. 



Additional simulations were performed with ks = 0.1 mm (mildly rough) and ks = 1 mm 

(rough). The results are all included in the previous figures and the percentages of relative 

differences with experiments are detailed in Table 3 for E10, fm, <|am|> and the four first 

modes of Em. 

Energy 

For F and FT, increasing the roughness height enables a better description of the energy 

in the two first modes (see ks = 1 mm in Table 3). This trend is also observed for the third and 

the fourth modes to a lesser extent. These results are confirmed by the sum of the mean 

fluctuating kinetic energy of the ten first modes (E10): the relative difference with 

experiments reveals a net dependence on the roughness height. These results emphasize the 

role of the friction in such shallow flows (S > 0.1). For NFT and NF, this tendency is less 

clear, whatever the modes. This tends to confirm that the friction is not the only effect that 

affects the flow development.  

Temporal coefficients  

For the frequency and the mean amplitude, the variation of the roughness height 

significantly impacts the first and second modes of the transitional flow NFT and NF. In 

these cases, increasing the roughness improves the matching between numerical modelling 

and experiments. In contrast the roughness height has little effect on the frequency in the 

frictional case F, which suggests that base friction is dominant here. This differs from 

Babarutsi et al. (1996), who suggested that in the case of a sudden expansions with shallow 

recirculating flow, the friction is the dominant process for S > 0.1 and the diffusion 

(turbulence) only affects the transport of scalar. Here, the difference in the flow case F may 

be attributed to the influence of the viscosity on the development of the structures, as the 

Reynolds number in this case is particularly small (R = 4,766, Table 1). This difficulty is a 



direct consequence of the experimental set-up and would not be encountered in real-scale 

applications. Regarding the frequency and the mean amplitude of the next modes, a 

significant improvement is obtained for the NFT and NF flow-cases when ks is increased. For 

the flow-case F, the higher value of ks reduces the agreement with the experimental 

frequencies, but such a high value of ks is relatively unrealistic for our experimental set-up 

and should be considered here as an upper bound for our sensitivity analysis. For the flow-

case FT, changing ks has no effect; but in both F and FT cases, the mean amplitudes are 

improved when ks is increased.  

Spatial modes  

The shapes of the spatial modes are finally analysed (Figure 3). The streamwise 

evolution of the vortical structures in modes 1 (and 2, since they are paired) reveals no 

significant change for the flow-cases F and FT when increasing ks. This is due to the viscous 

effect mentioned above, which prevents the structures to laterally spread. In contrast, for 

NFT, the structures become larger and are very close to the experimental ones for ks = 1 mm, 

whereas for NF the longitudinal size of the vortical structures decreases as ks increases and 

get close to the experiment ones. This finding is also consistent with the influence of the 

roughness height on the frequencies. For NFT the frequencies of the first and second modes 

were initially overestimated, while they become better estimated as ks increases, together with 

an increase in the size of the vortical structures. Vice-versa is obtained for NF, the computed 

frequencies are increased and the length-scale of the vortices decreases as ks is increased. 

This result highlights the complicated balance between the bottom generated structures and 

the large horizontal structures that develop for S < 0.1. Nevertheless, it is clear that the 

vertical length-scale, linked to the bottom generated turbulence, affects the development of 

large structures, by preventing them to spread. For the next modes, no big differences are 

observed for F and FT. Similar types of patterns are obtained for all three values of ks, but the 



matching with experiments remains imperfect, consistently, the corresponding frequencies 

where not changed as ks was varied. In contrast, increasing ks for NFT and NF enables to 

obtain patterns, which are very close to the experimental ones. The computation of the 

corresponding frequencies was also strongly improved by an increase in the roughness 

height. These results show that the flows, even when S is small, are still partly controlled by 

the bottom generated turbulence, i.e. by the vertical length-scale.  

The difference in large pattern shapes can be explained by the fact that the use of the 

standard coefficients (for unconfined three-dimensional flows) in the k- model can induce an 

inappropriate estimation of the turbulent exchanges in the flow at small S (Chu et al., 2004). 

For NF, S is equal to 0.03 and the coherent structures mostly depend on the geometry of the 

reservoir (Peltier et al., 2014a): they are mainly horizontal, several times larger than the water 

depth and highly energetic. The non-isotropic behaviour of the structures cannot be plainly 

represented by the turbulence model used. On the other hand at low discharge (F), S = 0.18 

and the coherent structures are constrained by the shallowness of the flow, their size being of 

the same order of magnitude as the water depth. For this flow configuration, the k- model 

has less influence, as the relative importance of the turbulence generated by the bottom is 

higher.  

Link between friction and turbulence 

An analysis of the relative importance of the horizontal and vertical turbulent length-

scales has been performed by comparing the computed values of the eddy viscosity T,2D 

related to the horizontal turbulent mixing and of the eddy viscosity T,3D related to the vertical 

turbulent mixing (notations consistent with Erpicum et al. (2009)). T,3D is mostly of the same 

order of magnitude as the kinematic viscosity of water , whereas T,2D is generally two to 

three orders of magnitude higher than . Since in all configurations the mean values of T,3D 



do not exceed 2 % of the mean values of T,2D, the influence of the vertical mixing is then 

significantly lower than the horizontal one. Nonetheless, it has an influence on the small 

structures developing in the jet. This is due to the fact that the largest values of T,3D are 

located in the centre of the main jet, where absolute flow velocities are the highest and these 

values increase with increasing ks. In contrast, the largest values of T,2D extend over the 

recirculation zones, confirming that T,2D plays by far a major part in the modelling of the 

flow mixing between the jet and the recirculations, but has less influence in the generation of 

structures within the jet. When comparing sequentially configurations F, FT, NFT and NF, 

the relative valued of T,3D compared to T,2D decreases monotonously from one configuration 

to the next. 

Conclusion 

In the present study, the capability of a two-dimensional shallow water numerical model 

to simulate meandering flows in shallow rectangular reservoirs was investigated. Numerical 

simulations were based on four experiments, in which the water depth was varied to assess 

the effect of the shallowness of the flow on the quality of the simulations. A k- turbulent 

closure accounting for horizontal and vertical length-scales was used in order to free us of 

any calibration. The Colebrook-White friction formula was used, in which the roughness 

height was the only parameter to be adjusted as it is often the case in operational numerical 

models for engineering practice. Three roughness heights were therefore considered: smooth 

(ks = 0 mm), mildly rough (ks = 0.1 mm) and rough (ks = 1 mm). 

As simulations are unsteady, a Proper Orthogonal Decomposition of the fluctuating 

velocity fields was used for describing the flow. The agreement between the numerical 

simulations and the experiments was analysed through six parameters: mean fluctuating 

kinetic energy per mode, the sum of the mean fluctuating kinetic energy in the ten first 



modes, the frequency and the mean amplitude of the four first temporal coefficients, the 

longitudinal and lateral variation of the four first spatial modes.  

As shown by comparisons between simulations assuming smooth bottom and 

experiments, these simulations are in relatively good agreement with the experimental 

observations, as far as the dominant modes of the POD (mode 1 and mode 2) are concerned 

and whatever is the shallowness. The numerical reproduction of the next modes is less 

successful, especially as regards the shape of the spatial modes.  However these higher order 

modes contribute significantly less to the overall fluctuating kinetic energy of the flow.  

Increasing the roughness height enables a better reproduction of the dominant modes and 

of the following modes. Nevertheless for the very shallow case, some viscous effects are 

detected, which hamper a good agreement between numerical and experimental results.  

As a conclusion, the 2D shallow water equations are able to globally reproduce the 

behaviour of the meandering flows in shallow reservoirs, but show some difficulty for 

reproducing the exact shapes of the structures developing inside. An analysis of the influence 

of the coefficients involved in the turbulence model would be required, as well as a 

sensibility analysis with respect to the type of turbulent closure (e.g. k- vs. k-).  

All experimental data are available upon request. 
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Notations 

am(t) = temporal coefficient of the m
th

 POD mode [-] 

<|am|> = mean amplitude of the temporal coefficient of the m
th

 POD mode [-] 



b = width of the inlet and outlet channels [m] 

B = width of the reservoir [m] 

D = hydraulic radius at the reservoir inlet [m] 

B = width of the sudden expansion in the reservoir [m] 

Em = mean fluctuating kinetic energy per unit mass captured by the m
th

 POD mode [m²/s²] 

E10 = sum of the mean fluctuating kinetic energy per unit mass captured by the 10 first POD 

modes [m²/s²] 

f = Darcy-Weisbach coefficient [-] 

fm = main frequency of the m
th

 POD mode [Hz] 

F = Froude number at the inlet [-] 

g = gravity acceleration [m/s²] 

H = mean water depth in the reservoir [m] 

ks = roughness height of the bed [mm] 

L = length of the rervoir [m] 

Q = water discharge at the inlet [m]  

R = Reynolds number at the reservoir inlet [-] 

S = friction number at the reservoir inlet [-]  

SF = 
 
shape factor of the reservoir [-] 

u* = friction velocity [m/s] 

Uin = mean velocity at the reservoir inlet [m/s] 

x = streamwise coordinate [m] 

y = spanwise coordinate [m] 

z = vertical coordinate [m] 

( )m x = spatial mode of the m
th

 POD mode (two components) [m/s]

 = kinematic viscosity of water at 20°C [m²/s]



T,2D = eddy viscosity related to the horizontal turbulent mixing [m²/s] 

T,3D = eddy viscosity related to the vertical turbulent mixing [m²/s]
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Proper Orthogonal Decomposition: snapshot method 

A short description of the snapshot method used on the fluctuating velocity fields of this 

study and coded in Matlab
© 

(Peltier et al., 2014b) is presented here.  

 1 2( , ), ( , ),..., ( , )Nt t tu x u x u x is a collection of N (N * ) instantaneous horizontal velocity 

fields, with t=tn+1-tn=CST (n<N)and x 2 . Each velocity is called “snapshot”. Each 

snapshot is a square integrable function (  2( , )nt L u x ) and can be split into a steady part,

( , )n N
tu x  and a fluctuating part, ( , )ntu' x , with 

N
 the operator of ensemble average over 

the N snapshots.  

The aim of the POD is to decompose ( , )ntu' x into an orthonormal basis of M spatial 

function ( )m x  of  2L  , called spatial modes, and an orthogonal basis of M temporal 

coefficients, am(tn) (n   {1, …, N}, m   {1, …, M ≤ N} M and N  * ), such that:  

2

2

1 1

1
min ( , ) ( ) ( )

N M N

n m n m

n m L

t a t
N



 

 
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 
 

 u' x x  (1) 

|| ||L² =√( , )L² being the induced norm in  2L   and ( , )L² the inner product for  2L  .  

The snapshot method proceeds in three steps:  

1. It first requires the calculation of the temporal correlation matrix C: 

   
1

, ,p i kk

P

i jj

k

pt t


u' x W xC u' , ,N N P P  WC  (2) 

W being a diagonal weighting matrix, for which the elements along the diagonal are 

the cell volumes of each of the P grid points of one snapshot.   



2. The temporal coefficients am(t) are secondly deduced from the resolution of the 

eigenvalue problem that follows: 

1

1
( ) ( )

N

ij m j m m i

j

t t
N

  


C  (3) 

As C is definite, positive and symmetric, the eigenvalues m are all real with 1 ≥ 2 ≥ 

…≥ N > 0, and the eigenvectors m(t) are orthonormal. The temporal coefficients, 

am(t), are a function of the eigenvectors and of the eigenvalues and they are 

orthogonal:  

( ) ( )m m ma t N t  , with 0n N
a  and n m n nmN

a a    (4) 

3. The spatial modes are finally computed by projecting the fluctuating velocity 

ensemble onto the temporal coefficients, i.e.:   
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m n
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The spatial modes are orthonormal with respect to the inner product in L
2
,
 m

T
Wm.  

  



Table 1: Main characteristics of the measured flows. 

Test ID Q (L/s) H (cm) F R S Friction regime 

F 0.125 1.25 0.36 4,766 0.18 Frictional 

FT 0.250 1.80 0.41 8,456 0.10 Frictional close Transition 

NFT 0.500 2.75 0.44 1,4878 0.06 Non-Frictional close Transition 

NF 1.000 4.20 0.46 2,4267 0.03 Non-Frictional 

 

  



Table 2: Frequencies, fm, and mean amplitude,<|am(t)|>t, of the m
th

 temporal coefficient in the POD analysis.  

  

F FT NFT NF 

 

  m 

ks 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

f m
 (

H
z)

 *
 

Exp 0.17 0.17 0.10 0.08 0.21 0.21 0.22 0.22 0.27 0.27 0.55 0.55 0.48 0.48 0.34 0.34 

0 0.26 0.26 0.07 0.07 0.22 0.22 0.43 0.43 0.38 0.38 0.11 0.11 0.34 0.34 0.69 0.69 

0.1 0.25 0.25 0.07 0.07 0.22 0.22 0.43 0.43 0.38 0.38 0.75 0.75 0.47 0.47 0.14 0.14 

1 0.25 0.25 0.03 0.03 0.22 0.22 0.43 0.43 0.27 0.27 0.54 0.54 0.47 0.47 0.14 0.14 

<
|a

m
|>

t ×
 1

0
³ 

(-
)*

 

Exp 4 4 2 2 9 9 2 2 17 16 4 4 15 14 6 6 

0 6 5 3 3 11 10 3 3 11 10 6 6 17 16 5 5 

0.1 6 5 3 3 11 10 3 3 17 13 3 3 13 12 7 7 

1 5 4 3 3 11 10 3 2 15 14 5 5 15 13 6 6 

*
 Numerical modes 1 and 2 are compared with experimental modes 1 and 2, while numerical modes 3 and 4 are 

compared with experimental modes 4 and 5. 

  



Table 3: Relative difference in percentage between numerical results and experiments for Em, E10, fm and <|am|>.  

  
F FT NFT NF 

 

  m 

ks 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

E
m

*
 

0 63 65 150 182 38 33 56 47 -56 -52 95 110 11 4.8 -46 -51 

0.1 70 67 145 181 37 32 54 42 -3 -26 -48 -44 -27 -29 -3 -4.9 

1 22 16 148 141 26 28 6 -25 -18 -21 7.8 18 -13 -23 -14 -18 

E
1
0
 

0 77 13 -41 -26 

0.1 81 12 -30 -29 

1 46 2 -31 -25 

f m
*
 

0 49 -17 1 101 39 -80 -28 103 

0.1 48 -19 1 101 38 38 0 -59 

1 47 -70 1 100 -1 -1 0 -59 

<
|a

m
|>

*
 0 35 80 17 34 -35 51 9 -19 

0.1 37 76 16 33 -7 -21 -15 10 

1 15 73 13 3 -10 13 -7 3 

*
 Numerical modes 1 and 2 are compared with experimental modes 1 and 2, while numerical modes 3 and 4 are 

compared with experimental modes 4 and 5 (cf. subsection “temporal coefficients”). 

 

  



 

Figure 1: Sketches of the experimental device and simulation domain. 

 
Figure 2: Temporal coefficients for FT-case. Comparison between experiment and numerical 

modelling. 

 



  

(a) F (b) FT 

  

(c) NFT (d) NF 

Figure 3: Vorticity contours and streamlines of spatial modes. The black zone in the upper 

figures corresponds to an absence of measurements in experiments. The same grey-scale is 

used for all flow-cases (dark grey: vorticity < 0, white: vorticity = 0, light grey: vorticity > 0) 

and the grey intensity is proportional to the vorticity intensity.  



 
Figure 4: Mean fluctuating kinetic energy contained in the m

th
 mode and normalised by their 

corresponding mean kinetic energy at the inlet (U²in) for each flow-case. 

 
Figure 5: Sum of the mean fluctuating kinetic energy of the ten first modes, E10, normalised 

for each flow-case by their corresponding mean kinetic energy at the inlet (U²in). The black 

area corresponds to the contribution of the first mode. The white area corresponds to the 

cumulated contributions of m = 6 to m = 10. The grey areas correspond to m = 2 (dark grey) 

to m = 5 (lighter grey). 



 

 

 


