Dans l'intérêt de ceux qui voudront vérifier les assertions de M. De Windt pour le Brabant, il serait bon de donner des indications sur le gisement; l'endroit exact où l'échantillon de roche a été pris, et parfois sur la couleur de la roche; de reseigner si les quartzites de Nil-Saint-Vincent proviennent de la carrière de Troisfontaines; ceux de Blanmont du Molinia; où a été pris celui de Nil-Pierrem; si celui de Perwez provient de Perwez-village ou de Jauchelette lez-Perwez. A quel endroit a-t-on pris les schistes aînés de Oisquerq, de Court-Saint-Étienne, de Mont-Saint-Guilbert, les schistes simples d'Otignies et de Franqueines, les schistes grenatiques de Franqueines?

J'ai l'honneur de proposer à la Classe l'impression de l'intéressant mémoire de M. De Windt.

M. Renard, troisième commissaire, déclare se rallier aux conclusions de ses savants confrères.

COMMUNICATIONS ET LECTURES.

Note préliminaire sur les trois périodes de la variation des latitudes; par F. Folie, membre de l'Académie.

En 1894, M. Ivanof a publié, dans le tome VII du Bulletin de l'Académie des sciences de Saint-Pétersbourg, une longue série de déterminations de la latitude effectuées à Poulkovo de 1842 à 1849 et de 1865 à 1873.

Lorsque j'ai reçu cet important travail, hésitant que j'étais entre la période eulérienne théorique et celle de Chandler, je tâchai de déterminer empiriquement mon choix, d'après les observations, en y ajoutant, tout d'abord, d'élimer la période annuelle incontestable de la variation des latitudes, par l'addition des résidus à six mois d'intervalle.

Le seul résultat certain auquel ait abouti ma recherche, est le suivant:

La somme des résidus, pris à six mois d'intervalle, manifeste indubitablement une période de deux ans et demi.

MM. Thackeray et Turner avaient déjà signalé l'existence d'une période de cinq ans, probablement décomposable en deux périodes de deux ans et demi, dans leur discussion des latitudes de Greenwich (*).

La période de deux ans et demi équivaut exactement à trois périodes eulériennes (504 jours) et à deux périodes de 436 jours, approchant de celle de Chandler.

Mais la décomposition de cette période, soit en trois périodes eulériennes, soit en deux périodes de 436 jours, est également incompatible avec les observations.

Bien certainement, il doit y avoir quelque fond de vérité dans la période de Chandler, quoique j'aiit fait voir (**), par la comparaison de sa formule avec les observations de Strasbourg, auxquelles elle semble si parfaitement s'adapter, qu'elle ne résiste pas à la discussion.

ce sens qu'on ne retrouve nullement la période de Chandler si l'on élimine le terme annuel, ni la période annuelle si l'on élimine son terme éclatien. Il est vrai qu'en éliminant le premier, on ne trouve pas non plus la période de 304 jours dans les résidus.

J'ai souponné que l'incompatibilité de la période éclatienne, qu'elle soit de 304 ou de 450 jours, avec les observations, pouvait provenir de l'existence d'un terme inconnu de nutation, et j'ai prié M. Bijl, astronome adjoint à l'Observatoire royal, de rechercher, dans les résidus des observations de Gyldeïn, corrigés de la nutation diurne (*), après élimination de la nutation éclatienne et de la variation annuelle, s'il n'y trouverait pas une période approchant de celle de Chandler.

Après de nombreux essais, M. Bijl a pu pouvoir affirmer l'existence d'un terme périodique dont le coefficient serait compris entre 0°.08 et 0°.09, et dont la période, fort difficile à déterminer, est certainement supérieure à 450 jours.

L'existence d'un terme inconnu de nutation était donc bien établie par la meilleure série connue des observations de latitude. Encore était-elle à expliquer.

Il fallait, pour cela, connaître l'expression des termes de nutation, non pas pour une Terre solide, mais pour l'écorce terrestre.

Empruntant au mémoire envoyé, en 1895, en réponse à la question de concours que l'Académie avait posée sur ce sujet (**), les équations différentielles du mouvement du noyau et de celui de l'écorce, je suis arrivé, par la simple combinaison de ces équations, à ce théorème capital, qui donne la clé de la coexistence de la nutation diurne et des constantes de la précession et de la nutation que l'on déduit de la théorie du mouvement d'une Terre solide :

Théorème. — Dans le cas où les éléments perturbateurs (*) du noyau et de l'écorce ne diffèrent pas considérablement entre eux, on peut imaginer un ellipsoïde dont les éléments perturbateurs sont les moyennes entre ceux du noyau et ceux de l'écorce, et dont les vitesses angulaires, qui sont également les moyennes entre celles de ces deux corps, peuvent se calculer comme si cet ellipsoïde était solide.

De la résulte le corollaire :

Lorsque les éléments perturbateurs du noyau sont égaux entre eux (en sorte que, pour lui, la nutation diurne est nulle) et que ceux de l'écorce diffèrent chacun d'un centième, mais en sens inverse, de la valeur des premiers, le coefficient de la nutation diurne peut atteindre près de 0°.1.

Mais il y a, entre les vitesse angulaires du noyau et de l'écorce, des différences qu'il importait de calculer, afin de s'assurer si le théorème qui précède suffisait à rendre complètement compte du mouvement de cette dernière.

L'intégration des équations m'a conduit aux théorèmes suivants, qui complètent le premier, quant à la parfaite concordance des valeurs connues des constantes de la précession et de la nutation avec celles qui se déduisent de la théorie du mouvement de l'écorce, et que l'auteur

(*) Revisio des constantes de l'astronomie stellaire, pp. 60-61.

(**) Voyez les rapports sur ce mémoire dans le Bulletin de décembre 1895.

(*) C'est-à-dire les rapports $\frac{c}{a}$ et $\frac{c}{b}$.
du mémoire avait trouvées, de son côté, par un procédé
d'intégration plus laborieux :

I. Les actions mutuelles des deux parties du globe ne
mouvent absolument en rien la précession.

II. Le terme le plus important de la nutation, celui du
naud, en sera très peu modifié.

III. Quant aux termes solaires, il n'est pas possible de
dire dans quelle proportion ils seront altérés.

IV. L'observation récèrera peut-être l'existence de termes
qui, absolument insignifiants pour une Terre solide,
pourraient être sensibles pour l'écorce.

La théorie est actuellement impuissante à dévoiler
l'existence de ces termes.

Le dénominateur N, qui intervient dans leur coef-
cient, et peut, s'il est faible, en accroître considérable-
ment l'importance, est très approximativement égal à
$\nu_2 \tilde{n}^2 - 2 \alpha_2 \nu_2$ désignant le rapport du moyen mouve-
ment de l'argument au mouvement diurne \tilde{n}, et α_2 un
facteur qui dépend essentiellement des épaisseurs du
noyau et de l'écorce, et de la densité des couches dont
ils sont composés.

Or nous n'avons aucune notion relativement à ces
épaisseurs, et c'est à l'astronomie pratique de nous fournir
les premiers éléments sur ce sujet.

Comme il a été dit ci-dessus, il semble résulter des
observations de Gylæn qu'il existe un terme de nutation
d'une période supérieure à 450 jours.

Or, parmi les termes tout à fait négligeables pour une
Terre solide, il y en a dont l'argument est $\Theta = \lambda + \Theta$,
dont la période est, par suite, de 464 $\frac{1}{2}$ jours, et ne
s'éloigne pas notablement de celle de 456 jours, qui,
doublée, donne les 2 $\frac{1}{2}$ ans formant la seule période
qui se manifeste certainement dans la série des latitudes
de Poulkovo, publiée par M. Ivanof, et qui, quadruplée,
donne la période de 5 ans signalée par MM. Thackeray
et Turner dans les latitudes de Greenwich.

Si les observations de Gylæn, dont j'ai encore à
déduire, avec la collaboration dévolue de M. Bijl, la
constante de l'aberration et la correction du terme
annuel de la nutation, révèlent, dans les derniers résidus,
l'existence du terme théorique précédent, on aura
l'explication de la découverte de Chandler et de l'incom-
patibilité de la décomposition de la période de 2 $\frac{1}{2}$ ans
en trois périodes euleriennes, ou en deux chandleriennes,
avec les observations qui manifestent cette première
période.

Au sujet de ce terme nouveau de la nutation, il y a
lieu de faire une remarque très importante, qui rend
compte de la difficulté que présente la recherche de la
loi des variations de latitude, fondée sur les observations
faites d'après le procédé Horrobow-alcott.

La formule empirique dont on fait généralement
usage est déduite de l'hypothèse que les variations de
latitude proviennent exclusivement d'un mouvement du
pôle instantané autour du pôle d'inertie, et que ce mouve-
ment a deux périodes, l'une eulerienne, l'autre
annuelle. Mais, à supposer même que ces deux périodes
existent, en réalité, telles qu'on les conçoit, il est bien
evident qu'on ne pourra déduire la loi des variations de
latitude que d'observations parfaitement réduites quant
da la nutation et à l'aberration. Or, d'abord, les observa-
tions ne sont pas réduites de la nutation diurne, et elles
le sont incorrectement, d'après moi, de l'aberration, dont
la constante, employée aujourd'hui, est certainement trop forte; ensuite, il est probable qu'il existe un terme inconnu de nutation.

Les variations en déclinaison produites par ces trois termes ne peuvent pas rentrer dans la formule empirique de la variation des latitudes, parce qu'elles dépendent de l'ascension droite de l'étoile observée.

On pourrait certainement tenir compte des corrections relatives à la nutation diurne et à l'aberration, dont les expressions sont connues; il est impossible de le faire quant à un terme nouveau de nutation, qui est à rechercher empiriquement, à moins qu'on n'ait affaire qu'à des observations d'une seule étoile, auquel cas il sera possible de tenir compte de ce terme par l'introduction de $x \sin xt + y \cos xt$ dans la formule, la période $\frac{2\pi}{x}$ de ce nouveau terme étant censée connue.

Et c'est pourquoi, aussi longtemps que ces trois corrections ne seront pas bien déterminées, il sera impossible de tirer du procédé Horrobow-Talcott, malgré toute la précision de ses résultats, la loi des variations de latitude.

Un moyen bien simple d'éliminer ces corrections consiste dans la combinaison de passages supérieurs et inférieurs consécutifs de circompaires, qui ne laisse subsister que les termes de la nutation enlérienne et de la variation annuelle des latitudes. C'est, je pense, celui qui conduira le plus rapidement au but (1).

Il existerait donc, d'après ce qui vient d'être dit, trois termes bien distincts à rechercher dans les variations de la latitude.

Le premier, que nous avons tout d'abord signalé comme le plus essentiel (1), est le terme enlérien, d'une période de 504 jours, qui a la même forme pour l'écorce que pour une Terre solide.

Le second est le terme annuel, qui doit avoir la forme que je lui ai donnée dans mon Éssai sur la variation des latitudes, et non celle que lui donne Chandler, c'est-à-dire que la longitude du lieu doit intervenir dans le coefficient de ce terme, et non dans son argument.

Le troisième, enfin, serait le terme nouveau de nutation, d'une période de 464 $\frac{1}{2}$ jours, qui correspond à peu près au terme enlérien de la formule de Chandler, et, mieux encore, à un terme d'une période de 456 jours, moitié moindre que celle de 2 $\frac{1}{2}$ ans accusée par les observations.

Telle serait, d'après moi, l'explication de la période du célèbre astronome américain, et, en même temps, celle des difficultés qu'il a rencontrées, comme moi-même, sans les surmonter, dans l'établissement de la formule de la variation des latitudes.

En présence du degré de perfection auquel est arrivée la mécanique céleste, il n'est plus permis aujourd'hui à l'astronome d'avoir purement recours à l'empirisme pour trouver la formule de la variation des latitudes.

Que les formules d'Enter et de Laplace, établies pour une Terre solide, soient impuissantes à rendre compte de ce phénomène, c'est indubitable.

(1) Voir des exemples de l'application de ce procédé dans la Révision des constantes de l'astronomie céleste, chap. I.

(2) Comptes rendus, 12 juillet 1890.
Mais l’hypothèse d’une écorce solide peut, comme on l’a vu, rendre compte de l’existence de termes nouveaux, insignifiants pour une Terre solide, mais sensibles pour l’écorce. Déjà Newcomb a tenté d’expliquer, par l’élasticité de celle-ci, la période de Chandler (\(^1\)). Il va de soi que les déformations élastiques de l’écorce altèrent son ellipticité, de laquelle dépend essentiellement la période euclidienne. La raison pour laquelle je ne puis, cependant, me rallier à cette explication, c’est que l’élasticité de l’écorce altérerait notablement les termes dépendants des doubles longitudes du Soleil et de la Lune, fait que l’observation n’a pas constaté.

Quant au terme empirique annuel de Chandler, qui indique simplement un mouvement annuel du pôle instantané autour de sa position moyenne (\(^2\)), on ne voit nullement la possibilité de l’expliquer, tandis que la théorie du mouvement de l’écorce rend parfaitement compte du déplacement annuel de son pôle d’inertie, et, par suite, de son pôle instantané, en vertu de l’accumulation des neiges sur les masses continentales depuis la fin de l’automne jusqu’au printemps (\(^3\)).

Lorsque la théorie complète du mouvement de l’écorce sera faite, elle rendra compte de ce phénomène obscur de la variation des latitudes, qui caractérisera l’astro-

\(^1\) M. N., 1893.
\(^2\) A. J., n° 406.
\(^3\) Voir l’Essai sur les variations de latitude.

(*) Quelques astronomes, d’une certaine compétence en mécanique, ont assigné, comme cause possible de la variation annuelle des latitudes, un déplacement du pôle d’inertie qui serait produit par des différences notables de la pression atmosphérique dans les deux hémisphères.

J’ai déjà réfuté cette opinion dans mon Essai sur la variation des latitudes.

Ayant reçu tout récemment de M. le Dr Spiteler, privat-doyen de l’Université et adjoint à l’Observatoire de Prague, un travail important (\(^\star\)), duquel il ressort que ces différences de pression sont, pour lui, la cause essentielle de la variation des latitudes, j’ajouterai aux arguments que j’ai fait valoir contre cette opinion une considération qui lèvera tous les doutes.

Pour tenir compte de l’action de l’atmosphère sur le mouvement de l’écorce terrestre, il suffit d’introduire, au nombre des forces extérieures, les pressions exercées, sur chaque élément de l’écorce, par les secteurs atmosphériques correspondants. On voit immédiatement que, en admettant même que ces pressions puissent introduire des moments perturbateurs, à l’inverse des autres forces extérieures, et modifier quelque peu la position de l’axe d’inertie dans l’espace, elles ne peuvent pas plus que ces dernières forces, modifier cette position dans l’intérieur du corps, si ce n’est d’une quantité absolument minime, le déplacement de l’axe dans l’intérieur de l’écorce n’étant que la troisième partie de son déplacement dans l’espace.

Le fait des laborieuses recherches du Dr Spiteler ne sera cependant pas perdu : les zones de haute pression sont, généralement, celles des temps secs ; les zones de basse pression, celles des précipitations. Or, que celles-ci agissent sur le déplacement de l’axe d’inertie de l’écorce, c’est absolument incontestable, et c’est sur ce principe que j’ai établi, dans mon Essai sur la variation des latitudes, les formules de leur variation annuelle.

\(^\star\) Mémoires de l’Académie des sciences de Vienne, 1897.