Bovine colostrum: an efficient and cost-effective growth promoter in piglet weaning diet

Session 18, Abstract N°3291

Boudry Christelle
Boudry.c@fsagx.ac.be
Gembloux Agricultural University, Belgium
Introduction
Introduction

- Weaning = Critical period

Stress
- Psychological
 - Separation
 - Manipulation
 - Transport
- Nutritional
 - Solid food
 - Composition
- Environmental
 - Mixing
 - New environment
Introduction

- Effects of weaning
 - Underfeeding
 - Intestinal modifications
 - Morphological
 - Immunological
 - Digestion and absorption
 - Intestinal flora
 - Metabolic modifications
 - Endocrinal modifications

- Use of feed additives
 - Ban on antibiotics
 - Colostrum as alternative
Introduction

• Bovine Colostrum
 • 1st milking
 • Composition:
 – Essential nutrients
 – Bioactive compounds:
 • Growth factors (IGF-I and –II, GH, EGF, TGF)
 • Immunologic defence factors (Ig, cytokines)
 • Non-immunologic defence factors (lactoferrin, lactoperoxidase, lysozymes)
<table>
<thead>
<tr>
<th>Composition (/l)</th>
<th>Colostrum</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td>239 g</td>
<td>129 g</td>
</tr>
<tr>
<td>Crude Proteins</td>
<td>140 g</td>
<td>40 g</td>
</tr>
<tr>
<td>Crude Fat</td>
<td>67 g</td>
<td>40 g</td>
</tr>
<tr>
<td>Lactose</td>
<td>27 g</td>
<td>49 g</td>
</tr>
<tr>
<td>Ash</td>
<td>11,1 g</td>
<td>7,4 g</td>
</tr>
<tr>
<td>IgA</td>
<td>3,2-6,2 g</td>
<td>0,2 g</td>
</tr>
<tr>
<td>IgG1</td>
<td>48-87 g</td>
<td>0,4 g</td>
</tr>
<tr>
<td>IgG2</td>
<td>1,6-2,9 g</td>
<td>0,05 g</td>
</tr>
<tr>
<td>IgM</td>
<td>3,7-6,1 g</td>
<td>0,05 g</td>
</tr>
<tr>
<td>IGF-I</td>
<td>0,1-2 mg</td>
<td>25 µg</td>
</tr>
<tr>
<td>IGF-II</td>
<td>0,1-2 mg</td>
<td>2 µg</td>
</tr>
<tr>
<td>TGF-β</td>
<td>20-40 µg</td>
<td>1-2 µg</td>
</tr>
<tr>
<td>EGF</td>
<td>4-8 µg</td>
<td>2 µg</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>1,5-2 g</td>
<td>0,1 g</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>0,1-0,7 mg</td>
<td>0,1-0,3 mg</td>
</tr>
<tr>
<td>Lactoperoxidase</td>
<td>30 mg</td>
<td>20 mg</td>
</tr>
<tr>
<td>GH</td>
<td>3-10 ng</td>
<td>nd</td>
</tr>
<tr>
<td>Insulin</td>
<td>20-50 µg</td>
<td>nd</td>
</tr>
</tbody>
</table>
Introduction

• Bovine Colostrum
 • 1st milking
 • Composition:
 – Essential nutrients
 – Bioactive compounds
 • Availability:
 – Colostrum Bank
 – 80 000 litres collected/year WR
Introduction

• Bovine colostrum in weaning diet
 • ↑ ADG and ADFI Week 1 PW
 • ↓ FCR Week 1 PW
<table>
<thead>
<tr>
<th>References</th>
<th>BC supplementation</th>
<th>Piglets</th>
<th>Effects of BC vs. control treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Description</td>
<td>n</td>
<td>Weaning age</td>
</tr>
<tr>
<td>Pluske et al., 1999</td>
<td>BC powder rich in IgG</td>
<td>131</td>
<td>28 d</td>
</tr>
<tr>
<td></td>
<td>0, 50 and 100 during 10 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King et al., 2001</td>
<td>Spray-dried BC</td>
<td>110</td>
<td>28 d</td>
</tr>
<tr>
<td></td>
<td>0 and 60 during 7 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunshea et al., 2002</td>
<td>Freeze-dried BC</td>
<td>24</td>
<td>14 d</td>
</tr>
<tr>
<td></td>
<td>0 and 60 during 7 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Hueroü-Luron et al., 2004</td>
<td>Freeze-dried BC</td>
<td>150</td>
<td>28 d</td>
</tr>
<tr>
<td></td>
<td>0 and 40 during 11 d in uncleaned pens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, 20 and 40 during 14 d in clean pens</td>
<td>12</td>
<td>21 d</td>
</tr>
<tr>
<td>Le Hueroü-Luron et al., 2008</td>
<td>Freeze-dried BC</td>
<td>60</td>
<td>28 d</td>
</tr>
<tr>
<td></td>
<td>0 and 30 during 12 d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boudry et al., 2008. BASE, 12 : 157-170
• Bovine colostrum in weaning diet
 – 20 g/kg of freeze-dried BC Whey for 10 d, then 10 g/kg for 18 d
 – commercial weaning-diet without feed additives
 – weaned piglets (28 d)
 – n = 48 (4 * 12)
 – Measures: Weekly ADG, ADFI, FCR
 – Results:
 • ↑ ADG (+ 100 %) and ADFI (+ 35 %) Week 1 PW
 • ↓ FCR (- 50 %) Week 1 PW
 – Cost: 1.9 €/piglet
Experiments
Objectives

- Reduce the costs of the use of bovine colostrum:
 - Level of incorporation (Experiment 1)
 - Duration of administration (Experiment 2)
 - BC fraction (Experiment 3)
Experiment 1

• **Experimental design**
 • 0, 10 or 20 g/kg of freeze-dried BC Whey for 28 d
 • commercial weaning-diet without feed additives
 • weaned piglets (28 d)
 • n = 39 (3 * 13)
• Measures:
 – Weekly ADG, ADFI, FCR
 – Daily ADFI the 1st week PW
 – Visual control of diarrhoea
Experiment 1

- Results

ADG

- **Week post-weaning:**
 - **1st week:**
 - Whey 0: 0 g/day
 - Whey 1: 100 g/day
 - Whey 2: 200 g/day
 - **2nd week:**
 - Whey 0: 0 g/day
 - Whey 1: 150 g/day
 - Whey 2: 300 g/day
 - **3rd week:**
 - Whey 0: 0 g/day
 - Whey 1: 250 g/day
 - Whey 2: 500 g/day
 - **4th week:**
 - Whey 0: 0 g/day
 - Whey 1: 350 g/day
 - Whey 2: 700 g/day

ADFI

- **Week post-weaning:**
 - **1st week:**
 - Whey 0: 0 g/day
 - Whey 1: 200 g/day
 - Whey 2: 400 g/day
 - **2nd week:**
 - Whey 0: 0 g/day
 - Whey 1: 300 g/day
 - Whey 2: 600 g/day
 - **3rd week:**
 - Whey 0: 0 g/day
 - Whey 1: 400 g/day
 - Whey 2: 800 g/day
 - **4th week:**
 - Whey 0: 0 g/day
 - Whey 1: 500 g/day
 - Whey 2: 1000 g/day

FCR

- **Week post-weaning:**
 - **1st week:**
 - Whey 0: 1
 - Whey 1: 2
 - Whey 2: 3
 - **2nd week:**
 - Whey 0: 1
 - Whey 1: 2
 - Whey 2: 3
 - **3rd week:**
 - Whey 0: 1
 - Whey 1: 2
 - Whey 2: 3
 - **4th week:**
 - Whey 0: 1
 - Whey 1: 2
 - Whey 2: 3
Experiment 1

- **Results**

![Graph showing the results of Experiment 1 with days post-weaning on the x-axis and grams of feed on the y-axis. Different Whey treatments are indicated with different bar colors: Whey 0 (white), Whey 1 (black), and Whey 2 (gray). The graph highlights changes in feed intake, with a note on days D0 to D7 and a mention of a decrease in feed intake associated with diarrhoea.](image-url)

Experiment 2

- **Experimental design**
 - 0, 20 g/kg of freeze-dried BC Whey for 10 d
 - commercial weaning-diet without feed additives
 - weaned piglets (28 d)
 - \(n = 48 \) (4 * 12)
 - **Measures**:
 - Weekly ADG, ADFI, FCR for 28 d
 - Daily ADFI the 1\(^{\text{st}}\) week PW
 - Visual control of diarrhoea
• Results

- ADG
 - Week post-weaning:
 - 1: 100
 - 2: 200
 - 3: 300
 - 4: 400

- ADFI
 - Week post-weaning:
 - 1: 0
 - 2: 200
 - 3: 400
 - 4: 600

- FCR
 - Week post-weaning:
 - 1: 2
 - 2: 1
 - 3: 1.5
 - 4: 2

Whey 0 and Whey 2
Experiment 2

• Results

No Diarrhoea
Experiment 3

Experimental design

- 10 g/kg of freeze-dried BC Whey, defatted BC or 10 g of milk for 10 d
- commercial weaning-diet without feed additives
- weaned piglets (28 d)
- n = 32 (8 * 4)
- Measures:
 - Weekly ADG, ADFI, FCR for 28 d
 - Daily ADFI the 1st week PW
 - Visual control of diarrhoea
 - E. coli counts in faeces
Experiment 3

• Results

ADG

<table>
<thead>
<tr>
<th>Days post-weaning</th>
<th>0-4</th>
<th>4-7</th>
<th>7-11</th>
<th>11-14</th>
<th>14-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates a significant difference

ADFI

<table>
<thead>
<tr>
<th>Days post-weaning</th>
<th>0-4</th>
<th>4-7</th>
<th>7-11</th>
<th>11-14</th>
<th>14-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates a significant difference

FCR

<table>
<thead>
<tr>
<th>Week post-weaning</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Milk 1 | Col 1 | Whey 1

- Milk 1
- Col 1
- Whey 1
Experiment 3

- **Results**

No Diarrhoea
Conclusion and perspectives
Conclusion

• Growth promoting action confirmed
• Effect of the environment
• Costs reduced
 • 1.9 €/piglet ➔ 0.14 €/piglet