
An Architecture for an Anonymity Network

Marc Rennhard
�
, Sandro Rafaeli

�
, Laurent Mathy

�
, Bernhard Plattner

�
and David Hutchison

�
�
Swiss Federal Institute of Technology, Computer Engineering and Networks Laboratory; Zurich, Switzerland�

Lancaster University, Faculty of Applied Sciences; Lancaster, UK�
rennhard,plattner � @tik.ee.ethz.ch,

�
rafaeli,laurent,dh � @comp.lancs.ac.uk

Abstract

It is difficult to design a system that provides anonymity
for delay-sensitive services such as Web browsing. Exist-
ing systems are either not resistant against sophisticated
attacks or they achieve their level of anonymity at the cost
of a high bandwidth overhead. In addition, these sys-
tems do not meet all of our requirements. In this paper,
we present the architecture of our prototype implementa-
tion of an anonymity network. Our system is trustworthy,
fair, stable, modular, and bases on the well studied and ac-
cepted secure sockets layer protocol. With this system, we
want to derive quantitative results about the tradeoff be-
tween anonymity and performance penalty. We will then
extend our anonymity network such that it provides high re-
sistance against various attacks while minimizing its band-
width overhead.

Keywords: anonymity, pseudonymity, anonymous Web
browsing, mix-networks

1. Introduction

During the past years, people became more sensitive re-
garding privacy issues in the Internet. They realized that
they leave all kinds of traces when surfing the Web or ex-
changing e-mails. Encryption provides the means to protect
the privacy with respect to third parties in the sense that
eavesdropping becomes very difficult, and the popularity of
tools such as Pretty Good Privacy (PGP) [14] underlines its
need. However, there are situations where the protection of
privacy should go even further, and that is when anonymity
comes into play. The requirement for anonymity in the In-
ternet is justifiable very much since many situations in the
real life are anonymous, e.g. traditional stores offer a cer-
tain degree of anonymity for their customers if they pay
with cash. Similarly, a spontaneous conversation between
two persons is anonymous.

Using the Internet is not anonymous at all. The protocols
do nothing to hide the path the data takes through the net-
work, and the packets themselves contain information such
as IP-addresses identifying the endpoints of a communi-
cation. Bringing anonymity to the Internet would enable
several interesting applications, such as anonymous Web

browsing or pseudonymous e-commerce [8]. However, all
of the higher-level anonymous or pseudonymous applica-
tions require hiding the path the data takes from the sender
to the destination and vice versa. If it is easy for a shop op-
erator, the administrator of a Web server, or an eavesdropper
to derive this end-to-end connection, all additional effort to
provide anonymity is pointless.

Our goal is to design and implement an anonymity net-
work that can serve as the basis for various anonymous or
pseudonymous Internet activities. This anonymity network
should fulfill the following requirements:

� It should provide reasonable resistance against attacks
(section 3). This should be achieved with minimal
overhead and without the necessity that the users have
to carry out a synchronized protocol in any way.� The whole system should be trustworthy for its users.
Since no centralized service can be trustworthy enough
to provide anonymity, the system must base on a
distributed set of components operated by different
providers. The user should be able to use any number
of these components and the ones she trusts. In addi-
tion, she should be sure to be using indeed the chosen
components.� The system should be based on a studied and well ac-
cepted security protocol. We do not want to sacrifice
anonymity by using vulnerable security protocols.� The system must be fair; no user should be able to
block other users by generating lots of traffic.� The implementation should be modular enough to al-
low for adding and testing new variations of the system
rapidly.� The system has to be stable. If a component in the sys-
tem goes down, then only the connections of users that
use that component should be torn down. Similarly, it
should be possible to easily integrate components into
the system, independent whether they are newly added
or just restarted.

This paper is organized as follows: in section 2, we de-
scribe the most important techniques for anonymizing net-
work traffic, section 3 describes attacks an anonymity net-
work should protect from. In section 4, we give the basic

idea of our system, whereas section 5 explains its imple-
mentation in more detail. Sections 6 and 7 describe the
message format and the protocol used in the anonymity net-
work. We talk briefly about related work in section 8 and
conclude our work with an outlook in section 9.

2 Techniques for Anonymizing Data Traffic

We distinguish between sender anonymity, where the
sender’s identity should remain anonymous, and receiver
anonymity, where the receiver’s identity should be hidden.
Although there are applications for receiver anonymity, i.e.
anonymous Web publishing [12], most Internet activities
where anonymity is desired require sender anonymity.

Achieving anonymity in a network is very difficult. Al-
though it usually makes use of encryption techniques, it
is a fundamentally different problem than achieving data
confidentiality. When speaking about encryption, we care
only about protecting the data. In contrast, anonymity
means protecting the communication itself in the sense that
it should not be possible for an attacker to follow the path
data packets take through the network. Since it is not possi-
ble to get rid of the data itself, we have to try to confuse at-
tackers such that they cannot trace the data from the source
to the destination.

Chaum described the concept of a Mix network [3]. It
is based on the idea that traffic sent from sender to desti-
nation should pass one or more Mixes. A Mix relays data
from different end-to-end connections, and the Mixes’ task
is to reorder and re-encrypt the data such that incoming and
outgoing data cannot be related. This heavily complicates
traffic analysis and should thwart attempts of an attacker to
follow an end-to-end connection.

Another fundamental approach to provide anonymity is
based on Chaum’s solution to the Dining Cryptographers
(DC) problem [4]: DC networks. The main drawback of
this approach is that it requires the participants to carry out
a synchronized protocol. In this paper, we will follow the
idea of a Mix network.

3 Threat Model

In this section, we define a threat model against which
the system should be resistant. The following list shows
possible attacks against an anonymity network. The order
in which they are listed represents the difficulty to prevent
them, in ascending order.

1. Message coding attack: In this attack, messages that
do not change their coding can by traced through the
network by pattern matching.

2. Message length attack: This attack examines the
length of a message as it travels through the network.

3. Replay attack: An attacker replays data packets and
waits that the Mix processes the same packet repeat-
edly, therefore enabling the attacker to correlate in-
coming and outgoing packets.

4. Collusion attack: This happens if a certain number
of involved parties collude to break the anonymity of
connections.

5. Flooding attack: Anonymity is usually achieved with
respect to a certain group. In this attack, an adversary
floods the system to separate certain messages from the
group.

6. Message volume attack: In this attack, it is tried to
detect an end-to-end connection by observing the mes-
sage volume at the endpoints.

7. Timing attack: A timing attack tries to observe the
duration of a connection by correlating its establish-
ment or release at the possible endpoints.

8. Profiling attack: A profiling attack tracks users over
long-term periods. It is basically a combination of the
timing and message volume attack over a long time.

It is well known how to prevent the first two attacks: by
re-encrypting each message between a pair of Mixes and
by making all messages in the anonymity network to have
the same length. The replay attack can be prevented if each
Mix maintains a database of the packets it has already pro-
cessed. Incoming packets are compared with the entries in
the database and replayed packets are simply discarded. A
Mix-network also has the property that if less than all of the
involved Mixes of an end-to-end connection collude, then
this coalition cannot break the connection anonymity. A
flooding attack can be prevented if all users of a Mix are
treated fairly in the sense that no user can block others.

It gets more complicated when trying to prevent attacks
6–8. All of them are basically traffic analysis attacks in
the network-wide scale. The main problem is that the de-
lay that can be added to messages by the Mixes can only
be relatively small for delay-sensitive applications such as
Web browsing, and a certain correlation of the messages at
the endpoints seems unavoidable. This is where dummy-
messages can be added to fool an attacker. If a user gives
the impression to be sending and receiving data all the time
although only a small amount of this traffic is useful data,
then it becomes more difficult to correlate events at the end-
points of a connection.

A system to anonymize telephony [7] is based on the
idea that the subscribers connected to the same end-office
build a group, and the system provides anonymity within
that group. The approach makes heavily use of the syn-
chronized telephony system in the sense that all subscribers

are always sending data to the end-office so that real phone
calls cannot be distinguished from the dummy data. An-
other project [1] tries to transfer this idea to the Internet,
where the subscribers of an Internet Service Provider (ISP)
form the group. However, it is questionable how well this
can work in an asynchronous environment where users are
connected with different data rates. In addition, this scheme
gives anonymity only among the users of the same ISP, and
not among all users of the anonymity network.

In general, one can say that the more dummy traffic is
used and the more synchronized the system is, the better
prevention against attacks 6–8 can be achieved. There is a
tradeoff between the overhead and the level of anonymity
a system offers, and we argue that this overhead should be
kept minimal to achieve a reasonable level of anonymity. It
is doubtful that perfect anonymity can be achieved. A very
powerful attacker that is able to observe and analyze the
traffic at several places in the network over a long time is
probably able to derive information about end-to-end con-
nections. Only a highly synchronized network where users
are connected all the time and generate vast amounts of
dummy traffic might be able to prevent such a powerful at-
tack. On the other hand, it is questionable if such an attack
could be carried out by any organization.

With our system, we want to study how well the attacks
described above can be prevented by adding the least pos-
sible amount of overhead. We also require that users are
able to come and go whenever they like, which means that
they are not required to be connected to the anonymity net-
work all the time. In addition, no synchronization among
the users should be needed, since this interferes with the
different speeds the users connect to the Internet. Further-
more, at any given time, all current users of the anonymity
network should build the group within each user is anony-
mous.

4 The Anonymity Network Model

In this section, we describe the basic design of the
anonymity network using the Web browsing example illus-
trated in figure 1.

Alice sits at her computer, having two browser windows
(B � and B �) that issue requests to the Web servers (WS � and
WS � , respectively). There is a local proxy (LP) running on
Alice’s computer which gives her access to the anonymity
network. The LP is used by the Web browser in exactly the
same way as a normal Web proxy. One task of the LP is to
sanitize the data sent by the application and remove infor-
mation that could identify Alice. The core of the network
are the anonymity proxies (APs). Their main task is to hide
the path messages take from the LP through the anonymity
network by providing the functionality of Mixes.

When Alice wants to browse anonymously, she starts her
LP. The LP establishes an anonymous tunnel through the

AP2

AP5

AP4

AP3AP1

B1 B2

LP

WS1

WS2

AP6

Alice's
Computer

Figure 1. Anonymity Network Overview.

anonymity network, using one or more intermediate APs.
The proxies to be used are specified by Alice and the spec-
ification is stored in a local configuration file. In figure 1,
the anonymous tunnel is established from LP via AP � , AP � ,
AP � , and AP � . LP is the entry and AP � is the exit of Al-
ice’s anonymous tunnel. Alice can now use the tunnel to
set up anonymous connections (ACs). For each of her end-
to-end connections from the browser to a Web server, an
AC is established. All her ACs are transported within the
anonymous tunnel between LP and AP � .

For the Web servers, the requests seem to be coming
from AP � , but they do not know that it is Alice who ini-
tiated them. Note also that there is only a single connection
between each pair of APs, and this connection is encrypted.
The anonymous tunnels active in the anonymity network are
not visible for an outsider, because the data are transported
within those unique pairwise connections.

5 Implementation

In this section, we describe some implementation issues.
There is a technical report available that describes the sys-
tem in more detail [10]. The first question to answer is how
many encryptions are required to protect the data against
external eavesdropper and colluding APs. We use an exam-
ple where an LP has established an anonymous tunnel via
three APs. Figure 2 illustrates the required encryptions to
protect the tunnel.

LP

AP1

AP2

AP3

LE (LP-AP1)

K1(K4(K5(data)))

LE (AP1-AP2)

data

K1 K1 K2 K2 K3 K3

K4

K5 K5

K4

K2(K4(K5(data))) K3(K5(data))

K4(K5(data))

K5(data)

data

LE (AP2-AP3)

NE (LP-AP3)

NE (LP-AP2)

Figure 2. Layers of Encryption.

The data is sent from LP via AP � , AP � , and AP � . Since
we want to avoid that external attackers can correlate in-
coming and outgoing data at each AP, we encrypt the data
differently on each link between a pair of proxies. We name
these encryptions link encryptions (LEs). Before LP sends
data to AP � , it encrypts it with a key K � known only to LP
and AP � . When AP � receives the data, it decrypts it with K �

and encrypts it with K � , known only to AP � and AP � and
so on. As a result, it is not possible for an external attacker
to correlate incoming and outgoing data at an AP.

However, this is not enough to protect the anonymous
tunnel from internal attackers. If AP � and AP � collude, then
they know the end-to-end connection since after removing
the link encryption, they see the same data. To protect the
path from internal attackers, we have to add nested encryp-
tions (NEs), as illustrated in figure 2. In addition to the link
encryption LE ���������
	 to AP � , LP has two nested encryp-
tions, NE ���������� to AP � , and NE ����������� to AP � . Note
that although these NEs allow LP to exchange encrypted
data with AP � or AP � , the data is never directly sent to the
peer, but is always relayed by AP � (and AP �). This works
as follows: before LP sends data over the encrypted link to
AP � , it first encrypts the data with the key K � it shares with
AP � , and then with the key K � it shares with AP � . When
the data travels through the anonymity network, the APs re-
move the nested encryptions they are involved in. When
AP � receives data from AP � , it first removes LE ���
	������
with K � , and then NE ��������� with K � . Then it encrypts
the data with K � and sends it to AP � . On the way back, it
works similar, but this time AP � encrypts the data with K �

after removing LE ������������ with K � . Then the data is en-
crypted with K � and sent to AP � . Note that since we have
already a link encryption between LP and AP � , no nested
encryption between LP and the first AP is needed.

The anonymous tunnel is now secure against internal at-
tackers. Assume again that AP � and AP � collude. After
removing LE ��������� 	 , AP � knows

�
��� � ��������������� . AP �

knows
� � � �!������� after removing LE ���
	"����� and ���!��� af-

ter removing NE ��������� . However, they have no idea if�
� � � � ������������� and

� � � �!������� are the same data since they
do not know K � . In general, no coalition of less than all
of the involved APs in an anonymous tunnel can break that
tunnel, since this coalition knows only a subset of the keys
that are used for the nested encryptions.

The number of encryptions needed in an anonymous tun-
nel can easily be computed: if # is the number of APs in-
volved, then we need # link encryptions and #%$'& nested
encryptions, which results in ()#*$+& encryptions. However,
it should be noted that the link encryption between a pair
of APs are shared by all anonymous tunnels that use that
link. Therefore, there is only one unique link encryption
per anonymous tunnel (from LP to the first AP), which re-
sults in # unique encryptions per anonymous tunnel.

In the requirements, we mentioned that the user should
be able to authenticate an AP. Therefore, we integrate au-
thentication with X.509 certificates [6] into the system.
There is a certificate authority (CA) that issues certificates
for the anonymity proxies. If an AP wants to offer its ser-
vice, it has to request a certificate from the CA. The CA can
be the root of a small public key infrastructure (PKI), but it
can also be integrated in a larger scale PKI.

The next question is what protocol to use to implement
the LEs and NEs, and how to do the key-management. We
decided to use the secure sockets layer (SSL) protocol [5],
since it allows for integration of the certificates, it is widely
accepted, and it seems to be secure [11]. However, SSL has
other advantages that we can make use of. One thing that
serves us well is that SSL has its own sequence numbers,
which means that replayed messages are recognized and
discarded. This prevents attack 3 we described in section 3.
Since replayed packets are discarded by SSL, we do not
have to check for duplicate packets after the data has been
processed by SSL. SSL also handles the key-management:
when an SSL-connection is set up, a key-exchange proto-
col is carried out and a session key is established. This is
true for the LEs and the NEs. Note that the SSL-connection
setup for a NE is relayed by the intermediate APs, which
means that the key is established between the LP and an AP
without that AP being able to learn anything about the LP.

The keys are valid as long as the corresponding SSL-
connection is not torn down. When a user decides to tear
down her anonymous tunnel, she simply terminates the LP.
The LE to the first AP and all NEs are torn down and the al-
located objects and data structures in the APs are removed.
When the user restarts her LP later (possibly using different
APs), the necessary LEs and NEs are set up again and fresh
keys are generated when establishing the SSL-connections.

6 Message Format
The main complexity of the anonymity network stems

from the fact that multiple anonymous tunnels (established
from different local proxies) are multiplexed on a single link
between a pair of proxies. To do so, we use an identifier that
is unique for each anonymous tunnel on a link. This means
that we must introduce a message format, since we have
to associate the data with an id identifying the anonymous
tunnel. The message format is depicted in figure 3.

version type id
length of
payload

payload

1 byte 1 byte 4 bytes 2 bytes 0-65535 bytes

Figure 3. Message Format.

The version and type fields are defined as unsigned 8-bit
integers. The current version is 1.0, and the various types
are needed to interpret the messages correctly (section 7).
The id is an unsigned 32-bit integer and is needed to mul-

tiplex multiple data streams on a link. The unsigned 16-bit
integer field length of payload identifies the number of bytes
in the payload field. The payload can have any length from
0 to 65535 bytes. Note that the message header only in-
troduces an overhead of 8 bytes. In addition, it is worth
mentioning that messages exchanged between objects that
do not perform multiplexing do not need the id field, reduc-
ing the header to 4 bytes.

7 Protocol
In this section, we show how anonymous tunnels and

anonymous connections are set up. We assume that a user
chooses to use an anonymous tunnel from her local proxy
via two anonymity proxies, AP � and AP � . The user then
makes a HTTP-request from her browser (B) to a Web
server (WS). Figure 4 illustrates which messages are sent
in what sequence to serve the user’s request.

LP AP1 AP2

JOIN (id1)

BRIDGE (AP2)

SSL-handshake

FINAL

connect,
SSL-handshake

connect,
SSL-handshake

NEST (id2)

REQ (id3, WS)

link encryption
LP-AP1 established

link encryption
AP1-AP2 established

nested encryption LP-AP2 established

anonymous tunnel LP-AP2 established

B WS

GET
(WS, request)

connect

DATA (id3, request)
request

reply

anonymous connection B-WS established

DATA (id3, reply)
reply

1)

2)

3) 4)

5)

6)

7)

8)
9)

10)

Figure 4. Data Flow.

1. When LP is started, it reads the list of APs to use from
its local configuration file and connects to AP � . They
perform an SSL-handshake, which results in the link
encryption LE ���������
	 .

2. Over LE ���������
	 , the LP sends a JOIN-message which
carries the id id � to be used to multiplex the anony-
mous tunnel on the link LP–AP � . The JOIN-message
tells AP � that it is the first AP in the chain. AP � creates
the required objects and data structures.

3. From the configuration file, the LP gets the second AP
to use and sends a BRIDGE-message to AP � , telling it
to use AP � as the next AP in the anonymous tunnel.

4. AP � connects to AP � , performs the SSL-handshake,
and the link encryption LE ��� 	 ������ is established.

5. AP � sends a NEST-message to AP � which carries the
id id � to be used to multiplex the anonymous tunnel on
the link AP � –AP � . The NEST-message tells AP � that

it is part of the anonymous tunnel, but not as the first
AP. This also instructs AP � to get ready for an SSL-
handshake to establish the nested encryption. For AP � ,
the setup is now complete. Whenever it gets a message
with � � � arriving on the link to LP, it forwards it as a
message with � � � to AP � and vice versa.

6. LP performs an SSL-handshake with AP � , and the
nested encryption NE ��������� is established. Steps 3–
6 are repeated for each additional AP that is used in the
anonymous tunnel.

7. Since AP � is the last AP in the chain, LP sends a
FINAL-message to AP � , and the anonymous tunnel
LP–AP � is complete.

8. When the browser issues a HTTP-request, the LP
sends a REQ-message through the anonymity tunnel to
AP � . The message carries the server to contact and is
marked with id � . This id is needed to multiplex anony-
mous connections within the anonymous tunnel.

9. AP � connects to WS, and the anonymous connection
B–WS is established.

10. LP sends the HTTP-request to AP � . This request is
sent as a DATA-message carrying � � � to identify the
anonymous connection. AP � gets the request, relays it
to WS, and gets the reply. The reply is sent back to LP
as a DATA-message, carrying again � � � to identify the
anonymous connection. LP gets the reply and relays it
to the browser.

Note that step 4 to establish the link encryption between
APs is only needed if the SSL-connection is not established
yet. Since these connections are longstanding, their estab-
lishment is usually only required after an AP is started. Sim-
ilarly, once the anonymous tunnel is established, this tunnel
is used by the user for all her anonymous connections until
the tunnel is torn down.

It is important to realize that there are two levels of mul-
tiplexing: one is when anonymous connections are multi-
plexed within an anonymous tunnel, and the other is when
different anonymous tunnels are multiplexed on the unique
link between a pair of proxies. This means that when the
LP sends a DATA-message with � � � (identifying the anony-
mous connection) to AP � in step 10, this message is put into
another DATA-message with � � � (to identify the anonymous
tunnel on the link LP–AP �) and sent to AP � . AP � gets the
data, changes � � � to � � � (to identify the anonymous tunnel
on the link AP � –AP �), and sends the message to AP � .

Although we demonstrated the functionality of the ano-
nymity network using the Web browsing example, it is not
limited to a particular application. It is the LP’s task to in-
terpret the data from a user correctly, since the APs are not
aware of the higher-level protocol data they carry in their
anonymous tunnels and connections.

Our prototype is implemented in Java 1.3 and currently
provides support for HTTP and HTTPS. Using the Just-In-

Time (JIT) compiler option, the system provides adequate
performance to experiment with and to find out how to make
it as resistant as possible against attacks. It is now in a state
where it runs very stable and is resistant against failures of
nodes. The system also makes sure that each anonymous
tunnel gets its fair share of the available bandwidth and
computing power by slowing down greedy users if an AP
gets more traffic than it can handle.

8 Related Work

Anonymizing Internet traffic has been tried before [13].
Here, we only briefly mention the two best known ap-
proaches, Onion Routing and the Freedom System.

Onion Routing [9] uses a Mix network with uniform
message length and the possibility to add dummy traffic.
The system delivered valuable information on anonymizing
delay-sensitive Internet traffic, but went off-line in January
2000. One important result of onion routing is that adding
dummy traffic seems to be necessary to thwart sophisticated
traffic analysis attacks.

The Freedom System [2] provides a commercial service
to browse the Web anonymously. Its approach is very simi-
lar to that of onion routing, and the mixing components are
the Anonymous Internet Proxies (AIPs). From version 1.0
to 2.0, the system underwent some interesting changes, one
of them is that packets have no longer a fixed size. The sys-
tem’s designers argument is that the bandwidth overhead is
not worth the increased resistance against traffic analysis.
One flaw in the system is that an active attacker incorporat-
ing two AIPs can trace users using these two AIPs as the
first and last AIPs in their chain.

9 Conclusions and Future Work

In its current state, our system fulfills most of the require-
ments stated in section1. It is trustworthy since a user can
select and authenticate the APs she trusts. With SSL, we
use a well accepted and studied protocol that even relieves
us from having to check for replayed messages. Our sys-
tem is fair and also very stable since if an AP goes down,
only the connections that use that AP are affected. New
or restarted APs can easily be integrated since the link en-
cryptions are established during the setup of an anonymous
tunnel if needed. Although a single AP is limited in the
number of anonymous tunnels and connections it can han-
dle, adding more APs allows a greater number of users of
the system.

The system provides a solid basis to experiment with var-
ious parameters. Interesting questions include what length
to use for the fixed-length messages, where and how much
dummy traffic has to be added to make the system resistant
against the attacks described in section 3 without adding too
much overhead and sacrificing the performance, and how
the APs should shuffle messages to maximize complexity

of traffic analysis while minimizing the end-to-end delay.
We will investigate these questions and hope to be able to
present the answers and quantitative results that fulfill the
first requirement stated in section 1 soon.

Acknowledgement

The work presented here was done within ShopAware
– a research project funded by the European Union in
the Framework V IST Programme (project 12361). Marc
Rennhard would like to thank also the Swiss Federal Office
for Education and Science for his sponsorship.

References
[1] O. Berthold, H. Federrath, and M. Koehntopp. Project

”Anonymity and Unobservability in the Internet”. Work-
shop on Freedom and Privacy by Design, CFP2000, York,
UK, March 2001, April 4–7 2000.

[2] P. Boucher, A. Shostack, and I. Goldberg. Freedom Systems
2.0 Architecture. White Paper, http://www.freedom.
net/info/whitepapers/index.html, Dec 2000.

[3] D. L. Chaum. Untraceable Electronic Mail, Return
Adresses, and Digital Pseudonyms. Communications of the
ACM, 24(2), February 1981.

[4] D. L. Chaum. The Dining Cryptographers Problem: Un-
conditional Sender and Receiver Untraceability. Journal of
Cryptology, 1(1):66–75, 1988.

[5] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
RFC2246, 1999.

[6] R. Housely and W. Polk. Internet X.509 Public Key Infras-
tructure. RFC2528, 1999.

[7] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-MIXes:
Untraceable Communication with Very Small Bandwith
Overhead. In Kommunikation in verteilten Systemen, 267,
pages 451–463, 1991.

[8] S. Rafaeli, M. Rennhard, L. Mathy, B. Plattner, and
D. Hutchison. An Architecture for Pseudonymous e-
Commerce. In Proceedings of the AISB’01 Symposium on
Information Agents for Electronic Commerce, pages 33–42,
York, UK, March 21–24 2001.

[9] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous Connections and Onion Routing. Journal on Selected
Areas in Communications, 16(4), May 1998.

[10] M. Rennhard, S. Rafaeli, and L. Mathy. The Pseudonymity
Proxy Architecture. Technical Report MPG-01-02, Com-
puting Department, Lancaster University, Lancaster, UK,
February 2001.

[11] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Proto-
col. Netscape Communications, 1996.

[12] M. Waldmann, A. D. Rubin, and L. F. Cranor. Publius:
A Robust, Tamper-Evident, Censorship-Resistant Web Pub-
lishing System. In Proceedings of the 9th USENIX Security
Symposium, August 2000.

[13] N. Weiler and B. Plattner. Secure and Anonymous Multicast
Framework. In Communications and Multimedia Security
Issues of the New Century (CMS’2001), May 2001.

[14] P. R. Zimmermann. The Official PGP User’s Guide. Boston:
MIT Press, 1995.

