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The Ionosphere is Ionized by Solar Radiation

UV

X-Rays
MeV protons

CME’s

Solar Winds

Solar Flares
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GNSS Signals are refracted by the Ionosphere

Introduction – Ionosphere



�� � �
� � 1 � 40.3


� ��

�

��

� � � 40.3

� � �� ��

�

�
� � 40.3


� ����

��

��

����

��

GNSS Signals are refracted by the Ionosphere

Introduction – Ionosphere



��

Ionospheric Electron Density

Irregularities

Spatial Variation of the 

Refraction Index

Signal Losses

Signal Diffraction

Constructive and Destructive 

Signal Interferences

~

GNSS Signals are diffracted by the Ionosphere
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Ionospheric Electron Density

Diffraction Pattern

Received Signal Intensity
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GNSS Signals are diffracted by the Ionosphere
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UV

X-Rays

MeV protons

CME’s

Solar Winds

Solar Flares #$� %��&� �$�'$"'(� )&�"�

Ionospheric Electron Density Irregularities are

involved by Geomagnetic Storms
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Geomagnetic Storms can be detected

by global Geomagnetic Indices

Halloween Storm
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Geomagnetic Storms can be detected

by global Geomagnetic Indices

Halloween Storm
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Ionospheric Electron Density Irregularities involve

GNSS Signal Phase and Amplitude fluctuations

Brussels - Simulation
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Ionospheric Scintillation Effects on GNSS Signals

are Monitored by Scintillation GNSS Receivers

Low Data Rate (≈ 0.01 - 1 Hz)

Positioning

RINEX Files

Classic Observables

- C1C
- L1C
- D1C
- S1C
- …

High Data Rate (≈ 50-100 Hz)

ISMR Files

Space Weather

Specific Observables

- S4
- Phi60
- …

*+ � �� , � �
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-. � /� , / �

Ionospheric Scintillation Monitoring Receiver - ISMR

Introduction – Ionosphere



Ionospheric Scintillations exhibit

Spatial and Temporal Characteristics

FrequentInfrequent

Operating Frequencies

Geographic Locations

Local Time

Season

Magnetic Activity

Solar Activity
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Ionospheric Scintillations exhibit

Spatial and Temporal Characteristics

FrequentInfrequent

Large Scale Irregularities

≈ 100 km

Small Scale Irregularities

≈ 1 – 100 m

Background Plasma Drift Speed

≈ 50-150 ms-1

Duration

≈ minutes/hours

Spatiotemporal Variations of 

Scintillations Intensity

Introduction – Ionosphere



Satellite Positioning is based on Multilateration
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The Standard Point Positioning is an elementary SF Technique

��� t � 1�� 2 ��� 2 ��,4,5� 2 c ∆"� , ∆"� 2 8�,4,5� 2 9�,4,5�

Pseudorange (code) measurements

Single Point Single Epoch (SPSE) Technique

Atmospheric Models (Ionosphere and Troposphere)

Broadcast Ephemeris

1�� � =>� , >�?�2=@� , @�?�2=�� , ��?�

Real-Time / Post-Processing

Static / Kinematic

�

�

Least Square Adjustement (LSA) to resolve unknowns

Single Frequency
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The Standard Point Positioning is an elementary SF Technique

     Brussels

001/12    01-Jan-2012

 

 

0

5

10

15

Error [m]

 

 

-10

-5

0

5

10

Error [m]

North

East

Up

3D Error

00h 03h 06h 09h 12h 15h 18h 21h 24h

Introduction – Positioning



��� t � 1�� 2 ��� 2 ��,4,5� 2 c ∆"� , ∆"� 2 8�,4,5� 2 9�,4,5�

�

�

:�� t � 1�� 2 ��� , ��,4,;� 2 c ∆"� , ∆"� 2 <4��,4� 2 8�,4,;� 2 9�,4,;�

Pseudorange (code) and Carrier-Phase measurements

Dual Frequency

Strategies against atmospheric effects

Precise Products: Ephemeris / Code-Phase Delays / Antenna

Real-Time / Post-Processing

Static / Kinematic

Sequential Least Squares Adjustment (Filter)

Ambiguity Resolution Process

The Precise Point Positioning is an advanced DF Technique
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Mathematical Model: Ionosphere-Free + Precise Products

Solution: Sequential Least Square Adjustment (Filter)

Stochastic Model

The Precise Point Positioning is an advanced DF Technique
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The Precise Point Positioning is an advanced DF Technique

     Brussels
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The Precise Point Positioning is highly sensitive to

Ionospheric Scintillations Effects

     Brussels
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The Precise Point Positioning is highly sensitive to

Ionospheric Scintillations Effects
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Objectives

The Project aims to develop new Strategies to mitigate the 

impact of Ionospheric Scintillations on Satellite Positioning

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

Development of Scintillation Analysis Tools

Adaptation of existing softwares



Objectives

The Project aims to develop new Strategies to mitigate the 

impact of Ionospheric Scintillations on Satellite Positioning

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

Statistical Analysis of Scintillation Effects 

Symptomatic Analysis of Scintillation Effects 



Objectives

The Project aims to develop new Strategies to mitigate the 

impact of Ionospheric Scintillations on Satellite Positioning

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

Stochastic Model Improvement

Spatial/Empirical Approach

Correlations Assessment between Observables

Correlations Assessment between Satellites

Validation on SPP and PPP

Validation on different Scintillations Types

- Equatorial and Polar Scintillations

- Weak/Moderate/Intense Scintillations



Objectives

The Project aims to develop new Strategies to mitigate the 

impact of Ionospheric Scintillations on Satellite Positioning

Softwares

Analysis

Stochasticity

Geometry

Preprocessing

Analysis of Geometric Effects of Scintillations



Objectives

The Project aims to develop new Strategies to mitigate the 

impact of Ionospheric Scintillations on Satellite Positioning

Softwares

Analysis

Stochasticity

Geometry

Preprocessing Validation of a Cycle Slips Treatment Method
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ESA/gAGE (UPC)

GNSS Data Processing Tool

GNSS Data Analysis Tool

Support

Multipurpose

Scientific
Professional
Educational

gLAB is a SPP and PPP Software for Scientific Purposes

Research – Softwares



Data Downloading

SPP and PPP Processing – Parameters?

Data Files Reading

Specific Treatments

Results Visualisations

Graphic Tools: IPP Maps and Skyplots

gLAB can be coupled with a Matlab Environment Programming

Research – Softwares
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Severe Geomagnetic Storms occur under High Solar Activity
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Geomagnetic Storms still occur under Moderate Solar Activity
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Ionospheric Scintillations occur under Moderate Solar Activity



The Analysis Strategy is based on the Selection of 5 typical Days
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Results – Analysis

Single Station 

Approach

Occurrence: Measurements and Epochs

The Analysis Strategy is based on specific Criteria

Multi Station 

Approach
Positioning: SPP and PPP

Geometry: Satellite Number and Dilution of Precision

Spatial Characteristics

Cycle Slips

Noise Measurement

Low/High Magnetic Activity

Medium/High 

Latitude
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Results – Analysis

Ionospheric Scintillations affect 

a very Small Portion of the Measurements

Brønnøysund

Year 2012

97%

3%

S4

 

 

 < 0.25

 > 0.25

92%

7%< 1%

 

 

 [ 0.25 - 0.4 [

 [ 0.4 - 0.55 [

 [ 0.55 - ... [

100%

< 1%

Phi60

65%

19%

16%



Brønnøysund

Year 2012

52%
48%

S4

 

 

 < 0.25

 > 0.25

73%

22%

4%

 

 

 [ 0.25 - 0.4 [

 [ 0.4 - 0.55 [

 [ 0.55 - ... [

97%

3%

Phi60

58%

21%

21%

Results – Analysis

Ionospheric Scintillations affect 

a Significant Portion of the Observation Epochs
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Brønnøysund
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SPP and PPP Techniques are affected differently

by Ionospheric Scintillations Effects
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Brønnøysund
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SPP and PPP Techniques are affected differently

by Ionospheric Scintillations Effects
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SPP and PPP Techniques are affected differently

by Ionospheric Scintillations Effects
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Results – Analysis

Brønnøysund
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Brønnøysund
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Results – Analysis

High Phi60 values are frequently observed at High Latitudes



Results – Analysis

Brønnøysund
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Brønnøysund
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Brønnøysund
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Brønnøysund
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Results – Analysis

Brønnøysund
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Analysis: Single Station Approach Summarize

Results – Analysis
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Locations
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Spatial Distribution

Spatial Distribution
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Results – Analysis

      Lerwick
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Results – Analysis
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Ionospheric Scintillations concern only High Latitude 

Ionopheric Pierce Point

< 0.25

[ 0.25 – 0.4 [

[ 0.4 – 0.55 [

> 0.55



Analysis: Multi Station Approach Summarize
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“Everything is related to everything else, 
but near things are more related than 
distant things.” 

Results – Stochasticity

First Law of Geography…

Waldo Tobler
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The « Spatial Strategy relies on the fact there exists some

Spatial Autocorrelation in Scintillations Observations

1. Spatial Autocorrelation Test

2. Covariance Function
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The « Empirical Strategy relies on Observations 

whatever their Locations
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Results – Geometry

PPOS DOP σσ ×=

Ionospheric Scintillation involve Satellite Signal Losses
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The Dilution of Precision depends on the amount and 

the Spatial Distribution of Tracked Satellites
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Results – Geometry

A Conical Satellite Geometry drives the DOP to Infinite Values
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A Conical Satellite Geometry drives the DOP to Infinite Values
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Results – Preprocessing
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Results – Preprocessing

Observable Noise Assessment could help to define the 

Stochastic Model (« Empirical Strategy »)
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