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Structural dynamics in civil engineering

Fokker-Planck-Kolmogorov equation

Dynamics = study of body motion under forces

Equation of motion

My + Cy + Ky = (/)

_ -/ ‘ o o external
inertial damping restoring
forces forces
Structure

forces
orces

External forces

wind pressure, ground acceleration, wave, crowd
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) linear nonlinear
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Nonlinear behavior in structures

e large displacement K(y): y is large w.r.t. the static equilibrium
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Nonlinear behavior in civil engineering

Equation of motion My + Cy+ Ky +g(v.v) =£(t)

AN / AN
) linear nonlinear
internal forces internal forces

Nonlinear behavior in structures

e large displacement K(y): y is large w.r.t. the static equilibrium
e material nonlinearities : platicity, cracking

e damping devices : nonlinear damping law C(y), tuned liquid dampers

Sources of difficulties

e superposition principle is broken

e Fourier analysis and modal superposition cannot be applied
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Uncertainty in civil engineering

Uncertainty

it is impossible to exactly describe
future outcomes of an experiment

L) a lack of knowledge —
Methods
° : fuzzy arithmetics, random sets

e Probabilistic : based on the probability theory,
the uncertainty can be measured

Sources of uncertainty
° : M(0), K(0), C(8) uncertain
e Excitation : f(¢,0) uncertain

Notation

(,0) — function of the randomness in the universe (probability space)
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Uncertainty in civil engineering

Random excitations f(¢,0)

Spatial Coherence

Gaussian «——+ stationary b i

g e

non-Gaussian «—— non-stationary i
I

statistics time-independent

Vg statistics time-dependent
Wind blowing on building }A
forces at different locations pressure A is correlated B
are not statistically independent to pressures B, C,... N c
Ve
Coherence «— Correlation s
(frequency domain) (time domain) A

Linear evolutionary spectral analysis Equivalent linearization and evolutionary analysis Fokker-Planck-Kolmogorov equation
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Probabilistic Methods

My + Cy + Ky + g(y,y) = f(t,0)

How to solve the equation of motion ?

f is Gaussian and g =0 — y(¢,0) is Gaussian

f is Gaussian and g # 0 — y(t,0) is non-Gaussian

FPK equation MC simulation | Equ. Linearization

. Il
Size M3

large
Transience

variance
Data

pdf
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Probabilistic Methods

My + Cy + Ky + g(y,y) = £(¢.0)

How to solve the equation of motion ?

Fokker-Planck Equation
1 (t) the probability density function of y and y

o 0 B 0?2 -
2t ZL: o (aiyp) = 121: 0w,z (Dij)

FPK equation
ible !
Size small posmblg !
large forget it !
Transience adapted
variance .
Data pdf ideal
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Probabilistic Methods

Equivalent linearization and evolutionary analysis

My + Cy + Ky + g(y,y) = f(t,0)

How to solve the equation of motion ?

Monte Carlo simulation

realizations of f

£(t,0n)}

(£(t,01). £(¢,02),.

solver

—

realizations of y
{Y(t7 01)7 Y(tﬂ 02)’ v y(ta 0”)}

statistics
FPK equation MC simulation

ible !

Size small posmblg ) possible
large forget it !

Transience adapted possible

variance . .
Data pdf ideal possible

Fokker-Planck-Kolmogorov equation

19/117



Introduction

Linear evolutionary spectral analysis

Probabilistic Methods

Equivalent linearization and evolutionary analysis

My + Cy + Ky + g(y,y) = f(t,0)

How to solve the equation of motion ?

Equivalent Statistical Linearization

e Approximate method

e Nonlinear forces g(y.y) are replaced by Equivalent Linear forces

e Statistical Equivalence — minimize the error on the variance

FPK equation | MC simulation | Equ. Linearization
Size small possibl_e ! possible inapprgpriate I
large forget it ! pertinent !
Transience adapted possible challenging
variance . . targeted !
D | I .
ata pdf idea possible too approximate !

Fokker-Planck-Kolmogorov equation
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Motivations
‘ MC simulation ‘ ‘
Size small ‘ possible ‘ ‘
large ‘ ‘ ‘
Transience | possible | \
Data \;Z?ance} possible } }

" | force myself to contradict myself in order

to avoid conforming to my own taste *

M. Duchamp

22/117



Introduction Linear evolutionary spectral analysis Equivalent linearization and evolutionary analysis Fokker-Planck-Kolmogorov equation

Motivations : Equivalent statistical linearization

Equ. Linearization

Size ‘ .
large ‘ pertinent !
Transience ‘ challenging
variance targeted !

Data } &

Why 7 Large structures + coherent random loads —s MC inefficient !

advantages of the linearity

Gaussianity Fourier analysis Superposition principle
1
Coherent random excitations Projection
modeled in the frequency domain in a modal basis
Goal (Part 1)

e Develop a method for linear transient analysis

e Extension for equivalent statistical linearization
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Motivations : Fokker-Planck Equation

FPK equation
ible !
Size small possible !
Transience adapted
Data pdf ideal
Why 7

MC : slow convergence in low probability zones ;
tai

FPK : pdf — tails of the distribution b C S

Goal (Part I1)

Develop and apply an accurate numerical solver
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Deterministic structures

+
Transient Random loads

Part | Part Il
Linear Evolutionary ]< large size small size ,( Fokker-Planck
Spectral Analysis J cov ¥ pdf L Equation

y

Equivalent Linearization

Evolutionary Analysis
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Deterministic structures

+
Transient Random loads

Part |
Linear Evolutionary l large size ® ‘(
Spectral Analysis J\ cov 2 ,L
v
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Stationary random processes

Linear evolutionary spectral analysis
Stationary random processes
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Stationary random processes

Spectral representation of stationary random processes

Fourier analysis and random vectors

Fourier Transform

time 1 frequency w

p(t, 6,) Mwwmwt — p(w, ) 1 Power Spectral Density
Sp
P(L0) panhbby! —  B(w.02) ‘

p(t.0.) Ml B(0.) y

Properties

Covariance = Xp = / Spdw p coherent — Sy, is full
R
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Stationary random processes

Stationary spectral analysis and modal projection
Equation of motion in basis ®

Mx+ Cx+ Kx=f(t,0) — K®=uwM®
l Eigenvalue problem

q+Da+ Qq=p(t0) — x=®q sizeq <sizex

nodal modal
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Stationary random processes

Stationary spectral analysis and modal projection
Equation of motion in basis ®

Mx+Cx+Kx=f(,0 — K®=uw’M
l Eigenvalue problem

q+Da+ Qq=p(t0) — x=®q sizeq <sizex

nodal modal

—1
Transfer Function H(w) = (Q —WT+ LwD)
in modal basis
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Stationary random processes

Stationary spectral analysis and modal projection
Equation of motion in basis ®

Mx+Cx+Kx=f(t0) — K®=uw’M®
l Eigenvalue problem

G+ Da+ Qq=0p(t0) — x = ®q size q < size x

nodal modal

Transfer Function  H(w) = (ﬂ — W T+ L<;.1D)71
in modal basis

Structure H Spectral Analysis

Spw) — — Sq(w) = H(w)Sp(w)H(w)"
stationary L
process Zq _ / Sq(w)dw
CEEE——— . R
covariance
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Evolutionary spectral analysis

Linear evolutionary spectral analysis

Evolutionary spectral analysis
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Evolutionary spectral analysis

Evolutionary random processes

How is built an evolutionary process ?

Stationary Deterministic
random process X time window
Ps (ta 91) (I,(t)
n i I Y >t X
Ps (t7 92) (L(t)
ikl it
ps(t, ) a(t)
I l \ Jf X

Evolutionary
random process

p(ta 91)
A bl

p(ta 92)

Fokker-Planck-Kolmogorov equation
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Evolutionary spectral analysis

Evolutionary random processes

Evolutionary process Extended Fourier Representation

p(t,0) = a(t) p.(t0) p(t) :/a(uw) e“tdp(w)
time  stationary R
window process

p(t761)
TR t Evolutionary Power Spectral Density

p(t,Gg) SP(t)w) - |a(t,w)| i(/i

t Embedded
WMWWWWWNW—’ stationary process

p(0) Bp(t) = [ Spltwd
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Evolutionary spectral analysis

Evolutionary spectral analysis

Impulse response

Structure matrix (D, Q)
q+Dg+ Qq
t

p(t,0) . dt0) = / h(t — u)p(u)du
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Evolutionary spectral analysis

Evolutionary spectral analysis

Impulse response

Structure matrix (D, Q)
b
q+Dq+2q . ’7
p(t,0) e altd) = [ b= wpu)de
0
Embedded

stationary process

Evolutionary

t
Transfer Function G(t,w) = / h(t — u)a(u,w) e™"du
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Evolutionary spectral analysis

Evolutionary spectral analysis

Impulse response

Structure matrix (D, Q)
 be o
q+Dq+Qq \ ’7
p(t,0) e altd) = [ it —wp(u)de
0
Embedded

stationary process

v S4(tw) = G(t,w)S,(W)G(t, w)*

a(t)

Spl)

Evolutionary
Transfer Function

G(t,w) :/ h(t — u)a(u,w) e*““du

to

How to efficiently compute h(7) and G (7, w) ?
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Asymptotic expansion-based method

Linear evolutionary spectral analysis

Asymptotic expansion-based method
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Asymptotic expansion-based method

How to compute h(t) ?

h(t) = / H(w) e dw
R
Impulse response matrix = Inverse Fourier Transfom of the transfer matrix

Decoupled modes : €2, D, diagonal

_1 EASY PR OSR
H,(w) = (Qd — W4 Lwa) —  (hy(t), =

C 2uwi/1— &2

closed form expressions closed form expressions
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Asymptotic expansion-based method

How to compute h(t) ?

h(t) = / H(w) e*tdw
R
Impulse response matrix = Inverse Fourier Transfom of the transfer matrix

Decoupled modes : €2, D, diagonal

_1 EASY et ot
Hd(w) = (Qd — W + Lwa) e (hd(t)) =

P 2w /1 &2

closed form expressions closed form expressions
Mechanically Coupled modes : €2, D non-diagonal

5

—1 H .
H(w) = (2 - w’I+wD) —> NO closed form expression
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Asymptotic expansion-based method

How to compute h(t) ?

h(t) :/RH(w) e“dw
|

H=( Q-uwT+wD )

| —

J

Fokker-Planck-Kolmogorov equation
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Asymptotic expansion-based method

How to compute h(t) ?

h(t) :/RH(w) e“dw
|

H=( Q-uwT+wD )

Ll

Decoupled Coupling
i small

H,=J"
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Asymptotic expansion-based method

How to compute h(t) ?

h(t) :/RH(w) e“dw
|

-1

H=( Q-wl+wD )

Ll

J Jd J()

O o - [m | o o

(Fea) (Toa) (07

o = | [m} o
Decoupled Coupling
small

}
_ 11
H,=J;
v

H=(I1+H,J,) "H,
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Asymptotic expansion-based method

Asymptotic Expansion-based Method

(I+HJ,)" 1
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Asymptotic expansion-based method

Asymptotic Expansion-based Method

(I+HJI,) " 1
1+e
| p<t | e<1
> 1
I EEALNG: 9 L =1-
+ 2 (-1 (Hado) Lol

k=1 closed form

Convergence criterion

py = maximum eigenvalue of HyJ, over all w (in norm)
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Asymptotic expansion-based method

Asymptotic Expansion-based Method

H=(1+H,J,) "H, L
1+e¢
| pi<1 | e<1
H=H,+)» (-1)"(H,J.)" H, 1ye Loet
k=1

closed form
Convergence criterion

p3 = maximum eigenvalue of HyJ, over all w (in norm)
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Asymptotic expansion-based method

Asymptotic Expansion-based Method

H: (I+H(IJ4))71H(1 1
1+¢
| i<t | e<1
00 . 1 1
H=H;+ > (-1)"(HJ,)" H, T4e 1ot
k=1

closed form
Convergence criterion

py = maximum eigenvalue of HyJ, over all w (in norm)

Asymptotic expansion + Cauchy’s theorem
/ H ¢“dv — h =hy+) Aby
R k=1

decoupled closed form
system correction terms
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Asymptotic expansion-based method

Asymptotic Expansion-based Method

H=(I+HJ,) "H, !
1+¢
| i<t | e<1
00 . 1 1
H=H;+ > (-1)"(HJ,)" H, T4e 1ot
k=1

closed form
Convergence criterion

py = maximum eigenvalue of HyJ, over all w (in norm)

Asymptotic expansion + Cauchy’s theorem + Truncation
N

/ Hye“tdw — — hy =hg+ Z Ahy,
R k=1
decoupled closed form
system correction terms
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Asymptotic expansion-based method

How to compute G(t, ty,w) ?

¢
G (t,to,w)= [ h (t—u)a(u)e"“"“du

to
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Asymptotic expansion-based method

How to compute G(t, ty,w) ?

t
Gn(t to,w) = [ hy(t—u)a(u)e" " du
to
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Asymptotic expansion-based method

How to compute G(t, ty,w) ?

t
Gy (t,to,w) = / hy(t — u)a(u)e“"du
to
a(u) is a tractable function
1
closed form expression Gy
DONE !

Shinozuka window

_ e*bgu)

time

51/117



Equivalent linearization and evolutionary analysis Fokker-Planck-Kolmogorov equation

Introduction Linear evolutionary spectral analysis

Asymptotic expansion-based method

How to compute G(t, ty,w) ?
t

Gy (t,to,w) = / hy(t —u)a(u)e™"du
to

a(u) is a tractable function a(u) known numerically
1 1
Gy cannot be computed
from tg to t

closed form expression G
Holmes window

DONE !

Shinozuka window
Downburst =

_ e*bgu) ] ]
transient wind

a(u)

time
52/117
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Efficient generalized procedure

Linear evolutionary spectral analysis

Efficient generalized procedure
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Efficient generalized procedure

Efficient procedure : state space formalism

State space z(t,0) = [ q }
formalism q

state transition matrix

- t

p(t0) — )= [ v | O

to
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Efficient generalized procedure

Efficient procedure : state space formalism

State space z(t,0) = { q ]
formalism q

state transition matrix

pt,0) — [ — t0)= tO‘I’“’”){p?u) }d“
a(t) o Stw) = " 0 0 W)’
N v R o s T

¢

Evolutionary state o 00 Lwu

transfer matrix L (s to,w) _/t a(u, w)P(t, u) [ 01 |° it
0

55/117



Introduction Linear evolutionary spectral analysis Equivalent linearization and evolutionary analysis Fokker-Planck-Kolmogorov equation

Efficient generalized procedure

Efficient procedure : state space formalism

State space z(t,0) = { q ]
formalism q

state transition matrix

a(t) o, ., /S\z(t7w) — T(t,w) |: 0 SO :| T<t7LU)*
Sp() 0 S
Evolutionary state 0 0| .uu
transfer matrix Tt to, w / atu u) [ o1 |° du

{ 0,G ttt%,))}
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property

to t
] ] >
1 1 »

57/117



Introduction Linear evolutionary spectral analysis Equivalent linearization and evolutionary analysis Fokker-Planck-Kolmogorov equation

Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property

to tq t
1 1 1 »
1 1 1 o

gp(t,to) = q?(t,/l)q?(/l,to)

for LTI and LTV systems

LTI system = Linear Time Invariant

LTV system = Linear Time Variant
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property

W(t,to) =W(t,1)¥(l1,t0) a(t)

for LTl and LTV systems

Recurrence relation to t t

A\ 4

T(t,to,(&)) = T(tvllaw)+\Il(t7/J)T(/]at07w)
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?
Semi-group property

W(t,to) =W(t,1)W(l, ) a(t)

for LTI and LTV systems

7 } } »
Recurrence relation to ty t
T(tvthw) = T(tatlvw)+\Il(t?t1)r(/\7/()7w)
known
to = 14
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property N}
"
Wt to) =W(t, 1 )T(l1,t) a(?)
for LTl and LTV systems
; f f >
Recurrence relation to 1 t
T(t,to,(&)) = T(t7t1aw)+\I,(/7/])T(tlat0aw)
’ known
to — 11

State transition
t1 — 1

w independent
a(t) independent
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property

W(t,tg) =W(t,1)W(i,tp)

for LTI and LTV systems

a(t)

Recurrence relation to 1 t
T(t,to,&]) = T(/v/lvw)+‘Il(t,t1)‘r(t17t07w)

‘ known

to — 11

0 G(,1,w) } J

0 8tG(/,/1,UJ)
Convolution
th —t

State transition

th >t

w independent
a(t) independent

Fokker-Planck-Kolmogorov equation
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Efficient generalized procedure

Efficient procedure : How to compute T(t, tp,w) ?

Semi-group property

Wt tg) =W(t, )T, t) a(t)

for LTl and LTV systems

Recurrence relation to t t
TN(t,to,UJ) = TN(tatlaw)+‘P(tat1)—rN(t1,tO7w)
‘ known
to — 11
0 Gy(ti1,w) State transition
0 0:Gy (t, tl,w) t1 —1
Convolution NO asymptotic
t, —t approximation
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Deterministic structures

+
Transient Random loads

Part |
Linear Evolutionary l large size ! f
Spectral Analysis J\ cov Y ,L
v

Equivalent Linearization

Evolutionary Analysis
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Equivalent statistical linearization

Equivalent linearization and evolutionary analysis
Equivalent statistical linearization
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Equivalent statistical linearization

Equivalent linearization : basement

Nonlinear equation of motion

My + Cy + Ky +g(y.v) = £(t,0)

v(t,0) is a Non-Gaussian process; covariance matrix Xy ?

Fokker-Planck-Kolmogorov equation
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Equivalent statistical linearization

Equivalent linearization : basement

Nonlinear equation of motion
My + Cy + Ky +g(y.v) = £(t,0)

y(t,0) is a Non-Gaussian process; covariance matrix Xy, ?

Gaussian Equivalent Linearization

v(t,8)—> x(t,0) is a Gaussian process

Mx+Cx+Kx+ C. x4+ K x=1f(t,0)

Fokker-Planck-Kolmogorov equation
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Equivalent statistical linearization

Equivalent linearization : basement
Nonlinear equation of motion

My + Cy + Ky + g(y.v) = £(t,0)

y(t,0) is a Non-Gaussian process; covariance matrix Xy, 7

Gaussian Equivalent Linearization
v(t,0)—>x(t,0) is a Gaussian process
Mx+Cx+Kx+ C. x+ K ,x =f(t,0)

How ?

minimize the error b/w g(x,%) and C.gx + Kgx in the mean squared sense
Ceq(zxa Ex) Keq(zxa Ex)
Covariance matrices X and 3 are UNKNOWN
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Equivalent statistical linearization

Equivalent linearization : example
Gaussian Equivalent Linearization
Mx+ (C+C., (2, Ze)) %+ (K+ K. (2, 2:))x =f(t,0)

For instance
Nonlinear time-invariant Linearized time-variant

J+cy+ky+ey’ =ft0) —  Etcitko+h, ()= f(L0)

¢ constant in time key(t) = 302(t) changes in time

stationary problem — k¢, time-invariant
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Equivalent statistical linearization

Equivalent linearization : example
Gaussian Equivalent Linearization
Mx+ (C+C., (2, Ze)) %+ (K+ K. (2, 2:))x =f(t,0)

For instance

Nonlinear time-invariant Linearized time-variant

J+cy+ky+ey’ =f(t,0) —  F+citkae+h, ()= f(L0)

€ constant in time keq(t) = 3202(t) changes in time

Difficulty

Linear Evolutionary Spectral Analysis
Ceq(t) /\4 k(1) 2
K1) (1) LT - LTV

. \/ ) in an equivalent modal basis
nonlinear implicit relation

Fokker-Planck-Kolmogorov equation
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Equivalent statistical linearization

Equivalent linearization : modal projection

Gaussian Equivalent Linearization

Mix+ (C+C. (2, Za))x+ (K+ K. (2, 2x))x = £(¢,0)

Projection in a generalized basis ® x = ¢q

Eigenvalue problem (K + K)® = w*M®

PN

K=0 K ~ K.,
Linear modes

a+ D+ Doy (3g, 20)) a+ (R4 0y (Fq, 24)) a = p(t, 0)

e Linear equation of motion
e Nonlinear equivalent functions
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Introduction Linear evolutionary spectral analysis

Equivalent statistical linearization

Equivalent linearization : generalized procedure

Equation of motion in a generalized basis

a+ D+ Doy (g, 2a)) a+ (4 0y (Fq, 24)) a = p(t, 0)

Time dependent in transient dynamics

Semi-group property ; ; f
T T T
for LTl and LTV systems W(t,tg) = W(t,t1)®(ty,to)

Fokker-Planck-Kolmogorov equation
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Introduction Linear evolutionary spectral analysis

Equivalent statistical linearization

Equivalent linearization : generalized procedure

Equation of motion in a generalized basis

a+ D+ Doy (g, 2a)) a+ (4 0y (Fq, 24)) a = p(t, 0)

q»

Time dependent in transient dynamics

Semi-group property ; ; f
T T T
for LTl and LTV systems W(t,tg) = W(t,t1)®(ty,to)

Recurrence relation

Yn(t to,w) =Yn(t t1,w) + Bt t1) XN (t1, to, w)

Fokker-Planck-Kolmogorov equation
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Multiple scales approach

Equivalent linearization and evolutionary analysis

Multiple scales approach
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Multiple scales approach

Two timescales

Equation of motion in a generalized basis
d’q

dt? dt

Two timescales

e Slow time /. : envelope of the evolutionary process

e Fast time ¢ : natural period of the structure

dq
— T (D +D(Bq, Bg)) - + (2 + Ry (Bg, Bg))a =

Fokker-Planck-Kolmogorov equation

a(t)ps(t, 0)
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Multiple scales approach

Two timescales

Equation of motion in a generalized basis

2
dat? dt

Two timescales
e Slow time /. : envelope of the evolutionary process

e Fast time ¢ : natural period of the structure

Fokker-Planck-Kolmogorov equation

9 D 4 Dy(Be Ba) S 4 (94 20y(Ba, Sa)) a = at)ps(£.0)

For instance 4y +ky+knoy =al®)wt,0)
white noise
002 Fast 0025
N Realisation | oo Standard
o 1 deviation
0.015 SlOW
0
0.01 \
-0.01 0005 |
00z, 2 4 6 s 0 % 2 4 8
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Multiple scales approach

Two timescales

Two timescales

e Slow time (. : envelope of the evolutionary process

e Fast time ¢y : natural period of the structure

q(t) — alls,ty)

Flavour of demonstration alt) — al(t.)
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Multiple scales approach

Two timescales

Two timescales

e Slow time /. : envelope of the evolutionary process

e Fast time t; : natural period of the structure

q(t) — all.tr)

Flavour of demonstration alt) — al(t.)

1) Statistics evolve slowly — 3q(7.), B¢ (t.) — Deg(f.), Qeq(t.)

09 4 (@4 Qug(t)) a = alt)ps(1011,6)

9%q
+ (D + D¢y(ts)) o,

2)
0t}
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Multiple scales approach

Two timescales

Two timescales

e Slow time /. : envelope of the evolutionary process

e Fast time t; : natural period of the structure

t) — q(t.,ty
Flavour of demonstration a(t) a( )
a(t) — a(t.)

1) Statistics evolve slowly — q(t.), g (t.) — Deg(t.), Qeq(r.)

82

) 9q + (2 + Qe () a = a(t)ps(te,tr.0)

2
) ot

4 (DD, ()
f

LTV system — piecewise-LTI system
De‘l(t)7 Qeq (t) Deq (ts)’ Qeq (tS)
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Multiple scales approach

Generalized procedure in equivalent linearization

Evolutionary spectral analysis

0 0
S,(tr,w) = Y (1. to,w) { 0 S } Y (¢, to,w)*
P

E— Ez(//‘) = / SZ(/“w)dw
Recurrence relation /R

Yr (/..\7(//‘ ) /[)7 UJ) :Teq,N(tkz tk—lrw) + \I’(tk~ tk—l)Teq.N(tk—ly t07 UJ)
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Multiple scales approach

Generalized procedure in equivalent linearization

Evolutionary spectral analysis

0 0
0 S,

~

Sz (tr,w) = Y (tg, to,w) { } Y (ty, to,w)”

_— Ez(tk): //S\z(thw)dw
Recurrence relation /R

Yegn(tr,to,w) =" g vt 1, w) + W(tg, the1) Leg n(te—1,to,w)

i Asymptotic Expansion method
0 Gy(lete,w) | | LTI on [tr_1, %] with
0 OGN (tr,th—1,w)
Deq(tk—l) and Qeq(tk—l)

_D,

t
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Application

Equivalent linearization and evolutionary analysis

Application
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Application

Tower subject to downburst

Downburst : a transient wind phenomenon

Cloud Base

U(t,z) + u(tz)

mean wind fluctuation

Outflow

Mean profile Wind psd

Sulw, 2, 27) = 1/ Salw, z:) Salw, z;) ['(w, i, 2))

Coherence

Time window

a(t)

0 1 Is]

0 200 400 600 800 1000 1200
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Application

Tower subject to downburst

Tower damped by a TLCD

LI

LZU

Orifice  Orifice

Lo L .
PuoAp Lyt + ;prwé [0]0 4+ 2pw Ay gv = — poy Ay Buw@

l Equivalent linearization

P A Lyd + \ :prw6 0004 200 A gV = —pu Ay By

T
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Application

Tower subject to downburst

Multiple scales approach Natural frequency : 0.23 Hz
Time window : At =10s
6x10° 4
9
8
7
6
600 700 800 900
time [s]
9 N\,
MC:1000 samples % ey’ sime [5 .
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Application
Conclusions
Goals

e Develop an efficient method for linear evolutionary spectral analysis
e Ability to deal with coherent random loads

e Extend this method to Gaussian equivalent linearization

Achievements

e Asymptotic expansions of H(w), h(t) and G(t,w)

e Convergence criteria in frequency and time (improvements)

Recurrence relation to compute Y (t,tg,w) in a state space formalism

Extension to equivalent linearization with a multiple scales approach

Application in wind engineering : tower subject to downburst
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Deterministic structures

+
Transient Random loads

Part 1l

small size j Fokker-Planck

pdf o ,L Equation

o
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Purpose and motivations

Fokker-Planck-Kolmogorov equation
Purpose and motivations
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Purpose and motivations

Fokker-Planck-Kolmogorov Equation

Equation of motion
My + Cy + Ky +g(y,y) = a(t)w(t)

l

a(t,0) = £(t,z) + b(t, z)W(t)

Fokker-Planck-Kolmogorov equation
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Purpose and motivations

Fokker-Planck-Kolmogorov Equation

Equation of motion
My + Cy + Ky +g(y,y) = a(t)w(t)

|

z(t,0) = f(t,z) + b(t,z)W(t)
FPK equation l

Za— (fiv) _22—8%8% (Dijib)

1= . .
convection diffusion

transport and conservation of the pdf 1 (t,z)
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Purpose and motivations

Fokker-Planck-Kolmogorov Equation

Equation of motion
My + Cy + Ky +g(y,y) = a(t)w(t)

l

z(t,0) = f(t,z) + b(t,z)W(¢)
FPK equation l

o "9 "o 92
ot + 221 9 (fi) = 2; 221 02207, (Di;)
= i=1 j=

convection diffusion

transport and conservation of the pdf ¢ (t,z)

Complementary conditions
e [vtzdz=1  u(tz)>0

initial distribution conservation positivity
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Purpose and motivations

Motivations

Goal of this part

e solve numerically FPK equation

o for nonlinear systems and transient excitations

e apply to extreme value problems, tails of pdf
Which conditions must fulfill the FPK solver ?

e ensure the positivity and the conservation

e stability in the transient phase

Fokker-Planck-Kolmogorov equation

e be able to deal with slightly to highly dispersed distributions

e extendable to high-dimensional systems

Method Smoothed Particle Hydrodynamics

probability = hypothetical fluid
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Smoothed Particle Hydrodynamics Method

Fokker-Planck-Kolmogorov equation

Smoothed Particle Hydrodynamics Method
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Smoothed Particle Hydrodynamics Method

Generalities about SPH Method

o Meshless method

Particles are integration points

e Lagrangian formalism

Point of view of a non-fixed observator

e Integral representation of a field ¢(x)

o(x) = [ 6(x)3(x — x)dx

IR’IL
4(.) a delta-Dirac function

94/117



Introduction

Linear evolutionary spectral analysis
Smoothed Particle Hydrodynamics Method

Equivalent linearization and evolutionary analysis

Fokker-Planck-Kolmogorov equation

Integral representation of a field

o(x) = / o) — x)dx’

y %

Dac
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Linear evolutionary spectral analysis
Smoothed Particle Hydrodynamics Method

Equivalent linearization and evolutionary analysis

Fokker-Planck-Kolmogorov equation

Integral representation of a field

P(x) =

/n H(x)d(x — x)dx’

<o(x) >= [ o) (|jx — x|, h)dx’
]Rn

y %

Dac
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Smoothed Particle Hydrodynamics Method

Integral representation of a field

¢(x) = | ¢(x)i(x—x)dx’
Rn

< o(x) >= AW (|x — x|, h)dx’
]Rn

with 117(., h) the kernel function and /i the smoothing length

Kernel Function

5-Dirac property }lLin%) W(lx—x'|,h) =d(x —x'|)
N

ol \W(rh)
unity / W(|jx — x|, h)dx' = 1 .
n
compact support, monotonic decay o
r/h
symmetry, positivity and smoothness =0 ED ‘ % o
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Linear evolutionary spectral analysis
Smoothed Particle Hydrodynamics Method

Equivalent linearization and evolutionary analysis

Integral representation of a field

Fokker-Planck-Kolmogorov equation

000 = [ 6(x)o(x—x)ax
< o(x) >

O YW ([ — |, )’

with W (., h) the kernel function and & the smoothing length
Discretization of the integral

nunwber
NP/ of particles
<o(x) >x ) $(x)W(|x — x|, AV
o volume
of particle j
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Smoothed Particle Hydrodynamics Method

Integral representation of a field

000 = [ 6(x)o(x—x)ax

< B(x) >= / S(x"YW (|5 — X', h)dx’

with W (., h) the kernel function and & the smoothing length

number

Discretization of the integral of particles
N, s

>""Z¢XJ (Ix = x|, h)A V\]

. N volume
Discretization of the kernel approximation of particle j

N, e
<o(x) >= > ¢(x))W (%, — x|, h)AV,
j=1
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Linear evolutionary spectral analysis
Smoothed Particle Hydrodynamics Method

Equivalent linearization and evolutionary analysis
Particle Interaction

Fokker-Planck-Kolmogorov equation

Kernel approximation

o(x:) >—Z¢) (x;)W(|x; — x|, h)AV,
A particle 7 interacts with all the particles

within its compact support
How to compute the interaction ?

Dac
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Smoothed Particle Hydrodynamics Method

Particle Interaction

Kernel approximation
Np

Jj=1

A particle 7 interacts with all the particles
within its compact support

How to compute the interaction ?

1.
2.
3.

The state space is divided into cells
The particles are sorted in these cells

For a particle , a set of cells including

its compact support is found

. < ¢; > is built with particles contained

in these cells

Fokker-Planck-Kolmogorov equation
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FPK with SPH

Fokker-Planck-Kolmogorov equation

FPK with SPH
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FPK with SPH

Lagrangian Paradigm

Eulerian formalism of conservation equation

I~ 0
7*23@(“ Za Uw)

aZ] " ’L/) aZ]'

L 7+v (vy) = with v, = fi — ZaD”_ZD..lai
j=1

Particle velocity : convection and diffusion effects
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FPK with SPH

Lagrangian Paradigm

Eulerian formalism of conservation equation

I~ 0
7*23@(“ Za Uw)

= i =fi— - Dij———
Bt + V-(vip) =0 with v; = [, 2 9z Z I 0z

L Particle velocity : convection and diffusion effects

Lagrangian formalism particles = non-fixed observators

conservation of the total probability Dy +YV-v=0 material
Dt derivative

transport equation for particles v = aX particle
dt position
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FPK with SPH

Lagrangian Paradigm

Eulerian formalism of conservation equation

I~ 0
7*23@(“ Za Uw)

= i =fi— - Dij———
Bt + V-(vip) =0 with v; = [, 2 9z Z I 0z

L Particle velocity : convection and diffusion effects

Lagrangian formalism particles = non-fixed observators

conservation of the total probability Dy +V-v=0 material
D derivative

transport equation for particles v = ax particle
dt position
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FPK with SPH

Conservation equation

The conservation equation of probability is similar
to the conservation of mass in the Navier-Stokes equation

Dw

Dt _|_ AV v = () we don't solve this equation

With SPH method, 1) is a scalar field that can be approximated by

N, N,
<p(xi) >= Y Wi AV =Y Wy
j=1 j=1
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FPK with SPH

Conservation equation

The conservation equation of probability is similar
to the conservation of mass in the Navier-Stokes equation

Dw

Dt _|_ AV v = () we don't solve this equation

With SPH method, v is a scalar field that can be approximated by

constant
"mass” T
Np Np r Initialization
< P(x) >= g VWi AV, = E 1 Wi of masses
time =1 =1 |
variant time
variant
Advantages

e The positivity of the pdf is ensured

AV,

e O . .. @ o
e No differential, nor algebraic equation, is solved

e The total probability is conserved
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Introduction Linear evolutionary spectral analysis

FPK with SPH

Transport equation

A particle 7 at a position X; has a velocity v; given by
gradient of the
< V1 (X) > — probability field
- 1

convection < ¢(X1) >
diffusion
Transport equation of particle ¢
dX;
dzzvi — XT'AT:XE—FviAt
¢ new position

Resolution scheme

Xt — 1y — Wij — <> — vl — X

Fokker-Planck-Kolmogorov equation
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FPK with SPH

Boundary conditions

Vanishing condition in the far-field

lim (¢, z) — 0, vt e Rt

l|z||—o0

e No need for specific treatment

e Presence of low mass particles Z—-00 Z—00
e Instability in mesh-based methods

Other boundary conditions

Absorbing condition Periodic condition
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Applications

Fokker-Planck-Kolmogorov equation

Applications
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Applications

Hysteretic Oscillator

Elastoplastic oscillator in 3D
G+ 28woq+ b =alW
Bouc-Wen model (_I) :.wg (aq + _(1 __a):) n
2= q (A~ (Bsign(gz) +7) |2[")
SPH solution
e SPH-FPK : 9261 particles

e Transience : a time window

Simplification : W white noise

e n =1, hist.variable z is bounded

At to, particles are regularly spread

e Initial condition quasi-deterministic

Fokker-Planck-Kolmogorov equation
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Applications

Reliability problems

Probability of exceedance

The mathematical formulation of a reliability problem consists in calculating

the probability of exceedance P to be in 1y the subspace of failure

P = [ wtxax = <Py >= 3 a5 () € )

sum of the masses of
) the particles within Q
For instance

77

%
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Applications

Hysteretic Oscillator

Elastoplastic oscillator in 3D
G4 26woq + © = aW
O =wi(ag+(1-0a)2)
£ =q (A~ (Bsign(gz) +7) |2]")

Bouc-Wen model

Reliability problem

Qr ={lgqz] €R%lg| > T >0}

with 7 a threshold .

Al
o SPH-FPK : 9261 particles %
e Monte-Carlo : 5-10° samples o
o 6 orders of magnitude are covered [~ FPRSPH
. [ MC Enler

e Time evolution well estimated
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Applications

Randomly excited pendulum

Periodic boundary condition

~—>
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Applications

Randomly excited pendulum

Absorbing boundary condition

wall

Probability at ¢ to not have hit the wall ?

10
= O MC-Euler
Z oss —— FPK-SPH
2 L
e

2 Sw = 0.05
~
S 0.96

£

o
H

0.940 is

10
time [s]

1 (3

%’ O MC-Euler
;g 09 —— FPK-SPH
% S 1
& w = 0.
S 08
°
=

0.7

time [s] !

Fokker-Planck-Kolmogorov equation
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Introduction Linear evolutionary spectral analysis
Applications
Conclusions

Main advantages of SPH method

e The positivity of the pdf is ensured
e There is no particular treatment for vanishing conditions
e The formalism is easily extended to high-dimension systems

e No algebraic equation is solved

Some limitations
e The stationary distribution cannot be directly computed

e The computation of interactions for large number of particles to improve
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Summary

Deterministic structures

+
Transient Random loads

Part | Part I
Equivalent Linearizatioqllarge size . small size\( Fokker-Planck
S 7] .
Evolutionary AnalysisJ cov X pdf ¢ L Equation
1. Asymptotic expansion method 1. Smoothed Particle Hydrodynamics
2. Efficient generalized procedure 2. Eulerian vs Lagrangian formalisms
3. Multiple timescales approach 3. Probability of exceedance
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