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INTRODUCTION 

Shear banding occurs frequently (at many scales) and is the source of 

many soil and rock engineering problems: 

natural or human-made slopes or excavations, unstable rock masses, 

embankments or dams, tunnels and mine galleries, boreholes driven for 

oil production, repositories for nuclear waste disposal 

 

Failure in soils and rocks is almost always associated with fractures and/or 
shear bands developing in the geomaterial. 

Introduction Experiment Theory Numerical Conclusions 

In  geomaterials, the understanding of failure processes is more complex by 
the fact that soils and rocks are multiphase porous materials where different 
multiphysical processes take place. 
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INTRODUCTION 

In situ observation of shear banding 

In situ observations of shear banding and/or faulting are made  frequently 

at many scales 

Large scale: railway tracks after an earthquake in Turkey 
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In situ observation of shear banding 

Bierset (Belgium) 1998 – Courtesy C. Schroeder  

Human-made slope along E42 exit road  
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In situ observation of shear banding 

Fractures observed during the construction of the connecting gallery at the URL in Mol. 
Vertical cross section through the gallery showing the fracturation pattern around it, as 
deduced from the observations (from Alheid et al. 2005)  

Nuclear waste disposal 
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Experimental observations 

 

Introduction Experiment Theory Numerical Conclusions 

• Biaxial test 

• Axisymetric triaxial test 

• True triaxial test 

To better understand the development of the shear band, experiments are 
necessary, which are no more element tests as far as the behavior becomes 
heterogeneous. 

Different teams have performed experimental works devoted to the study of 
strain localization: 

• Desrues and co-workers 

• Finno and co-workers 

• Vardoulakis and co-workers 

•  … 
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Experimental observations: triaxial test 

Triaxial test: 

In triaxial tests (and more generally in axi-symmetric tests), the localization zone 
may remain more or less hidden inside the sample (need for special techniques 
to see the process) 
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Experimental observations: triaxial test 

Localized rupture in sandstone samples under different confining 
pressures (Bésuelle et al., 2000) 
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Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell 

P. BESUELLE, J. DESRUES, S. RAYNAUD, International Journal of Rock Mechanics & Mining Sciences 37 (2000) p. 1223-1237 



Experimental observations: triaxial tests 

Desrues, J. et al. (1996). Géotechnique 46, No. 3, 529–546 

Tomodensitometry: 

 

Localization pattern 
observed in sand sample 
during axisymetric triaxial 
test 
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Experimental observations: triaxial tests 

Tomodensitometry: 

 

Localization pattern observed in sand sample during axisymetric triaxial test 
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Experimental observations: triaxial test 

Increment 4-5 

3D digital image correlation applied to X-ray micro tomography images from triaxial compression tests on argillaceous 
rock LENOIR N , Bornert M,  DESRUES J, BESUELLE P,  VIGGIANI G   Strain vol:43 No 3 pp.193-205  
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Experimental observations: biaxial test 

Biaxial test: 

As in triaxial tests (and more generally in axi-symmetric tests), the localization zone 
may remain more or less hidden inside the sample, most of the experimental 
campaigns on localization have been performed in biaxial apparatus 
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Experimental observations: biaxial test 
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Experimental 

 set-up  

&  

a typical test 
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Experimental observations: biaxial test 

Localization and 
Peak 

1-2 2-3 3-4 4-5 5-6 
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Theoretical concepts 

Experimental evidence: 

Introduction Experiment Theory Numerical Conclusions 

Initial state Homogeneous strain field Localized strain field 

17 



Theoretical concepts 

Theoretical background 

Introduction Experiment Theory Numerical Conclusions 

Following the previous works by (Hadamard, 1903), (Hill, 1958) and 
(Mandel, 1966), Rice and co-workers (Rice, 1976, Rudnicki et al., 1975) 
have proposed the so-called Rice criterion. 
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Theoretical concepts 
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Static condition: 

Kinematic condition: 

Constitutive law: 

When it is assumed that C 1=C 0=C , no trivial solution if and only if: 
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Static condition: 

Constitutive law in principal axis: 

Kinematic condition: 

Combining the three previous relationship yields:  
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Extension to multiphysical context, mainly in hydro mechanical coupling: 

 Loret and co-workers (Loret et al., 1991) showed that for hydromechanical 
problems the condition of localization depends only on the drained 
properties of the medium 
 
In coupled problems much more complex localization pattern can be 
obtained, at least theoretically (Vardoulakis, 1996) 
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Which information can provide these theoretical tools ? 

For element test, the tools allow you to check if and when the constitutive 
model is able to predict the localization direction observed at the laboratory. 
 
For boundary value problems, they provide you the stress state when 
bifucation may arise and the direction of potential bifurcation (fracturation). 
Be aware that the Rice criterion is a local one ! 
 
This criterion could be activated for any constitutive model, if you make the 
connection in the ELEMB2 and POSPEC routines and some additional state 
variables  have to be defined.  



Example of EDZ around a cavity 
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Skeleton mechanical behaviour  

Linear elasticity : E0 et n0  

Associated softening plasticity (decrease of cohesion) :  

Drucker Prager criterion :  0
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Softening behaviour : localization effects are very important 
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Theoretical concepts 
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Softening behaviour : localization effects are very important 

Bifurcation analysis thanks to the Rice criterion (Acoustic tensor) 
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Plastic point Bifurcation dir. Bifurcation cones  
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Plastic point Bifurcation dir. Bifurcation cones  



Theoretical concepts 
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The Rice criterion provides us the information on when and how 
localization may appear.  
Do we have any problem to model such phenomenon with classical 
finite element method ? 
 
Let’s consider the modelling of a biaxial with a defect triggering the 
localization, first without any hydromechanical effect. 

Bottom-left defect 

Smooth and rigid boundary 
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50 elements 200 elements 300 elements 

The post peak behaviour depends on the mesh size ! 



Example of EDZ around a cavity 
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Cylindrical cavity without retaining 

Anisotropic initial state of stress 

Geometrical dimensions :  Internal radius 3 m 

Mesh length  60 m 

Choice : 

Symetry of the problem is assumed  

894 elements – 2647 nodes – 7941 dof  

Let’s consider now a coupled modelling: 



Example of EDZ around a cavity 
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Coupled modelling – Comparison Coarse mesh / Refined mesh 

Deviatoric strains  



Example of EDZ around a cavity 
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• Localization study : Acoustic tensor determinent 
 

• Mesh dependency of the results for classical FE 
 

• Non-uniqueness of the results in both cases 

The numerical modelling of strain localization with classical FE is not adequate. 
 
We need another numerical model to fix this mesh dependency problem !  
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Numerical models 
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• Classical FE formulation: mesh dependency  

• Different regularization methods 

Gradient plasticity 
 
Non-local approach  
 
Microstructure continuum 
 Cosserat model 
 Second gradient local model  

Mainly for monophasic materials ! 

Enrichment of the law 

Enrichment of the kinematics 
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In second gradient model, the continuum is enriched with microstructure 
effects. The kinematics include therefore the classical one but also 
microkinematics (See Germain 1973, Toupin 1962, Mindlin 1964). 

 

Let us define first the classical kinematics: 
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Here is the enrichment: 



Numerical models 
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• The internal virtual work (Germain, 1973) 

 

 

 

 

• The external virtual work (simplified) 

 

 

 

 

• The virtual work equations can be extended to large strain 
problems 
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• Balance equations 

 

 

 

 

 

• Boundary conditions 

 

 

 

written in the current configuration 

Three constitutive equations needed ! 



• Local second gradient models: we add the kinematical 
constraint: 

  

 

 

 this implies: 

 

 the virtual work equation reads  

Numerical models 
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Numerical models 
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• Local second gradient models 

 

balance equations 

 

 

boundary conditions 
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How do we introduce an internal length scale in second grade model ? 

Let’s take a simple example of a 1D-bar in traction: 
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if u’<elim 

if u’>elim 

General differential equation of the problem 

Where N1= N - M’ = Cst, K = Cst, A = A1 if u’ <elim and A = A2 if u’ >elim 

General solution of the problem 



Numerical models 

Introduction Experiment Theory Numerical Conclusions 46 

Let’s take another example: thick-walled cylinder problem 
(elastic second gradient model) 

General differential equation of the problem 

Balance equation 

General solution 
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• Local second gradient model : additional assumption  
* *
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Local quantities 

Finite element formulation of a second grade model 
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Local Second gradient Finite element  
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• Biaxial compression test 

Strain rate : 0.18% / hour 

No lateral confinement 

Globally drained (upper and lower drainage)  

Bottom-left defect 

Smooth and rigid boundary 
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• First gradient law : 

E = 5800 MPa  
n = 0,3  

 = 25°  
Y = 25°  

Linear elasticity : E0 and n0  

Associated softening plasticity (decrease of cohesion) :  

Drucker Prager criterion :  0
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• Second gradient law : Linear relationship deduced from Mindlin   

D = 20 kN  
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First modelling: no HM coupling (no overpressure)  

Before  After   

Bifurcation directions  (Regularization : Second gradient) 



Numerical models 

Introduction Experiment Theory Numerical Conclusions 53 

Before  After   

Plastic loading point  

First modelling: no HM coupling (no overpressure)  

(Regularization : Second gradient) 
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First modelling: no HM coupling (no overpressure)  

Before  After   

Velocitiy field   (Regularization : Second gradient) 
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Initiation of localization (Directional research)  
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Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 
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Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 
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Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 

Sieffert et al., 2009 
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• Main assumptions 

– Quasi static motion 

– Fully saturated 

– Incompressible solid grains 

 

• Aims 

– Equations written in the spatial configuration 

– Full Newton Raphson method 

 

Our goal is to extend the second gradient formulation for multiphysics 
conditions. In the following, we focus on the hydromechanical model but 
the same procedure can be applied for TM, THM or THMC problems. 



Numerical models 

Introduction Experiment Theory Numerical Conclusions 60 

• Classical poromechanics field equations 

Saturated porous medium 

Balance of linear momentum for the mixture 

* * *
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• Classical poromechanics field equations 

Fluid mass balance  
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• Classical poromechanics field equations 

Balance of momentum for the fluid phase 

Mass balance equation for the solid 

Viscous drag force : 



Numerical models 

Introduction Experiment Theory Numerical Conclusions 63 

• Coupled local second gradient model  

 Second gradient effects are assumed only for solid phase 

 

 For the mixture, there are stresses which obey the Terzaghi 
postulate and double stresses which are only the one of the 
solid phase 

 

 Boundary conditions for the mixture are enriched 
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• Coupled local second gradient model  
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• Coupled local second gradient model  
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 Equations are assumed to be met at time t 

 

We are looking for the values of the different fields at time: 
t+t=t1  

 

 using a full Newton Raphson method and an implicit scheme for 
the rate :  

Finite element formulation of the coupled local second gradient model 
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• Field equations at time t+t 

R, S and W : Residuals of the balance equations  
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•Linearization of field equations 
 
  Auxiliary linear problem 
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E1, E2, E3, E4 and D : see monophasic local sec. Gradient model 

G1 and G2 : related to gravity volume force 

KWW : Classical flow matrix 

KMW and KWM : Coupling terms including large strain effect 
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Isoparametric Finite Element : 

8 nodes for macro-displacement and pressure field  
4 nodes for microkinetic gradient field 
1 node for Lagrange multipliers field  
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•FE element discretization of linear auxiliary problem 

Local stiffness matrix 
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Elementary out of balance forces 
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• Biaxial compression test 

Strain rate : 0.18% / hour 

No lateral confinement 

Globally drained (upper and lower drainage)  

Bottom-left defect 

Smooth and rigid boundary 
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• Second gradient law : Linear relationship deduced from Mindlin   

• Flow model parameters 

D = 20 kN  

 = 10-19 / 10-12 m2 

w= 1000 kg/m³ 
 = 0.15 

kw = 510-10 Pa-1 

w = 0.001 Pa.s  
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(20 x 10) (30 x 15) (40 x 20) 

•Equivalent strain after 0.2 % of axial strain ( = 10-12 m²)  

Second modelling: HM coupling  
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•Plastic loading point after 0.2 % of axial strain ( = 10-12 m²)   

(20 x 10) (30 x 15) (40 x 20) 
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•Fluid flow after 0.2 % of axial strain ( = 10-12 m²)   
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•Load-displacement curve ( = 10-12 m²)   
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•Load-displacement curve ( = 10-19 m²)   

‘Undrained’ behaviour 

Second modelling: HM coupling  
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For  = 10 -19 m², the behaviour is undrained, we recover the 

experimental observation showing that for dilatant material, no 
localization is possible before cavitation. 
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Coupled modelling – Comparison Coarse mesh - Refined mesh 

Deviatoric strains  

Classical FE formulation 
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Coupled modelling – Comparison Coarse mesh - Refined mesh 

Deviatoric strains  

Coupled second gradient  FE formulation 
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Coupled modelling 

Coupled second gradient  FE formulation 

François et al., 2012 
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Coupled modelling 

Coupled second gradient  FE formulation 

François et al., 2012 
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Coupled modelling 

Coupled second gradient  FE formulation 

François et al., 2012 
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Coupled modelling  

Coupled second gradient  FE formulation 

François et al., 2012 
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Coupled modelling  

Coupled second gradient  FE formulation 

François et al., 2012 
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Strain localization in shear band mode can be observed in most laboratory 
tests leading to rupture in geomaterials. 

 

 Complex localization patterns may be the result of specific geometrical or 
loading conditions. 

 

The numerical modelling of strain localization with classical FE is not 
adequate. Enhanced models are needed for a robust modelling of the 
post peak behaviour. 

Many experimental works and numerical developments are necessary to 
improve the prediction of failure in boundary value problems 


