Spatio-Temporal Analysis of Equatorial Ionospheric Scintillations in the Frame of Absolute GNSS Positioning Algorithms

Matthieu Lonchay

Y. Cornet¹ - M. Aquino³ - R. Warnant¹

¹ University of Liège (Belgium) – Geomatics Unit
² National Fund For Scientific Research (Belgium) – FNRS
³ The University of Nottingham (United Kingdom)

EGU 2014, Vienna (Austria)
30 April 2014
Spatio-Temporal characteristics of Ionospheric Scintillations may be exploited to build a more effective Stochastic Model.
Introduction

Ionosphere

Positioning

Analysis

Conclusions
The **Ionosphere** is a Plasma *ionised* by Solar Radiations and characterised by an electron density highly variable in **Space** and **Time**.

- UV
- X-Rays
- MeV protons
- CME’s
- Solar Winds
- Solar Flares

![Diagram showing the layers of the atmosphere and the ionosphere](image-url)
The electron density of the Ionosphere is responsible for Refraction effects of GNSS radio signals

Ionospheric Delay

\[n_I = \frac{c}{v} \approx 1 \pm \frac{40.3}{f^2} N_e \]

\[l \approx \pm \frac{40.3}{f^2} \int_{r}^{s} N_e \, dl = \pm \frac{40.3}{f^2} sTEC \]
Small-Scale Irregularities in the electron density of the Ionosphere are responsible for Diffraction effects of GNSS radio signals.

Fluctuation of the GNSS signal phase

\[\sigma_\phi = \sqrt{\langle \theta^2 \rangle - \langle \theta \rangle^2} \]

Fluctuation of the GNSS signal amplitude

\[S_4 = \frac{\sqrt{\langle I^2 \rangle - \langle I \rangle^2}}{\langle I \rangle} \]
Ionospheric Scintillations are rapid fluctuations of the signal phase and amplitude due to small-scale irregularities in the electron density of the Ionosphere.

- Fluctuation of the GNSS signal phase
 \[\sigma_\phi = \sqrt{\langle \theta^2 \rangle - \langle \theta \rangle^2} \]

- Fluctuation of the GNSS signal amplitude
 \[S_4 = \frac{\sqrt{\langle I^2 \rangle - \langle I \rangle^2}}{\langle I \rangle} \]
Introduction

Ionosphere

Positioning

Analysis

Conclusions
Our Research focuses on two main Absolute GNSS Positioning Algorithms: the **Standard Point Positioning** (SPP) and the **Precise Point Positioning** (PPP)

\[
P_r^S(t) = D_r^S + T_r^S + I_{r,k,m}^S + c(\Delta t^s - \Delta t_r) + M_{r,k,m}^S + \varepsilon_{r,k,m}^S
\]

\[
\phi_r^S(t) = D_r^S + T_r^S - I_{r,k,\phi}^S + c(\Delta t^s - \Delta t_r) + \lambda_k N_{r,k}^S + M_{r,k,\phi}^S + \varepsilon_{r,k,\phi}^S
\]

\[
P_{r,IF}(t) = D_r^S + T_r^S + c(\Delta t^s - \Delta t_r) + M_{r,IF,m}^S + \varepsilon_{r,IF,m}^S
\]

\[
\phi_{r,IF}(t) = D_r^S + T_r^S + c(\Delta t^s - \Delta t_r) + \lambda_{IF} N_{r,IF}^S + M_{r,IF,\phi}^S + \varepsilon_{r,IF,\phi}^S
\]
The **Precise Point Positioning** is very sensitive to Ionospheric Scintillations which may totally degrade its performances and reliability.

- **Code Pseudorange Noise Measurement**
- **Geometry**
- **Carrier Phase Noise Measurement**
- **Cycle Slips**
- **Loss of lock**
- **Ambiguity Resolution**
Introduction

Ionosphere

Positioning

Analysis

Conclusions
Analysis

GNSS signal scintillations show signs of Spatio-Temporal Dependence

INCO
047/14 16-Feb-2014

S4 [-]

Phi60 [rad]

UTC
GNSS signal scintillations show signs of **Spatio-Temporal Dependence**
Analysis

GNSS signal scintillations show signs of **Spatio-Temporal Dependence**

INCO
047/14 16-Feb-2014

N
0°
30°
60°

W
E
S

UTC

S4
[-]

00h 01h 02h 03h

Phi60
[rad]
The Ionospheric Scintillation GNSS Survey needs to be densified in order to perform a proper Spatio-Temporal Analyse.
The Ionospheric Scintillation GNSS Survey needs to be densified in order to perform a proper Spatio-Temporal Analyse.
The Ionospheric Scintillation GNSS Survey needs to be densified in order to perform a proper Spatio-Temporal Analyse.
The Ionospheric Scintillation GNSS Survey needs to be densified in order to perform a proper Spatio-Temporal Analyse.
Spatial Autocorrelation can be detected and quantified by using specific SAC indices

Moran’s I

\[I = \frac{N}{\Sigma_i \Sigma_j w_{ij}} \frac{\Sigma_i \Sigma_j w_{ij} (v_i - \bar{v})(v_j - \bar{v})}{\Sigma_i (v_i - \bar{v})^2} \]

Geary’s C

\[C = \frac{(N - 1)}{2 \Sigma_i \Sigma_j w_{ij}} \frac{\Sigma_i \Sigma_j w_{ij} (v_i - v_j)^2}{\Sigma_i (v_i - \bar{v})^2} \]

Hypothesis Test

\[H_0: \text{The situation is the result of a stationary point process, i.e. there is no significative spatial dependency.} \]
Spatial Autocorrelation can be detected and quantified by using specific SAC indices

Moran’s I

\[I = \frac{N}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (v_i - \bar{v})(v_j - \bar{v})}{\sum_{i} (v_i - \bar{v})^2} \]

Geary’s C

\[C = \frac{(N - 1)}{2 \sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (v_i - v_j)^2}{\sum_{i} (v_i - \bar{v})^2} \]

Hypothesis Test

Ho: The situation is the result of a stationary point process, i.e., there is no significant spatial dependency.
Spatial Autocorrelation can be detected and quantified by using specific SAC indices.

Moran’s I

\[I = \frac{N}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (v_{i} - \overline{v}) (v_{j} - \overline{v})}{\sum_{i} (v_{i} - \overline{v})^2} \]

\[v_{i} = S4_{i} \]

\[w_{ij} = \frac{1}{d_{ij}} \]

Geary’s C

\[C = \frac{(N - 1)}{2 \sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (v_{i} - v_{j})^2}{\sum_{i} (v_{i} - \overline{v})^2} \]

Hypothesis Test

Ho: The situation is the result of a stationary point process, i.e. there is no significant spatial dependency.
The **Global Spatial Autocorrelation** inside the data set is **Significative** only during the occurrence of **Ionospheric Scintillations**.
The Global Spatial Autocorrelation inside the data set is significant only during the occurrence of Ionospheric Scintillations.
The **Global Spatial Autocorrelation** inside the data set is **Significative only during the occurrence of Ionospheric Scintillations**
The **Global Spatial Autocorrelation** inside the data set is significant only during the occurrence of **Ionospheric Scintillations**
The Global Spatial Autocorrelation inside the data set is significant only during the occurrence of Ionospheric Scintillations.
Introduction
Ionosphere
Positioning
Analysis
Conclusions
Conclusions

• We developed a methodology in order to exploit the availability of Multi-GNSS observations from an ISMR Network for the Spatio-Temporal Analysis of Ionospheric Scintillations (based only on GNSS Measurements).

• By using this methodology, we lead a first analysis of the Spatial Dependency of Ionospheric Scintillation Observations. We measured the Spatial Autocorrelation of the S_4 observable and showed it was clearly significative but only in the presence of (strong) Ionospheric Scintillations, supporting a possible spatial interpolation at these times.

• We will extend the Spatio-Temporal Analysis to other parameters.

• We will perform a Local Spatial Autocorrelation Test to locate and determine the scale of the detected « hot spots ».

• We will implement specific Spatial Interpolation Techniques to produce a « Scintillation Sky Map ».

• We will integrate the Spatio-Temporal Analysis in the PPP algorithm.
Acknowledgements

• The ISMR data used for part of the presented work have been kindly provided by the Nottingham Geospatial Institute (NGI) of the University of Nottingham (UoN), UK, the Faculty of Science and Technology (FST) of the Universidade Estadual Paulista (UNESP), Brazil, and the European GNSS Agency (GSA) in the frame of the CIGALA/CALIBRA project.

• The research is performed at the Geomatics Unit of the University of Liège (ULg), Belgium, under the supervision of Pr. René Warrant and with the collaboration of Dr. Yves Cornet.

• In the frame of this project, a collaboration was established with Pr. Marcio Aquino and Dr. Craig Hancock from the Nottingham Geospatial Institute (NGI) of the University of Nottingham (UoN), UK.

• This research is funded by the National Fund for Scientific Research of Belgium (F.R.S.-FNRS).

• SPP and PPP Positions were computed by using the gLAB software developed by the gAGE group of the Technical University of Catalonia (UPC).
Spatio-Temporal Analysis of Equatorial Ionospheric Scintillations in the Frame of Absolute GNSS Positioning Algorithms

Matthieu Lonchay12
M.Lonchay@ulg.ac.be

Y. Cornet1 - M. Aquino3 - R. Warnant1

1University of Liège (Belgium) – Geomatics Unit
2National Fund For Scientific Research (Belgium) – FNRS
3The University of Nottingham (United Kingdom)

EGU 2014, Vienna (Austria)
30 April 2014