
Stat
The ISI’s Journal for the Rapid

Dissemination of Statistics Research (wileyonlinelibrary.com) DOI: 10.100X/sta.0000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spline approximations to conditional
Archimedean copula
Philippe Lamberta,b

Received 00 Month 2014; Accepted 00 Month 2014

We propose a flexible copula model to describe changes with a covariate in the dependence structure of
(conditionally exchangeable) random variables. The starting point is a spline approximation to the generator
of an Archimedean copula. Changes in the dependence structure with a covariate x are modelled by flexible
regression of the spline coefficients on x . The performances and properties of the spline estimate of the
reference generator and the abilities of these conditional models to approximate conditional copulas are
studied through extensive simulations. Inference is made using Bayesian arguments with posterior distributions
explored using importance sampling or adaptive MCMC algorithms. The modelling strategy is illustrated with
the analysis of bivariate growth curve data. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. Introduction
Sklar (1959) has proven that any distribution H(y1, . . . , yp) with marginal distributions Fj(yj) (j = 1, . . . , p) can be
written as

H(y1, . . . , yp) = C(F1(y1), . . . , Fp(yp)), (1.1)

where C denotes a distribution function (named copula) on (0, 1)p with uniform margins. If the margins are continuous,
then C is unique. Conversely, if C is a copula and Fj(·) are distribution functions, then (1.1) defines a multivariate
distribution with marginal distributions Fj (j = 1, . . . , p).

In most practical applications where copula are used, the marginal distributions and their potential link with covariates
x are investigated in a first step, yielding marginal fitted quantiles, ûj |x = F̂j(yj |x) (j = 1, . . . , p). A parametric copula
is then selected to describe the dependence structure of the fitted quantiles. That copula is usually assumed to be
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independent of the covariates as if the strength of association between the margins did not change with the unit
characteristics. Then, (1.1) becomes

H(y1, . . . , yp|x) = C(F1(y1|x), . . . , Fp(yp|x)), (1.2)

Unfortunately, the previous modelling assumption is not always realistic, as shown on Fig. 1 where the scatterplot of
weight (in kg) and height (in cm) of young boys is given for different age classes. Indeed, one probably notices that
the link between the marginal quantiles is getting looser as age increases. When the selected copula Cθ is parametric,
one can let the copula parameter (and, hence, the strength of association) change with covariates, yielding

H(y1, . . . , yp|x) = Cθ(x)(F1(y1|x), . . . , Fp(yp|x)), (1.3)

An early example of that can be found in Lambert & Vandenhende (2002) where the effect of an antidepressant on
blood pressures and heart rate were studied in a longitudinal setting. Besides the effects of covariates on the marginal
distributions of these three responses, their strengths of association were also allowed to change with sex and the
presence of drug in the plasma. The same idea was used in a financial context by Patton (2006) where the name
conditional copula for Cθ(x) was coined.

Nonparametric versions are desirable to suggest or to validate parametric specifications, or even as a substitute for
these models. This is a growing topic of research in the copula literature. Hafner & Reznikova (2010) and Acar &
Craiu (2011) use local likelihood to estimate changes with a covariate in the dependence parameter of a parametric
copula, while Craiu & Sabeti (2012) explore the use of cubic splines. Nonparametric estimates for the conditional
copula were also proposed and studied by Gijbels et al. (2011), Veraverbeke et al. (2011) and Abegaz et al. (2012)
where a local kernel-weighted pseudo likelihood is used to estimate θ(x) in a local polynomial approach. Extensions to
multivariate or even functional covariates can be found in Gijbels et al. (2012).

Here, we explore the possibility to use B-splines to specify a copula ’non-parametrically’ and to model its evolution with
a covariate. The plan of the paper is as follows. In Section 2, we extend the work of Lambert (2007) and Vandenhende
& Lambert (2005) to provide a smooth estimate for the generator of an Archimedean copula. Its properties are
revealed by a simulation study in Section 2.3 with excellent results already available with small sample sizes. Flexible
power transforms of the copula generator are introduced in Section 3.2 to model smooth changes of the copula with
covariates. The abilities of the flex-power and of the additive conditional spline Archimedean copula families to model
such changes are studied in Sections 3.1 and 3.2. We conclude the paper with an application in Section 4 followed by
a discussion.

2. Spline estimation of an Archimedean copula
We shall restrict our attention to the estimation of bivariate Archimedean copulas. A (bivariate) copula is said
Archimedean (Genest & MacKay, 1986) if it can be written as

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v))

where ϕ(·) is a decreasing and convex function (named the generator) taking values on (0, 1) and such that
ϕ(0+) = +∞ and ϕ(1) = 0. It is symmetric in u and v , and characterized by that univariate function. The strength
of association between the two variates can be quantified using e.g. Spearman’s rho or Kendall’s tau. They can be
computed from the generator with the latter given by

τ = 1 + 4

∫ 1

0

λ(s)ds, (2.1)
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where λ(·) = ϕ(·)/ϕ′(·).

Various parametric proposals ϕ = ϕθ have been made for the generator in the literature, see e.g. Table 1, where
Kendall’s tau is expressed as a function of θ. For a given choice of the copula family and independent pairs
{(ui , vi) : i = 1, . . . , n} of data with uniform margins, one can estimate θ using e.g. the maximum likelihood principle.
One can show that the likelihood is

L(θ|D) =

n∏
i=1

∂2

∂u∂v
Cθ(ui , vi) = −

n∏
i=1

ϕ′′θ(Ci)ϕ
′
θ(ui)ϕ

′
θ(vi)(

ϕ′θ(Ci)
)3 , (2.2)

where Ci = ϕ−1
θ (ϕθ(ui) + ϕθ(vi)) and D generically denotes the available data.

2.1. The spline approximation
A (spline based) nonparametric estimate of ϕ(·) was first proposed in Lambert (2007). Here, we present another
formulation with superior properties and embedding the proposal made by Vandenhende & Lambert (2005) where the
function g(·) in (2.3) was piecewise linear. It can be written as

ϕθθθ(u) = exp {−gθθθ(S(u))} (2.3)

where S(u) = − log(− log(u)) is the quantile function of the extreme value distribution and

d

ds
gθθθ(s) =

K∑
k=1

bk(s)(1 + θ2
k) = 1 +

K∑
k=1

bk(s)θ2
k (2.4)

is a linear combination of K cubic B-splines associated to equidistant knots on (S(ε), S(1− ε)) for a small quantity
ε (= 10−6, say). One can show that such a formulation ensures that (2.3) provides a valid generator for any
θθθ = (θ1, . . . , θK)′ in IRK . In the special case where θk = θ for all k , the generator is ϕ(·) = (− log(·))ζ, i.e. that
of a Gumbel copula with dependence parameter ζ = 1 + θ2. When, in addition, θ = 0, one obtains the independence
copula.

2.2. Inference
Given K, the inferential problem ends up to the selection of the parameters θθθ defining the spline coefficients. We
suggest to follow the proposal made by Eilers & Marx (1996) by taking a large number of equidistant knots and to
counterbalance the introduced flexibility by penalizing changes in r th order differences of the spline coefficients. Then,
the penalized log-likelihood (see the Appendix for computational details) is

lpen(θθθ|D) = logL(θθθ|D)−
κ

2
θθθ′Pθθθ,

where P = D′rDr and Dr is the (K − r)×K matrix yielding r th order differences of the splines coefficients when
applied on θθθ.

The penalty parameter κ can be selected using cross validation or an information criterion. A possible translation in
Bayesian terms (Lang & Brezger, 2004) takes as prior for θθθ

p(θθθ|κ) ∝ κρ(P )/2 exp
(
−
κ

2
θθθ′Pθθθ

)
,
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where ρ(P ) denotes the rank of P . A gamma distribution is a possible choice for the prior of the penalty parameter,
κ ∼ G(a, b) (with mean a/b and variance a/b2). The marginal posterior distribution for θ (Jullion & Lambert, 2007)
is obtained by integrating out κ from the joint posterior for (θθθ, κ):

p(θθθ|D) ∝
∫ +∞

0

L(θθθ|D) p(θθθ|κ) p(κ) dκ ∝
L(θθθ|D)(

b + 1
2θθθ
′Pθθθ
)a+

ρ(P )

2

(2.5)

That expression reveals that it is equivalent to assuming the following independent Student priors for the differences
Drθθθ of the splines coefficients:

Drθθθ ∼ tν=2a

(
0,
b

a
Iρ(P )

)
, (2.6)

where tν(µ,Σ) is the multivariate Student-t distribution with ν degrees of freedom, mean µ and variance-covariance
matrix ν

ν−2 Σ when these two moments exist. Therefore, taking a = 1 and a ’large’ value for b (1, say) leaves a priori a
lot of freedom to the spline coefficients with a regularization of their r th order differences towards 0. The pertinence
of that recommendation will be confirmed by the simulation study in Section 2.3.

A possible point estimate for θθθ, and, hence, for the copula generator, can be obtained by maximizing (2.5), yielding

the maximum posterior probability (MAP) estimate θ̂. A sample
{
θθθ(m) : m = 1, . . . ,M

}
from the joint posterior for θθθ

can also be obtained using an importance sampler with vectors generated using the multivariate Student distribution
tυ

(
θ̂θθ, (−Hθ̂θθ)−1

)
where Hθ̂θθ denotes the Hessian matrix evaluated at θ̂θθ and υ the degrees of freedom.

2.3. Simulation study
A first simulation study was set up to evaluate the merits of the spline model to estimate the generator of an
Archimedean copula. S = 500 datasets {(u1i , u2i) : i = 1, . . . , n} were generated with n = 100, 250, 500 or 2000
pairs with uniform margins and an association structure characterized by a Clayton, a Frank or a Gumbel copula with
a dependence parameter corresponding to a Kendall’s tau equal to 0.15, 0.30 or 0.45. The copula generator was
approximated using (2.3-2.4) with K = 11 knots, a 3rd order penalty, and a gamma prior for the penalty coefficient,
κ ∼ G(a, b) with a = b = 1.

The posterior mode (MAP) θ̂θθ for the spline coefficients was first estimated by maximizing (2.5) w.r.t. θθθ. Then, a

sample
{
θθθ(m) : m = 1, . . . ,M

}
from the joint posterior for θθθ was obtained using an importance sampler, see Section

2.2 for details. The posterior mean λ̃(u) and pointwise credible intervals for λ(u) = ϕ(u)/ϕ′(u) were estimated using
the induced sample {λ(u|θθθ(m)) : m = 1, . . . ,M} and the associated importance weights (Chen & Shao, 1999). The
bias and the RMSE of λ̃(u) for a grid of values for u in (0.05, .95) are reported in Table 2 when τ = 0.30 and available
upon request when τ = 0.15 or 0.45. It suggests that the biases (if any) are very small, even with small sample
sizes. Root mean squared errors (RMSE) decrease with sample size, with empirical results suggesting that they are

proportional to n−1/2. The root mean integrated squared errors (RMISE), RMISE =
(∫ 1

0 (λ(u)− λ̃(u))2du
)1/2

, were
also computed as a summary value of the quality of the generator estimator, see Table 3.

The (mean) coverages of the pointwise credible intervals (computed from a grid of 19 equidistant values for u between
0.05 and 0.95) for λ(u) are reported in Table 4. They tend to be slightly larger than their nominal values with better
performances obtained for larger underlying Kendall’s tau.

The number K of B-splines in the basis should be large enough to ensure sufficient flexibility to the approximation
of the copula generator. That flexibility is counter-balanced by the penalty part, resulting in the Student prior for r th

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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order differences of the spline coefficients, see (2.6). The simulation results suggest that K = 11 is indeed sufficient
to have an estimator with low bias for the generator.

Besides the excellent statistical properties of the generator estimator (including a low bias and a good agreement
between the nominal and the effective coverages of the computed credible regions), the estimated functions turn to
be smooth whatever the sample size.

3. Flexible conditional Archimedean copula families
The flexible form presented in Section 2 for the generator can be generalized by letting the spline coefficients change
smoothly with a continuous covariate X. Extending the preceding definitions, we propose to take ϕΘ(u|x) as conditional
generator for the Archimedean copula when X = x , where

ϕΘ(u|x) = exp {−gΘ(S(u)|x)} ,

d

ds
gΘ(s|x) =

K∑
k=1

bk(s)
(

1 + θ2
k(x)

)
=

K∑
k=1

bk(s)

1 +

(
K∗∑
`=1

b∗` (x)θk`

)2
 , (3.1)

for a B-spline basis {b∗` (·)}K∗`=1 on the domain X of the covariate values, a K ×K∗ matrix Θ = (θkl) of spline coefficients
and S(u) = − log(− log(u)). It directly affects Kendall’s tau and relates it to the covariate. Indeed, one can show that

τΘ(x) = 1 + 4

∫ 1

0

ϕΘ(u|x)

ϕ′Θ(u|x)
du = 1− 4

∫ 1

0

{g′Θ(S(u)|x)S′(u)}−1
du.

This approximation to the conditional copula generator shares the qualities of the spline approximation to the generator
proposed in Section 2. The price to pay is in the number of spline parameters: K ×K∗ instead of K in the unconditional
case. It motivates the two extra approximations proposed below in Sections 3.1 and 3.2.

Smoothness can be forced using penalties on the r1th order differences in the θkl ’s for a given ` and on their r2th order
differences for a given k , yielding the following quadratic form for the penalty

pen(Θ|κ1, κ2) = vec(Θ)′ (κ1IK∗ ⊗ P1 + κ2P2 ⊗ IK) vec(Θ)

where P1 = D′r1Dr1 and P2 = D′r2Dr2 denote the penalty matrices of sizes K and K∗, respectively, and Ir the identity
matrix of size r . The first term in the penalty induces smoothness on gΘ(s|x) in the s−dimension, while in the second
case, smoothness is obtained in the x−direction.

3.1. The additive conditional spline Archimedean copula family

One can reduce the number of spline parameters to (K +K∗ − 1) free parameters by using the additive form (3.2)
for θk(x) in (3.1):

ϕγ,β(u|x) = exp {−gγ,β(S(u)|x)}

d

ds
gγ,β(s|x) =

K∑
k=1

bk(s)
(

1 + θ2
k(x)

)
; θk(x) = γk + β(x) = γk +

K∗∑
`=1

b∗` (x)β`, (3.2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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for a B-spline basis {b∗` (·)}K∗`=1 on the domain X of the covariate values, an identification constraint
∑

` β` = 0 (say)
and S(u) = − log(− log(u)). Like in the general case, one can show that the conditional Kendall’s tau is given by

τγ,β(x) = 1 + 4

∫ 1

0

ϕγ,β(u|x)

ϕ′γ,β(u|x)
du = 1− 4

∫ 1

0

{
g′γ,β(S(u)|x)S′(u)

}−1
du. (3.3)

It can be further extended to settings with multiple covariates. If xxx = (x1, . . . , xp)′ denote p continuous covariates, we
suggest to generalize (3.2) to

d

ds
gγ,β(s|xxx) =

K∑
k=1

bk(s)
(

1 + θ2
k(xxx)

)
; θk(xxx) = γk +

p∑
j=1

βj(xj) = γk +

p∑
j=1

K∗∑
`=1

b∗` (xj)βj`, (3.4)

with identification constraints
∑

` βj` = 0 for all j . That model contains K + p(K∗ − 1) free parameters for the
conditional copula.

3.1.1. Inference We shall focus on the single covariate case, the extension to the additive setting being straightforward.
The likelihood is given by

L(γγγ, βββ|D) =

n∏
i=1

∂2

∂u∂v
Cγγγ,βββ(ui , vi |xi) = −

n∏
i=1

ϕ′′γγγ,βββ(Ci |xi)ϕ′γγγ,βββ(ui |xi)ϕ′γγγ,βββ(vi |xi)(
ϕ′γγγ,βββ(Ci |xi)

)3 , (3.5)

see the Appendix for computational details. Smoothness is encouraged on ϕγ,β(u|x) in the u− and x−scales by
penalizing changes in 2nd or 3rd order differences, Dγγγγ and Dββββ, of the spline coefficients γγγ and βββ (Eilers & Marx,
1996). Letting Pγ = D′γDγ and Pβ = D′βDβ + εIK∗ , the following penalties

pen(γγγ|κγ) = −
κγ
2
γγγ′Pγγγγ ; pen(βββ|κβ) = −

κβ
2
βββ′Pββββ,

are added to the log-likelihood to define an estimation criterion for the spline parameters. A small ridge penalty is
added in the definition of Pβ to include the identifiability constraint on βββ. In Bayesian terms, it translates into priors
on the spline coefficients:

p(γγγ|κγ) ∝ κρ(Pγ)/2
γ exp

(
−
κγ
2
γγγ′Pγγγγ

)
; p(βββ|κβ) ∝ κK

∗/2
β exp

(
−
κβ
2
βββ′Pββββ

)
.

With gamma priors on the penalty coefficients, κγ ∼ G (aγ , bγ) , κβ ∼ G (aβ, bβ), one can show that the marginal
posterior for (γγγ, βββ) is

p(γγγ, βββ|D) ∝
L(γγγ, βββ|D)(

bγ + 1
2 γγγ
′Pγγγγ

)aγ+
ρ(Pγ )

2
(
bβ + 1

2 βββ
′Pββββ

)aβ+
ρ(Pβ )

2

(3.6)

MAP estimates (γ̂γγ, β̂ββ) for the splines coefficients can be obtained by maximizing the last expression. Again, an
importance sampler based on a normal approximation could be set up to explore the joint posterior of the spline
parameters. Given the increase in the number of parameters, we prefer to use a block-Metropolis algorithm where
vectorial proposals are made sequentially for γγγ and βββ. Our experience shows that the following algorithm is very
efficient:

– Obtain an estimation (γ̂γγ, β̂ββ) of the posterior mode and an approximation (σ̂σσγ , σ̂σσβ) to their marginal standard errors
from (the diagonal of minus the inverse of) the Hessian matrix at the mode. Let Σ̂γ = diag(σ̂σσ2

γ), Σ̂β = diag(σ̂σσ2
β).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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– At iteration m,

1. Generate a proposal γ̃γγ from the multivariate normal distribution
NK

(
γγγ(m−1), ςγ Σ̂γ

)
and u from a uniform distribution U(0,1). Let % = min

{
1, p(γ̃γγ,βββ(m−1)|D)

p(γγγ(m−1),βββ(m−1))

}
. Set γγγ(m) = γ̃γγ

if u ≤ % and γγγ(m) = γγγ(m−1) otherwise.
2. Generate a proposal β̃ββ from the multivariate normal distribution
NK∗

(
βββ(m−1), ςβ Σ̂β

)
and u from a uniform distribution U(0,1). Let % = min

{
1, p(γγγ(m),β̃ββ|D)

p(γγγ(m),βββ(m−1)|D)

}
. Set βββ(m) =

β̃ββ if u ≤ % and βββ(m) = βββ(m−1) otherwise.

– The algorithm starts with (γγγ(0), βββ(0)) = (γ̂γγ, β̂ββ). The values of ςγ and ςβ are tuned automatically during the
burn-in to have acceptance probabilities around 0.20 (Haario et al., 2001). The matrices Σ̂γ and Σ̂β are updated
half-way during the burnin using the empirical variance-covariance of the corresponding chains.

The generated chain
{

(γγγ(m), βββ(m)) : m = 1, . . . ,M
}
can be used to estimate a (simultaneous) credible region for any

function of the conditional copula generator. For example, if one is interested in such a region for the conditional
Kendall’s tau, compute

τ (m)(xj) = 1 + 4

∫ 1

0

λγ(m),β(m) (s|xj) ds (3.7)

on a fine grid of values {xj}Jj=1 on (0, 1). The so-obtained M trajectories,
{(
xj , τ

(m)(xj)
)

: j = 1, . . . , J
}M
m=1

, can be
used to estimate pointwise or simultaneous (Held, 2004) credible regions for τ(·).

3.1.2. Simulation study We have chosen to report the results of a study where the data are simulated from a conditional
copula outside the additive conditional spline Archimedean copula family to assess the ability of that tool to model the
dynamics of specific dependence structures. More specifically, for given covariate values {xi : i = 1, . . . , n} uniformly
distributed on (0, 1), we have simulated a data pair (ui , vi) from a Clayton or from a Frank copula with a dependence
parameter such that the corresponding Kendall’s tau is

τ(xi) = .5 + .3 sin
(

1.6πx1.5
i

)
,

yielding values for tau oscillating between .2 and .8, a particularly challenging set-up. The considered samples sizes are
n = 250, 500 and 2000. S = 500 replicates were considered.

Given that the data were simulated outside the assumed model family and the demanding simulation set-up, we did
not expect a perfect reconstruction of the underlying dependence structure, but hoped that reasonable estimations
for the changing strength of dependence would be obtained by forcing that model. This is indeed the conclusion that
can be drawn by inspecting Fig. 2 where the mean (over the S replicates) of the estimated conditional Kendall’s
tau (see (3.7)) corresponding to the fitted additive conditional spline Archimedean copula model can be compared
to the function τ(x) used to simulate the data. Whatever the underlying copula or sample size, the global evolution
of Kendall’s tau with the covariate is correctly captured, with results improving with sample size. The bias becomes
negligible for large n, except perhaps for the largest values of x when the data are generated using a Clayton copula
with a small Kendall’s tau.

3.2. The flex-power Archimedean copula family
Other approaches were investigated. One is based on (what we suggest to name) the power Archimedean copula family.
It relies on the following result (see e.g. Nelsen, 1999; Hofert, 2011): if ϕ(·) is an Archimedean copula generator, then

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Interior power transform: ϕα,1(t) = ϕ(tα) is also a generator if α ∈ (0, 1] ;
2. Exterior power transform: ϕ1,β(t) = (ϕ(t))β is also a generator if β ≥ 1.

The effect of α and β on a reference generator ϕ(t) (with Kendall’s tau τ0) is illustrated on Fig. 3 when starting
from a Clayton(θ = 1) generator. Remembering the relationship between Kendall’s tau and the area decribed by the
lambda function and the horizontal axis, see (2.1), one can see that Kendall’s tau increases with α (with a maximal
value τ0 when α = 1, corresponding to the reference generator) and with β (with a minimal value τ0 when β = 1).

We suggest to consider both transforms to model changes of the copula generator with covariates, i.e. to take
ϕα,β(t|x) =

[
ϕ(tα(x))

]β(x)
with flexible forms for the reference generator ϕ(·) (see (2.3)-(2.4)), the interior power α

and the exterior power β such that

α = α(x) =

1 +

(
K∗∑
k=1

b∗k(x)αk

)2
−1

; β = β(x) = 1 +

(
K∗∑
k

b∗k(x)βk

)2

,

where {b∗k(·) : k = 1, . . . , K∗} denotes a cubic B-spline basis on the covariate space (relocated and rescaled to take
values in (0, 1)). That model includes (K + 2K∗) parameters. Like for the reference generator, penalties can be
introduced to favor smooth changes with x for α(x) and β(x), and, hence, for the conditional copula generator
ϕα,β(t|x). If κα (resp.κβ) denote the penalty coefficients for the spline parameters ααα (resp. βββ) in α(x) (resp. β(x)) and
Pα (resp.Pβ) the corresponding penalty matrix, then one can show, using gamma priors κα ∼ G(aα, bα), κβ ∼ G(aβ, bβ)

and the same reasoning as in Section 2, that the marginal posterior for the spline coefficients is

p(θθθ, ααα, βββ|D) ∝
∫ +∞

0

∫ +∞

0

∫ +∞

0

L(θθθ, ααα, βββ|D) p(θθθ|κ) p(ααα|κα) p(βββ|κβ) p(κ) p(κα) p(κβ) dκ dκα dκβ

∝
L(θθθ, ααα, βββ|D)(

b + 1
2θθθ
′Pθθθ
)a+

ρ(P )

2
(
bα + 1

2ααα
′Pαααα

)aα+
ρ(Pα)

2
(
bβ + 1

2βββ
′Pββββ

)aβ+
ρ(Pβ )

2

(3.8)

MAP estimates (θ̂θθ, α̂αα, β̂ββ) for the splines coefficients can be obtained by maximizing the last expression. An adaptive
block-Metropolis algorithm can be set up by mimicking the approach in Section 3.1.1 to sample the joint posterior of
the spline parameters.

3.2.1. Simulation study When the data are generated from the power Archimedean family where the interior and
exterior powers are functions of a covariate x , one can show, using simulations (not reported to save space) that the
flex-power family is able to estimate the underlying conditional copula in a precise and nearly unbiased way for large
sample sizes. This is not surprising given the results in Section 2.3.

Instead, we report the results obtained when fitting the flex-power Archimedean family to the same datasets as
in Section 3.1.2. Given that the data were simulated outside the flex-power family, we did not expect a perfect
reconstruction of the underlying dependence structure, but like for the additive model, hoped that reasonable
estimations for the changing strength of dependence would be obtained by forcing that model. This is indeed the
conclusion that can be drawn by inspecting Fig. 4 where the mean (over the S replicates) of the estimated conditional
Kendall’s tau corresponding to the fitted flex-power Archimedean copula can be compared to the function τ(x) used
to simulate the data. Whatever the underlying copula or sample size, the bias for a given x is small and decreases with
n. A comparison of Figs. 2 and 4 suggests that, in the framework of the simulation study, the flex-power family is a
bit more performant than the additive one, at the cost of K∗ extra (spline) parameter (per covariate).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4. Application
The additive conditional spline (Model 1) and flex-power (Model 2) Archimedean copula models were also applied on
the growth data mentioned in Section 1 (see also Fig. 1). It provides the height (Y1) and weight (Y2) of n = 441 young
Dutch boys aged between 3 and 21. The margins were first modelled using the nonparametric additive location-scale
model described in Lambert (2013),

Yj = µj(x) + σj(x)εj ,

where µj(x) and σj(x) denotes the conditional median and inter-quartile range of Yj given Age (= X). The smooth
evolution of these quantities, as well as the pivotal distributions of the εj ’s were described using penalized B-splines.
The resulting fitted conditional deciles for Y1 and Y2 are displayed on Fig. 5. It reveals the nonlinear relationship between
the responses and Age as well as their increasing dispersion with the latter variate.

The unconditional and the two conditional copula models were adjusted on the fitted conditional quantiles,{(
xi , û1|xi = F̂1(y1i |xi), û2|xi = F̂2(y2i |xi)

)
: i = 1, . . . , n

}
,

using the methodology described in Sections 2 (Model 0), 3.1 (Model 1) and 3.2 (Model 2), respectively, with K = 11,
K∗ = 5 and b = bα = bγ = bβ = 1. Therefore, Model 0, Model 1 and Model 2 include K = 11, K +K∗ = 16 and
K + 2K∗ = 21 parameters, respectively (with identifiability constraints). Adaptive block-Metropolis algorithms with
chains of length 30, 000 (and a burnin of 1, 000) and initial values set at the MAP estimates were used to explore
the joint posterior of the spline parameters in the two models. The deviance information criterions (DIC, Spiegelhalter
et al. (2002)) are much smaller in Models 1 & 2 than in Model 0, suggesting a significant change of the strength
of association between the two responses with the covariate, see Table 5. Smaller values were obtained for the DIC
and for the effective number of parameters in Model 1 (compared to Model 2). The posterior mean of the conditional
Kendall’s tau, also estimated from the MCMC chains (see e.g. (3.7)), is plotted with a 95% credible region in Fig. 6
and 7. It confirms and quantifies the decreasing association between weight and height suspected from Fig. 1. It is
very large at early childhood and decreases afterwards with an apparent acceleration at the start of puberty.

The fitted joint distribution can also be visualized for any value of the covariate, see Fig. 8, where its contours for
three values of Age are superposed to the scatterplot of the whole dataset.

5. Discussion
A performant spline estimator for the generator of an Archimedean copula has been proposed. A large simulation study
has shown that it has nearly negligible bias and credible regions with coverage probabilities closed to their nominal
values even for moderate sample sizes.

It has been extended to change smoothly with a covariate using either an additive model for the spline coefficients or
flexible (spline based) power transforms of the generator and of its argument. Again, simulation studies suggest that
these models are quite flexible and useful to describe changes in conditional association structures.

It can be extended to handle multiple categorical or continuous covariates using additive forms such as in (3.4). One
might also be interested by an extension to more than two responses using conditional copulas of the form

C(u1, . . . , uJ |x) = ϕ−1 (ϕ(u1|x) + . . .+ ϕ(uJ |x)|x) ,

but the validity of an exchangeable dependence structure should be questioned in the context of the modelling exercise.
Instead, we suggest to use one of the proposed bivariate conditional copula models as building blocks in pair copula
constructions such as in regular vines (see e.g. Aas et al., 2009).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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A joint estimation of the parameters involved in the marginal models and in the conditional copula structure is also
possible and straightforward to manage in a Bayesian framework. Unless at least one of the margins is discrete, it is not
obvious that one would gain anything substantial by merging these modelling efforts in a single inferential procedure.

Besides additive and vine copula models, an extension to hierarchical settings involving repeated measurements (such
as with clustered or longitudinal data) is certainly worth considering, but out of scope for this paper.
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Appendix: Likelihood computation in the spline copula model
From a computational point of view, we found convenient to rewrite the likelihood as

L(θθθ) = −
n∏
i=1

(1− λ′θθθ(Ci))
λθθθ(Ci)

λθθθ(ui)λθθθ(vi)

ϕθθθ(ui)ϕθθθ(vi)

(ϕθθθ(ui) + ϕθθθ(vi))2

where

λθθθ(u) =
ϕθθθ(u)

ϕ′θθθ(u)
=

−1

g′θθθ(S(u))S′(u)
.

The value of Ci is given by

Ci = ϕ−1
θθθ (ϕθθθ(ui) + ϕθθθ(vi)).

The function ϕ−1
θθθ (·) can be computed numerically using an iterative method. The following algorithm turns to be

very efficient. Assume that one looks for u such that ϕ−1
θθθ (x) = u. This is equivalent to finding the root of f (·)

with f (u) = gθθθ(S(u)) + log(x). Starting from u = u(0), the guess u(t+1) at iteration t + 1 (resulting from a Newton
step) is such that S(u(t+1)) = S(u(t)) + δ(t) with δ(t) = −f (u(t))/g′(S(u(t))). Starting from C

(0)
i = uivi and letting

xi = ϕθθθ(ui) + ϕθθθ(vi), that procedure can be vectorized to compute Ci (i = 1, . . . , n) with a single loop in three or four
iterations. Finally, note that the quantities λ′θθθ(Ci) in the likelihood can be approximated using finite differences of the
lambda function.
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Figure 1. Growth dataset (for 441 Dutch boys): conditional scatterplot of weight versus height for different age classes.
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Figure 2. Estimate of the conditional Kendall’s tau corresponding to the additive conditional spline Archimedean copula family
fitted to n data generated from a Clayton or a Frank copula with varying Kendall’s tau: true Kendall’s τ(x) (solid), mean (dashed
line) of the S estimated τ(x) and envelope (dotted lines) containing 95% of the τ(x) estimates over the S = 500 replicates.
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Figure 4. Estimate of the conditional Kendall’s tau corresponding to a flex-power Archimedean copula fitted to n data generated
from a Clayton or a Frank copula with varying Kendall’s tau: true Kendall’s τ(x) (solid), mean (dashed line) of the S estimated
τ(x) and envelope (dotted lines) containing 95% of the τ(x) estimates over the S = 500 replicates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stat 2014, 00 1–11 15 Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using staauth.cls



Stat FIGURES

****
*********
*******
********
**
*****
* *

*

**
*
**
*****
**

*

*
**
*
*

*

**
*
*

*

*
*

*

**
**
*
*
*

**

*

**
*
*
*

****
**

**
*****
**
*
*
*
***
**
*

*

*
*
*

*
*
*
*
*
*
**
*
**
*
*
**
***
**

*

*
*

*
*
*

*

**
*

**
*
*
*
***
***
****

*
*
*
***
*

*

*
***

*

*

**
*
*

*
*

*

**

*
***

*
*

*

*

*

*
**

*

*

*
**

*

*
**
*

**
*
*

*
*
*

*

*
**

*

*

*
*

**

***

*
*
*

*

*
*

*

*
*

*

*

*
*
*
*
*

*

*

*
*
*
*
*
*
*

*
**
*

*

*
*
**
*

*

*
*

*

*

**

*

*

*
*

*

*

*

**
*

*

**
*
*
*

*
*

*
*
*
****
*

*

*

*

*

*
*
*

*

*

***
**

*
*

*

*
*
*
**
*

*

*

*

*

*

*

*

*

*

*

**

**
*

*

*
*

*
*
**
*

*

*

*

*

*
**
**
*

*
**
*

**
**

*

*

*

*

*

*

*
*
***

*

*

*
*
**

*

*
**

*

*
*

*

*
*
*
*

*

*
**

*

***
**

*

*
*

*

*

*
*
*

*

*
*

*

*

*

*

**
*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

**

*

*

*
*
*

*

*
*

*
**

*
**

*

*

*
*
*

*
*

****

*

*

*

**

*
**
*
*

*

*

*

*

*

*
*

*

*

*

**
*
**

*

*

*

*
*

**
*

*
*

*

*
*

*

***

5 10 15 20

20
40

60
80

10
0

12
0

age

w
ei

gh
t

***
*
*
*
*
***
***
*
****
*
*
*****
*

*
*
********

*

*

**

*
**

*
*
***
** *

*
**

*
*
*
**
*

*

*

*
*
*** *

*

*
**

*

*

*

*
*
**

*

***
*

**

**
*
******
*
**
*
**
**

*

**

*
*

*
*
*
*

*
*
*

*
*
*
*

*
*
*

*
**
*
****
*

**

*

**

*
*

*

*

*
**
*

*
*
*
**
****

*
*
***
**

*

*
*
**
*
*
**

*

***
*

*
*
****
*
*
**

*

***

*
*
*

*

**

*
*

*
*

**
*
*

*
*
*

*

*
*
*

*

*

*
**

*

***

*

*
*

*

*
*

*
**

*

*

**

**

*

*

*

*

*

*
*
*
*
*
***
*
*

**
**

*

**
*

*

*

**

*

*

*
**
*

*

**

**

***
*
*

*

*
*
*

*
*

*

**

*

*
*

*
*
*
*
*
*
**

*

*

*

*

*

*

*

*
*
*
***
*

*

*
*

*

*

*

*

*

*

*
*

*
*
*

*

*
*
**
*

*

*

*
*

*

**
*
*
*

*

**
*
*
*
*
****

*

**
**
*
*
*
*

**

*

*

*

***
*
**

*

**

**
*
*

**
**
*

*

**
*
*

***
*
*

*

*

*

*

*
*

*

**

*

*
*

*
*

*

*

**

*

***
*

*

*

*

*
*

*
*

*

**

*
*

*
*
*

*

**
*
***

***

*

*
*
*
*
*
*

**
*
*
*

*

**
*
*
*
***

**
*
*

*

***
*
**
*
*

*

**

*
*
*
***
*
*
*
*
*
*

5 10 15 20

10
0

12
0

14
0

16
0

18
0

20
0

age

he
ig

ht

Figure 5. Growth dataset: fitted conditional deciles for Weight and Height given Age using the flexible location-scale model in
Lambert (2013).
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Additive conditional spline model (Model 1)
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Figure 6. Growth dataset: fitted (solid line) conditional Kendall’s tau under the additive conditional spline model (Model 1).
Grey areas corresponds to .80, .90 and .95 pointwise (left panel) or simultaneous (right panel) credible regions for τ(age).
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Flex-power model (Model 2)
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Figure 7. Growth dataset: fitted (solid line) conditional Kendall’s tau under the flex-power Archimedean copula model (Model
2). Grey areas corresponds to .80, .90 and .95 pointwise (left panel) or simultaneous (right panel) credible regions for τ(age).
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Figure 8. Growth dataset: contours of the fitted joint distribution for Height and Weight at age 5, 10 and 17.
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Table 1. Examples of parametric Archimedean copulas.

Family θ range Generator Kendall’s tau

Frank (−∞,+∞)/{0} − log e−θu−1
e−θ−1

1− 4
θ

(
1− 1

θ

∫ θ
0

t
et−1dt

)
Clayton [−1,+∞)/{0} (u−θ − 1)/θ θ/(θ + 2)

Gumbel [−1,+∞) (− log u)θ (θ − 1)/θ
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Table 2. Estimation of λ(u) = ϕ(u)/ϕ′(u) on a grid of values for u using the spline estimator in (2.3). Biases and RMSE’s were
estimated using S = 500 randomly generated datasets of size n with Kendall’s τ = .30.

Sample size
n = 100 n = 250 n = 500 n = 2000

u λ(u) Bias RMSE Bias RMSE Bias RMSE Bias RMSE
Clayton copula (τ = 0.30)

0.05 -0.054 -0.007 0.016 -0.004 0.009 -0.002 0.006 -0.000 0.003
0.10 -0.100 -0.007 0.020 -0.002 0.011 -0.001 0.008 -0.001 0.005
0.20 -0.175 -0.003 0.022 0.003 0.014 0.000 0.010 -0.000 0.005
0.30 -0.225 0.000 0.024 0.005 0.018 0.001 0.013 -0.000 0.006
0.40 -0.254 0.003 0.024 0.005 0.019 0.001 0.014 -0.000 0.007
0.50 -0.261 0.005 0.023 0.003 0.018 0.001 0.013 0.000 0.006
0.60 -0.248 0.005 0.021 0.001 0.016 0.001 0.012 0.001 0.006
0.70 -0.215 0.005 0.017 -0.000 0.011 0.001 0.009 0.001 0.004
0.80 -0.162 0.005 0.012 0.000 0.006 0.001 0.006 0.000 0.003
0.90 -0.091 0.005 0.008 0.001 0.003 0.002 0.003 0.000 0.002
0.95 -0.048 0.004 0.006 0.002 0.003 0.001 0.002 0.000 0.001

Frank copula (τ = 0.30)
0.05 -0.105 0.009 0.017 0.007 0.012 0.004 0.008 -0.000 0.004
0.10 -0.153 0.004 0.021 0.003 0.013 0.001 0.009 -0.000 0.005
0.20 -0.207 -0.008 0.026 -0.005 0.016 -0.005 0.012 -0.000 0.006
0.30 -0.232 -0.014 0.030 -0.009 0.017 -0.006 0.013 -0.000 0.006
0.40 -0.241 -0.015 0.029 -0.008 0.017 -0.005 0.013 -0.000 0.006
0.50 -0.237 -0.012 0.027 -0.005 0.016 -0.002 0.012 -0.000 0.006
0.60 -0.220 -0.007 0.022 -0.002 0.014 0.001 0.010 -0.000 0.006
0.70 -0.192 -0.001 0.018 0.001 0.012 0.002 0.009 0.000 0.004
0.80 -0.148 0.002 0.012 0.002 0.009 0.001 0.006 -0.000 0.004
0.90 -0.086 0.003 0.007 0.002 0.005 0.001 0.003 0.000 0.002
0.95 -0.046 0.003 0.005 0.001 0.003 0.001 0.002 0.000 0.001

Gumbel copula (τ = 0.30)
0.05 -0.105 0.001 0.017 0.000 0.011 -0.001 0.008 -0.001 0.005
0.10 -0.161 -0.002 0.022 -0.001 0.015 -0.002 0.011 -0.001 0.006
0.20 -0.225 -0.006 0.027 -0.002 0.018 -0.002 0.013 -0.001 0.007
0.30 -0.253 -0.007 0.029 -0.002 0.018 -0.001 0.013 -0.000 0.007
0.40 -0.257 -0.007 0.029 -0.001 0.017 -0.000 0.012 0.000 0.006
0.50 -0.243 -0.007 0.028 -0.001 0.015 0.000 0.011 -0.000 0.006
0.60 -0.215 -0.006 0.026 -0.001 0.013 0.000 0.010 -0.000 0.005
0.70 -0.175 -0.005 0.022 -0.001 0.011 0.000 0.008 -0.000 0.004
0.80 -0.125 -0.005 0.017 -0.002 0.010 -0.000 0.007 -0.000 0.004
0.90 -0.066 -0.003 0.010 -0.000 0.006 -0.001 0.005 -0.000 0.003
0.95 -0.034 -0.000 0.006 -0.000 0.004 -0.001 0.003 0.000 0.002
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Table 3. Estimation of λ(u) = ϕ(u)/ϕ′(u) over (0, 1): RMISE of the spline estimator in (2.3) estimated using S = 500 randomly
generated datasets of size n.

Sample size n
Copula τ 100 250 500 2000

Clayton 0.15 0.0147 0.0110 0.0081 0.0044
0.30 0.0153 0.0122 0.0087 0.0043
0.45 0.0149 0.0106 0.0075 0.0037

Frank 0.15 0.0158 0.0105 0.0075 0.0043
0.30 0.0172 0.0107 0.0081 0.0042
0.45 0.0187 0.0116 0.0078 0.0038

Gumbel 0.15 0.0153 0.0118 0.0078 0.0046
0.30 0.0186 0.0109 0.0083 0.0046
0.45 0.0182 0.0073 0.0079 0.0040
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Table 4.Mean coverages of pointwise credible intervals for λ(u) estimated using S = 500 randomly generated datasets of size
n under the Clayton, Frank or Gumbel copula with different Kendall’s τ .

τ = 0.45 τ = 0.30 τ = 0.15

Nominal coverage
n 0.80 0.90 0.95 0.80 0.90 0.95 0.80 0.90 0.95

Clayton 100 0.83 0.91 0.94 0.83 0.92 0.95 0.87 0.95 0.97
250 0.84 0.93 0.97 0.84 0.92 0.96 0.86 0.94 0.97
500 0.82 0.91 0.96 0.82 0.91 0.96 0.87 0.95 0.98
2000 0.81 0.91 0.96 0.82 0.92 0.97 0.84 0.93 0.96

Frank 100 0.80 0.91 0.95 0.85 0.93 0.96 0.87 0.96 0.99
250 0.82 0.91 0.96 0.86 0.94 0.97 0.86 0.94 0.97
500 0.82 0.91 0.96 0.86 0.94 0.97 0.87 0.95 0.98
2000 0.82 0.91 0.96 0.84 0.92 0.96 0.85 0.94 0.97

Gumbel 100 0.84 0.93 0.96 0.82 0.90 0.94 0.89 0.95 0.98
250 0.90 0.96 0.98 0.86 0.95 0.98 0.83 0.93 0.97
500 0.83 0.92 0.96 0.86 0.94 0.97 0.84 0.92 0.96
2000 0.81 0.91 0.96 0.82 0.92 0.96 0.83 0.92 0.97
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Table 5. Growth dataset: effective number of parameters (e.d.) and DIC in the fitted copula models.

Copula model # par. e.d. DIC
Model 0 (Unconditional) 11 3.2 -310.4
Model 1 (additive) 16 6.0 -319.0
Model 2 (flex-power) 21 7.0 -318.4
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