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ABSTRACT

Middleboxes are heavily used in the Internet to process the
network traffic for a specific purpose. As there is no open
standards, these proprietary boxes are expensive and diffi-
cult to upgrade. In this paper, we present a programmable
platform for middleboxes called FlowOS to run on commod-
ity hardware. It provides an elegant programming model for
writing flow processing software, which hides the complexi-
ties of low-level packet processing, process synchronisation,
and inter-process communication. We show that FlowOS
itself does not add any significant overhead to flows by pre-
senting some preliminary test results.
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1. MOTIVATION

Middleboxes such as NATS, proxies, firewalls, IDS/IPSes,
WAN optimizers, load balancers, and application gateways
etc. are integral part of today’s Internet and play important
role in providing high levels of service for many applications.
A recent study [15] shows that the number of different mid-
dleboxes in an enterprise network often exceeds the number
of routers. The odd thing about these middleboxes is that
they do not have any standard and cannot interact with
each other. Usually they come as vendor specific hardware
boxes and requires special training for installation and main-
tenance. Often it is necessary to deploy new hardware to add
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new features to existing middlebox functionalities. The net-
work operating cost increases significantly due to the lack of
compatibility and upgradeability of middleboxes.

Recent trends in networking is to define a network man-
agement framework commonly known as software defined
networks (SDN) that provides a programmatic interface upon
which developers can write network management applica-
tions as necessary [5, 12, 13, 16, 9]. SDN decouples the con-
trol plane from the data plane so that the control plane can
work independently from that of the data plane. Recall that
SDN often offloads the control functions from switches and
runs them as a software service at some centralized server,
which allows control functions to be moved around [13, 6].
Note that SDN provides a platform for network management
functions and does not offer services for middlebox function-
alities, which are closely related to data plane.

Despite the heterogeneity of middleboxes, one common
thing among them is that they all work on either specific
or aggregate traffic flows. A network flow can be defined in
many ways, but generally speaking, it is a sequence of net-
work packets travelling from one point to another one and
match certain characteristics. Note that a flow is unidirec-
tional data stream that travels from a source to a destina-
tion, where a source or a destination could be an application,
a physical port, or an aggregate of them. OpenFlow [13]
defines a flow in terms of physical port, VLAN ID, MAC
header fields, TCP/IP addresses, and IP protocols. Adam
et. al. [3] show that middlebox functionalities that process
traffic flows can be implemented as software modules and
run on inexpensive commodity hardware namely x86 PCs
with PCI Express network interfaces. They also claim that
these processing modules can be run on virtual machines
(VM) to provide isolation and mobility in terms of VM mi-
gration.

It is harder to write software for middlebox functions as
there is no suitable high-level APIs for middle functions
apart from libpcap [2]. Besides, middlebox functionalities
require very high performance and are preferred to be run
in the kernel space to avoid copying packets back and forth
between kernel space and user space. The pcap library is a
low-level interface for capturing IP packets. Programmers
have to handle low-level packet processing in order to write
any flow processing software. Suppose, a programmer wants
to write a spam filter middlebox module, he is interested
to SMTP header and email body and does not care about
TCP/IP headers. But with pcap library, he has to process
every TCP/IP packets to retrieve email message and then
drop IP headers that belong to an email.
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Figure 1: FlowOS architecture.

In this paper, we present the design and implementation of
an Internet flow processing platform called FlowOS that pro-
vides a development environment for flow processing mod-
ules (PMs). FlowOS is a Linux kernel module-based system
that captures IP packets for a flow (defined using OpenFlow
primitives) and constructs one or more virtual byte streams
to be processed by flow processing modules. Flow process-
ing modules are also kernel modules that run as independent
kernel threads and process data of specific streams. FlowOS
provides a set of high-level APIs to write flow processing
modules like writing a socket application. Programmers see
a flow as a specific application byte stream and do not need
to handle low-level packet processing. The rest of the pa-
per is organized as follows. Section 2 describes FlowOS
architecture. Section 3 explains the flow processing mod-
ule programming framework with examples. In Section 4,
we present some preliminary results of FlowOS performance
and we discuss related works in Section 5. Finally, we con-
clude the paper in Section 6 by pointing some future work.

2. FLOWOSARCHITECTURE

FlowOS is a Linux kernel module-based Internet flow pro-
cessing platform. Figure 1 depicts the main functional enti-
ties of FlowOS. Following sections explain the functionalities
of each of the components of FlowOS.

2.1 Streamsand Flows

As discussed earlier, a flow is a sequence of IP packets that
satisfy certain criteria. In FlowOS, we are interested to data
bytes of these IP packets relevant to a specific protocol; for
instance, we are interested to TCP payloads of consecutive
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Figure 2: An abstract view of a flow with three vir-
tual streams.

IP packets for a TCP application. In other words, an appli-
cation is neither interested to IP packets nor to TCP seg-
ments but the application data. FlowOS extracts the start
and end payload pointers for different protocols of interest in
the socket buffers of IP packets of a flow, and arrange them
in a doubly linked-list. The linked-list of payload buffers of a
specific protocol is treated as a virtual byte stream. Figure 2
shows how virtual streams of a flow are constructed out of
socket buffers. The IP stream is the list of IP packets that
is buffers delimited by the pointer to the network header
and the pointer to the end of IP payload in socket buffers.
Similarly, the TCP stream is the list of buffers delimited by
the pointer to the transport header and the pointer to the
end of TCP payload in the socket buffer. Finally, the ap-
plication stream is the list of buffers delimited by the start
and end pointers of application payload in socket buffers.
Note that streams are related to one another, for instance,
a TCP stream is a sub-stream of an IP stream. FlowOS as-
sumes that a higher level (sub-stream) stream is completely
contained within a lower level (super-stream) stream.

A special pointer, called stream pointer, is used to access
data of a stream. In FlowOS, a flow is represented by a queue
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Figure 3: Pipeline stages, where pms and pms are at
stage 2 processing in parallel while pm; and pm4 are
processing at stage 1 and stage 3 respectively.

of socket buffers along with a flow ID that defines the flow, a
human readable name, the sequence of protocols of interest,
and a processing pipeline of flow processing modules.

2.2 Packet Capturing

FlowOS captures packets from the network interface asso-
ciated to some flow before it goes to Linux network protocol
stack by registering an RX handler for the network interface.
Ideally, OpenFlow switches are used to classify packets for
a flow. However, FlowOS comes with a complimentary soft-
ware packet classifier to classify packets when multiple flows
share the same network interface. RX handler invokes the
packet classifier to match the packet against the flows in the
system. If a packet does not belong to any of the flows in the
system, RX handler passes the packet to the kernel. Oth-
erwise, RX handler inserts the packet to the matching flow
and returns RX_HANDLER_CONSUMED to tell the kernel
that packet is taken away.

When RX handler sends a packet to a flow, FlowOS has
to extract the start and end pointers for different streams
of the flow. FlowOS comes with a set of protocol parsers
and are called in a sequence as needed by the flow to ex-
tract these pointers. For instance, a flow that is defined to
process spams needs IP, TCP, and SMTP protocol parsers
in sequence to build IP, TCP, and SMTP streams.

2.3 Flow Processing

FlowOS itself does not process flows but allows separate
flow processing modules to process a flow. A flow processing
module (PM) is a middlebox functionality that process a
flow such as NATSs, proxies, IDSes, etc. In FlowOS, a PM
is a kernel thread that works on a specific stream of a flow
(Section 3 explains how to write a FlowOS PM).

In FlowOS, a flow can be processed by one or more flow
processing modules either sequentially or in parallel or in
a combination of them. In order to process a flow, one
has to define a processing pipeline for the flow. A process-
ing pipeline can be seen as a sequence of processing stages,
where at each stage one or more PMs can process concur-
rently the flow (Figure 3).

Once a processing pipeline is configured for a flow, PMs
can process data in the flow. Since a flow is shared by all
the PMs on a processing pipeline, each PM maintains two
stream pointers — head and tail — that delimit the amount
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Figure 4: A pipeline of four PMs processing a flow.

of data available for a PM to process. FlowOS injects data
into a processing pipeline by moving tail pointers of the first-
stage PMs. Once a PM has finished processing some data,
it releases that data to the next-stage PM by moving it’s
head and next-stage PM’s tail pointers.

Note that PMs in different sequential stages work on dif-
ferent blocks of data of the flow, but PMs at a particular
stage work on the same data block concurrently. Therefore,
head and tail pointers management is crucial for safety and
performance of FlowOS. Consider the processing pipeline of
Figure 4, where pm, is placed at stage 1 before pm, and
pmg at stage 2, which implies that pm, and pmy should not
have access to data beyond the head of pm;. The following
invariants are to be preserved by head and tail pointers to
ensure that all the PMs at stage ¢ have finished processing
the data bytes before releasing them to PMs at stage ¢ + 1.

1. A PM’s head and tail must be within the system head
and tail.

2. The head of a PM cannot go beyond its tail.

3. The tail of a PM cannot go beyond the head of the
previous PM.

Since PMs run independently and may process the same
portion of bytes at the same stage with different speeds,
it is difficult to determine when to release data bytes to
the next stage and by which PM. In order to simplify the
synchronization problem, FlowOS uses a min-heap of head
pointers of PMs at each stage. When a PM has finished
processing a block of data and tries to release data by moving
its head, the system checks the PM’s head pointer with the
heap top. If the PM’s head is at the top of the heap, the
block of data is actually passed to the next stage PMs. Note
that FlowOS PM developers do not need to worry about
the synchronization issues and simply calls FlowOS API to
release data as if it is the only PM processing the data. Each
PM can be either read-only or read and write.

2.4 Packet Releasing

Once all the PMs of a processing pipeline have finished
processing a flow, FlowOS forwards the traffic toward the
destination. Note that FlowOS constructs virtual streams
out socket buffers in a flow and PMs manipulate data in a
stream and are not aware of underlying packet structures.



FlowOS has to resolve the inconsistency between packet
headers and the payload before sending them out to the
network. FlowOS TX handler is responsible for reconcil-
ing packet headers by taking all the changes made by PMs
into account if necessary. It runs as an independent thread,
which receives FlowOS packets from all the flows in the sys-
tem, reconciles protocol headers where necessary, and de-
termines the output network interface by performing route
lookups. It then enques IP packets to appropriate NIC’s
output queue for transmission.

25 FlowOSController

FlowOS controller, an independent kernel thread, is re-
sponsible for managing flows, processing pipelines, and flow
processing modules. It manages flows, processing pipelines,
and PMs by executing user commands received either from
the local NetLink socket user interface or from the remote
UDP socket interface. FlowOS controller defines two differ-
ent types of messages: FlowOS control messages and PM
control messages. Upon receipt of a message, the controller
performs necessary sanity checks to ensure that it is a valid
FlowOS message and then invokes the appropriate command
handler function if it is a FlowOS control message. Other-
wise, the controller dispatches the message to the appropri-
ate PM.

FlowOS comes with a simple command-line user interface
(CLI) program, which provides a set of user-friendly com-
mands to interact with the FlowOS controller.

The FlowOS CLI creates a raw NetLink socket of type
NETLINK_FLOWOS (17) to connect to FlowOS. It imple-
ments FlowOS control commands and is able to load shared
library for executing PM control commands. Note that ev-
ery FlowOS command takes an optional —host argument,
which is used to specify the IP address of FlowOS host, to
allow users to manage FlowOS remotely.

2.6 Inter-platform Communication

Recall that an Internet flow is a one-way stream of IP
packets, however most of the Internet applications need two-
way interactions at least for control information and these
peer flows are inter-dependent. The peer flows could be
processed in different flow processing platforms. Therefore,
a flow processing system often needs to communicate with
another flow processing system possibly at a remote host.
FlowOS uses a kernel space encapsulated UDP server to
communicate with remote flow processing platforms?.

When FlowOS receives a message from a remote FlowOS
via encapsulated UDP socket, it performs some basic sanity
checks (e.g., the socket is initialized for UDP encapsulation
and has valid encapsulation magic, pulls out UDP encapsu-
lation header, and the message contains a valid FlowOS com-
mand), and then dispatches to FlowOS controller. Note that
when a user issues a FlowOS command with remote host ad-
dress, FlowOS controller constructs an encapsulated UDP
message from it and forwards to the remote host. When a
PM needs to send PM control message to its peer which is
running at a remote host or to send response to the client
at remote host, it constructs and sends encapsulated UDP
message to the remote host.

3. FLOWOSPM STRUCTURE

'Note that security issues are not discussed in this paper
and can be considered as future work.

Since FlowOS PMs are kernel modules and run as inde-
pendent kernel threads, they have to define module_init(),
module_ezit(), and a thread function. In addition to these
functions, a FlowOS PM has to define the following set of
functions, where modname is the name of the PM and is
used to distinguish the same function from different PMs:

1. wint32_t modname_protocol() to return the protocol this
PM processes. This is used by the FlowOS to construct
the appropriate virtual stream for the PM.

2. wint8_t modname_type() to return the type of the PM.
A FlowOS PM can either be PMODULE_RONLY
or PMODULE_RDWR.

3. uint8_t modname_msgcount() to return the number of
messages defined by the PM. Note that a PM often
needs to handle configuration or control messages.

4. int modname_XXX_handler(const struct flowos_pm *,
const struct flowos_pmhdr *) to handle the PM config-
uration or control message XXX.

5. int modname_register_msghandlers(flowos_pmmsg_ han-
dler *) to register PM message handlers with FlowOS.

The module thread function int modname_process(struct
flowos_pm *pm) is the main processing function of a flow
processing module. FlowOS passes a pointer to the main
data structure struct flowos_pm of a FlowOS PM to this
function when the PM is attached to the flow. The pm— head
and pm—tail members of this structure delimit the section
of the flow currently available for this PM to process. The
generic pointer pm—info field is to point the PM specific
data structure and is used to share data between PM thread
and its message handlers. This must be initialized before the
thread loop. Then, all the processing is done between the
following macros:

BEGIN_PROCESS(pm, head, tail);
/* process data */

END_PROCESS;

BEGIN_PROCESS and END_PROCESS macros are
defined in flowos.h header file, which implement the infinite
loop of the thread, handle PM control messages including
the thread kill signal, and make the PM sleep when there is
no data to process. The parameters head and tail are stream
pointers, which receive copies of pm— head and pm— tail re-
spectively. One could use the following macro to iterate
through all the packets between head and tail pointers.

for_each_packet(head, tail, packet),

where packet is a pointer to FlowOS packet and points the
next packet to be processed. One could also use the follwoing
while loop to process data between head and tail pointers.

streamp_set(ptr, head); /* set ptr = head */
while(! streamp_is_equal(ptr, tail)){
/* process data */
/* to move ptr by 1 byte ahead */
streamp_inc(ptr);
/* or to move ptr n bytes ahead */
streamp_move_next (ptr, n);



where ptr is a stream pointer. FlowOS provides a set of
stream manipulating functions similar to C string manipu-
lating functions to simplify writing flow processing modules.

Once a PM is done with a segment of data (one or more
bytes), it should use either flowos_release_data(pm, ptr) to
release all the data bytes up to stream pointer ptr or flowos_
release_packet(pm, packet to release all packets up to the
packet pointed to by packet.

4. PERFORMANCE

In order to test the performance of FlowOS, we have tested
it with simple flow processing modules on UCL HEN plat-
form. We have used a linear topology of three PCs (source,
middlebox, and sink) and a switch, where the PCs are Dell
PowerEdge 1850 servers with a 3.0GHz single core Xeon
processor, 2GB RAM, and Intel PRO/1000 MT Gigabit
network interfaces and they are connected by means of a
Forcel0 E1200 switch. PCs run Debian Linux with kernel
3.1.1. We have used Linux kernel traffic generator (pktgen)
to measure the throughput.

First, we measure the throughput for vanilla Linux kernel
without FlowOS on the middlebor for different sized pack-
ets starting from small 64 bytes increasing up to maximum
1500 bytes. We obtain a throughput of 734Mbps for 64-byte
packets and 983Mbps for 1500-byte packets.

We then run FlowOS on the middlebox and define a flow
that captures all IP packets coming from the source. We
define a processing pipeline with a single read-only PM (that
does not modify the content of the flow) and run the same
test. We observe that FlowOS with a single read-only PM
does not cause any delay to the traffic. In order to see if
FlowOS affects the throughput for a read/write PM (that
modifies the content of the flow), we define a processing
pipeline with a simple network address translator (NAT) and
perform the same test. Again, we observe that FlowOS with
a single read/write PM does not have noticeable overhead
on the traffic. Figure 5 depicts the throughput of FlowOS
with a single PM, where the plain red line represents the
reference throughput of Linux kernel, the red line with ticks
represents the read-only PM and the green line with crosses
represent the read/write PM.

Next we want to see how FlowOS performs when multiple
PMs are put on a processing pipeline. For this, first we cre-
ate a pipeline of two PMs that work serially that the second
PM can access data only after the first PM has released it, so
there is no contention. We put our IP checksum module at
the first position and NAT at the second stage and run the
same test again. We observe that FlowOS with two PMs in
sequence works at the same rate as with one PM. We then
change the processing pipeline to make two PMs process
data concurrently, where the PM that works slowly releases
data to the system for forwarding. Note that concurrent
PMs use a min-heap of their head pointers to determine
which PM is to release data. Surprisingly, FlowOS works
without causing any performance overhead in this scenario
as well as shown in Figure 6.

5. RELATED WORKS

Mohamed et. al. [4] proposed a software middlebox plat-
form called ClickOS, which combines the Click [11] moduler
router and MiniOS [1] kernel together to implement middle-
box functions using Click components. The tiny footprint of
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MiniOS makes ClickOS a very lightweight DomU host un-
der Xen [14] hypervisor and can easily be migrated to other
hosts.

In [17] authors proposed a software-centric middlebox plat-
form for general-purpose hardware platforms. The main
objectives of their proposal include decoupling middlebox
application from middlebox hardware, the consolidation of
multiple middlebox applications on a shared hardware plat-
form, and providing common APIs for logically centralized
middlebox management. They discussed the requirements,
challenges, and advantages of such a system without giving
actual implementation.

Adam Greenhalgh et. al. [3] proposed a flow process-
ing framework called Flowstream on commodity hardware.
Flowstream uses an OpenFlow switch to route flows to com-
modity servers called module hosts that run middlebox soft-
ware on virtual machines called processing modules. Au-
thors proposed to use Click [11] modular router software on
virtual machines to implement processing modules. A flow
can be routed through a sequence of module hosts to be pro-



cessed by a number of processing modules. The switch and
module hosts are managed by a platform controller.

Dilip Joseph et. al. [10] presented a simple middlebox
model based on RFC 3234 [8], which consists of zones, input
preconditions, state databases, processing rules, auxiliary
traffic, and the interest and state fields deduced from the
processing rules. They showed that it can easily represent
many real-world middleboxes and has practical applications.

Zheng et. al. [7] proposed a clean-slate system for network
control and management that provides services to the net-
work control applications such as communication between
applications, scheduling of application executions, feedback
management, concurrency management, and network state
transition management.

NOX [12] is similar to Maestro that provides a global view
of the entire network including the switch-level topology; the
locations of users, hosts, middleboxes, and other network
elements; and the services being offered by means of a set of
“base” applications. At the application programming model
level, NOX allows applications to register for notification
of specified network events and processes these events by
defining event handlers.

Teemu Koponen et. al. [16] proposed an extension of
NOX called Onix that provides flexible distribution prim-
itives allowing application designers to implement control
applications without re-inventing distribution mechanisms,
and while retaining the flexibility to make performance/sca-
lability trade-offs as dictated by the application require-
ments. Control applications written within Onix operate
on a global view of the network like NOX and use basic
state distribution primitives provided by the platform.

6. DISCUSSION

Internet flow processing is ubiquitous and operators use
specialised middleboxes for processing Internet flows. These
closed proprietary middleboxes are expensive and it is dif-
ficult to add new functionalities to them. Moreover, they
complicate the network management as they do not comply
with any standards. Recently, researchers are talking about
programmable platforms for middleboxes. However, most
of them consider flows are sequence of IP packets and mid-
dleboxes are network layer entity. In this paper, we present
a programmable platform for commodity hardware middle-
boxes called FlowOS, which extracts streams from a flow
for middlebox to process. Of course, one can write a mid-
dlebox software that process IP packets such as NATs or
IP firewalls using FlowOS, but FlowOS provides socket like
interface for writing middlebox software that process appli-
cation byte stream instead of IP packets such as application
gateways.

FlowOS provides a elegant programming model for writ-
ing flow processing software. Flows are shared among mul-
tiple PMs but FlowOS hides the complexities of process
synchronisation even if they process the data concurrently.
It also hides the complexities of inter-PM communications
by providing an integrated inter-platform communication
model. A PM communicates with another PM transpar-
ently of their location, they could be on the same machine
or run on different machines.

We have performed some basic tests to evaluate its per-
formance, which shows that FlowOS itself does not add any
significant overhead to network flows and runs at line rate.
We are developing some application level processing modules

to carry out extensive testing.

As future work, we are thinking of memory isolation for
different flows and PMs so that the malfunction of one PM
or flow does not affect the others. We are also planning to
incorporate PM and flow migration so that operators can
move flows and/or PMs on demand to respond to network
requirements.
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