Modeling of a glass mineral wool process in view of Life Cycle Analysis

<u>S. GERBINET</u>^a, V. BRIARD^b, and A. LÉONARD^a saicha.gerbinet@ulg.ac.be

^aUniversity of Liège

LABORATORY of CHEMICAL ENGINEERING

Processes and Sustainable development

^bKnauf Insulation

- 1. Introduction
- 2. The production process
- 3. LCA and modeling
- 4. Results and advantages
- 5. Conclusion

1. Introduction

- 2. The production process
- 3. LCA and modeling
- 4. Results and advantages
- 5. Conclusion

Knauf Insulation

Knauf Insulation

- LCA to Knauf Insulation
 - □ First: market demand (Environmental Product Declaration (E.P.D.), etc.)

DECLARATION **ENVIRONNEMENTALE et SANITAIRE** CONFORME A LA NORME NF P 01-010

Cette déclaration est présentée selon le modèle de Fiche de Déclaration Environnementale et Sanitaire validé par l'AIMCC (FDE&S Version 2005)

Knauf Insulation Acoustilaine 035 100 mm avec ECOSE Technology 1

Le 9 janvier 2013

Institut Bauen und Umwelt e.V.

Umwelt-Produktdeklaration nach ISO 14025

Deklarationsnummer

EPD-KNI-2011711-D

www.bau-umwelt.com

Institut Bauen und Umwelt e. V.

Holzwolle-Mehrschichtplatten mit Steinwollekern

Heraklith[®] is aregistered trademark o **KNAUF**INSULATION

Institut Bauen und Umwelt e.V.

000 DARC[®] RAVEL FLUE (TP 128) 24 100 mm KNAUF INSULATION S.L.

DECLARACIÓN AMBIENTAL DE PRODUCTO

PRODUCTO DAPc[®] 001.006 PANEL PLUS (TP 138) de 100 mm

DE ACUERDO CON LAS NORMAS

ISO 14.025 e ISO 21.930

EMPRES/ DESCRIPCIÓN DEL PRODUCTO

> Panel semi-rígido de Lana Mineral de Vidrio no hidrófila, sin revestimiento, de 100 mm de espesor nominal, 1.350 mm de longitud y 600 mm de anchura

RCP DE REFERENCIA

RCP001 - Productos aislantes térmicos -V.1 (2010)

PLANTA PRODUCCIÓ

KNAUF INSULATION LANNEMEZAN SAS 501, Voie Napoléon III F-65300 Lannemezan (France)

VALUEZ

1

Desde: 31.01.2013 Hasta: 30.01.2018

La validez de la DAPC[®] 001.006 está sujeta a las condiciones del reglamento DAPC[®]. La edición vigente de esta DAPC[®] es la que figura en el registro que mantiene CAATEBS, a título informativo, se incorpora en la página web del Sistema http://es.csostenible.net/dapc

Ges ducumento consta de 15 páginas. Oueda prohibida eu reproducción paraiel

Knauf Insulation

- LCA to Knauf Insulation
 - □ First: market demand (Environmental Product Declaration (E.P.D.), etc.)
 - Then ECO-DESIGN

- 1. Introduction
- 2. The production process
- 3. LCA and modeling
- 4. Results and advantages
- 5. Conclusion

The production process

Binder : formaldehyde → bio-based from plant starch

- 1. Introduction
- 2. The production process
- 3. LCA and modeling
- 4. Results
- 5. Advantages
- 6. Conclusion

- Special attention to allocation procedure (economic)
- Functional unit: production of 1 m³ of a specific product
- Use phase not included

In GaBi 6

- Plans of different levels
- In a plan: other plans or processes.
- □ Flow to link plans and/or processes
- General operation principle: identical in all plants
- → A unique model
- Structured // plant organization

CHEMICAL ENGINEERING

Modeling - unique model

Structured // plant organization

- Structured // plant organization
 - Product flow and recycled

materials

p🖤

2 types of products

- Structured // plant organization
- In each plan: inclusion of all alternatives
- Generic model

p 🔍

Example: Raw materials

Raw material mixture plan

- Includes all possible (potential) raw materials
- Electric Energy Mixer: allows to choose the electricity grid mix
- In the process parts where other energy sources are used (natural gas and/or oxygen), the same principle is applied

By reproducing the generic plan in a weighting plan:
 Combination of factories possible

- Parameters: Define
 - Amount of each raw material
 - Transport distance
 - Energy consumption
 - Origin of energy
 - Amount of waste/co-product
 - → Plant parameters
- Example: the raw material mixture plan parameters

Plant parameters

Example: the raw material mixture plan parameters

•	Plant 1			
•	Raw material mixture			
•	IN			
•	Borate	Glass Wool: plant Borate		[kg] Borate consumption (raw material)
•	Dolomite	Glass Wool: plant Dolomite		[kg] Dolomite consumption (raw material)
•	Limestone	Glass Wool: plant Limestone		[kg] Limestone consumption (raw material)
•	Calcinated limestone	Glass Wool: plant Calcinated_lime		[kg] Calcinated limestone consumption (raw material)
•	Sand	Glass Wool: plant Sand	\sim	[kg] Sand consumption (raw material)
4	Soda External cullet	 Glass Wool: plant Soda Glass Wool: plant Ext_cullet 	Quai	[kg] Soda consumption (raw material) [kg] external cullet consumption (raw material)
•	Electricity consumption at raw material	m 🖲 Glass Wool: plant Elec_raw_mat	nti	[MJ] Electricity consumption for raw material
- + +	Out		tie	
•	Raw material mixture	Glass Wool: plant Raw_material_mi	S	[kg] Raw materila mixture
• •	Other			
•	Transport distance borate by SHIP	Glass Wool: plant Di_borate_ship		[km] Transport distance by ship for borate (raw material)
4	Transport distance Borate by TRUCK	Glass Wool: plant Di_Borate_truck		[km] Transport distance by truck for borate (raw material)
•	Transport distance Dolomite	Glass Wool: plant Di_Dolomite		[km] Transport distance for dolomite (raw material)

Parameters: Define the product characteristics

- Dimension
- Type (blowing wool/ wool)
- Density
- Facing used
- Packaging used
- Production plant
- Product parameters

Product parameters

Product parameters				
Product				
LOI	1. Plant weighting	LOI	7,25	% of binder
Gros calorific value	💌 1. Plant weighting	GCV	1,35	[MJ/kg] gross calorific value
Product type	Sous-ensemble	Product type	Glass wool	All the processes related to white wool in the plant
ONLY RELEVANT for white wool product	Sous-ensemble	White wool applic	Loft	
Product dimension				
Density nominal	💌 1. Plant weighting	density_nominal	24,8	[Kg/m3] of finished product to calculate grammage
Product length	1. Plant weighting	Product_length	1,25	m
Product width	💌 1. Plant weighting	Product_width	0,6	m
Thickness	1. Plant weighting	Thickness	80	mm of finished product to calculate grammage
Nb Piece pallet	🔍 1. Plant weighting	Nb PC per palle	120	pc per pallet

- → Product parameters
- Plant parameters
- Model allows to study every products from all production plants (or combination)!

- 1. Introduction
- 2. The production process
- 3. LCA and modeling
- 4. Results and advantages
- 5. Conclusion

The data collection is simplified

🗶 🛃 🍤 -	(°" - ∣∓				_	_	2013_07_30data collectio	n sheet_(
Fichier A	ccueil Insertion	Mise en page Formules Données	Révisio	n Affichag	ge Acrobat			
🖺 🖁 Co	uper	Calibri • 11 • A A =	= =	■ ≫/	📲 Renvoyer à la ligne a	utomatiquement	Standard 👻	
Coller G		G I S - 🖂 - 🎝 - A -	EEI		🖅 🖅 🏧 Fusionner et centrer 🔻			Mise er
т 🗸 Ке	produire la mise en form	e						conditio
Pres	sse-papiers	G Police G			Alignement	Ea.	Nombre 🕞	
C193	3 🔻 (*	<i>f</i> _≪ Antifoam						
× A	В	C	D	E	F		G	
¹ Plant and period		Flows	Units	Line	Additionnal information required		Comments	
2	·	In principle, information in blue is coming from SoFi		Data entry is required				
3 Raw mate	erial mixture							
4 IN	Raw material	Borate	kg		Emissions factor			
5 IN		Dolomite	kg		Emissions factor			
6 IN		Calcinated dolomite	kg		Emissions factor			
(IN (IN		Linestone	kg		Emissions factor			
9 IN		Sada (Na2CO3)	kg		Emissions factor			
10 IN		Nepheline	ka		Emissions factor			
11 IN		Est Cullet	ka		Emissions factor			
12 IN	Recycling good	EP Dust	kg	0,00		From furnace		
13 IN		Wetfiber	kg	0,00		From binder ECOS	E	
14 IN	Energy	Electricity	MJ					
15 <mark>OUT</mark>	Products	Raw material mixture	kg	0,00				
16	Mass balance		kg	0,00				
17		Dut	kg	0,00				
19 Daramete	Dictoree	Berate - chip	/•	#DIVIO:	L contine (c) of supplicit(c)			
20 Faraniete	n: Distance	Borate - truck	km		Location(s) of supplier(s)			
21		Dolomite	km		Location(s) of supplier(s)			
22		Calcinated dolomite-VISUCAL	km		Location(s) of supplier(s)			
23		Linestone	km		Location(s) of supplier(s)	not used		
24		Sand	km		Location(s) of supplier(s)			
25		Soda (Na2CO3)	km		Location(s) of supplier(s)			
26		Nepheline	km		Location(s) of supplier(s)			
27	0.1	Ext Cullet	km		Location(s) of supplier(s)		FD 4 CD 5 D5 0 TD 7 C7 (
29	Ucher	j belec_clectricity				EU= 1, DE=2, RU=3,	, rm=4, GD=3, DE=0, 1H= /, LZ=0	,
30 Furnace								
31 IN	Raw material	Raw material mixture	kg	0,00				
32 IN	Recycling good	Int Cullet	kg			From fiberisation		
33 IN	Energy	Electricity (final)	MJ					
34 IN		Natural Gaz	MJ		Emissions factor	CO2 from combust	ion has to be added in emission	
35 IN		Oxygen	Nm3			Ensure that electric	city consumption is not already ta	ken into ac
36 OUT	Products	Melted mass	kg		0,00	Vérification: the me	elted mass out the furnace have t	o be equal
31 001	Recycling good	EP Dust	kg			to raw material/ col	iected from the precipitator	

The data collection is simplified

EPD: faster

Product parameters				
Product				
LOI	🖲 1. Plant weighting	LOI	7,25	% of binder
Gros calorific value	💌 1. Plant weighting	GCV	1,35	[MJ/kg] gross calorific value
Product type	Sous-ensemble	Product type	Glass wool	All the processes related to white wool in the plant
ONLY RELEVANT for white wool product	Sous-ensemble	White wool applic	Loft	
Product dimension				
Density nominal	💌 1. Plant weighting	density_nominal	24,8	[Kg/m3] of finished product to calculate grammage
Product length	💌 1. Plant weighting	Product_length	1,25	m
Product width	💌 1. Plant weighting	Product_width	0,6	m
Thickness	💌 1. Plant weighting	Thickness	80	mm of finished product to calculate grammage
Nb Piece pallet	1. Plant weighting	Nb PC per palle	120	pc per pallet

Results

EDP

ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804

Owner of the Declaration	Knauf Insulation, d.o.o., Skofja Loka
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-KIN-20130163-CBC1-EN
Issue date	02.10.2013
Valid to	01.10.2018

DP-3 Multipurpose Rock Mineral Wool insulation

Knauf Insulation, d.o.o., Skofja Loka

- The data collection is simplified
- EPD: faster
- Eco-design

Advantages

- Eco-design
 - LCA : powerful multicriterea tool for eco-design
 - Details
 - Quantifies
 - Avoid impact transfers (impact category / life cycle steps)
 - Model: high flexibility and simplicity for the users
 - LCA results: quick
 - Several methods
 - Identifies life cycle step high impact
 - Comparison between different plants
 - Alternative scenarios

 Example for a typical product for general construction applications with a density of 24.75 kg/m³ (CML 2010)

- 1. Introduction
- 2. The production process
- 3. LCA and modeling
- 4. Results and advantages
- 5. Conclusion

Conclusion

- Development of a generic model
 - Every glass mineral wool product
 - All Knauf Insulation plant

This model

- Simplifies the data collection procedure
- Allows
 - EPD
 - Eco-Design

Thank you for your attention !

University of Liège

LABORATORY of CHEMICAL ENGINEERING

Processes and Sustainable development

saicha.gerbinet@ulg.ac.be

■ Example: used of thermal energy → fiberizing and forming

