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Abstract. We compute the cardinality of the syntactic monoid of the
language 0∗ rep

b
(mN) made of base b expansions of the multiples of the

integer m. We also give lower bounds for the syntactic complexity of
any (ultimately) periodic set of integers written in base b. We apply
our results to some well studied problem: decide whether or not a b-
recognizable sets of integers is ultimately periodic.

1 Introduction

Syntactic complexity has received some recent and renewed interest. See for
instance [6] for some background and we quote “in spite of suggestions that syn-
tactic semigroups deserve to be studied further, relatively little has been done on
the syntactic complexity of a regular language”. In this paper syntactic complex-
ity is introduced in the framework of numeration systems.

We compute the syntactic complexity of the set mN written in base b, i.e.,
the cardinality Mb,m of the syntactic monoid of the language 0∗ repb(mN) made
of base b expansions of the multiples of the integer m. A similar problem was
solved for the state complexity of the language 0∗ repb(mN), i.e., the number of
states of its minimal automaton. As usual (m, n) denotes the GCD of m and n.

Theorem 1 (B. Alexeev [1]). Let b, m ≥ 2 be integers. Let N, M be such
that bN < m ≤ bN+1 and (m, 1) < (m, b) < · · · < (m, bM ) = (m, bM+1) =
(m, bM+2) = · · · . The minimal automaton of 0∗ repb(mN) has exactly

m

(m, bN+1)
+

inf{N,M−1}∑

t=0

bt

(m, bt)
states.

For the binary system, the first few values of M2,m are given below. Let
b ≥ 2. In this paper, we obtain an explicit formula for Mb,m as a consequence
of Theorems 2, 3 and 4 where we discuss three cases: the constant m and the
base b are coprime or, m is a power of b or, m = bnq with (q, b) = 1, q ≥ 2
and n ≥ 1. Furthermore, we provide lower bounds for the syntactic complexity
of any ultimately periodic set of integers written in base b, i.e., any finite union
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2 M. Rigo, É. Vandomme

of arithmetic progressions. In the framework of numeration systems, syntactic
complexity has an advantage in comparison to left or right quotients, we have the
opportunity to work simultaneously on prefixes and suffixes of base b expansions,
that is on most and least significant digits.

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
M2,m 3 6 5 20 13 21 7 54 41 110 20 156 43 60 9 136 109 342 62 126 221

A motivation for this work comes from the following decision problem. Let S
be an abstract numeration system built on a regular language. See [4, Chap. 3] for
background. It is well-known that any ultimately periodic set is S-recognizable,
i.e., it has a regular language of representations within the system S. An instance
of the decision problem is given by an abstract numeration system S and a DFA
accepting some S-recognizable set X ⊆ N. The question is therefore to decide
whether X is ultimately periodic or not. This problem was settled positively for
integer base systems by Honkala in [9]. See also [2] and in particular [5] for a first
order logic approach. Recently this decision problem was settled positively in [3]
for a large class of numeration systems based on linear recurrence sequences.
Considering this decision problem for any abstract numeration system turns out
to be equivalent to the so-called ω-HD0L ultimate periodicity decision problem,
see again [4], or [10]. In its full generality, this problem is still open.

Since syntactic complexity provides an alternative measure for the complexity
of a regular language, one could try to develop new decision procedures based
on the syntactic complexity instead of the state complexity of the corresponding
languages. A step in that direction is to consider first integer base numeration
systems. As a consequence of our results, we present such a procedure restricted
to a prime base in Section 4.

In the next section, we recall basic definitions and fix notation. Section 3
contains our main results: Theorems 2, 3, 4 are about the particular sets mN

and Propositions 2, 3 as well as Theorem 2 are about any periodic set. We end
the paper with a procedure for the decision problem described above and we
present some directions for future work.

2 Definitions

For i ≤ j, we denote by [[i, j]] the interval of integers {i, i + 1, . . . , j − 1, j}.
A deterministic finite automaton (or DFA) over the alphabet A is a 5-tuple
A = (Q, q0, F, A, δ) where Q is the set of states, q0 is the initial state, F is the
set of final states and δ : Q × A∗ → Q is the (extended) transition function. We
denote by |u| the length of the word u ∈ A∗ and by #P the cardinality of P .

Integer Base Numeration Systems Let b ≥ 2 be an integer. We denote by
Ab the canonical alphabet of digits [[0, b − 1]]. For any word u = uℓ · · ·u0 ∈ A∗

b ,
we define the numerical value of u as

valb(u) =

ℓ∑

i=0

ui bi.
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Note that valb(uv) = valb(u) b|v| + valb(v) for all u, v ∈ A∗
b . For any integer

n > 0, we denote the usual base b expansion of n by repb(n). We assume that
such a greedy expansion does not start with 0. By convention, repb(0) is the
empty word ε. A set X of integers is said to be b-recognizable if the language
repb(X) ⊆ A∗

b is a regular language accepted by some DFA.
A set X ⊆ N is periodic of period p if for all n ∈ N, n ∈ X ⇔ n + p ∈ X .

The period is always understood to be the minimal period of X . In particular,
if X ⊆ N is periodic of period p, then for all i, j ∈ N,

i 6≡ j mod p ⇒ ∃r ∈ [[0, p− 1]] : (i + r ∈ X, j + r 6∈ X) or (i + r 6∈ X, j + r ∈ X).
(1)

A set X ⊆ N is ultimately periodic of period p and index I > 0 if for all n ≥ I,
n ∈ X ⇔ n + p ∈ X and exactly one of the two elements I − 1, I + p − 1 is in
X . Again, index and period are always understood to be minimal. It is easy to
see that any ultimately periodic set is b-recognizable for all bases b ≥ 2.

Syntactic Complexity Let L be a language over the finite alphabet A. The
context of a word u ∈ A∗ with respect to L is given by the set of pairs

CL(u) = {(x, y) ∈ A∗ × A∗ | xuy ∈ L}.

If L is clearly understood, we will simply write C(u). Define the Myhill congruence
[11] of L by u ↔L v if and only if, for all x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L. In
other words, u ↔L v if and only if CL(u) = CL(v). This congruence is also known
as the syntactic congruence of L. The monoid A∗/↔L made of the equivalence
classes of the relation ↔L, is the syntactic monoid of L. It is well-known that L
is a regular language if and only if A∗/↔L is finite. The syntactic complexity of
L is the cardinality of its syntactic monoid. If X ⊆ N is a b-recognizable set of
integers, by extension we define the syntactic complexity of X (w.r.t. b) as the
syntactic complexity of the language 0∗ repb(X).

Proposition 1. Let L be a language over A. Two words u, v ∈ A∗ are such that
u ↔L v if and only if they perform the same transformation on the set of states
of the minimal automaton M = (QL, q0,L, FL, A, δL) of L, i.e., for all r ∈ QL,
δL(r, u) = δL(r, v). In particular, if u, v are such that δL(q0,L, u) 6= δL(q0,L, v),
then u 6↔L v.

Definition 1. A language L ⊆ A∗ is weakly n-definite, if for any x, y ∈ A∗

satisfying |x| ≥ n, |y| ≥ n and having the same suffix of length n, x ∈ L if and
only if y ∈ L [12, 7]. In other words, L can be written as G∪A∗F where F (resp.
G) is finite and contains only words of length n (resp. less than n). Let n ≥ 1.
A language is n-definite if it is weakly n-definite and not weakly (n−1)-definite.
One also finds the terminology suffix testable in the literature, see [13].

3 Main Results

Let m, x ≥ 2 be integers such that (m, x) = 1. We denote by ordm(x) the order of
x in the multiplicative group U(Z/mZ) made of the invertible elements in Z/mZ.
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That is ordm(x) is the smallest positive integer j such that xj ≡ 1 mod m. In
particular, ordm(x) is the period of the sequence (xn mod m)n≥0.

We first consider the case where the base and the period are coprime. Inter-
estingly, the syntactic complexity depends only on the period and not on the
structure of the periodic set.

Theorem 2. Let m, b ≥ 2 be integers such that (m, b) = 1. If X ⊆ N is periodic
of (minimal) period m, then its syntactic complexity is given by m. ordm(b). In
particular, this result holds for X = mN.

Now consider the case where the period is a power of the base.

Theorem 3. Let b ≥ 2 and m = bn with n ≥ 1. Then the syntactic complexity
of 0∗ repb(mN) is given by Mb,m = 2n + 1.

Proposition 2. Let b ≥ 2. If X ⊆ N is a periodic set of (minimal) period
m = bn with n ≥ 1, then the syntactic complexity of L = 0∗ repb(X) is greater
than or equal to n+1. Moreover there exist arbitrarily large integers t1, . . . , tn+1

such that the n + 1 words repb(t1), . . . , repb(tn+1) belong to different equivalence
classes of ↔L.

Remark 1. The bound in Proposition 2 is tight. One can for instance consider
the set 5 + 8N. The corresponding syntactic monoid has exactly four infinite
equivalence classes.

We now turn to the case where m = bnq with (q, b) = 1 and n ≥ 1.

Theorem 4. Let b ≥ 2 and m = bnq where n ≥ 1 and (q, b) = 1 and q ≥ 2.
Then the syntactic complexity of 0∗ repb(mN) is given by

Mb,m = (n + 1).Mb,q + n = (n + 1).q. ordq(b) + n.

For the next proposition, we restrict ourselves in this abstract to the case
where b is a prime number.

Proposition 3. Let b be a prime number and m = bnq where n ≥ 1 and (q, b) =
1 and q ≥ 2. If X ⊆ N is periodic of (minimal) period m, then the syntactic
complexity of 0∗ repb(X) is greater than or equal to (n + 1).q. Moreover there
exist arbitrarily large integers t1, . . . , t(n+1)q such that repb(t1), . . . , repb(t(n+1)q)
belong to different equivalence classes of ↔0∗ rep

b
(X).

Note that if b is not a prime number, there are integers of the kind m = bnq
where n is maximal and (b, q) > 1, as an example take b = 4 and m = 72 = 4.18.
Such a situation is not taken into account by Theorem 2, Propositions 2 and 3.
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4 Application to a Decision Procedure

Let X ⊆ N be a b-recognizable set of integers such that 0∗ repb(X) is accepted
by some DFA A. A usual technique for deciding whether or not X is ultimately
periodic is to prove that whenever X is ultimately periodic, then its period and
its preperiod must be bounded by some quantities depending only on the size of
the DFA A. Therefore, one has a finite number of admissible periods and prepe-
riods to test leading to a decision procedure. For details, see [3]. In particular,
the following result [3, Prop. 44] stated in full generality for any abstract nu-
meration system (i.e., the language of numeration is a regular language) shows
that we have only to obtain an upper bound on the admissible periods.

Proposition 4. Let S = (L, Σ, <) be an abstract numeration system. If X ⊆ N

is an ultimately periodic set of period pX such that repS(X) is accepted by a DFA
with d states, then the preperiod of X is bounded by an effectively computable
constant C depending only on d and pX .

The following result is a consequence of Theorem 2, Propositions 2 and 3.

Theorem 5. If X ⊆ N is an ultimately periodic set of period pX = bnq with
(q, b) = 1 and n ≥ 0, then the syntactic complexity of 0∗ repb(X) is greater than
or equal to (n + 1)q.

Assume that b ≥ 2 is a prime number. Therefore, giving a DFA A accept-
ing 0∗ repb(X) and so the corresponding syntactic monoid, if X is ultimately
periodic, then we get an upper bound on its period.

5 Further Work

We will try to extend the present work to a wider class of numeration sys-
tems. For instance, for the Fibonacci numeration system (defined by the se-
quence Fn+2 = Fn+1 + Fn, F0 = 1, F1 = 2) where integers are represented
using the greedy algorithm, the syntactic complexity of 0∗ repF (mN) is given
by MF,m = 4.m2.PF (m) + 2 where PF (m) is the period of (Fi mod m)i≥0. The
proof essentially follows the same lines as in the proof of Theorem 2 and [8]. Re-
call that a word is a valid representation if it does not contain a factor 11. This
later fact explains the factor 4 in the expression MF,m. Let u = uk · · ·u0, v =
vℓ · · · v0 ∈ {0, 1}∗. We have u ↔0∗ rep

F
(mN) v if and only if

(valF (u) ≡ valF (v) mod m) ∧ (valF (u0) ≡ valF (v0) mod m) ∧

(|u| ≡ |v| mod PF (m)) ∧ (uk = vℓ) ∧ (u0 = v0).

For the Tribonacci numeration system, the syntactic complexity of 0∗ repT (mN)
is given by MT,m = 9.m3.PT (m) + 3.
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