### Satellite Positioning

#### Performances under Ionospheric Scintillations



#### Matthieu Lonchay

University of Liège, Belgium Geomatics Unit

F.R.S.-FNRS, Belgium

Thesis Committee June 11, 2013 Geomatics Unit, ULg









Introduction Objectives Research Conclusions Perspectives

#### The lonosphere is lonized by Solar Radiation



#### GNSS Signals are refracted by the lonosphere



$$n_I = \frac{c}{v} \approx 1 \pm \frac{40.3}{f^2} N_e$$

$$I \approx \pm \frac{40.3}{f^2} \int_{r}^{s} N_e \, dl = \pm \frac{40.3}{f^2} sTEC$$

#### GNSS Signals are refracted by the lonosphere



$$n_I = \frac{c}{v} \approx 1 \pm \frac{40.3}{f^2} N_e$$

$$I \approx \pm \frac{40.3}{f^2} \int_{r}^{s} N_e \, dl = \pm \frac{40.3}{f^2} sTEC$$

#### GNSS Signals are diffracted by the lonosphere



Ionospheric Electron Density Irregularities

Spatial Variation of the Refraction Index

Signal Losses Signal Diffraction

Constructive and Destructive Signal Interferences

#### GNSS Signals are diffracted by the lonosphere



Ionospheric Electron Density

**Diffraction Pattern** 

**Received Signal Intensity** 

### Ionospheric Electron Density Irregularities are involved by Geomagnetic Storms



# Geomagnetic Storms can be detected by global Geomagnetic Indices



#### Geomagnetic Storms can be detected by global Geomagnetic Indices



# Ionospheric Electron Density Irregularities involve GNSS Signal Phase and Amplitude fluctuations



### Ionospheric Scintillation Effects on GNSS Signals are Monitored by Scintillation GNSS Receivers

Ionospheric Scintillation Monitoring Receiver - ISMR



#### Ionospheric Scintillations exhibit Spatial and Temporal Characteristics



Operating Frequencies Geographic Locations Local Time Season Magnetic Activity Solar Activity



Frequent

#### Ionospheric Scintillations exhibit Spatial and Temporal Characteristics



Large Scale Irregularities ≈ 100 km

Small Scale Irregularities ≈ 1 – 100 m

Background Plasma Drift Speed ≈ 50-150 ms<sup>-1</sup>

Duration ≈ minutes/hours

Spatiotemporal Variations of Scintillations Intensity

Infrequent

Frequent

#### Satellite Positioning is based on Multilateration



#### The Standard Point Positioning is an elementary SF Technique

$$P_r^s(t) = D_r^s + T_r^s + I_{r,k,m}^s + c \left(\Delta t^s - \Delta t_r\right) + M_{r,k,m}^s + \varepsilon_{r,k,m}^s$$

$$D_r^s = \sqrt{(X^s - X_r)^2 + (Y^s - Y_r)^2 + (Z^s - Z_r)^2}$$

Pseudorange (code) measurements Single Frequency Single Point Single Epoch (SPSE) Technique Real-Time / Post-Processing Static / Kinematic Atmospheric Models (Ionosphere and Troposphere) Broadcast Ephemeris Least Square Adjustement (LSA) to resolve unknowns



S

#### The Standard Point Positioning is an elementary SF Technique



#### The Precise Point Positioning is an advanced DF Technique

$$P_r^{s}(t) = D_r^{s} + T_r^{s} + I_{r,k,m}^{s}$$

$$\phi_r^{s}(t) = D_r^{s} + T_r^{s} - I_{r,k,d}^{s}$$

$$Pseudoran$$
Ambiguity
Dual Frequ
Nual Frequ
Static / Kin
Strategies
Precise Pre
Sequentia

$$I_r^s + T_r^s + I_{r,k,m}^s + c (\Delta t^s - \Delta t_r) + M_{r,k,m}^s + \varepsilon_{r,k,m}^s$$
  
 $I_r^s + T_r^s - I_{r,k,\phi}^s + c (\Delta t^s - \Delta t_r) + \lambda_k N_{r,k}^s + M_{r,k,\phi}^s + \varepsilon_{r,k,\phi}^s$   
Pseudorange (code) and Carrier-Phase measurements  
Ambiguity Resolution Process  
Dual Frequency  
Real-Time / Post-Processing  
Static / Kinematic  
Strategies against atmospheric effects  
Precise Products: Ephemeris / Code-Phase Delays / Antenna  
Sequential Least Squares Adjustment (Filter)

#### The Precise Point Positioning is an advanced DF Technique

$$P_r^{s}(t) = D_r^{s} + T_r^{s} + I_{r,k,m}^{s} + c \left(\Delta t^{s} - \Delta t_r\right) + M_{r,k,m}^{s} + \varepsilon_{r,k,m}^{s}$$

$$\phi_r^{s}(t) = D_r^{s} + T_r^{s} - I_{r,k,\phi}^{s} + c \left(\Delta t^{s} - \Delta t_r\right) + \lambda_k N_{r,k}^{s} + M_{r,k,\phi}^{s} + \varepsilon_{r,k,\phi}^{s}$$
Mathematical Model: Ionosphere-Free + Precise Products
$$P_r^{s}(t) = D_r^{s} + T_r^{s} + c \left(\Delta t^{s} - \Delta t_r\right) + M_r^{s}(t) + \varepsilon_r^{s}(t)$$

Mathematical Model: Ionosphere-Free + Precise Products

$$P_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + c \left(\Delta t^{s} - \Delta t_{r}\right) + M_{r,IF,m}^{s} + \varepsilon_{r,IF,m}^{s}$$
$$\phi_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + c \left(\Delta t^{s} - \Delta t_{r}\right) + \lambda_{IF} N_{r,IF}^{s} + M_{r,IF,\phi}^{s} + \varepsilon_{r,IF,\phi}^{s}$$



S

#### **Stochastic Model**

Solution: Sequential Least Square Adjustment (Filter)

#### The Precise Point Positioning is an advanced DF Technique



#### The Precise Point Positioning is highly sensitive to Ionospheric Scintillations Effects



#### The Precise Point Positioning is highly sensitive to Ionospheric Scintillations Effects



Introduction

Objectives

Research

Conclusions

Perspectives



Preprocessing



Preprocessing



Softwares

Analysis

**Stochasticity** 

**Geometry**  $\rightarrow$  Analysis of Geometric Effects of Scintillations

Preprocessing

Softwares

Analysis

**Stochasticity** 

Geometry

**Preprocessing** → Validation of a Cycle Slips Treatment Method

Introduction Objectives Research Conclusions Perspectives

Introduction Objectives Research Conclusions Perspectives

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

#### gLAB is a SPP and PPP Software for Scientific Purposes





ESA/gAGE (UPC) GNSS Data Processing Tool GNSS Data Analysis Tool Support Multipurpose Scientific Professional Educational

#### gLAB can be coupled with a Matlab Environment Programming



# Introduction

Objectives

### Conclusions

Perspectives

#### Research

#### Softwares

Analysis

Stochasticity

Geometry

Preprocessing

#### Ionospheric Scintillation Monitoring Receivers (ISMR) Network



#### Severe Geomagnetic Storms occur under High Solar Activity


## Geomagnetic Storms still occur under Moderate Solar Activity



## **Ionospheric Scintillations** occur under Moderate Solar Activity



# The Analysis Strategy is based on the Selection of 5 typical Days



\_\_\_\_\_

|                           | Single Station<br>Approach                                                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Low/High Magnetic Activity                                                                                                                         |
| Multi Station<br>Approach | Occurrence: Measurements and Epochs<br>Positioning: SPP and PPP<br>Geometry: Satellite Number and Dilution of Precision<br>Spatial Characteristics |
| Medium/High<br>Latitude   | Cycle Slips<br>Noise Measurement                                                                                                                   |

|                           | Single Station<br>Approach                           |
|---------------------------|------------------------------------------------------|
|                           | Low/High Magnetic Activity                           |
|                           | Occurrence: Measurements and Epochs                  |
| Multi Station<br>Approach | Positioning: SPP and PPP                             |
|                           | Geometry: Satellite Number and Dilution of Precision |
| Medium/High<br>Latitude   | Spatial Characteristics                              |
|                           | Cycle Slips                                          |
|                           | Noise Measurement                                    |
|                           |                                                      |

# Ionospheric Scintillations affect a very Small Portion of the Measurements













|                                                      | Single Station<br>Approach                                                                                                                                        |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Low/High Magnetic Activity                                                                                                                                        |
| Multi Station<br>Approach<br>Medium/High<br>Latitude | Occurrence: Measurements and Epochs<br>Positioning: SPP and PPP<br>Geometry: Satellite Number and Dilution of Precision<br>Spatial Characteristics<br>Cycle Slips |
|                                                      | Noise Measurement                                                                                                                                                 |

# SPP and PPP Techniques are affected differently by Ionospheric Scintillations Effects



# SPP and PPP Techniques are affected differently by lonospheric Scintillations Effects



# SPP and PPP Techniques are affected differently by Ionospheric Scintillations Effects



# SPP and PPP Techniques are affected differently by lonospheric Scintillations Effects



|                                                      | Single Station<br>Approach                                                                                                                                                             |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Low/High Magnetic Activity                                                                                                                                                             |
| Multi Station<br>Approach<br>Medium/High<br>Latitude | Occurrence: Measurements and Epochs<br>Positioning: SPP and PPP<br>Geometry: Satellite Number and Dilution of Precision<br>Spatial Characteristics<br>Cycle Slips<br>Noise Measurement |

## Ionospheric Scintillations Decrease the Satellite Geometry



## Ionospheric Scintillations Decrease the Satellite Geometry



## Ionospheric Scintillations Increase the Dilution of Precision



#### Single Station Approach Low/High Magnetic Activity Occurrence: Measurements and Epochs **Multi Station** *Positioning: SPP and PPP* Approach Geometry: Satellite Number and Dilution of Precision Spatial Characteristics *Medium/High* Cycle Slips Latitude Noise Measurement

# High Phi6o values are frequently observed at High Latitudes





287/12 13-Oct-2012

Brønnøysund







#### Single Station Approach Low/High Magnetic Activity Occurrence: Measurements and Epochs **Multi Station** *Positioning: SPP and PPP* Approach Geometry: Satellite Number and Dilution of Precision Spatial Characteristics *Medium/High* Cycle Slips Latitude Noise Measurement

## Ionospheric Scintillations involve Cycle Slips



## Ionospheric Scintillations involve Cycle Slips



#### Single Station Approach Low/High Magnetic Activity Occurrence: Measurements and Epochs **Multi Station** *Positioning: SPP and PPP* Approach Geometry: Satellite Number and Dilution of Precision Spatial Characteristics *Medium/High* Cycle Slips Latitude Noise Measurement

# High Phi6o values do not seem to be correlated with Noise Measurement



## Analysis: Single Station Approach Summarize



|                           | Single Station<br>Approach<br>Low/High Magnetic Activity |
|---------------------------|----------------------------------------------------------|
|                           |                                                          |
|                           | Occurrence: Measurements and Epochs                      |
| Multi Station<br>Approach | Positioning: SPP and PPP                                 |
|                           | Geometry: Satellite Number and Dilution of Precision     |
| Medium/High<br>Latitude   | Spatial Characteristics                                  |
|                           | Cycle Slips                                              |
|                           | Noise Measurement                                        |

### Ionospheric Scintillation Monitoring Receivers (ISMR) Network



# The Occurrence of Ionospheric Scintillations clearly depends on the Geographic Latitude



# The Occurrence of Ionospheric Scintillations clearly depends on the Geographic Latitude


# The Occurrence of Ionospheric Scintillations clearly depends on the Geographic Latitude



# The Occurrence of Ionospheric Scintillations clearly depends on the Geographic Latitude



#### SPP and PPP Techniques are affected differently by Ionospheric Scintillations according to Geographic Latitude



#### Satellite Geometry Quality is affected differently by Ionospheric Scintillations according to Geographic Latitude



#### Satellite Geometry Quality is affected differently by Ionospheric Scintillations according to Geographic Latitude



#### Ionospheric Scintillations concern only High Latitude Ionopheric Pierce Point



#### Analysis: Multi Station Approach Summarize



### Introduction

Objectives

Conclusions

Perspectives

### Research

Softwares

Analysis

Stochasticity

Geometry



Preprocessing

Mathematic Model

**Stochastic Model** 

Mathematic Model

 $P_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + \dots$   $\phi_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + \dots$   $P_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + \dots$  $\phi_{r,IF}^{s}(t) = D_{r}^{s} + T_{r}^{s} + \dots$ 

...

Stochastic Model

Mathematic Model

### **Stochastic Model**

**Resolution Process** 

LSA Adjustment

Kalman Filter

...

Mathematic Model

Stochastic Model

$$\Rightarrow \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}$$

Mathematic Model

Stochastic Model

$$\Sigma = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Mathematic Model

Stochastic Model

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$$

Mathematic Model

**Resolution Process** 

Stochastic Model  $\rightarrow \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}$ 

**Spatial Approach Empirical Approach**  First Law of Geography...

"Everything is related to everything else, but near things are more related than distant things."

Waldo Tobler

1. Spatial Autocorrelation Test



1. Spatial Autocorrelation Test



- 1. Spatial Autocorrelation Test
- 2. Covariance Function



Description of the Spatial Covariance of a random Variable process

1. Spatial Autocorrelation Test



Spatial Autocorrelation Test 1.



**Covariance Function** 2.

- 1. Spatial Autocorrelation Test
- 2. Covariance Function
- 3. RNX vs. ISMR

Variable? Time Correlation? Multi-receiver? Mapping Function? Scintillation Level? Time Sampling? Polar / Equatorial Scintillations?

CHAIN – Canadian High Artic Ionospheric Network



United Kingdom – Ordnance Survey Network

60°

50°

10<sup>°</sup> W

### The « Empirical Strategy relies on Observations whatever their Locations



### Introduction

Objectives

### Research

Conclusions

Perspectives

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

#### Ionospheric Scintillation involve Satellite Signal Losses



 $\sigma_{POS} = DOP \times \sigma_P$ 

#### Ionospheric Scintillation increase the Dilution of Precision



# The Dilution of Precision depends on the amount and the Spatial Distribution of Tracked Satellites



PDOP = 10.79

PDOP = 2.58

$$\underline{x} = -(A^{T}PA)^{-1}A^{T}PW$$

$$\sum_{\underline{x}} = (A^{T}A)^{-1}\sigma_{p}^{2} = N^{-1}\sigma_{p}^{2} = Q_{\underline{x}}\sigma_{p}^{2}$$

$$A = \begin{bmatrix} -\cos\eta^{1}\sin\chi^{1} & -\cos\eta^{1}\cos\chi^{1} & -\sin\eta^{1} & 1 \\ -\cos\eta^{2}\sin\chi^{2} & -\cos\eta^{2}\cos\chi^{2} & -\sin\eta^{2} & 1 \\ ... & ... & ... & ... \\ -\cos\eta^{n}\sin\chi^{n} & -\cos\eta^{n}\cos\chi^{n} & -\sin\eta^{n} & 1 \end{bmatrix}$$

$$\sigma_{POS} = DOP \times \sigma_{P}$$

$$Any \text{ linear dependence?}$$

$$Q_{\underline{x}} : \begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ q_{14} & q_{24} & q_{34} & q_{44} \end{bmatrix}$$

$$North$$

$$Nort$$



PDOP = 10.79

PDOP = 2.58



PDOP = 10.79

PDOP = 2.58



PDOP = 4.39



PDOP = 152.05

### Introduction

Objectives

### Research

Conclusions

Perspectives

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

# Cycle Slip Detection/Repair is a real need for Precise Positioning Technique



### The availability of Three Frequencies makes the CS Detection more efficient



# Observable Noise Assessment could help to define the Stochastic Model (« Empirical Strategy »)


# Introduction

Objectives

## Research

Conclusions

Perspectives

Softwares

Analysis

Stochasticity

Geometry

# Softwares Analysis Analysis Stochasticity

Geometry

Softwares

Analysis

Geometry

Conclusions

Softwares

Analysis

**Stochasticity** 

Geometry 
→ Illustration of Geometric Problems

Conclusions

Softwares

Analysis

Stochasticity

Geometry

CS Detection Method

 Introduction Objectives Research Conclusions

Perspectives

### Perspectives







# Satellite Positioning

# Performances under Ionospheric Scintillations



### Matthieu Lonchay M.Lonchay@ulg.ac.be

University of Liège, Belgium Geomatics Unit

F.R.S.-FNRS, Belgium

Thesis Committee June 11, 2013 Geomatics Unit, ULg





