Solutions TP2 - Ajustements

David Trif
11 juin 2010

Exercice 1

Pour déterminer la cote 20P7 (diamètre 20, type P et qualité 7), on utilise les tableaux T2, T4 et T5.
Dans le tableau T2, diamètre Φ20, qualité 7 :

\[T_2 \rightarrow IT_7 = 21 \, \mu m \] (1)

Le type de l’alésage est P et utilisant le tableau T5, on a :

\[ES_n = -ei_{n-1} + \Delta \] (2)

- \(ES_n \) - écart supérieur alésage, qualité n.
- \(ei_{n-1} \) - écart inférieur arbre, qualité n-1.
- \(\Delta = IT_n - IT_{n-1} \)

Pour le degré de tolérance 7 :

\[ES_7 = -es_6 + \Delta \] (3)

Tableau T5, pour \(\Delta \) :

\[\Delta_7 = 8 \, \mu m \] (4)

Tableau T4, écarts inférieurs (arbre type p) :

\[ei_6 = 22 \Rightarrow ES_7 = -22 + 8 = -14 \, \mu m \] (5)

Définition de l’intervalle de tolérance :

\[IT_7 = ES_7 - EI_7 \Rightarrow EI_7 = ES_7 - IT_7 = -14 - 21 = -35 \, \mu m \] (6)
\[\Rightarrow 20P7 = 20_{-0.014}^{0.035} \, mm \] (7)

Exercice 2

1. Ajustement serré ou avec jeu?

Alésage Φ40H7

\[T_2 \rightarrow IT_7 = 25 \, \mu m \] (8)
type H (alésage normal) : $T_5 \Rightarrow EI_7(H) = - es_7(h)$ \hspace{1cm} (9)

$T_3 \Rightarrow es_7(h) = 0$ \hspace{1cm} (10)

$I T_7 = ES_7 - EI_7 \Rightarrow ES_7 = 25 + 0 = 25 \mu m$ \hspace{1cm} (11)

$\Rightarrow \Phi 40H7 = \Phi 40_0^{+0.025} mm$ \hspace{1cm} (12)

Arbre $\Phi 40f7$

$T_2 \rightarrow it_7 = 25 \mu m$ \hspace{1cm} (13)

$T_3 \rightarrow es_7(f) = -25 \mu m$ \hspace{1cm} (14)

$it_7 = es_7 - ei_7 \Rightarrow ei_7 = es_7 - it_7 = -25 - 25 = -50 \mu m$ \hspace{1cm} (15)

$\Rightarrow \Phi 40f7 = \Phi 40_{-0.025}^{-0.050} mm$ \hspace{1cm} (16)

Comme la figure 1 l’indique, l’ajustement est avec jeu.

2. Calcul de la valeur du jeu :

\[j = D - d \quad (D \text{- diamètre alésage} ; d \text{- diamètre arbre}) \] \hspace{1cm} (17)

\[j_M = D_M - d_m = D_n + ES - (d_n + ei) = ES - ei \quad (D_n, d_n \text{- diamètres nominaux}) \] \hspace{1cm} (18)

\[j_m = D_m - d_M = D_n + EI - (d_n + es) = EI - es \] \hspace{1cm} (19)

\[j_M = ES_7 - ei_7 = 0,025 - (-0,050) = 0,075 \text{ mm} \] \hspace{1cm} (20)

\[j_m = EI_7 - es_7 = 0 - (-0,025) = 0,025 \text{ mm} \] \hspace{1cm} (21)

![Diagram](image)

Figure 1 – Alésage H7 - arbre f7

Exercice 3

1. Interférence ou jeu ?

Alésage $\Phi 100H7$

$T_2 \rightarrow IT_7 = 35 \mu m$ \hspace{1cm} (22)

$T_5 \Rightarrow EI_7(H) = - es_7(h)$ \hspace{1cm} (23)

$T_3 \rightarrow es_7(h) = 0$ \hspace{1cm} (24)

$IT_7 = ES_7 - EI_7 \Rightarrow ES_7 = 35 + 0 = 35 \mu m$ \hspace{1cm} (25)
⇒ Φ100H7 = Φ1000.035 mm (26)

Arbre Φ100u6

T2 → it₆ = 22 μm (27)
T4 → ei₆(u) = 124 μm (28)

it₆ = es₆ - ei₆ ⇒ es₆ = it₆ + ei₆ = 124 + 22 = 146 μm (29)
⇒ Φ100u6 = Φ100+0.146/-0.124 mm (30)

Figure 2 → l’ajustement est serré.

2. Calcul des interférences :

\[i = d - D \] (i - valeur de l’interférence) (31)

\[i_M = d_M - D_m = D_n + es - (D_n + EI) = es - EI \] (32)
\[i_m = d_m - D_M = D_n + ei - (D_n + ES) = ei - ES \] (33)

\[i_M = 0,146 - 0 = 0,146 \text{ mm} \] (34)
\[i_m = 0,124 - 0,035 = 0,089 \text{ mm} \] (35)

Figure 2 – Ajustement serré

Exercice 4

1. Interférence ou jeu ?

Alésage Φ100U7

\[\text{type U; } T5 \Rightarrow ES_n = -ei_{n-1} + \Delta \] (36)

T2 → IT₇ = 35 (37)
Tableau T5 → Δ = 13 (38)
T4 → ei₆(u) = 124 μm (39)
ES₇ = -ei₆ + Δ = -124 + 13 = -111 μm (40)
EI₇ = ES₇ - IT₇ = -111 - 35 = -146 μm (41)
⇒ \(\Phi_{100}U7 = \Phi_{100}^{0.111}_{-0.146} \) mm

Arbre \(\Phi_{100}h6 \)

Tableau T2 \(\rightarrow IT_6 = 22 \) mm

Le diamètre nominal est :

\[\Phi_{100}h6 = \Phi_{100}^{0}_{-0.22} \] mm

La figure 3 montre que l’ajustement est serré (le cas de l’interférence).

2. Les valeurs de l’interférence :

\[i_M = d_M - D_m = es - EI = 0 - (-146) = 146 \ \mu m \] (46)

\[i_m = d_m - D_M = ei - ES = -22 - (-111) = 89 \ \mu m \] (47)

Pour les ajustements \(\Phi_{100}H7u6 \) et \(\Phi_{100}U7h6 \), les valeurs extrêmes de l’interférence sont égales. Les 2 ajustements sont équivalents.

Figure 3 – Interférence \(U7 - h6 \)

Exercice 5

La qualité de l’arbre \(\rightarrow n - 1 \), qualité de l’alésage \(\rightarrow n \).

\[i = d - D \] (48)

\[\begin{align*}
 i_M &= es_{n-1} - EI_n = es_{n-1} = ei_{n-1} + it_{n-1} \\
 i_m &= ei_{n-1} - ES_n = ei_{n-1} - (IT_n + EI_n) = ei_{n-1} - IT_n
\end{align*} \]

\[i_M < 0, 2 \ mm \Rightarrow ei_{n-1} + it_{n-1} < 0, 2 \ mm \] (49)

\[i_m > 0, 1 \ mm \Rightarrow ei_{n-1} - IT_n > 0, 1 \ mm \] (50)

\[\rightarrow IT_n + it_{n-1} < 0, 1 \ mm \] (51)

Dans le domaine des constructions mécaniques, on utilise des qualités comprises entre 5 et 11.

Avec la condition \(IT_n + it_{n-1} < 0, 1 \) mm et le tableau T2, on établi un tableau qui va nous permettre de choisir la qualité qui convienne.
<table>
<thead>
<tr>
<th>n</th>
<th>ITn</th>
<th>itn-1</th>
<th>ITn + itn-1</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>87</td>
<td>54</td>
<td>141</td>
<td>non</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>35</td>
<td>89</td>
<td>peut-être</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>22</td>
<td>57</td>
<td>peut-être</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>15</td>
<td>37</td>
<td>peut-être</td>
</tr>
</tbody>
</table>

a) n=8 :
\[
\begin{align*}
&\begin{cases}
 ei + it_{n-1} = ei + 35 < 200 \\
 ei - IT_n = ei - 54 > 100
\end{cases}
\Rightarrow 154 < ei < 165
\end{align*}
\]

Dans le tableau T4, on cherche un arbre qui a l’écart inférieur (ei) compris entre 154 et 165. Les valeurs proches sont les arbres v (ei_v = 146 µm) et x (ei_x = 178 µm), mais ces écarts ne vérifient pas la condition 154 < ei < 165.

On passe à la qualité 7 :

b) n=7 :
\[
\begin{align*}
&\begin{cases}
 ei + it_{n-1} = ei + 22 < 200 \\
 ei - IT_n = ei - 35 > 100
\end{cases}
\Rightarrow 135 < ei < 178
\end{align*}
\]

Tableau T4 → type v (ei_v = 146 µm).
La solution est : Φ100H7v6.

Vérification :
\[
T2 \rightarrow IT_7 = 35 \, \mu m; \, it_6 = 22 \, \mu m
\]
\[
H7 \Rightarrow \begin{cases}
 0,035 \\
 0
\end{cases}
\]
\[
es_6 = ei_6 + it_6 = 146 + 22 = 168 \, \mu m
\]
\[
v6 \Rightarrow \begin{cases}
 0,168 \\
 0,146
\end{cases}
\]
\[
i_M = 168 - 0 = 168 \, \mu m = 0,168 \, mm < 0,2 \, mm
\]
\[
i_m = 146 - 35 = 111 \, \mu m = 0,111 \, mm > 0,1 \, mm
\]

Les conditions sont vérifiées, la solution est donc valide.

Exercice 6

La qualité de l’arbre → n−1, qualité de l’alésage → n. Pour cet exercice, l’arbre est du type h (arbre normal).

\[
i = d - D
\]

\[
\begin{align*}
&\begin{cases}
 i_M = es_{n-1} - EI_n = -EI_n \\
 i_m = ei_{n-1} - ES_n - es_{n-1} = -ES_n - it_{n-1}
\end{cases} \Rightarrow -ES_n + IT_n < 0,2 \, mm \\
&\begin{cases}
 i_M < 0,2 \, mm \Rightarrow -ES_n + IT_n < 0,2 \, mm \\
 i_m > 0,1 \, mm \Rightarrow -ES_n - it_{n-1} > 0,1 \, mm
\end{cases}
\end{align*}
\]
\[IT_n + it_{n-1} < 0,1 \text{ mm} \] \hspace{1cm} (63)

Avec la condition \(IT_n + it_{n-1} < 0,1 \) et le tableau \(T2 \), on a le tableau suivant :

<table>
<thead>
<tr>
<th>n</th>
<th>(IT_n)</th>
<th>(it_{n-1})</th>
<th>(IT_n + it_{n-1})</th>
<th>Réponse</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>87</td>
<td>54</td>
<td>141</td>
<td>non</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>35</td>
<td>89</td>
<td>peut-être</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>22</td>
<td>57</td>
<td>peut-être</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>15</td>
<td>37</td>
<td>peut-être</td>
</tr>
</tbody>
</table>

a) \(n=8 \):
\[
\begin{aligned}
-ES_n + IT_n &= -ES_8 + 54 < 200 \\
-ES_n - it_{n-1} &= -ES_8 - 35 > 100 \\
\Rightarrow -146 < ES < -135
\end{aligned}
\] \hspace{1cm} (64)

\[ES_8 = -ei_7 + \Delta_8 = -ei_7 + 19 \] \hspace{1cm} (T5)

On a donc : \(154 < ei_7 < 165 \).
Comme dans l’exercice antérieur, on ne trouve pas un arbre qui convienne.
On passe à la qualité 7 :

b) \(n=7 \):
\[
\begin{aligned}
-ES_n + IT_n &= -ES_7 + 35 < 200 \\
-ES_n - it_{n-1} &= -ES_7 - 22 > 100 \\
\Rightarrow -165 < ei < -122
\end{aligned}
\] \hspace{1cm} (66)

\[ES_7 = -ei_6 + \Delta_7 = -ei_6 + 13 \] \hspace{1cm} (T5)

On a donc : \(135 < ei_7 < 178 \).
Tableau \(T4 \) \(\rightarrow \) type \(v \) (\(ei_v = 146 \text{ mm} \)).
La solution est : \(\Phi100V7h6 \).
Vérification :
\[T2 \rightarrow IT_7 = 35 \text{ mm}; it_6 = 22 \text{ mm} \] \hspace{1cm} (68)

\[h6 \Rightarrow \begin{cases}
0 \\
-0,022
\end{cases} \] \hspace{1cm} (69)

\[ES_7 = -ei_6 + \Delta_7 = -146 + 13 = -133 \text{ mm} \] \hspace{1cm} (70)

\[EI_7 = ES_7 - IT_7 = -133 - 35 = -168 \text{ mm} \] \hspace{1cm} (71)

\[V7 \Rightarrow \begin{cases}
-0,133 \\
-0,168
\end{cases} \] \hspace{1cm} (72)

\[i_M = 0 - (-168) = 168 \mu m = 0,168 \text{ mm} < 0,2 \text{ mm} \] \hspace{1cm} (73)

\[i_m = -22 - (-133) = 111 \mu m = 0,111 \text{ mm} > 0,1 \text{ mm} \] \hspace{1cm} (74)

Les conditions sont vérifiées, la solution est donc valide.
<table>
<thead>
<tr>
<th>QUALITÉ</th>
<th>>3 à 3</th>
<th>>3 à 5</th>
<th>>6 à 10</th>
<th>>10 à 18</th>
<th>>18 à 50</th>
<th>>50 à 80</th>
<th>>80 à 120</th>
<th>>120 à 250</th>
<th>>250 à 315</th>
<th>>315 à 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
<td>0,8</td>
<td>1</td>
<td>1,2</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>0</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
<td>0,8</td>
<td>1</td>
<td>1,1</td>
<td>1,2</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0,8</td>
<td>1</td>
<td>1,2</td>
<td>1,5</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td>3,5</td>
<td>4,5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td>1,5</td>
<td>1,5</td>
<td>2</td>
<td>2,5</td>
<td>2,5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2,5</td>
<td>2,5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>46</td>
<td>54</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>43</td>
<td>52</td>
<td>62</td>
<td>74</td>
<td>87</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>48</td>
<td>59</td>
<td>70</td>
<td>84</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>150</td>
<td>185</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>75</td>
<td>90</td>
<td>110</td>
<td>130</td>
<td>160</td>
<td>190</td>
<td>220</td>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>210</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>460</td>
</tr>
<tr>
<td>13</td>
<td>140</td>
<td>190</td>
<td>220</td>
<td>270</td>
<td>330</td>
<td>390</td>
<td>460</td>
<td>540</td>
<td>630</td>
<td>720</td>
</tr>
<tr>
<td>14</td>
<td>250</td>
<td>300</td>
<td>350</td>
<td>430</td>
<td>520</td>
<td>620</td>
<td>740</td>
<td>870</td>
<td>1000</td>
<td>1150</td>
</tr>
<tr>
<td>15</td>
<td>400</td>
<td>480</td>
<td>580</td>
<td>700</td>
<td>840</td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
<td>1600</td>
<td>1850</td>
</tr>
<tr>
<td>16</td>
<td>600</td>
<td>750</td>
<td>900</td>
<td>1100</td>
<td>1300</td>
<td>1600</td>
<td>1900</td>
<td>2200</td>
<td>2500</td>
<td>2900</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1500</td>
<td>1800</td>
<td>2100</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2700</td>
<td>3300</td>
<td>3900</td>
<td>4600</td>
<td>5400</td>
<td>6300</td>
<td>7200</td>
</tr>
</tbody>
</table>

Sources: ISO/R286 (1962), DIN 7152 (1955), NBN 101 à 103, APNOR NFE 02-000
<table>
<thead>
<tr>
<th>dimens.</th>
<th>Ecart supérieur es (µm)</th>
<th>Ecart inférieur ei (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nomi.</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>mm</td>
<td>1</td>
<td>-90</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-140</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-280</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-350</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-420</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-700</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-840</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-980</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1120</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1190</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1260</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1330</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1400</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1470</td>
</tr>
</tbody>
</table>

Type js ("j symétrique") : es = IT/2, ei = - IT/2

Example: 100 a9 : es = -380 µm
 ei = es - IT9 = - 380 - 97 = - 467 µm

Donc 100 a9 = 100 - 0,380

-0,457
Exemples

*Exemple : 100 u8 : ei = 124 μm
ed σ = ei + IT6 = 124 + 22 = 146 μm
donc 100 u8 = 100°,146
°0,124
Règle générale
Les limites de l’alésage sont exactement symétriques par rapport à la ligne-zéro de celles des arbres de même symbole:

\[ES_n = -ei_n, EI_n = +es_n \]

N9 et qualités moins fines, pour \(d > 3 \text{mm} \)

\[ES = 0 \]

Alésages serrants

J à N, qual 8 et + fines
P à ZC, qual. 7 et + fines

Règle spéciale

\[ES_n = -ei_{n-1} + \Delta \]
avec \(\Delta = IT_n - IT_{n-1} \)

(Règle prévue pour que, dans les qualités fines envisagées, deux ajustements homologues tels que IT/p6 et P7/h6 soient exactement équivalents.)

Exception : h6 : ES = -9 pour \(250 < d \leq 315 \)

TABLE DE LA CORRECTION \(\Delta (\text{mm}) \)

<table>
<thead>
<tr>
<th>Dimens. nominale (\geq \text{mm})</th>
<th>QUALITÉ</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1,5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>30</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>30</td>
<td>1,5</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>50</td>
<td>1,5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>80</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>120</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>180</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>250</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>315</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>315</td>
<td>315</td>
<td>500</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>

	Exemples a) 20 P7 :	
	pour p6, \(ei = 22 \), donc	
	\(-ei = -22\)	
	\(ES = 3 \)	
	\(BI = ES - IT7 = -14 - 21 = -35 \text{\(\mu m \)} \)	
	donc 20 P7 = 20 \(-0,014\)	
	\(-0,035\)	
b) On cherche un alésage de qualité 7		
	\(\delta = 100 \text{\text{mm}}, donnant un jeu moyen de \(44 \text{\(\mu m \)} \) avec un arbre normal (h6)	
	arbre : 100 h\(g \) es = 0	
	\(ei = es = IT6 = \)	
	\(0 - 22 = -22 \text{\(\mu m \)} \)	

- écarts moyen arbre : -11 \(\mu m \)
- écarts moyen alésage : -11 + 44 = 33 \(\mu m \)
- IT7 = 35 \(\mu m \)
- écarts max : 33 + 1,35 = 50,5 \(\mu m \)
- inf : 33 - 1,35 = 15,5 \(\mu m \) = ES = -es, es = -15,5 \(\mu m \)
- 7 : -12 = es, soit jeu moyen 4\(1 \text{\(\mu m \)}, acceptable \)

solution adoptée : alésage 100 G7 soit

100 \(+0,047\) \text{\jeu min : 12 - 0} = 12 \(\mu m \)
100 \(+0,012\) \text{\jeu max : 47 + 22} = 69 \(\mu m \)

moy : 40,5 \(\mu m \)