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Stability and bifurcation analysis of a Van der Pol–Duffing oscillator with a nonlinear
tuned vibration absorber
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Summary. The Van der Pol (VdP) oscillator is a paradigmatic model for description of self-excited oscillations, which are of practical
interest in many engineering applications. In this paper the dynamics of a VdP–Duffing (VdPD) oscillator with an attached nonlinear
tuned vibration absorber (NLTVA) is considered; the NLTVA has both linear and nonlinear restoring force terms. In the first part of
this work, the stability of the trivial solution of the system is investigated, following results of previous works. The analysis allows
to define an optimal tuning rule for the linear parameters of the absorber, which substantially enlarges the domain of safe operation
of the primary system. In this case, the system loses stability through a double Hopf bifurcation. In the second part of this work, the
bifurcations occurring at the loss of stability are analytically investigated, using the technique of the center manifold reduction and
transformation to normal form. The obtained results show the effects of the nonlinear parameter of the absorber, which, in turn, allows
to define its optimal value in order to avoid subcriticality and reduce the amplitude of self-excited oscillations.

Introduction

Limit cycle oscillations (LCO) occur in many mechanical systems and they are often a source of danger [1]. Aircraft
wings are a typical example of systems generating dangerous LCO [2]. Nowadays there is a trend to design lighter and
more flexible aerospace, but also civil engineering structures, which then become more prone to LCOs.
Among the passive systems to mitigate LCOs, the addition of a relatively small mass to the host system, attached through
a linear spring and a damper (linear tuned vibration absorber, LTVA), has been widely studied in the literature [3]-[8].
References [5] and [6] provide simple rules to properly tune the parameter of the LTVA, while references [7] and [8]
study the post-bifurcation behavior of the system, which loses stability through a simple Hopf bifurcation [7] or a double
Hopf (DH) bifurcation [7, 8]. In most of the these works, the system under investigation is a classical Van der Pol (VdP)
oscillator.
Recently, the nonlinear energy sink (NES), an absorber with an essentially nonlinear spring (i.e., a nonlinearizable non-
linearity), received growing attention [9]-[11]. Such a system allows to transfer the energy from the primary system to
the absorber mass in a process called targeted energy transfer (TET). Its effectiveness for externally-excited systems has
been widely investigated in several cases [9].
The difference between the LTVA and NES is essential. The use of a linear spring allows to enlarge the stable region of
the trivial solution of the primary system for larger values of the bifurcation parameter (i.e., a negative damping coefficient
in the case of the VdP oscillator or the flow speed for aeroelastic instability), as shown in [7]. Conversely, the addition
of an essentially nonlinear system leaves almost unchanged the stable region, but it can sensibly mitigate the LCO in the
post-bifurcation behavior of the system [12].
The main idea of this work is to combine these two positive effects and to develop an absorber, termed the nonlinear tuned
vibration absorber (NLTVA), that possesses a spring with both linear and nonlinear characteristics. A similar system was
already studied in [13], where the nonlinearity was brought by damping effects. The results obtained therein showed that
nonlinear damping decreases the effectiveness of the LTVA, but it can also improve the post-bifurcation behavior of the
system if the underlying linear system is slightly detuned.
The primary system considered herein is an extended version of the typical VdP oscillator [14], which is a paradigmatic
model for description of self-excited oscillations. Adding a cubic nonlinearity to the primary system, it is possible to
obtain a large variation of the LCO frequency [12], which allows to give more generality to our investigation. This
modified system is usually referred to as Van der Pol–Duffing (VdPD) oscillator [15].
In the first part of this work, we will retrace the stability analysis of the trivial solutions of the two-degree-of-freedom
(DoF) system (VdPD oscillator with an attached NLTVA), already exhaustively solved in [7]. In the second part, the
bifurcations occurring at the loss of stability will be analytically investigated. This will allow us to (i) identify the effects
of the nonlinear spring of the NLTVA, (ii) define its optimal value in order to avoid subcriticality and (iii) minimize the
response in the post-bifurcation regime.

Mathematical model and stability analysis

We consider a VdPD oscillator, with a lumped mass attached through a linear damper and a spring with linear and cubic
components. The equations of motion of the system under study are

m1q
′′
1 + c1

(
q21 − 1

)
q′1 + k1q1 + knl1q

3
1 + c2 (q′1 − q′2) + k2 (q1 − q2) + knl2 (q1 − q2)

3
= 0 (1)

m2q
′′
2 + c2 (q′2 − q′1) + k2 (q2 − q1) + knl2 (q2 − q1)

3
= 0 (2)
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Figure 1: Stability chart in the space µ1, γ (a) and µ1, µ2 (b). Shaded area: stable, white region: unstable. Encircled number 4 indicates
a region with 4 complex conjugate eigenvalues in pairs with positive real part. In the figure ε = 0.05; (a): µ2 = 1/2

√
ε/(1 + ε); (b):

γ = 1/
√
1 + ε. (c): stability chart in the µ1, µ2, γ space; the blue surface indicates the stability border, while the red surface indicates

the border of the area with four eigenvalues with positive real part.

which, introducing the dimensionless time τ = t/ωn1 and the variable transformation qd = q1 − q2, can be rewritten in
matrix form as [

1 0
0 1

] [
q̈1
q̈d

]
+

[
−2µ1 2µ2γε
−2µ1 2µ2γ (1 + ε)

] [
q̇1
q̇d

]
+

[
1 γ2ε
1 γ2 (1 + ε)

] [
q1
qd

]
+

[
2µ1q

2
1 q̇1 + α3q

3
1 + β3εq

3
d

2µ1q
2
1 q̇1 + α3q

3
1 + β3 (1 + ε) q3d

]
=

[
0
0

]
(3)

or in compact form Mq̈ + Cq̇ + Kq + b = 0, where b includes all nonlinear terms, ε = m2/m1, 2µ1 = c1/(m1ωn1),
2µ2 = c2/(m2ωn2), ω2

n1 = k1/m1, ω2
n2 = k2/m2, γ = ωn2/ωn1, α3 = knl1/(m1ω

2
n1) and β3 = knl2/(m2ω

2
n1).

The trivial solution of Eq. (3) is asymptotically stable if and only if the poles of the characteristic polynomial of the linear
part of the system have negative real part. The characteristic polynomial is given by det

(
z2Mq̈ + zCq̇ + Kq

)
= 0, i.e.

z4 + z32 ((ε+ 1)γµ2 − µ1) + z2
(
(ε+ 1)γ2 − 4γµ1µ2 + 1

)
+ z2γ(µ2 − γµ1) + γ2 = 0 (4)

or a4z4 + a3z
3 + a2z

2 + a1z + a0 = 0. According to the Routh-Hurwitz criterion, the characteristic polynomial has
poles with negative real parts if and only if the coefficients ai > 0, i = 1, ..., 4, c2 = (a3a2 − a4a1) /a3 > 0 and
c3 = c2a1 − a3a0 > 0.
Considering the values of these coefficients, it is possible to define the stability chart of the system. The aim of this
analysis is to obtain a set of parameters such that the value of µ1 that gives stability is maximized. Figure 1 (a) shows
a section of the stability chart in the µ1, γ space for µ2 = 1/2

√
ε/(1 + ε) = 0.1091. The curves a3 = 0 and a1 = 0

intersect at γ = 1/
√

1 + ε. Substituting this value in c3 = 0, it can be easily verified that the stable region is maximized
if µ2 = 1/2

√
ε/(1 + ε), which is therefore the optimal value of µ2.

Figure 1 (b) shows a section of the stability chart in the µ1, µ2 space for γ = 1/
√

1 + ε = 0.9759. Fig. 1 (c) confirms the
obtained results for optimal tuning of the absorber, i.e. for γ = 1/

√
1 + ε the stable region is maximized, while a small

detuning of γ sensibly reduce the stable area.
The coordinates of point C in Fig. 1 (b) are C =

(√
ε/2, 1/2

√
ε/ (1 + ε)

)
and, according to our calculations, the optimal

values of the absorber parameters are

γopt =
1√

1 + ε
and µ2opt =

1

2

√
ε

1 + ε
(5)

and, if those equations are satisfied, the maximal value of µ1 in order to have stability is µ1max =
√
ε/2. If γ is properly

tuned, the stability region is delimited by the curves µ1 = ε/
(
4µ2

√
1 + ε

)
on the top and µ1 = µ2

√
1 + ε on the bottom.

Bifurcation analysis

Analyzing directly the poles of Eq. (4), it is possible to identify the bifurcations occurring at the loss of stability. Although
not indicated in the figures, from our analysis it appears that at the loss of stability one or two couples of complex conjugate
eigenvalues leave the half-plane of negative real values, which corresponds respectively to a Hopf and to a DH bifurcation.
The area with four complex conjugate eigenvalues with positive real parts is marked with the encircled number 4 in Fig.
1 (b) and in red in Fig. 1 (c).
The existence of subcritical bifurcations would compromise the robustness of the trivial solution within the stable region,
particularly in the vicinity of the stability border. Thus, the narrow strip in correspondence of the optimal tuning (Fig.
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1) appears to be critical in this sense. Furthermore, if µ2 is smaller than the optimal value, at the loss of stability a DH
bifurcation is taking place, which probably has a very involved scenario and could generate quasiperiodic solutions.
It is also remarkable that a locus of DH bifurcations can be exactly defined (line from 0 to C in Fig. 1 (b)). Its equations
are {

µ1 = µ2

√
1 + ε

γ = 1√
1+ε

(6)

with 0 < µ1 <
√
ε/2.

A detailed investigation of the bifurcations occurring at the loss of stability, would allow to define the optimal choice of the
nonlinear parameters of the NLTVA, in order to reduce the amplitude of the generated vibrations and to have supercritical
bifurcations, rather than subcritical.
In order to study the most important bifurcations of the system, we first transform it into a system of first order differential
equations

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
−1 2µ1 −γ2ε −2µ2γε
0 0 0 1
−1 2µ1 −γ2 (1 + ε) −2µ2γ (1 + ε)



x1
x2
x3
x4

+


0

−2µ1x
2
1x2 − α3x

3
1 − β3εx33

0
−2µ1x

2
1x2 − α3x

3
1 − β3(1 + ε)x33

 (7)

or in compact form ẋ = Ax + b.

Single Hopf bifurcations
Except along line OC in Fig. 1 (b), the system loses stability through single Hopf bifurcations. In the following, we
perform a local analysis of these bifurcations in order to define their nature, i.e. if they are subcritical or supercritical, and
the effects of the nonlinear terms.
In correspondence of the loss of stability, A has a couple of complex conjugate eigenvalues with zero real part and two
other eigenvalues with negative real parts. We call λ1,2 = k1 ± iω1 the eigenvalues with zero real part and λ3 and λ4 the
other two.
Defining a transformation matrix through the eigenvectors of A, we can decouple the linear part of the system. Then,
applying a center manifold reduction it is possible to eliminate the variable not related to the bifurcation, reducing the
dimension of the system without affecting the local dynamics. Performing then a transformation in complex form, a near
identity transformation and a transformation in polar coordinates, we obtain the normal form of a Hopf bifurcation, i.e.

ṙ = k1r + δr3. (8)

Eq. (8) has solutions r0 = 0 and r∗ =
√
−k1/δ. The bifurcation is supercritical if δ < 0 and subcritical if δ > 0.

Considering the order of the terms, it can be defined that

δ = δ0(ε, γ, µ1, µ2) + δα3
(ε, γ, µ1, µ2)α3 + δβ3

(ε, γ, µ1, µ2)β3, (9)

which is also confirmed by calculation. This means that δ varies linearly with respect to α3 and β3.

Optimization
Negative values of δ0 indicate that the bifurcation is supercritical if α3 = β3 = 0, while if δ0 > 0 it is subcritical under
the same conditions. Similarly, if δα3 < 0 (> 0) positive values of α3 decrease (increase) the value of δ, facilitating
supercritical (subcritical) properties of the bifurcation. The same applies for δβ3 and β3. Generally, in real applications,
the value of α3 is given, while the value of β3 can be chosen properly tuning the absorber. In most applications, the aim
of the absorber is to make the bifurcations supercritical and to reduce the oscillation amplitude in the post-bifurcation
regime. Large negative values of δ correspond to low oscillation amplitudes, however, high values of the nonlinear terms
might cause other nonlinear phenomena overlooked by this local analysis. The amplitude of oscillation is also influenced
by the real part of λ1, which is determined uniquely by the linear terms.
Applying the outlined procedure along the significant area of the stability boundary we obtain the diagrams in Fig. 2.
We remind that on the line going from µ1 = 0, µ2 = 0 and γ = γopt until point C, DH bifurcations take place, thus this
analysis is insufficient to describe their local dynamics. C corresponds to the point of loss of stability for optimal values
of γ and µ2.
Fig. 2 (a) shows that δ0 is always negative along the stability border, thus a pure VdP oscillator with a linear absorber
undergoes supercritical Hopf bifurcations only. Furthermore, its absolute value is much larger in the vicinity of point
C (for µ2 > µ2opt) than on the rest of the stability border, which indicates a better post-bifurcation behavior. Far from
the area influenced by the absorber, where the loss of stability occurs for low values of µ1, δ0 is close to zero, which is
consistent to the fact that, in absence of the absorber, δ = 0 if there is no Duffing term.
Fig. 2 (b) shows the value of δα3

. It goes from positive to negative values, indicating an opposite influence on the
bifurcation depending on the position of the loss of stability. Comparing the two views of the figure (top and bottom) it is
visible a sort of symmetric behavior. Furthermore, close to point C the absolute value of δα3 is much larger than far from
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Figure 2: The surface correspond to the stability border in the µ1, µ2, γ space. The color indicates the value of δ0 (a), δα3 (b) and δβ3

(c). In the figure ε = 0.05.

0.8 1 1.2

−0.6

−0.4

−0.2

0

γ

δ α
3
/
δ β

3

(a)

−0.2 0 0.2

−0.2

0

0.2

x1

ẋ
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Figure 3: (a): trend of δα3/δβ3 as a function of γ for fixed values of µ2 and ε = 0.05; solid black lines: µ2 = µ2opt = 0.1091, dashed
blue lines: µ2 = 0.07, dash-dotted green lines: µ2 = 0.13. (b), (c): projections of the stable periodic attractor for different parameter
values, ε = 0.05 and µ2 = µ2opt = 0.1091. (b): γ = γopt = 0.9759, µ1 = 0.102; (c): γ = 0.9721, µ1 = 0.103. Black: , α3 = 0,
β3 = 0; red: α3 = 0.05, β3 = 0; blue: α3 = 0.05, β3 = 0.0025. Dashed lines: analytical results, solid lines: numerical results.

it, which indicates that α3 has a strong influence on the bifurcation behavior if the linear parameters of the absorber are
correctly tuned. In addition, the fact that it goes from positive to negative values in a small region makes it very difficult
to predict its effect. Fig. 2 (c) shows variations of δβ3

along the stability border. The trend of δβ3
is qualitatively similar

to that of δα3 , but with opposite sign and a higher order of magnitude. This means that it is hard to reliably predict the
effects of β3 as well.
Considering a given primary system with a specific Duffing coefficient α3, it is possible to properly tune the linear
parameters in order to maximize the stable range of µ1. After this optimization, the system will lose stability in the vicinity
of point C. Due to unavoidable uncertainty it is not possible to define exactly the point of loss of stability. Therefore, it
is troublesome to optimize β3 such that δ is kept negative (to avoid subcriticality) and minimized (to decrease vibration
amplitudes). However, the fact that δα3 and δβ3 have similar trends, suggests that there might exist a general rule for
tuning β3 depending on α3, in order to avoid subcriticalities.
Figure 3 (a) shows the ratio δα3

/δβ3
for variations of γ for different values of µ2. This figure exhibits that, in the relevant

area in the case of accurate tuning of the linear terms, δα3
/δβ3

is always negative and it varies in a relatively small range.
Considering a crude approximation of δα3

/δβ3
≈ −0.05, we have that, setting β3 ≈ 0.05α3, the eventually detrimental

effect of α3 is compensated by β3. An exact knowledge of all the parameter values would allow a much better tuning, but
this would not be robust with respect to system uncertainties.
The dash-dotted green curve in Fig. 3(a) goes to infinity in correspondence of the change of sign of δβ3

. Although this
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appears as a failure of the previous statement because of the large variation of δα3/δβ3 , since in that point δβ3 ≈ 0 the
effect of β3 is anyway negligible (and in most of cases the effect of α3 as well, since they go to zero almost together),
thus a mistuning of β3 has no detrimental effects. The other curves in the figure does not go to infinity, since δα3

and δβ3

change sign for the same value of γ.
Figures 3 (b) and (c) show the periodic attractor, generated by the Hopf bifurcation, for different parameter values. All
the curves in Fig. 3 (b) refer to the same parameter values for the linear part; the same, with a different value of γ, applies
in Fig. 3 (c). If the system under study would refer to a real case, it would be hard to predict which of the two attractors is
generated at the loss of stability, since their linear parts are only slightly different. The black lines refer to α3 = β3 = 0.
The red lines show that positive values of α3 have opposite effects in the two cases: in one case the amplitude of the
attractor increases, in the other it decreases. Confirming our predictions, the blue lines shows that a correct value of β3
can compensate and nullify the effect of α3, either if it is detrimental (Fig. 3 (b)) or if it is advantageous (Fig. 3 (c)).
In this case β3 = 0.05α3, since δα3/δβ3 ≈ −0.05. In the figure, the matching between the numerical and the analytical
results confirms the validity of the procedure.

Double Hopf bifurcation
In order to have a clearer picture of the local post-bifurcation behavior, we perform a local analysis of the DH bifurcations
occurring on line OC in Fig. 1 (b), due to the intersection of two loci of single Hopf bifurcations. The characteristic
polynomial of A is the same as the one in Eq. (4), thus, on the line OC, A has two couples of complex conjugate
eigenvalues with zero real part.
We call the eigenvalues λ1, λ2, λ3, λ4, where λ1 = λ̄2 and λ3 = λ̄4; λ1,2 = k1 ± iω1 and λ3,4 = k2 ± iω2. Applying a
procedure similar to that used for the single Hopf bifurcation, we transform the system into its normal form, i.e.

ṙ1 = r1
(
k1 + p11r

2
1 + p12r

2
2

)
(10)

ṙ2 = r2
(
k2 + p21r

2
1 + p22r

2
2

)
. (11)

For more details on this involved passages see [17]. The complete normal form of a DH bifurcation includes also fifth
order terms, but they can be neglected for the dynamics encountered in this work.

Analysis of the normal form and bifurcation diagrams
Equations (10)-(11) are an amplitude system, whose solutions are directly connected to those of the original system. It has
four types of fixed point solutions, namely: trivial solutions (0, 0), semi-trivial solutions (r̃1, 0) or (0, r̃2) and non-trivial
solutions (r∗1 , r

∗
2). The type of solutions existing in the vicinity of the bifurcation depends only on the real part of the

eigenvalues, k1 and k2, since p11, p12, p21 and p22 can be considered constant for a local analysis.
The trivial solution (0, 0) exists for any value of k1 and k2, but it is stable if and only if k1 < 0 and k2 < 0. The existence
and stability of the trivial solution were already studied in the stability analysis.
The semi-trivial solution (r̃1, 0), where r̃1 =

√
−k1/p11, exists for k1/p11 < 0 and it is stable if and only if k1 > 0

and k1 > k2p21/p11. Similarly, the semi-trivial solution (0, r̃2), where r̃2 =
√
−k2/p22, exists for k2/p22 < 0 and it is

stable if and only if k2 > 0 and k2 > k1p12/p22. They correspond to two periodic solutions of the original system with
frequency approximately ω1 and ω2, respectively, and they are generated by Hopf bifurcations of the trivial solution.
The non-trivial solution (r∗1 , r

∗
2), where r∗1 =

√
(k1p22 − k2p12) /p∗ and r∗2 =

√
(k2p11 − k1p21) /p∗, p∗ = p12p21 −

p11p22, exists if and only if r∗1 and r∗2 are real. It is generated by secondary Hopf bifurcations of a branch of periodic
solutions and it corresponds to a quasiperiodic solution of the original system, with the two frequencies of oscillation
being approximately ω1 and ω2.
If p11 < 0 and p22 < 0, the two branches of single Hopf bifurcations are both supercritical. Furthermore, if also p12 < 0,
p21 < 0 and p∗ < 0, there are no solutions (identified by this local analysis) different from the trivial one, within the
stable region, which may involve larger attractors. This is the most desirable scenario in real applications of the NLTVA.
First, we consider the case with β3 = 0, i.e. a linear tuned vibration absorber. In most cases, along the full locus of DH
bifurcations, if |α3| is small, we have the convenient case of p11 < 0, p22 < 0, p12 < 0, p21 < 0 and p∗ < 0. A typical
bifurcation chart for this case is shown in Fig. 4 (a) for µ2 = 0.9µ2opt and α3 = 0.01.
Considering the bifurcation chart in Fig. 4, the periodic solution (r̃1, 0) exists in regions B, C, D and E, and it is stable in
B, C and D. The other periodic solution (0, r̃2) exists in C, D, E and F, being stable in D, E and F. While the quasiperiodic
solution (r∗1 , r

∗
2) exists only in region D and it is unstable of saddle type. In Fig. 4 (b) a bifurcation diagram in the vicinity

of a DH bifurcation is represented. Besides the perfect agreement between numerical and analytical results, the figure
shows the region of coexistence of the two periodic solutions with the unstable quasiperiodic solution.
In Fig. 4 (c) the poincaré maps of the quasiperiodic solution, obtained numerically and analytically, are compared. The
numerical result is fuzzy since the solution is unstable, so it diverges from it, however, the matching with the analytical
predicted curve is excellent.

Optimization and tuning rule
In order to have a better insight into the effects of α3 and β3 on the DH bifurcations, we analyze the values of p11, p12,
p21 and p22, which can be expressed as pij = pij,0 + pij,α3

α3 + pij,β3
β3, analogously to δ in Eq. (9). Following the

procedure outlined in the previous section, we notice that pij,α3
/pij,β3

= −ε/(1 + ε)2. Interestingly, this ratio is valid
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Figure 4: (a): bifurcation chart in the space µ1γ. Shaded area: stable, clear area: unstable. Letters from A to F indicates region with
different behaviour. In the figure ε = 0.05, µ2 = 0.9µ2opt = 0.0982, α3 = 0.01 and β3 = 0. The thin dash-dotted line refers to the
paths followed by the bifurcation diagram in (b). (b): bifurcation diagram; (c): comparison of the poincaré maps of the analytical and
of the numerical solutions in the point marked in blue in (a).

along the whole line OC and for all the coefficients. The practical consequence of this result is that, if β3 = ε/(1+ε)2α3,
the effect of α3 is locally entirely compensated by β3. This tuning rule is valid, although approximated, also when the
system undergoes single Hopf bifurcation. Its effectiveness is confirmed by the numerical and analytical plots in Fig. 4
(c).
The ratio − (dk1/dµ1)

/
δ along the stability boundary is locally proportional to the amplitude of the LCO after stability

loss. Although it is not shown here, our analysis evidences that it is close to a minimum in the case of optimal tuning of
the linear and nonlinear parameters of the absorber. Furthermore, small detuning of the absorber parameters has slight
effect on it, which guarantees robustness with respect to parameter uncertainties.

Discussion and conclusions

The objective of this study is to passively suppress the limit cycle oscillations of a VdPD oscillator using a NLTVA
possessing both linear and nonlinear springs and a linear damper. The linear spring and damper are designed to sensibly
enlarge the safe domain of operation of the VdPD oscillator, i.e., the domain where limit cycle oscillations are absent.
The nonlinear spring is then determined to ensure supercriticality of the postbifurcation behavior, a feature of practical
importance. Through a detailed analytical investigation of the bifurcations occurring at the loss of stability of the trivial
solution, this latter feature of the NLTVA was attributed to the compensation of the nonlinear dynamics of the Van der
Pol-Duffing oscillator by the nonlinear component of the absorber. Specifically, in the case of optimal tuning of the linear
spring and damper, a simple closed form formula for the nonlinear spring was derived for a perfect compensation. Because
all the results described in the present study are valid locally, our future research efforts will be geared toward a global
analysis of the dynamics of the coupled system.
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