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Faculty of Applied Sciences

New perspectives on probabilistic methods
for nonlinear transient dynamics

in civil engineering

A thesis submitted for the degree of
Philosophiae Doctor in Applied Sciences by

CANOR Thomas
Research-Fellow F.R.S.-FNRS

February 2014

Advisor : Pr. DENOËL Vincent
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Summary

It is a common opinion that Monte Carlo method is considered as the paramount approach to
solve transient random problems, in linear and nonlinear dynamics. Although the simulation
approach can effectively be applied to a large range of problems, it is not necessarily the most
efficient in all circumstances. The analysis of large-dimensional structures subject to random
loadings, coherent in space and time, is a classical problem encountered in earthquake and
wind engineering. In this case, the simulation of statistically consistent realizations of such
random fields is a heavy computational operation in structural dynamics. Even for small
random structures, the main drawback with the simulation method is the large number of
simulations required to estimate low probabilities.

Based on these observations, this work is devoted to the development and the improve-
ment of analytical and numerical methods to perform nonstationary probabilistic analysis
and to compete against the crude simulation approach. Since the challenges are different, we
separately deal with large and small problems.

First, we focus on the development of an efficient procedure for large structures to perform
evolutionary spectral analysis, which is based on a time-frequency dual representation of
nonstationary random processes. We aim at developing a method taking advantage of the
usual spectral representation of coherent random loads. Then, we explore the solution of the
Fokker-Planck Equation by a numerical method in order to accurately analyze small nonlinear
problems.

For large-dimensional structures, we develop a method based on evolutionary spectrum
for linear analysis and nonlinear analysis using Gaussian equivalent statistical linearization.
The two main difficulties in evolutionary spectral analysis is the computation of the impulse
response matrix of a structure and the convolution between this matrix and a time window.

To circumvent those difficulties, the equation of motion is first projected in an equivalent
modal basis, in order to reduce the size of the system. However, the equivalent modal matrices
may be not diagonal, such that a mechanical coupling occurs between the modes. For slight
to moderate coupling, the out-of-diagonal elements can be seen as perturbations of a main
diagonal matrix. Based on this assumption, we asymptotically expand the modal transfer
matrix of the system around the one of a virtual decoupled system. The asymptotic expansion-
based method circumvents these two main difficulties, by returning to linear algebra. As the
modal transfer matrix of a structure and its impulse response matrix form a Fourier transform
pair, we can advantageously find an asymptotic expansion of this matrix in a closed form.
Afterward, the aforementioned convolution is analytically computed for some well-known time
envelopes.

Based on this expansion, we develop an original and relevant formulation to perform
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linear evolutionary spectral analysis. This formulation is then extended to nonlinear transient
analysis through equivalent statistical linearization. This extension is formalized by a multiple
scales approach, allowing to consider an equivalent system as piecewise time-invariant, since
the equivalent properties evolve at slow timescale with the probabilistic characteristics of the
response.

For small size structures, we explore the solution of the Fokker-Planck (FPK) equation
with the Smoothed Particle Hydrodynamics (SPH) method. The FPK equation expresses the
time evolution of the probability density function of a random state vector. This function
is thus of paramount importance in reliability problems, since we can compute information
about the tails.

The SPH method is a well-known mesh-free Lagrangian method, based on the integration
representation of fields. It presents notable advantages to solve the FPK equation : (i)
the conservation of total probability in the state space is explicitly written, (ii) no artifact is
required to manage far-field boundary conditions , (iii) the positivity of the pdf is ensured and
(iv) the extension to higher dimensional state space is straightforward. Furthermore, thanks to
the moving particles, this method is adapted for a large kind of initial conditions, even slightly
dispersed distributions. The FPK equation is solved without any a priori knowledge of the
stationary distribution; just a precise representation of the initial distribution is required.

The method is applied to different problems of mechanical and civil engineering, as well
as to more academic reliability problems.
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te dire si elle est “bonne”, du moins puis je t’informer qu’elle est définitivement “écrite”... Je
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tu m’as témoignée et l’indépendance que tu m’as accordée.
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Chapter 1

Introduction

1.1 Structural dynamics in civil engineering

Structural dynamics

For years now, the improvement of material technology and the development of efficient numer-
ical methods have given to engineers the opportunity to design slender and lighter structures,
to bridge larger spans, to raise higher tops, to resist more extreme situations. However, over-
stepping the past limitations has led up engineers to consider new technological challenges and
to understand new problematics and new subtleties. Furthermore, the economical environ-
ment has imposed to design offices and construction companies to insure themselves against
inherent risks and natural hazards over a given period of time. The quantification of the risk
exposed by the companies depends upon the possible or probable circumstances encountered
by structures during their life.

This is a reason why the static “world” of civil engineering has been definitely dropped
after the second world war. Previously, civil structures were generally assumed to respond in a
static manner only. Thence, the effects of dynamical loadings were readily discarded assuming
them as negligible, or taken into account by use of equivalent static loads. This philosophy
is still present in the Eurocodes related to seismic or wind design, though it presents a lot
of weaknesses from a physical point of view. We can point out some of them. In seismic
design, the quasi-static approach is only pertinent for simple structures or buildings and the
use of linear response spectrum to design nonlinear structures is definitely questionable. The
quasi-static approach also forgets the specificity of transient dynamics, as it is the case with
earthquakes. In wind engineering, on the other hand, the distribution of equivalent static loads
is only pertinent for standard situations and are extended with difficulties to more complex
structures like large roofs. Also shall we be concerned about the dubious use of gust factors
and the perpetual assumption of stationary wind.

Actually, the crux of the problem is the design of large and unique structures, like bridges,
large roofs or high-rise buildings, and the calling into question of usual assumptions. For this
kind of structures, codes and norms provide limited answers (even disregarded) and engineers
must revisit some theoretical statements leading to a correct modeling of the underlying
phenomena. In this context, dynamical analysis is central for a proper handling of the time
evolution of the loadings and the inertial forces, especially as structures become lighter, slender
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2 CHAPTER 1. INTRODUCTION

and larger.
The ordinary differential equation governing the motion of a structure, can be written in

a canonical form as

Mẍ + Cẋ + Kx + g(x, ẋ) = f(t) (?)

with x(t) the vector of nodal displacements and with M, C and K the mass, damping and
stiffness matrices, respectively. The vector g gathers nonlinear forces, while the vector f(t) is
the vector of external loadings. This equation describes the dynamics of any discrete multi-
degree-of-freedom (MDOF) structure. Thence, solving this equation is the underlying aim of
any structural dynamics problem. Alternatively to (?), because the dimension of x may be
large, a model reduction procedure may be applied, like the projection in modal basis.

Before highlighting the special features of (?) in our context, we would like to emphasize the
difficulties to deal with dynamics in civil engineering. First of all, the physical dimensions of
those problems may be impressive. For instance, the Millau viaduct, example in the following,
is about 2.5km long and 350m above the bed of the valley it overshadows. Such dimensions
are only encountered in civil engineering, never in mechanical engineering. Therefore, the
modeling of a structure, e.g. with finite elements, requires a large amount of elements, without
being able to go into the details of each connection. Secondly, the uniqueness of each major
construction implies necessarily a particular approach, because no try, no past error and no
prototype can be exploited to verify and to ensure the viability and the operationality of a
structure. The questions of safety and durability are of paramount importance and must be
addressed as exhaustively as possible at a design step.

The purpose of this work falls within the environment of this equation, providing some fur-
ther assumptions and specificities related to civil engineering applications. First, the nonlinear
forces are not discarded. We consider previously f(t) as an external loading corresponding
possibly to wind pressure on a building or ground acceleration at the foundation of a bridge.
Because these two actions are not just exogenous, our purpose becomes more complex. In-
deed, those excitations are affected by uncertainties. The random nature of these loadings
invite us to leave the usual deterministic description of structural dynamics and to embrace
a non-deterministic paradigm, taking into account all the sources of uncertainty in (?). In-
deed, the computation of structural responses in a non-deterministic framework is necessary
to quantify its resistance and serviceability in a risk assessment.

The purpose of this dissertation consists in developing and improving methods to compute
the probabilistic response of structures subject to random loadings. Now we briefly highlight
the sources of nonlinear behaviors and uncertainties in civil engineering.

Nonlinear behavior in civil engineering

The most suitable definition that can be given to nonlinearity is just to be the opposite to
linearity : a system is thus said to be nonlinear, provided it is not linear. Therefore the
superposition principle does not hold. In physical systems, the existence of nonlinear forces
causes important difficulties. We limit ourselves by mentioning that nonlinear systems are
prone to particular phenomena such as bifurcation, period-doubling or chaos. In spite of their
great importance in system theory, those mathematical concepts are not central in this work.
We must just point out that the superposition principle being broken, the Fourier analysis and
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the classic modal projection cease to be valid. In random dynamics, the question is not only
to superimpose responses, but random processes, making the problem much more complex
from a statistical point of view.

What are the main sources of nonlinearity in civil engineering? First, large displacements
in structures constitute the so-called geometric nonlinearities, provided the material remains
elastic. More advanced are the material nonlinearities, namely plastic deformations or cracks.
At the foundation level, the soil constitutive laws and the soil-water interaction lead also to
consider complex behaviors, which are in practice simplified and modeled by nonlinear springs
at this level.

In the context of structural dynamics under extreme natural loads, structural nonlinear
behaviors must be taken into account. For instance, the plasticity is an advantageous source
of energy dissipation, sought and controlled in earthquake engineering and risk mitigation.
Some devices with nonlinear behavior may also be used in order to mitigate wind hazard, like
tuned mass dampers or tuned liquid column dampers. In bridge engineering, viscous dampers
with nonlinear constitutive laws are used to mitigate lateral vibrations of bridge deck. Those
examples of nonlinearity will be consistently used in the illustrations of this manuscript.

Uncertainty in civil engineering

Before identifying the different origins of uncertainty in civil engineering structures, as ex-
haustively as possible, the meaning and the origin of the word uncertainty or certainty is first
briefly discussed.

The word certain in both French and English comes from the old Latin cerno, meaning
both perceiving and deciding. In Cicero’s quotation “ne nunc quidem oculis cernimus ea
quae videmus” 1, the Latin appeals to sensitive experience, while in “amicus certus in re
incerta cernitur” 2 the classical author invokes the discriminating intelligence. Therefore,
the etymology relates the word certainty to a decision in the judgment of truth, taking into
account both intellectual arguments and empirical experiences. Uncertainty is thus not only
related to a lack of knowledge.

The sources of uncertainty are generally sorted out into two main categories. First, the
endogenous uncertainties are the ones inherent to the lack of knowledge about the studied
structures. For instance, in a steel structure, the material properties as the Young modu-
lus, the yield stress or the density are non-deterministic quantities. In the semi-probabilistic
approach exposed in the Eurocodes, the yield stress is divided by a coefficient (greater than
one) depending on the material in order to take into account the uncertainty on this property.
Anticipating the following Chapter, we may say that in (?) the structural matrices and vectors
are functions of uncertain variables. This source of uncertainty is not amply addressed in this
work.

Our work is more focused on the second kind of uncertainty: the exogenous sources. They
make reference to the effects of random excitations on the response of a structure. Hence,
the uncertainty in the structural response may be due to uncertainty in the structure (left-
hand side of (?)) and to randomness in the external loadings (right-hand side of (?)). The

1”Maintenant même ce ne sont pas nos yeux qui distinguent ce que nous voyons”
2”L’ami sûr se reconnâıt dans les circonstances peu sures”
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methods used to perform dynamical analysis considering those different sources are completely
different, though they are not incompatible fortunately.

Many loadings encountered in civil engineering may be considered as uncertain : wind
blowing on a tower, earthquake shaking a bridge, crowd walking on a footbridge or waves
impacting a jetty. In this work, we will focus on wind pressure and seismic waves. For wind
loads, the uncertainty is such that if we consider two different locations on a same structure,
even if the mean wind velocity is the same, the wind profile considering the turbulence will
be different. Measured wind velocities will be neither perfectly correlated, neither totally
independent. Though the wind is usually assumed to be a stationary loading, some aeolian
phenomena do not have this property. For earthquakes, the uncertainty comes from the propa-
gation of seismic waves through the different soil layers which are random media. Considering
now an earthquake shaking a multi-span bridge, like for wind velocity, the ground accelera-
tion measured on a pile is neither perfectly correlated, nor independent of the acceleration
measured at another pile. This is an additional source of uncertainty that must be modeled.

Probabilistic analysis in nonlinear dynamics

Performing analysis in a non-deterministic framework is a complex topic, also from a theo-
retical point of view. Actually, a fallacious belief about uncertainties would be to directly
associate them with probability. This is not necessarily the case ! There exist other fam-
ilies of methods to quantify and analyze uncertainties different from the probabilistic ones.
Fuzzy arithmetic or data set structure are two different examples that can be applied in non-
deterministic mechanics. However, in this work, we stay true to the probabilistic approach
for both intellectual and empirical reasons. Our choice is motivated by this rigorous approach
based on the measure theory, as explained in Chapter 2. Moreover, the relation between
theory and experience is non-subjective. For instance, a buffeting analysis requires to know
an estimation of the mean wind velocity on a given site. This velocity is not decided in ab-
stracto because of a lack of knowledge, but it could be effectively related to real anemometer
measurements.

The probabilistic analysis gathers all the numerical and analytical methods to compute the
statistics of a structural response. The term statistics also gathers a large range of properties
and characteristics, like the probability density function, the cumulants, the statistical mo-
ments or the power spectral density of a process. The probability density function is the more
complete information about the statistical distribution of a structural response between dif-
ferent instants. Nonetheless, it is computed with difficulties, especially for nonlinear systems,
a reason for rather computing some cumulants and moments.

Indeed, it is well-known that linear systems driven by Gaussian processes respond with
Gaussian processes, while nonlinear systems respond with non-Gaussian ones in any case. We
can draw a conceptual parallel between non-Gaussianity and nonlinearity, because a random
variable is said to be non-Gaussian, provided it is not Gaussian. Furthermore, the linear
combination of Gaussian variables remains Gaussian. This distinction is important, because
Gaussian variables are characterized unequivocally by its first two moments, while the poly-
morphism of non-Gaussianity is an issue.

We can identify three notable families of methods used to perform stochastic analysis of
nonlinear structures.
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Based on the Itô calculus, the Fokker-Planck-Kolmogorov equation (FPK) is a determin-
istic convection-diffusion equation describing the time evolution of the probability density
function (pdf) of a random state vector. This equation is applied to both linear and nonlinear
systems and in both transient and stationary settings. Then comes Monte Carlo simulation
(MC), an inductive method consisting in generating samples of excitations and endogenous
variables and then to compute response samples with deterministic solvers (e.g. Runge-Kutta,
Newmark). Finally, the equivalent statistical linearizations are approximate methods, replac-
ing a nonlinear system by an equivalent linear one according to some statistical criteria. By
the linearization approach, the linearized system takes advantage of all the properties of lin-
earity, like the analysis in the frequency domain or in a modal basis. Nonetheless, the spectral
methods cannot be applied in transient dynamics without some hypotheses. The extended
spectral representation consistent with unsteady processes is usually known as evolutionary
spectra. The mathematical statement of all those methods are given in Chapter 2.

One or another method may be used depending on different criteria, especially the size of
the problem but also the required statistical data and whether the process is stationary, or
not.

FPK equation MC simulation Equ. Linearization

Size
small possible

possible
inappropriate

large forget it ! pertinent

Transience adapted possible challenging

Data
variance

ideal possible
targeted

pdf too approximate

Table 1.1: Summary of the usual stochastic methods to perform nonlinear structural analysis
and their domain of applications.

Table 1.1 highlights the relations between methods and criteria. First, we see that any
method can be used to perform transient analysis. The size of the problem is a leading
criterion, but it must be interpreted with regard to the target statistics, namely the mean,
the standard deviation or the extremes. For small size systems (up to 2 degrees of freedom),
the resolution of FPK equation gives the time evolution of the response pdf, the richest
statistical characteristic. On the other hand, the equivalent linearization allows to deal with
large size systems, provided we are just interested in estimating the first two cumulants of
its random response. Table 1.1 also shows that Monte Carlo simulation can be used anyhow.
At this stage, no consideration has been formulated about the efficiency of the method and
about the nature of the loadings, except its transience. This is obviously too restrictive.

Based on these observations, we can now expose the ambitions of this work in the improve-
ment of computational methods for transient probabilistic analysis of structures presenting
nonlinear behaviors.
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1.2 Motivations and scientific approach

From the previous Section, we know that Monte Carlo method is the most general one. It
can be applied to any situation, no matter the size or the statistics. However, from the point
of view of the efficiency, this method may loose its transversality and alternative techniques
may find a new interest. By efficiency, we mean the capability to compute a statistical
characteristic in a limited computational time. The efficiency is thus completely different
from the possibilities expressed in Table 1.1.

In order to compete with the simulation approach, improvements may be sought for small
and large systems respectively,

1. for the resolution of the FPK equation

2. in the developments of equivalent statistical linearization combined with evolutionary
spectral analysis,

Both FPK equation and equivalent linearization are well-known methods, amply studied in
the past and considered sometimes as old-fashioned. However, as said Marcel Duchamp, “I
force myself to contradict myself in order to avoid conforming to my own taste”, inviting us
to question our attainments and our acquaintance. We are thus not concerned about those
opinions, because improvements for those methods may lead to make them more efficient and
so usable by professional engineers and practitioners. It should be noticed that this is not
the case yet, especially for the evolutionary spectral analysis, while the resolution of FPK
equation remains a more exploratory topic.

Since the challenges are different at these two scales, we separately focus on each prob-
lematic, a reason for presenting the motivations and the scientific approach in two distinct
parts.

Part I

For large structures subject to random loadings, the main drawback in Monte Carlo simula-
tion is the generation of consistent realizations of the loadings. We pointed out previously
in this Introduction that wind pressures or ground accelerations in a same event cannot be
assumed to be independent or perfectly correlated. Actually, pressures and accelerations are
coherent random fields, i.e. the randomness depends on both time and space. The generation
of coherent samples of wind velocities or ground accelerations requires thus to cope with large
matrices to take into account the whole coherence in the field. This operation is computation-
ally intensive. Furthermore, those samples are mainly built up according to fields modeled
in the frequency domain. Thence, this fact invites us to consider the frequency domain (or
spectral) approach with more interest.

In a linear stationary analysis, the spectral approach is the key method. Indeed, the
linearity allows to reduce the model by a projection within a linear modal basis. Then,
the analysis can just be carried on in the frequency domain thanks to a Fourier transform.
Since we work with nonlinear structures in a non-stationary setting, these advantages are not
a priori preserved in our applications. Taking advantage of linearity and of the frequency
domain, our motivation is to develop a method based on rigorous assumptions, that will be
computationally efficient, as accurate as possible and applicable in civil engineering.
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In civil engineering precisely, transient loadings are usually modeled by evolutionary spec-
tra or evolutionary processes, i.e. an embedded stationary process modulated by a time
envelope. Combining evolutionary spectral analysis with equivalent linearization will thus
provide a formalism able to gather the aforementioned advantages. However, model reduc-
tion technique based on a linearized modal basis may be inefficient, because it should be
updated many times throughout the resolution. This question is addressed in this work by
relaxing some requirements on this basis and by using an asymptotic expansion method.

Actually, the cornerstone of this part is to use analytical methods, more precisely pertur-
bation approaches, to circumvent computational drawbacks and theoretical weaknesses. The
analytical developments must be seen as complementary tools to numerical programs, because
intermediate closed-form expressions can be derived in order to improve the efficiency and the
accuracy of the proposed method. Moreover, a multiple scales approach will allow to bridge
the gap between the linear non-stationary analysis and the nonlinear one in civil engineering
applications.

Part II

For small structures subject to random loadings, the main drawback with Monte Carlo meth-
ods is the large number of simulations required to estimate low probabilities. Because the
FPK equation models the time evolution of the pdf, being able to solve this partial differential
equation leads to accurately know high and low probabilities. However, the solution of FPK
equation is really complex, a reason why we propose to use a novel numerical method to
circumvent some of the well-known limitations.

In this work, we are mostly concerned by the drawbacks of existing numerical methods
(anyhow analytical ones are too limited) to ensure the positivity of the pdf and the vanishing
condition in the far field. Furthermore, in transient dynamics, the shape of the pdf can be
highly distorted compared with the initial distribution, while covering large zones of the state
space.

Motivated by these limitations, we propose to investigate a numerical method in a La-
grangian paradigm with the so-called Smoothed Particle Hydrodynamics (SPH) method.
Namely, this method discretized any scalar field by a set of particles moving within the state
space according to some governing laws. Besides the aforementioned difficulties, this method
must be computationally competitive, efficient, accurate and stable. We do not pretend being
able to solve a complete civil structure with the proposed method, but we humbly aim to
develop a formalism enabling to deal with large systems. This part of the work is mainly
exploratory with regard to classic problems encountered in civil engineering.

1.3 Organization of the dissertation

This manuscript is divided into two main parts : Perturbation Methods in Nonlinear Evolu-
tionary Spectral Analysis and A Lagrangian Method for Fokker-Planck Equation. These parts
are organized in such a manner that each part can be read completely independently from
the other one. Before these two parts, the Chapter 2 summarizes the theoretical background
necessary to understand our developments. It contains basic statements about the different
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methods and some elements of bibliography. We now briefly expose the internal organization
of each part.

The first part of this manuscript is divided into three chapters and a conclusion. The
first Chapter Stationary Spectral Analysis, exposes the concept of asymptotic expansion-based
method applied to the modal transfer matrix of a reduced linearized system in a stationary
setting. This method is validated for the analysis of a large linear structure, then it is ap-
plied to the development of a second-order numerical solver to perform equivalent statistical
linearization. This asymptotic method is then used in the second Chapter Linear Evolution-
ary Spectral Analysis, to circumvent some difficulties encountered in the computation of the
impulse response matrix of a linear coupled structure, matrix required in the analysis with
evolutionary processes. Finally, these first two chapters smoothly lead to the third one en-
titled Nonlinear Evolutionary Spectral Analysis, in which we demonstrate that an equivalent
linearized system in a transient dynamics can be seen as a piecewise linear time-invariant
system provided that some clearly separated timescales can be identified. In all those Chap-
ters, applications in civil engineering are provided in order to illustrate and to validate the
developments.

The second part of this manuscript is similarly divided into three chapters and a con-
clusion. The first Chapter, Fokker-Planck Equation: Issues and Challenges, briefly exposes
the challenges and the issues in solving the Fokker-Planck equation with regard to existing
methods. Afterward, the numerical method we propose to use is widely described and some
particularities inherent to our problem are highlighted. Finally the last Chapter, entitled
Applications, gathers a large range of illustrations in civil engineering and in other fields of
science.



Chapter 2

Background and Methods in
Probabilistic Analysis

Thus mathematics may be defined as the subject in which we never know
what we are talking about, nor whether what we are saying is true.

Bertrand Russell

2.1 Basics of stochastic calculus

2.2 Spectral analysis and stochastic processes

2.3 Fokker-Planck equation for diffusive processes

2.4 Monte Carlo simulation

2.5 Equivalent statistical linearization

2.6 Uncertain structures

2.7 Summary

9
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2.1 Basics of stochastic calculus

Since it pertains to well-established theoretical purposes, this introduction is amply inspired
by trustworthy references like [Grig 02, Okse 03, Lin 04b, Le M 10, Kroe 11]. The objective
of this Section is not only to recall the fundamental mathematical concepts that are used
throughout this document, but also to serve as a general introduction of the nomenclature.
This nomenclature is closely followed in the whole document so that the reader might want
to come back to this Chapter occasionally if necessary during the reading to formally precise
some concepts.

2.1.1 Probability theory and probability space

Probabilistic structural dynamics, the main topic of this work, is an application to the dy-
namics of structures of the theory of probability. The word probability comes from the old
Latin probabilitas, meaning the verisimilitude or the plausibility of an event. In essence, a
probable event shall be defined by opposition to the sureness of occurrence, by introducing
the nuance between the impossibility and the certitude. Although this definition uses a de-
scription between two extremes, the theory of probability is built upon a strong mathematical
foundation aiming at measuring the likelihood of an event. This introduction, with a view to
contextualization of the topic, summarizes the philosophy of the probability theory.

The first reference to the probabilitas is found in a translation by Cicero of the Aristotle’s
Topics [Schn 76]. At that time, this vocable designates the plausibility of an opinion or an idea
provided it is shared by a large number of people... a first view in the law of large numbers?
The question asked by the probabilitas is an old philosophical and theological topic. Indeed,
the probabilism, heir of the skeptical Academy of Plato, expresses the morality to follow an
opinion in minority, provided it is probable. Far from that, Russell refuses to consider a well-
established scientific results as absolutely true, but rather as sufficiently probable to undertake
rational actions. These reflexions are yet far from the structural dynamics, but they show the
complexity of understanding the conceptual notion of probability.

Generally, the modern concept of probability is supposed to have been introduced by the
famous mathematicians Blaise Pascal and Pierre de Fermat in the 17th century, when they
were investigating the problem of points. The paternity of the concept of probability remains
an open question, but surely the main scientific contributions that makes the probability
theory a new branch of mathematics are the works of Andrëı Kolmogorov in 1933 [Kolm 33].

The theory proposed by Kolmogorov considers random experiments modeled by a proba-
bility space on which a probability measure is defined. A probability space is composed by a
triplet (Θ,F,P), where

� Θ is the sample space : the set of all possible outcomes of the random experiment.

� F is a non-empty collection of all subsets (called event) of Θ to which a probability
may be assigned. Such a collection, called σ-algebra on Θ contains Θ itself, is closed
under complements (A ∈ F⇒ Ā ∈ F) and is closed under countable union (Ai∈I ∈ F⇒⋃
i∈I Ai ∈ F).

� P is a probability measure, quantifying the likelihood of a random outcome.
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The measure P of an event Ai ∈ F is characterized by three axioms : the non-negativity of
the measure P(Ai) ≥ 0, the countable additivity of the measure P (

⋃
iAi) =

∑
i P (Ai) with

Ai ∩ Aj 6=i = ∅ and the unity of the total measure P(Θ) = 1. The first two axioms are neces-
sarily required to define a measurable space. The last axiom makes all the specificity of the
probability theory with regard to the theory of measure. As said in [McNe 05], “Kolmogorov’s
system translates our intuition about randomness into a concise, axiomatic language and clear
rules”. Indeed, this system has paved the way to the modern theory of probability and to the
stochastic calculus hitherto.

The theory of probability, even considered as a mathematical theory, is not exempt from a
part of interpretation. A probability may aim at characterizing a same event repeated many
times or at measuring the verisimilitude of an event occurring one time in given physical con-
ditions. The first approach, the frequentist philosophy, relates the probability theory and the
basement of the statistical methods through the law of large numbers. The second interpreta-
tion, the Bayesian approach, is a measure of the “subjective uncertainty” [Le M 10] inherent
to an event. An example of the Bayesian philosophy is the Bayesian model updating, in which
few available experiments are used to fit model in order to reproduce real measurements or to
identify properties of a model. Fortunately, this interpretation is not major in the presentation
of the theory of probability and the stochastic calculus.

2.1.2 Random variables and stochastic processes

On the probability space (Θ,F,P), a function X(θ) : Θ 7→ R is called a R-valued random
variable. Hence, a random variable may be interpreted as a mapping of the sample space Θ
into R, or a map from (Θ,F) to (R,B(R)), two measurable spaces. Here, the Borel σ-algebra
B(R) is the collection of all the open intervals in R (noted B in the following). The probability
measure of X, called the distribution function, is given by

Q(B) = P(θ ∈ Θ : X(θ) ∈ B) (2.1.1)

with B ∈ B and Q the probability measure of (R,B). Equation (2.1.1) may seem to be arcane
for non-insiders. Actually, it just means that the probability measure in the space (R,B) can
be related by the inverse mapping of X to the probability measure of the original space (Θ,F).
The cumulative distribution function (cdf) of X, noted FX(x) : R̄ 7→ [0, 1], is defined as

FX(x) = Q([−∞, x]) = P ({θ ∈ Θ : X(θ) ≤ x}) = P(X(θ) ≤ x) (2.1.2)

and is right-continuous and increasing. Equation (2.1.2) is a key point in the theory of
integration over random variables. The expectation operator can thus be defined as

E[X] =

ˆ
Θ
X(θ)dP(θ), (2.1.3)

which measures the probability weight related to the value X(θ) of the random variable. This
operator is linear and monotonic (among others) and it allows to define an L2-space gathering

the integrable random variables, such that ‖X‖2 =
(
E[X2]

)1/2
exists and is bounded. The

integrability of random variables can be checked for Lp-space with p ∈ [1,∞].
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For absolutely continuous random variables, the expectation operation may be calculated
by use of the probability density function (pdf) defined as

ψX(x) =
dFX(x)

dx
, or, FX(x) =

ˆ x

−∞
ψX(y)dy (2.1.4)

such that, for any measurable function g(X) : (R,B) 7→ (R,B), the expectation operator may
read

E[g(X)] =

ˆ
Θ
g(X(θ))dP(θ) =

ˆ
R
g(x)dQ(x) =

ˆ
R
g(x)dFX(x) =

ˆ
R
g(x)ψX(x)dx (2.1.5)

Given the previous definition, there is clear evidence that an Rd-valued random vector
is a function X(θ) : Θ 7→ Rd with d the dimension of the vector, i.e. a set of d random
variables Xi(θ). The joint cdf is

FX(x) = P(Xi ≤ xi, i = 1, ...d) (2.1.6)

with x = (x1, ...xd). Furthermore, a joint probability density function and a marginal pdf
can be defined as

ψX(x1, ...xd) =
∂dFX(x)

∂x1 · · · ∂xd
, and ψxi(xi) =

ˆ
Rd−1

ψX(x)dx|i (2.1.7)

respectively, with x|i meaning all the components of x except the i-th one [Le M 10].

The concept of random variable is not sufficient to describe and model efficiently phenom-
ena encountered in finance and science. Usually, a time or space dependence must be taken
into account. So, the concept of random variable is naturally extended to the concept of
stochastic process. Grigoriu considers the vector X as an Rd-valued stochastic process
on a probability space (Θ,F,P), provided X(t, θ) : T × Θ 7→ Rd is an Rd-valued random
variable (i.e. X(t, θ) ∈ F) for each t ∈ T (⊂ R+). In addition to this “vertical” definition with
t interpreted as a parameter, the “horizontal” view results from fixing the variable θ to obtain
a realization (or a path) of the process.

Assuming now time and space dependencies, the process X(t,y, θ) : T × Y × Θ 7→ Rd is
said to be a stochastic field. For instance, the vector y ∈ Y gathers the coordinates of the
structural nodes required to model the spatial coherence in a wind field.

All the concepts presented in the context of random variables are extended to stochastic
processes. For instance, the cdf and pdf of random variables become time-dependent for
stochastic processes. The next part of this Section is devoted to the definition of classes
of stochastic processes. Far from being exhaustive, this list gathers the classes required to
understand the mathematical developments explained in the following.

A stochastic process is said to be

� a strongly stationary process, if the distributions of the n-dimensional random vec-
tors (X(t1), . . . X(tn)) and (X(t1 + ∆), . . . X(tn + ∆)) are identical, for any n, distinct
times ti and time shift ∆ ;

� an ergodic process, if ensemble averages equal time averages, i.e. E[g(X(t))] =

limT→+∞
1
T

´ +T
2

−T
2

g(X(s))ds almost surely, for any real L1-function g(x) ;
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� a Gaussian process, if the distributionN (µX, σX) of any n-dimensional random vector
X = (X(t1), . . . X(tn)) is Gaussian for any n ;

� a Markov process, if it is a one-step memory process, i.e. if for any t ∈ T and
∆ ≥ 0 the process satisfies the property P(X(t + ∆)|Ft) = P(X(t + ∆)|X(t)), where
the filtration Ft collects the history of the process until time t ;

� an independent increment process, if the random variables X(t)−X(v) and X(u)−
X(s) are independent for s ≤ u ≤ v ≤ t (also valid for vector) ;

� an orthogonal increment process, if the real or complex-valued process Z(t) is such
that E[(Z(u)− Z(s)) (Z(t)− Z(v))∗] = 0 for s ≤ u ≤ v ≤ t with ∗ denoting the
conjugate transpose operator ;

� a martingale, if the process X(t) defined on L1(Θ,F,P) is Ft-adapted (i.e. X(t) ∈ Ft)
and E[X(t)|Fs] = X(s) with ∀ 0 ≤ s ≤ t, in other words X(t) is a fair game.

2.1.3 Itô’s calculus and stochastic differential equations

The stochastic calculus is a branch of the theory of probability. After having defined the
components of the stochastic calculus, the arising question pertains to their manipulations in
the construction of a formal stochastic analysis. Indeed, the Itô calculus, the historical basics
of stochastic calculus proposed by Itô in the 50’s, starts with the definition of stochastic
operations on a fundamental process, called the Brownian motion or the Wiener process.

The Brownian motion B(t) is a stochastic process, almost surely continuous in time such
that B(0) = 0 and the increments are independent, stationary and Gaussian, i.e. that B(t)−
B(s) = N (0, t− s). It is generally understood as the continuous extension of a random walk.
By this definition, this process is obviously a martingale, but it is nowhere differentiable and
the variation between two times are unbounded. Therefore, the definition of a Riemann-
Stieltjes integral for a stochastic process X(t) on a Brownian motion, noted

´ T
0 X(t)dB(t),

is senseless, because the quadratic variations of the Brownian motion tends to t and not
to zero as expected for a deterministic integral. However, the Riemann-Stieltjes integral is
well-defined for X(t) a deterministic function, if the integral is interpreted path by path.

Using the Darboux sum, a stochastic integral of a random process on a Brownian motion
can be defined as

ˆ T

0
X(t)dB(t) = lim

n→∞

n−1∑
k=0

X(t?k) (B(tk)−B(tk+1)) (2.1.8)

with 0 = t0 < · · · < tn = T and where the process X(t) is F[0,T ]-adapted and E[
´ T

0 X2(t)dt] <
∞. The convergence is thus ensured in the mean squared sense. The choice of t?k is crucial in
stochastic calculus. Indeed, the Itô integral is defined by t?k = tk−1 [Ito 51a, Ito 51b], while
the Stratonovich integral by t?k = 1

2(tk−1 + tk) [Stra 63]. To ensure the distinction between

these two operations, the Stratonovich integral is usually written as
´ T

0 X(t) ◦ dB(t).

In classic analysis, this choice does not affect the result of the integral. Avoiding some
developments, it can be shown that the Stratonovich paradigm preserves the Riemann-Stieltjes
calculus, while the Itô integral ensures that Equation (2.1.8) is a martingale [Okse 03]. The
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stochastic integrals can be generalized to martingales and semi-martingales, but it is beyond
the scope of the present work.

A process X(s, θ) : [0, t]×Θ 7→ Rd on (Θ,F,P) is said to be an Itô process or a diffusion
process, if it can be written in the form

X(t) = X(0) +

ˆ t

0
a(s, θ)ds+

ˆ t

0
b(s, θ)dB(s), (2.1.9)

where a(s, θ) and b(s, θ) are F[0,T ]-adapted, among others. Equation (2.1.9) is most of the
time written in a differential form

dX(t, θ) = a(t, θ)dt+ b(t, θ)dB(t), (2.1.10)

while the concept of derivative is senseless in stochastic calculus.
From the definition of an Itô process, the famous Itô differential rule (or Itô’s lemma)

can be introduced. If g(t, x) : R+ × R 7→ R is a deterministic function twice continuously
differentiable in R+ ×R, the process Y (t) = g(t,X(t)) is also an Itô process provided X(t) is
an Itô process. Furthermore, Y (t) admits the chain rule

dY (t) =

(
∂

∂t
g(t,X)

)
dt+

(
∂

∂x
g(t,X)

)
dX +

1

2

(
∂2

∂x2
g(t,X)

)
dX2 (2.1.11)

with dX2 given according to the rules (dB)2 = dt and (dt)2 = dB · dt = 0. The necessity
in the chain rule to take into account the second-order increment of X comes from the fact
that it contains first-order increments in time. With the Stratonovich integral, the classic
chain rule of deterministic analysis is recovered. From (2.1.11), it becomes obvious that Y (t)
is a martingale, if the term proportional to dt is equal to zero (memoryless transformation
[Grig 02]). The previous results are directly extended to n-dimensional space, such that for
X(t, θ) : R+ ×Θ 7→ Rn and

dX(t, θ) = a(t, θ)dt+ b(t, θ)dB(t), (2.1.12)

with a(t, θ) : R+ × Θ 7→ Rn, b(t, θ) : R+ × Θ 7→ Rn×m and B(t) an m-dimensional vector of
Brownian motions, the Itô lemma reads

dY (t) =

(
∂

∂t
g(t,X)

)
dt+

n∑
i=1

(
∂

∂xi
g(t,X)

)
dXi +

1

2

n∑
i,j=1

(
∂2

∂xi∂xj
g(t,X)

)
d (XiXj)

(2.1.13)
with (dBi · dBj)2 = δijdt and δij the Kronecker index.

In (2.1.12), the variable θ is used to define any source of uncertainty in the functions a
and b. However, a common case in mechanical engineering or in structural dynamics, is that
a(t,x) and b(t,x) are two deterministic functions modeling a physical system with x the
state variable of this system. Therefore, the uncertainty in the system originates from the
external Brownian motions transforming the deterministic vector x(t) into a random vector
X(t). Equation (2.1.12) becomes

dX(t) = a(t,X)dt+ b(t,X)dB(t) (2.1.14)
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and is thus called a stochastic differential equation (sde) in X(t). Uncertainties in the
model may also be taken into account without limiting the randomness in a and b to the
random vector X, such that

dX = a(t, θ,X)dt+ b(t, θ,X)dB(t). (2.1.15)

The coefficient a is the drift vector expressing the convection in the system, while the
matrix b is such that the product 1

2bbT is called the diffusion matrix. Existence and
uniqueness of the solution of (2.1.14) are amply exposed in [Okse 03]. The following Sections
of this Chapter deals with the particularization of (2.1.14) from the model of structures under
dynamical loading, to the models of random excitation in wind and earthquake engineering.
Then, the different resolution techniques of these equations are exposed.

2.2 Spectral analysis and stochastic processes

2.2.1 Spectral representation of a stochastic process

A random process X(t, θ) : R+ ×Θ 7→ Rn defined in L2(Θ,F,P) is said to be a real second-
order process. The second moment properties are defined as the mean vector and the
covariance matrix, i.e.

µ(t) = E[X(t)], Σ(t, s) = E
[
(X(t)− µ(t)) (X(s)− µ(s))T

]
(2.2.1)

respectively, and the correlation function

R(t, s) = E
[
X(t)X(s)T

]
(2.2.2)

with t, s ∈ R+. The assumption of second-order processes ensures the existence of these
integrals, while it is insufficient for the existence of higher-order moments. As a particular
case, a Gaussian process is a second-order process with well-defined and existing higher-order
moments, which can be expressed in terms of the first two moments.

In Section 2.1.2, strongly stationary processes have been defined. For second moment
properties, a less strict condition may be expressed such that the mean value is time invariant
(µ(t) = µ) and the covariance matrix only depends on the time lag between t and s. A process
satisfying this condition is said to be weakly stationary. Naturally, a weakly stationary
process is not stationary in the strict sense, unless it is Gaussian.

The spectral distribution and the power spectral density are two alternative ways to char-
acterize the second-order properties of such processes. Indeed, the Bochner theorem states
that, since R(τ) (with τ = t − s) is a positive definite function, the correlation function has
the frequency domain representation

(R(τ))ij =

ˆ
R
eιωτdSij(ω), (2.2.3)

where Sii, called the spectral distribution of Xi(t), is a real-valued, increasing and bounded
function, while Sij is a complex-valued and bounded function, called the cross-spectral dis-
tribution between Xi(t) and Xj(t). The matrix gathering the elements Sij is hermitian, such
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that Sij = S∗ji. In the strict sense of Bochner’s theorem, the increment Sij is a probability
measure or a spectral measure of the probability space.

If the functions Sij are absolutely continuous, the Riemann-Stieltjes integral (2.2.3) admits
the following expression

R(τ) =

ˆ
R
eιωτS(ω)dω (2.2.4)

with (S(ω))ij = dSij/dω. The matrix S(ω) gathering the elements (S(ω))ij , also hermitian,
is called the power spectral density matrix (psd); the elements (S(ω))ii are the unilateral-
psd’s and the elements (S(ω))ij are the cross-psd’s.

Since X(t) is a real-valued and weakly stationary process, continuous in the mean squared
sense for any time t, then a complex-valued process X̃(ω) with orthogonal increments can be
associated with X(t). They are related by the Fourier-Stieltjes integral

X(t) =

ˆ
R
eιωtdX̃(ω) (2.2.5)

existing at any time t in the mean squared sense too. The Bochner theorem emphasizes that
a time process with the aforementioned properties can be decomposed into a summation of
harmonics such that a random amplitude and a random phase given by dX̃(ω) corresponds
to every harmonic ω. The process X̃(ω) defined in the frequency domain is said to be the
spectral process associated with X(t). The spectral process has some noteworthy properties,
e.g. E[X̃] = 0. The definition of orthogonal increments is central in the characterization
of spectral processes. An orthogonal increment process involves a more restrictive concept
compared with an independent increment process. Applying the definition in Section 2.1.2,
the increments of X̃(ω) are said to be orthogonal, iif

E
[
dX̃(ω1)dX̃∗(ω2)

]
= SX(ω1)δ(ω1 − ω2)dω1dω2 (2.2.6)

with δ(ω) the delta-Dirac function. Hence, the covariance function, for a weakly stationary
process, reads

R(τ) =

ˆ
R2

eιω1τeι(ω1−ω2)tE
[
dX̃(ω1)dX̃∗(ω2)

]
(2.2.7)

and the assumption of orthogonal increment leads to

RX(τ) =

ˆ
R
eιωτSX(ω)dω. (2.2.8)

Equation (2.2.8) is the purpose of the Wiener-Khintchine theorem, which expresses that the
covariance matrix of a weakly stationary process and the power spectral density of this process
constitute a Fourier-pair. This theorem is thus a natural extension of the Bochner theorem
according to the assumption of orthogonal increments.
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2.2.2 Spectral analysis of linear systems

In linear system theory, the random vector X(t) can be seen as the response of a linear time
invariant system subject to a random force vector, such that

A(X(t)) = dF(t) (2.2.9)

with A a stochastic differential operator and dF an increment of force. In civil and mechanical
engineering, the differential operator A denotes basically the equation of motion. Since X(t)
is the response of a linear system, the spectral representation allows to interpret it as the
summation of different harmonics. These individual harmonics are the responses of the system
subject to individual harmonic forces, such that

X(t) =

ˆ
R
eιωtA(ω)dF̃(ω) (2.2.10)

with F̃(ω) the spectral process associated with a random force vector F(t), supposed to
be weakly stationary with µF =0. The transfer function A(ω) is the Fourier transform
associated with the differential operator A. The covariance matrix reads

RX(τ) =

ˆ
R2

eιω1τeι(ω1−ω2)tA(ω1)E
[
dF̃(ω1)dF̃∗(ω2)

]
A∗(ω2)dω1dω2 (2.2.11)

and the assumption of orthogonal increment allows to write

RX(τ) =

ˆ
R
eιωτA(ω)SF(ω)A∗(ω)dω (2.2.12)

with E[dF̃dF̃∗] = SFdω and SF the psd matrix of the force vector F. A random vector is
said to be coherent, if the out-of-diagonal elements of SF are not equal to zero. Comparing
(2.2.8) with (2.2.12), the famous spectral relation can be extracted

SX(ω) = A(ω)SF(ω)A∗(ω). (2.2.13)

Equation (2.2.13) is a well-known relation in stochastic spectral analysis; it relates the psd of
the response of a linear time-invariant system to the psd of the external forces by left- and
right-multiplications of this psd by the system transfer matrix.

All these developments establish the formal relation between the theory of stochastic
processes and the spectral analysis. The spectral approach in stochastic analysis has the great
advantage of releasing the analysis from the random experiment. Indeed, the random nature
of the excitation and of the system responses is described in terms of energy distribution in
the frequency domain. The recourse to trajectory simulations is avoided. As a linear system
driven by Gaussian loading responds with Gaussian processes, the response of the system in
a stationary setting is completely described by µX and ΣX(τ). As the natural extension of
the deterministic Fourier analysis to stochastic phenomena, the spectral approach is of course
the most amply used probabilistic method, because of its simplicity and its capability to deal
with large and complex structures.

As long as the system remains linear, the spectral approach may be applied to compute
higher-order moments by means of Volterra kernels, interpreted as higher-order transfer
functions. This question is briefly broached here, since details are given in Part I.
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2.3 Fokker-Planck equation for diffusive processes

The previous Section has addressed the resolution of linear time-invariant systems subject to
random loadings provided this loading is an orthogonal increment process. This case is too
restrictive, yet. Indeed, the spectral approach is mainly limited to linear systems driven by
Gaussian loadings, although some extends could be found for non-Gaussian loadings using
Volterra series. Based on Itô’s lemma, this Section briefly shows that a deterministic equation
can be extracted from the sde (2.1.14) in order to compute the time evolution of the statistics
of the random vector X(t). The system modeled by the sde may be linear or nonlinear,
time-invariant or not.

The Fokker-Planck equation, named in honor of A. Fokker [Fokk 14] and M. Planck
[Plan 17], is a deterministic partial differential equation. It describes via a convection-diffusion
equation the time evolution of the pdf of a diffusion process conditioned by an (random) initial
condition. A corollary of the Fokker-Planck equation is the (backward) Kolmogorov equation
which describes the time evolution of this pdf, but in terms of the initial conditions. The
Fokker-Planck equation is sometimes called the forward Kolmogorov equation. Because they
describe the same phenomenon in the same manner, provided some minor adaptations, the
equation is referred toas the Fokker-Planck-Kolmogorov equation in the following, noted
FPK equation.

Some comments and explanations, inspired from [Risk 96, Grig 02, Lin 04b], are given in
this Section. Considering X(t, θ) : R+ × Θ 7→ Rn a random vector on a probability space
(Θ,F,P) satisfying the sde (2.1.14), the Itô lemma (2.1.13) may read

g(X(t))− g(X(0)) =

ˆ t

0

n∑
i=1

(
ai(s,X)

∂g(X)

∂xi

)
ds+

ˆ t

0

n∑
i,j=1

(
Dij(s,X)

∂2g(X)

∂xi∂xj

)
ds (2.3.1)

with a deterministic function g(x) : Rn 7→ R and D(t,x) = 1
2bbT . Both members are derived

with respect to time and then the expectation is calculated, such as

∂

∂t
E[g(X)] =

n∑
i=1

E

[
ai(t,X)

∂g(X)

∂xi

]
+

n∑
i,j=1

E

[
Dij(t,X)

∂2g(X)

∂xi∂xj

]
. (2.3.2)

Equations (2.3.1) and (2.3.2) result from simplifications that are beyond the scope of this pre-
sentation1. Developing the expectation operator in terms of the probability density function
(2.1.5), integrations by parts allow to highlight the existing conditions on the drift vector a
and the diffusion matrix D,

lim
‖x‖→∞

(ai ψ(t,x|x0)) = lim
‖x‖→∞

∂xi (Dij ψ(t,x|x0)) = lim
‖x‖→∞

(Dij ψ(t,x|x0)) = 0 (2.3.3)

for i, j = 1, . . . n and ∀t ∈ R+, with ψ(t,x|x0) : R+ × Rn 7→ R+ the probability density
function of X at time t, knowing the initial distribution ψ(0,x0). The conditional probability
is omitted here, as there is no ambiguity. The existence conditions (2.3.3) express actually

1Actually, the elements dBi (i = 1, . . . n) in (2.1.14) are local martingales, so the expectation operator is
equal to zero.
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that the decay of the pdf defined on an unbounded state space must be greater than the
functions in the drift vector and the convection matrix.

The integration by parts aims at extracting the function g(x) out of the derivative opera-
tors in (2.3.2). After some manipulations, Equation (2.3.2) yields

ˆ
Rn

 ∂

∂t
ψ(t,x) +

n∑
i=1

∂

∂xi
(ai(t,x)ψ(t,x))−

n∑
i,j=1

∂2

∂xi∂xj
(Dij(t,x)ψ(t,x))

 g(x)dx = 0,

(2.3.4)
which should be satisfied independently of g(x), so the factor in brackets is equal to zero. The
Fokker-Planck equation is extracted from (2.3.4), such as

∂

∂t
ψ(t,x) +

n∑
i=1

∂

∂xi
(ai(t,x)ψ(t,x)) =

n∑
i,j=1

∂2

∂xi∂xj
(Dij(t,x)ψ(t,x)) . (2.3.5)

The deterministic nature of the FPK equation highlights the possibility to use non-
stochastic techniques in order to solve random problems, under some assumptions.

The discussion in Section 2.1.2 between the Stratonovich and Itô integrals has here a great
significance. Indeed, the demonstration proposed hereinabove is based on the Itô lemma, so
on the Itô assumptions on the stochastic integral. As in (2.3.5), the FPK equation is written
in the Itô paradigm. However, systems and structures are usually modeled by ordinary differ-
ential equations, i.e. in the Stratonovich sense. Adaptions are thus required to consistently
jump from a paradigm to another. The Wonk-Zakai correction term [Wong 65] corrects some
coefficients to ensure the similarity between these two approaches. In Itô’s sense, Equation
(2.3.5) reads

∂

∂t
ψ(t,x) +

n∑
i=1

∂

∂xi
(ãi(t,x)ψ(t,x)) =

n∑
i,j=1

∂2

∂xi∂xj
(Dij(t,x)ψ(t,x)) , (2.3.6)

with ãi = ai + 1
2

∑
j,k bjk (∂xjbik). This later term, known as the Wonk-Zakai term, only

affects the drift coefficients and it shows that the distinction between the two paradigms is
noteworthy only if the matrix b defined in Section 2.1.2 depends on x. This means that the
distinction should be clearly made between the two stochastic integrals only in presence of
some kind of parametric excitations.

Assuredly, the FPK equation has received a serious attention in the last decades, because
the pdf is the most complete statistical description of a random vector. Knowing the tran-
sient pdf of a process opens a lot of perspectives. For instance, information about the tails
is required in reliability problems [Kiur 96] and risk analysis [McNe 05]. However, some dif-
ficulties occurring in the resolution of the FPK equation may be emphasized without endless
speeches and developments. Indeed, few analytical solutions exist for convection-diffusion
equation, especially in transient regime. From a numerical point of view, the positivity of the
pdf must be ensured and managed in high-dimensional and unbounded state space. This is
called the curse of dimensionality. Furthermore, the model of filtered or coherent excitations
with Itô’s formalism requires additional equations in the state space and therefore increases
the dimension of the whole space in which the FPK equation is solved.
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These are some drawbacks of the deterministic approach via the FPK equation. However,
the field of research remains challenging, provided the curse of dimensionality can be broken,
the FPK equation is an efficient tool for problems in mechanics or civil engineering. Keeping
cold head, the FPK equation is not a tool for analyzing random vibrations of large dimen-
sional structures, efficient reduction methods must be applied to the model before solving
this equation. Actually, a large part of this work has been devoted to the resolution of this
equation taking into account its own particularities and some of the exposed drawbacks. All
those details are deeply explored in Part II.

2.4 Monte Carlo simulation

The philosophy of Monte Carlo simulation is completely different from the two previous meth-
ods. Although the spectral approach and the FPK equation are applied to solve systems driven
by uncertain loadings, nowhere the randomness inside the problem is used, e.g. through the
concept of random experiment.

Another approach can consist in using consistent information about processes (e.g. psd
and pdf) to generate samples in accordance with the spectral and the statistical properties
[Kroe 11]. Driving samples input through a system leads to build up a set of random out-
puts. From this set, spectral and statistical properties are post-processed. The theoretical
background of Monte Carlo simulation is mainly the law of large numbers [Grah 11]. From
another viewpoint, Monte Carlo simulation is related to an empirical conception of stochastic
problems: a random experiment, characterized by some properties, is repeated as many times
as required according to some convergence criteria [Grah 11] and properties are determined
by induction. The two methods previously exposed may be more considered as deductive.

Though it is based on basic concept, the application of Monte Carlo approach is closely
tied to the improvement of computational power. In earthquake engineering, the method has
been first applied by Shinozuka [Shin 72]. Since the method has been improved and amply
applied in wind [DiPa 01, Cara 06] and earthquake engineering [Shin 91, Shin 96]. As it uses
deterministic solvers (e.g. Newmark, Runge-Kutta), the Monte Carlo methods are considered
as the only feasible method to perform random analysis of large-dimensional structures. This
opinion is also shared for nonlinear and/or transient dynamics, because the FPK equation
suffers from the curse of dimensionality and the spectral approach is bounded to linear(ized)
systems. However, the use of Monte Carlo simulation requires useful precautions, because
some drawbacks that can spoil the numerical efficiency must be pointed out.

As it is grounded on the law of large numbers, the convergence to low probability can be
an issue, even if the computational efficiency has not ceased to increase these last decades.
For instance, in reliability theory in which events with low probability of occurrence are
considered, the number of samples increases inversely with the probability to measure. About
the convergence in probability law, the computational burden may increase especially as the
process is not ergodic, or more trivially non-stationary.

Then, the operation of sampling, i.e. the generation of samples of the coherent random
vector f(t) knowing its psd Sf (ω) may also become an heavy computational task, especially for
large-dimensional excitation fields. For Gaussian processes, the whole information is contained
in the mean vector and the psd. For non-Gaussian processes, the distribution is characterized
by more than the first two moments and by higher-order spectra [Sche 80]. However, in most
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of the cases, non-Gaussian generators do not take into consideration the higher-order spectra.
Generally, an approach consists in applying a nonlinear geometric transformation to Gaussian
processes in order to create the non-Gaussianity in the process [Deod 01]. This viewpoint is
the one also used to generate wind pressure : the wind is supposed to be a Gaussian process
generated with regard to a given psd, then a nonlinear transformation is applied that makes
the wind pressure highly skewed.

Generation of coherent random fields
The generation of Gaussian random processes from a coherent power spectral density is a

key problem in structural dynamics. Different methods have been proposed, but two of them
go down in memory. First, Shinozuka [Shin 72] uses a Cholesky decomposition of the cross-psd
matrix at each frequency in order to determine an amplitude and a phase for each harmonic
both frequency dependent, then a random signal is created by summing those harmonics with
additional random phases. Another method, more described hereinafter is proposed by Di
Paola [DiPa 01] for the digital simulation of wind field history, but it can be applied to seism
as well. The method is here exposed in a general context.

Let consider an ergodic Gaussian random field f(t,y, θ) : R+×Y ×Θ 7→ Rn characterized
by its cross-psd matrix Sf (ω) : R 7→ Cm×n. The spectral decomposition of this matrix is given
by

Sf (ω) = Ξf (ω)Λ2
f (ω)Ξ∗f (ω), (2.4.1)

with Ξf (ω) : R 7→ Cn×n gathering the eigenvectors of Sf (ω) and the diagonal matrix Λ2
f (ω) :

R 7→ Cn×n the eigenvalues. All those matrices are ω-depending. The eigenvalue matrix can
be decomposed into Λ2

f (ω) = Λf (ω)Λ∗f (ω), such that

Sf (ω) = Ξf (ω)Λf (ω)Λ∗f (ω)Ξ∗f (ω). (2.4.2)

The Fourier transform of the process f(t), noted F(ω), can now be built up. First, we define
F̂(ω), a vector gathering n Fourier transforms such that(

F̂(ω)
)
i

= (Λf (ω))ii e
ιθi(ω) (2.4.3)

with i = 1, ...n. The vector θi(ω) contains a set of random numbers uniformly distributed
between 0 and 2π. The vector θi(ω) is different for each i and numerically has the length
of the vector sampling the frequency ω. The Fourier vector F(ω) is then built as a linear
combination of the vector F̂(ω) in the basis Ξf (ω), i.e.

F(ω) = Ξf (ω)F̂(ω). (2.4.4)

Finally, the random vector f(t) results from the inverse Fourier transform of F(ω).
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2.5 Equivalent statistical linearization

To solve nonlinear systems subject to random excitations, many approximate methods have
been developed : the averaging method [Grig 02], the equivalent statistical linearization
[Soch 91], quadratization and cubicization [Span 03], non-Gaussian closures [Cran 85] (see
Appendix A.1) are seemingly the most famous. Among them, the equivalent linearization,
originally introduced by Botoon and Caughey [Caug 59a, Caug 59b] is frequently used for the
analysis of high-dimensional nonlinear structures, as encountered in earthquake engineering
[Cunh 94, Won 96, Esma 12] or in wind engineering [Xu 92, Gani 12, Guha 12]. The theo-
retical background and the different variants of this method are exposed, because they are
relevant in the purpose of this work. Indeed, Part I is utterly devoted to the development of a
new technique to perform equivalent statistical linearization of dynamical system in stationary
and non-stationary settings.

As previously in Section 2.1.2, a n-dimensional random state space vector Y(t, θ) : R+ ×
Θ 7→ Rn satisfies the diffusion sde

dY = a(t,Y)dt+ dF(t), (2.5.1)

where a(t,y) : R+×Rn 7→ Rn is basically a nonlinear function of y and dF(t) is the increment
of a random time-dependent vector, i.e. only additive excitations are considered in the system.
The force vector F(t) is supposed to be a Gaussian process (not necessarily stationary). The
equivalent statistical linearization is a famous approximate method used to solve nonlinear
sde’s. It consists in replacing (2.5.1) by an equivalent linear sde, noted

dX = (Aeq(t)X + ā(t)) dt+ dF(t), (2.5.2)

with Aeq(t) : R+ 7→ Rn×n and ā(t) : R+ 7→ Rn, both only depending on time and X(t, θ) :
R+ × Θ 7→ Rn is the equivalent random vector. The elements of ā and Aeq in (2.5.2) are
determined in order that the diffusive process X(t) is an adequate approximation of the state
vector Y(t), according to some statistical criteria. A statistical approximation is operated
on the drift function a(t,X), consisting in minimizing E(t) the mean squared discrepancy
between the approximate drift term and the exact one, i.e.

E(t) = E
[
(a−AeqX− ā)T (a−AeqX− ā)

]
. (2.5.3)

The minimization of the error with regard to the elements of ā and Aeq is obtained by imposing
∂āiE = ∂Aeq,ijE = 0 for every coefficient. After some algebra, the relation between a(t,X),
Aeq(t) and ā may be summarized by

ā = E [a]−AeqµX

ΣXAT
eq = E

[
XaT

]
− µXE [a]T , (2.5.4)

which leads prima facie to statistically satisfactory approximation of a via ā and Aeq. The
mean vector µX and the covariance matrix ΣX of the random vector X(t) are defined in
(2.2.1). It is important to notice that at this stage no approximation and no assumption has
been formulated. Indeed, as long as the probability density function of the random state vector
Y(t) is known, Equations (2.4.3) and (2.5.4) are exact and will give unbiased estimations of
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the first two statistical moments of X(t). This concept is known as the true linearization
[Kozi 88]. However, the main purpose of the method does not rely on this concept, because
both Y(t) and X(t) are unknown random processes.

The objective function given in (2.4.3) is the most popular one for its robustness and
simplicity to find the Equations (2.5.4). However, the pertinence of this criterion for the
linearization procedure has been addressed by different authors. For instance, Socha [Soch 91]
proposes to minimize the squared difference between the pdf of the nonlinear set of equations
and the pdf of the linearized one, by use of the respective FPK equation. This method is
extended to high-dimensional systems with difficulty, because it requires high-dimensional
integrations. Not far from that idea, Grigoriu [Grig 00] uses the weighted absolute difference
between the two corresponding characteristic functions in order to perform the statistical
linearization of a system driven by an α-Lévy white noise. Elishakoff [Elis 92] proposes to base
the equivalent stochastic linearization on the potential energy of the system, while Elishakoff
and Cai (in [Lin 04b]) introduce the concept of partial linearization in which the nonlinear
restoring forces are kept and only the nonlinear damping forces are linearized. However, the
criterion (2.4.3) remains the most popular, especially for large size systems.

In the statistical linearization method, assumptions on the statistical distribution of the
response are formulated. The pioneers supposed that the equivalent distribution is Gaussian,
so the responses of the equivalent system are Gaussian processes. The so-called Gaussian
equivalent linearization expresses the properties of the equivalent linear system in terms
of the mean vector and the covariance matrix of the system response. Nonetheless, statistical
linearization methods have been extended to non-Gaussian processes, i.e. the expectation
operations in Equations (2.5.4) are computed according to a non-Gaussian pdf. Indeed, the
concept of true linearization emphasizes that the accuracy of an equivalent linearization de-
pends on the difference between the assumed and the true probability distributions. Equiva-
lent linearization has also been performed in the case that the excitation is a Poisson process
[Grig 95, Prop 03a], but the reflexion is limited in this work to diffusion processes.

About non-Gaussian linearization, Chang [Chan 92] proposes a method based on a
non-Gaussian pdf constructed as a weighted sum of undetermined Gaussian pdf. Just be-
fore, Pradlwarter [Prad 91] suggests a numerical method based on nonlinear transformations
determined by use of the Fokker-Planck equation in order to estimate the non-Gaussian prop-
erties of the response. Those methods necessarily lead to the resolution of a possibly large
set of nonlinear algebraic equations. More recently, Crandall [Cran 04] explores the use of
non-Gaussian distributions by fixing a shape for the distribution and by adapting a spread pa-
rameter. Especially, he motivates the use of non-Gaussian distributions by the improvement
of computing tools. However, his technique is applied with difficulty to large-scale structures
subject to realistic loadings, even with the computational progress. His study is limited to
SDOF systems, while the parametrization of high-dimensional pdf for coupled systems is an
issue. Ricciardi [Ricc 07] also puts his touch about this topic. He proposes a two-step method:
first a Gaussian equivalent linearization is performed, then this distribution is used in an A-
type Graham Charlier expansion in order to refine the target pdf. This method is based on
a Lyapunov equation resulting from the Itô lemma and so limited to white noise or filtered
white noise excitations. With a view to generalization, a concern about this method could
be that the A-type Graham Charlier series may lead to negative pdf. These works, quite
recent actually, highlights the open view about this question, even though they are focused
on stationary regime.
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The non-Gaussian linearization has some drawbacks compared with Gaussian linearization.
A classical result from probabilistic theory states that linear deterministic systems driven by
Gaussian processes respond with Gaussian processes. The joint-pdf of the response is thus
completely characterized by a mean vector and a covariance matrix. However, for nonlinear
systems or in the case of non-Gaussian excitations, the determination of the system response
is more complicated, partly due to the statistical polymorphism of a non-Gaussian process.
Furthermore, the Gaussian equivalent linearization allows the use of the important properties
of linearity between Gaussian variables. Analytical expressions for the equivalent coefficients of
the linearized system can be readily found by use of the Kazakov formula [Kaza 65, Robe 99],
i.e.

E[f(X)X] = E[XXT ]E[∇Xf(X)] (2.5.5)

with f(x) : Rn 7→ R and X(t) an n-dimensional Gaussian random vector. By using this
formula, some heavy integrals are avoided for usual kinds of nonlinear forces. The spectral
analysis largely exposed in Section 2.2 can also be performed, allowing to deal efficiently with
coherent random excitation fields [Robe 99].

In the opinion of the author, the goal of an approximate method is not to solve exactly an
underlying sde, but to compute very efficiently and quite accurately some required statistical
information and extract tendencies. Indeed, equivalent linearization are usually performed at a
design stage, when the influence of many parameters is investigated. If an approximate method
cannot be easily extended to high-dimensional problems or if the computational burden is
prohibitive compared with Monte Carlo simulations, the approximate method looses its own
purpose. Furthermore, the resolution of a large set of nonlinear algebraic equations is a new
source of “uncertainties”, as amply explained in [Pres 07]. The results must be necessarily
checked by stochastic simulations in order to assess their relevance. Therefore, we feel
more involved in improving strategies for Gaussian equivalent linearization than
in developing non-Gaussian linearization.

2.6 Uncertain structures

In the Introduction, we insist on the difference between exogenous and endogenous sources
of uncertainty in civil structures. Hitherto we have focused on the exogenous source, namely
the external loadings. We now briefly introduce the main methods to deal with uncertain
structures.

On a probability space (Θ,F,P), let consider a system governed by an operator M and
modeled by

M (X(t, θ),d(θ)) = F(t, θ) (2.6.1)

with d(θ) a vector of random data and F(t, θ) : R+ ×Θ 7→ Rn the vector of random loading.
The arising question is thus to determine the probability distribution of X(t, θ) knowing all
the sources of uncertainty.

Among the previously presented methods, Monte Carlo simulation is the most readily
adapted to solve (2.6.1). Indeed, samples of d(θ) are generated, then Equation (2.6.1) is
solved for each sample. Responses of the system are thus random processes conditioned on
the random data space. We understand that the resolution of (2.6.1) for a sample of d can be
performed by Monte Carlo simulation, by a spectral approach or by an approximate method.
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Though Monte Carlo method is presented here as a transversal method as well, it is not
necessarily the most efficient. Actually, its main limitation is its relatively low convergence
rate [Le M 10]. Some non-intrusive techniques (as they use deterministic solvers) exist in
order to speed up the convergence, as the Latine hypercube, the importance samplings or the
collocation method [Le M 10]. The non-intrusive method can be efficiently combined with the
spectral analysis or to approximate methods previously presented.

Contrary to those methods, the intrusive methods require an adaptation of the deter-
ministic solver. For instance, the Galerkin methods are based on the resolution of (2.6.1) in
terms of the spectral coefficients in the polynomial chaos representation of the solution. Even
though those methods have better convergence properties, the development of adapted solvers
is a drawback, especially for our purposes.

Finally, we must point out that the Fokker-Planck equation can be adapted as well to cope
with random properties. As explained in [Grig 02], the random data are put into the random
state vector of the governing sde by a state augmentation procedure. These new states do not
have drift contribution, nor diffusion. For instance, this approach has been applied to the
problem of random flutter instability in [Cara 10].
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2.7 Summary

Figure 2.1 summarizes the main methods exposed in this Chapter. The Itô calculus or the
theory of diffusion processes is the central theory of this work. We see that the first part is
focused on the spectral analysis presented here for linear system and on the equivalent statis-
tical linearization. The second part deals with the resolution of the Fokker-Planck equation.
The Monte Carlo approach is the reference method in each part; the results obtained with
the different methods developed in the following are consistently and systematically compared
with Monte Carlo simulation to assess their accuracy and correctness.

Figure 2.1: Stochastic methods to analyze deterministic structures driven by random loadings.
Organization of the manuscript with respect to these methods.
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Chapter 3

Stationary Spectral Analysis

3.1 Context and propositions

3.2 Spectral strategy for equivalent statistical linearization

3.3 Asymptotic expansion of modal transfer matrix

3.4 Validation in linear spectral analysis

3.5 Stationary equivalent statistical linearization

3.6 Conclusions

Purpose of the chapter

The concept of asymptotic expansion of a modal transfer matrix is developed, validated
and applied in the context of equivalent statistical linearization in a stationary setting.
Provided the structure is slightly to moderately coupled in a modal basis, the modal
transfer matrix can be interpreted as the transfer matrix of a main decoupled system,
corrected by higher-order correction terms.

The proposed method is formally developed in Section 3.3 in the context of linearized
random systems. A convergence criterion for the expansion is also derived. The method
is then applied in Section 3.4 to the analysis of a large-scale linear structure in presence
of non-proportional damping. Different properties of the correction terms are emphasized
in the light of this example. Finally, the expansion-based method is extended in Section
3.5 to equivalent statistical linearization by allowing the implementation of an efficient
second-order solver. An application in earthquake engineering illustrates the interest of
this solver compared with more versatile first-order methods.

The content of this Chapter was concisely presented in [Cano 12] and [Cano 14].
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3.1 Context and propositions

The equivalent statistical linearization is an optimization problem that aims at approximating
the second-order moments of the response of a structure subject to random loadings. The
equivalent linearization method offers the opportunity to keep on working in the frequency
domain for stationary processes, which enables to deal with complex and realistic loadings
defined by high-dimensional power spectral density (psd) matrices as used to model coherent
wind or seismic fields. In these cases, the equivalent linearization clearly outscores the exact
approaches to the solution of nonlinear problems, especially in approximating the second-order
moments at a reduced computational cost. Indeed, the use of state augmentation procedures in
Itô formalism [Grig 02] to adequately color the excitation increases the computational burden.
On the other hand, the synthetic generation of correlated samples is a heavy computational
operation in the Monte Carlo approach.

Even though the system has been linearized (by a Gaussian linearization), the set of equa-
tions to calculate the response covariance matrix is nonlinear. The computational effort in
this method results from the solution of a possibly large set of nonlinear algebraic equations.
The usual technique to solve this set of equations is a fixed-point algorithm [Quar 07], as
suggested by Roberts [Robe 99]. This method is simply implemented in any software. How-
ever, for moderate nonlinearities, the rate of convergence of this first-order accuracy method
is slow. In some other cases, the fixed-point algorithm does not converge. Furthermore, for
large-dimensional structures in a nodal basis, the computational effort may be prohibitive.

In this chapter, we propose to develop and apply a perturbation approach [Nayf 73, Hinc 91]
to facilitate and improve the Gaussian equivalent linearization of nonlinear structures subject
to stationary loadings. As smartly exposed by Hinch in the preface of his book [Hinc 91], per-
turbation methods can be seen as analytical methods used to find approximate solutions of
problems in which some small parameters may be identified. The question of the approxima-
tion in solving mathematical problem is not a fundamental issue provided the error between
the approximation and the true solution can be controlled and measured. From that point of
view, analytical developments must not be naively opposed to numerical methods, but they
must be understood as complementary in the construction of efficient solvers. Humbly, this
is the philosophy of this part of the work. As already emphasized in the Introduction, this
step is one of the construction blocks that will lead us to an efficient method for nonlinear
transient analysis.

The idea to apply the perturbation theory in spectral analysis originates from the fact that,
in a modal basis, most of the linear and linearized systems are slightly coupled. Thus, the
generalized (modal) matrices of the system have the property of diagonal dominance for every
frequency, i.e. the out-of-diagonal elements are small compared to the diagonal ones. The
identification of small parameters is the first step in the application of perturbation theory.
The second one consists in solving the problem by discarding those parameters. Finally,
an asymptotic expansion in terms of the small parameters is introduced in the problem to
calculate the correction terms and quantify the error. For this reason, the proposed method
is referred to as the asymptotic expansion-based method throughout this first Part.

In the frequency domain, be it deterministic or stochastic, the analysis consists in a se-
quence of computations, i.e. matrix inversions, performed for a sequence of frequencies. As it
requires to be repeated a large amount of times, any saving would naturally reduce the total
computational burden. To avoid full matrix inversion to obtain the transfer matrix, Denoël
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and Degée [Deno 09b] propose, in a deterministic framework, an asymptotic expansion of the
modal transfer matrix assuming the relative smallness of out-of-diagonal elements with regard
to diagonal ones. Even though the inversion of full matrices for a set of frequencies ceases to
be a complex operation, the proposed method bypasses this operation and gives a theoretical
explanation to some too-convenient hypotheses, like Lord Rayleigh’s decoupling assumption
[Rayl 45].

In this Chapter, the proposed developments demonstrate that for slightly to moderately
coupled nonlinear systems in a modal (or generalized) basis, the equivalent linearization can
be seen as a convergent series of correction terms initiated with the stochastic response of a
decoupled linear system. This work shows that the concept of asymptotic expansion of modal
transfer matrix might be efficiently used to speed up the Gaussian equivalent linearization
technique and improve the conditioning of the equation set, especially for large structures.
Actually, the asymptotic approach offers the use of a second-order method, as the Newton-
algorithm without increasing the computational burden compared to the traditional first-
order fixed point algorithm [Quar 07]. The convergence is considerably improved and the
computational effort is thus attractively reduced, while the method also offers much insight
on how to physically interpret the moderate nonlinear coupling. It also opens perspectives for
the use of efficient analytical methods for the integration of correction terms in a stationary
setting, but it also makes possible new investigations in evolutionary spectral analysis. This
well-known but rarely applied method, because of its numerical and computational cost, might
become really attractive for practitioners thanks to the developed theory. This topic will be
amply developed in Chapters 4 and 5.

Because simulation techniques or alternative exact approaches would equally perform in
small-size structures with simple loadings, a specific attention in the developments is dedi-
cated to large-scale structures subject to coherent and realistic excitation fields such as those
encountered in wind engineering problems. The proposed method is capable of dealing with
nonlinear conservative as well as dissipative forces, either affecting some degrees of freedom
only, or more regularly distributed in the whole structure.

The validity of the proposed approach must not be only compared with the Monte Carlo
simulations, but more pertinently with the formal statistical linearization. Indeed, the asymp-
totic expansion-based method gathers an error coming from the optimization problem and
from the truncation of the series. These aspects are both investigated in this Part, but with
regard to those facts.

In order to ground the proposed asymptotic expansion-based method, the first Section
of this chapter is devoted to the statement of the stochastic linearization of the equation of
motion. For possibly large-dimensional discrete systems, the use of a modal basis to reduce the
number of unknowns is a delicate question to deal with, especially in presence of nonlinearities.
A strategy is proposed to improve the computational method while keeping in mind the tricky
paradigm in dealing with equivalent normal modes. In these different sections, the Gaussian
statistical linearization is effectively grounded, before jumping into the heart of the method
applied throughout this first Part.
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3.2 Spectral strategy for equivalent statistical linearization

On a probability space (Θ,F,P), the equation of motion of a n-DOF nonlinear system is

Mÿ + Cẏ + Ky + g(y, ẏ) = f , (3.2.1)

where M, C and K are the n-dimensional mass, damping and stiffness matrices of the system,
respectively, f(t, θ) : R+ × Θ 7→ Rn is the vector of random exogenous Gaussian forces and
the dot denotes the time derivative. The vector y(t, θ) : R+ × Θ 7→ Rn gathers the nodal
displacements expected to be non-Gaussian processes due to the nonlinear forces in the vector
function g(y, ẏ) : Rn×Rn 7→ Rn. With this formalism, the equation of motion is split into four
contributions : inertial forces, internal linear forces, internal nonlinear forces and exogenous
random forces. Discarding the nonlinear forces g(y, ẏ) in (3.2.1) leads to a linear governing
equation, which is referred to as the linear subsystem in the sequel.

In the considered problems, the size n of the system is possibly large, and the exogenous
forces are characterized by a psd matrix Sf (ω) with possibly complex expressions as typi-
cally encountered in realistic wind turbulence models [Simi 96] or spatial coherence in seismic
engineering [Kiur 92]. For the sake of clarity in the following analytical developments, only
antisymmetric nonlinear forces and zero-mean excitation processes are considered. Other-
wise, some minor modifications to the method must be operated to take into account the
mean response and the non-centered statistical moments [Robe 99].

The stochastic linearization aims at replacing (3.2.1) by the equation of motion of a n-DOF
equivalent linear system. The equivalent equation of motion reads

Mẍ + (C + Ceq) ẋ + (K + Keq) x = f , (3.2.2)

where x(t, θ) : R+ × Θ 7→ Rn and ẋ are the Gaussian nodal displacements and velocities of
the equivalent linear system, respectively, and where Keq and Ceq are the equivalent stiffness
and damping matrices, respectively [Robe 99]. The probabilistic response of the system is
thus completely characterized by the symmetric covariance matrices Σx and Σẋ, obtained by
integration of the corresponding psd matrices, as in (2.2.8) by imposing τ = 0,

Σx =

ˆ
R

Sxdω and Σẋ =

ˆ
R

Sẋdω. (3.2.3)

They are themselves obtained by left- and right-multiplication of Sf (ω) by the nodal frequency
response function of the system [Clou 93].

The equivalent stiffness and damping matrices in (3.2.2) are determined by minimizing
the error function E [Grig 02], defined as

E = E
[
(Keqx + Ceqẋ− g(x, ẋ)) (Keqx + Ceqẋ− g(x, ẋ))T

]
(3.2.4)

with E[.] the expectation operator. Since the covariance between displacements and velocities
is equal to zero in a stationary setting, i.e. E

[
xẋT

]
= 0, the equivalent matrices Keq and

Ceq are respectively given by

Keq = Σ−1
x E

[
xg(x, ẋ)T

]
and Ceq = Σ−1

ẋ E
[
ẋg(x, ẋ)T

]
. (3.2.5)
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For usual nonlinear mappings g, the expectations in the above equations may be expressed
as a function of Σx and Σẋ, in which case (3.2.5) also reads

Keq = K (Σx,Σẋ) and Ceq = C (Σx,Σẋ) (3.2.6)

with K and C two operators depending on the kind of nonlinearity in g. For instance, the
statistical linearization of a nonlinear cubic restoring force κx3 gives the equivalent restoring
force κeqx with the equivalent stiffness

κeq = E

[
d

dx

(
κx3
)]

= 3κσ2
x, (3.2.7)

by use of the Kazakov formula (2.5.5). Other examples can be found in [Robe 99].

Equations (3.2.3) and (3.2.6) constitute a set of nonlinear algebraic equations that need
to be solved for Σx and Σẋ. A classic iterative approach to solve it ([Robe 99], p. 140) is the
fixed-point procedure which is briefly detailed here.

First, the unknown matrices Keq and Ceq are initiated to zero, in which case the linear
subsystem is analyzed (provided non-essential nonlinearities are considered). Then, knowing

the (k − 1)-th step of the iterative procedure, the k-th approximations of Σ
(k)
x and Σ

(k)
ẋ are

computed as

Σ
(k)
x =

ˆ
R

Sx(ω; K(k−1)
eq ,C(k−1)

eq )dω and Σ
(k)
ẋ =

ˆ
R

Sẋ(ω; K(k−1)
eq ,C(k−1)

eq )dω, (3.2.8)

with the (k − 1)-th approximations of the equivalent matrices calculated with (3.2.6), i.e.

K(k−1)
eq = K

(
Σ

(k−1)
x ,Σ

(k−1)
ẋ

)
and C(k−1)

eq = C
(
Σ

(k−1)
x ,Σ

(k−1)
ẋ

)
. (3.2.9)

This iterative scheme is repeated until a given tolerance is achieved. In large scale problems,
this traditional algorithm is particularly involved, but it requires the costly construction and
integration of a full matrix at each step. Furthermore, this algorithm behaves poorly in terms
of convergence [Quar 07], especially in large-dimensional spaces. In this work, we provide a
formulation that circumvents these two limitations.

3.3 Asymptotic expansion of modal transfer matrix

3.3.1 About the choice of a modal basis

The structural response of a given linear dynamical system can be computed using a limited
number m of normal modes of vibration, with m � n for large structures. The costly
construction (and then integration) of Sx and Sẋ is thus replaced by

Sx = ΦSqΦT and Sẋ = ω2ΦSqΦT , (3.3.1)

where Φ is the n×m matrix collecting the normal modes and Sq (ω) represents the psd matrix
of modal coordinates. In principle, the normal modes should result from the eigenproblem
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(K + Keq) Φ = ω2MΦ, in which case, they have to be updated at each iteration, as Keq

is initially unknown. The possible saving on the construction and multiplication of large
matrices is thus shifted to repeated eigenvalue decompositions. The use of the modal basis
related to matrices K + Keq and M is a natural reaction from linear dynamics aiming at
uncoupling the resulting set of equations, on top of reducing the size of the problem. Because
it is computationally expensive, this option is abandoned.

Instead, inspired by a similar approach within environments with moderate and non-
essential nonlinear forces [Prad 03], it is suggested to work in the constant generalized basis
associated with the eigenproblem (

K + K̃
)

Φ = ω2MΦ, (3.3.2)

where K̃ is an estimation of Keq that accounts for the distribution of the nonlinear stiffness
forces in the structure, in an equivalent manner, even if their intensities are a priori unknown.
The matrix K̃ can be updated, but not necessarily at each step of the linearization. The
construction of this matrix is discussed later in the light of a relevant example. This new
basis is normalized to have unit generalized masses, such that

ΦTMΦ = I, (3.3.3)

ΦTKΦ = Ω (3.3.4)

with I the m×m-identity matrix, and Ω a non-diagonal generalized stiffness matrix.

We consciously decide to call the basis Φ a modal basis, although we know that the
adjective modal may be considered as improper. Actually, this basis is more judiciously
interpreted as a generalized basis and Φ a set of generalized shapes. In the particular case
of K̃ = 0, we recover the basis of the linear normal modes, in which both the mass and the
stiffness matrices are diagonal. In order to not create confusion in the manuscript, since a
matrix K̃ is not necessarily considered in all the applications and developments, we decide to
call Φ a modal basis, acquainted with this formal distinction.

Using the modal superposition principle [Clou 93], Equation (3.2.2) reads

q̈ + (D + Deq) q̇ + (Ω + Ωeq) q = p, (3.3.5)

where q(t) is the vector of modal coordinates (x = Φq) and D = ΦTCΦ, Ωeq = ΦTKeqΦ,
Deq = ΦTCeqΦ and p(t) = ΦT f(t). Even though the number of variables has been reduced by
the modal projection, the equation of motion is not decoupled because the matrices in (3.3.5)
are not necessarily diagonal, even Ω, quite the opposite actually. Therefore, the uncoupling
advantage offered by the modal projection is lost. This issue may however be treated with
existing solutions [Cano 12], as developed next.

The psd matrix of modal coordinates Sq (ω) introduced in (3.3.1) is given by

Sq = HSpH∗, (3.3.6)

where the superscript ∗ denotes the hermitian operator. The modal transfer matrix of the
equivalent linearized system H(ω) : R 7→ Cm×m is defined as
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H =
(
−ω2I + ιω (D + Deq) + Ω + Ωeq

)−1
(3.3.7)

with ι =
√
−1, and where the psd matrix of modal loadings is obtained as

Sp = ΦTSfΦ (3.3.8)

with Sf (ω) the (hermitian) cross-psd matrix of the nodal forces. The projection of the high-
dimensional random excitation field f (t) in the modal basis constitutes the major compu-
tational cost (i.e. O(n2)), for the large structures encountered in civil engineering. The
projection of this field in a fixed and energy-independent basis is another key point in our
formulation, that makes it rational for large structures. The modal loading Sp is indeed es-
tablished once and for all or intermittently updated, instead of being updated, together with
the modal basis, at each iteration.

With this modal approach, the set of nonlinear equations (3.2.6) is not supplemented with
the heavy estimation of the covariance matrices Σx and Σẋ as given in (3.2.3), but rather

Σx = ΦΣqΦT and Σẋ = ΦΣq̇ΦT , (3.3.9)

where the covariance matrices of the modal coordinates as well as their time derivatives are

Σq =

ˆ
R

Sqdω and Σq̇ =

ˆ
R
ω2Sqdω. (3.3.10)

The covariance matrices Σx and Σẋ are still functions of the a priori unknown equivalent
matrices Keq and Ceq through Deq and Ωeq in (3.3.7) and the same fixed-point procedure
may be used to solve the equation set (3.3.6)-(3.3.9) as well. Nevertheless, as the convergence
of the fixed-point algorithm is sensitive to the Jacobian of operators K and C, with known
evidences of slow convergence [Quar 07], the use of a gradient-based method is promoted. At
the expanse of slightly heavier computational costs, this procedure offers a faster convergence
and an increase of the convergence domain. This is formalized by transforming (3.3.10) into
the canonical form

Σq = F1 (Σq,Σq̇) and Σq̇ = F2 (Σq,Σq̇) . (3.3.11)

With this formulation, the unknowns of the problem are the modal covariance matrices. The
operators F1 and F2 correspond to the integral operation in (3.3.10), while H (ω; Ωeq,Deq) is
an implicit function of the unknown modal covariance matrices. One objective of this Chapter
is to provide an efficient formulation for the solution of (3.3.11).

3.3.2 Modal coupling in dynamical systems

In the previous Section, it is emphasized that the modal basis Φ does not necessarily lead to
uncoupled equations after the modal projection. Now, some explanations are provided about
the linear modal coupling and its meaning in structural analysis. The coupling occurring in
purely nonlinear dynamics is not considered here [Kaha 96].

The external force vector f(t) is defined as a random vector and the probabilistic distribu-
tions of the forces on a structure (for both wind and earthquake) are not independent. The
process f(t) is more judiciously defined as a random field (see Section 2.1.2), since it depends
on both time and space. In spectral analysis, such a field is said to be coherent, i.e. the term
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(Sf )ij expresses the coherence between the loading f at the points i and j. The coherence
is a spectral view on the correlation between the forces. From (3.3.3), the projection in this
basis of the structural mass matrix is diagonal. If the matrix Sf does not have a structure
comparable to the one of M, the matrix Sp(ω) is a priori not diagonal.

After the projection of the nodal forces, the spectral analysis is performed according to
(3.3.6), rewritten here in an indicial form1,

(Sq)ij =

m∑
k,l=1

(H)ki (Sp)kl (H)lj . (3.3.12)

If the system is decoupled in the modal basis, the response in a mode can be seen as mechan-
ically independent from the responses in the other modes. Thus, the modal transfer matrix
H(ω) is diagonal. In the opposite case, the modal coupling between two modes expresses that
these two modes do not mechanically respond in an independent manner. We call this source
of coupling, the mechanical modal coupling.

The correlation between the generalized forces does not induce necessarily coupling in the
response, which is our first concern. Equation (3.3.8) is only a geometric operation, while the
spectral analysis is a frequency dependent operation that can be interpreted as a filtration
operation of the loading by a “large-scale” linear filter. In (3.3.12), the matrix H(ω) amplifies
the components of Sp(ω) in the quasi-static domain (frequency range around zero). The
non-diagonality of matrix Sp(ω) is the source of the so-called quasi-static modal coupling
[Deno 09a]. This name highlights the fact that this coupling only results from the modal
projection, i.e. from the mode geometry without dynamical amplification.

A last source of modal coupling, so-called dynamical modal coupling, results from the
possible clustering of natural frequencies. Indeed, if the modes i and j have close natural
frequencies, the peaks of the functions (H(ω))ii and (H(ω))jj simultaneously amplify the
component (Sf (ω))ij in the range of the i-th and j-th natural frequencies. The quasi-static
and dynamical couplings are thus both dependent on the intensity of the coherence inside the
random field f , but in two different ways.

3.3.3 Derivation of the asymptotic formulation

The governing equations in the modal basis (3.3.5) are slightly to moderately coupled from a
mechanical point of view, depending on the intensity of nonlinear forces in the global balance
of forces, as a result of the projection into a fixed basis. In this work, we want to demonstrate
the advantage of considering this kind of coupled set of modal equations as a perturbation
of the uncoupled problem [Deno 09b, Cano 12]. In order to decouple the modal equation of
motion of the equivalent linearized structure, the modal damping and stiffness matrices are
respectively split into two contributions, as illustrated in Figure 3.1, such that

D + Deq = Dd + Do, and Ω + Ωeq = Ωd + Ωo, (3.3.13)

where Dd and Do are built as Dd = (D + Deq)◦I (diagonal elements) and Do = D+Deq−Dd

(out-of-diagonal elements) and where Ωd and Ωo are built as Ωd = (Ω + Ωeq) ◦ I (diagonal

1The expression (H)ij denotes an element of the matrix H, while the symbol Hk designates a matrix.
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elements) and Ωo = Ω + Ωeq −Ωd (out-of-diagonal elements), with ◦ the Hadamard product.
With these notations, the modal transfer matrix defined in (3.3.7) becomes

H = (Jd + Jo)
−1 , (3.3.14)

where

Jd(ω) = Ωd − ω2I + ιωDd, and Jo(ω) = Ωo + ιωDo (3.3.15)

gather diagonal and out-of-diagonal elements, respectively. The matrices Jd(ω) and Jo(ω)
gather elements coming from both the linear subsystem and the equivalent terms. The sub-
script d is there to recall that these matrices are diagonal by construction.

Figure 3.1: Concept of diagonal dominance illustrated for the damping matrices. Computation
of the related diagonal and out-of-diagonal matrices.

The diagonal modal transfer matrix of the virtually decoupled system is also introduced
as Hd(ω) = J−1

d (ω). It corresponds to the modal transfer matrix that would be obtained if
the coupling resulting from the projection in a perturbed modal space was neglected. In more
concrete terms, we write

(Hd(ω))i =
1

(Ωd)i − ω2 + ιω (Dd)i
, (3.3.16)

where the single subscript i (associated with the subscript d) designates the i-th term on the
diagonal.

Substitution of (3.3.14) into (3.3.6) yields after some algebra

Sq = (I + HdJo)
−1 Sqd (I + J∗oH

∗
d)
−1 . (3.3.17)

The virtual response of the decoupled system Sqd , as would be obtained by only retaining
diagonal elements in the modal matrices, is

Sqd = HdSpH∗d. (3.3.18)

Upon smallness conditions on the product HdJo formally studied in the following, Equation
(3.3.14) may be written

H(ω) =

(
I +

∞∑
i=1

(−HdJo)
i

)
Hd. (3.3.19)
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We denote by asymptotic expansion-based method, all the developments based on
(3.3.19). Equation (3.3.17) now reads

Sq =

(
I +

∞∑
i=1

(−HdJo)
i

)
Sqd

I +
∞∑
j=1

(−J∗oH
∗
d)
j

 , (3.3.20)

transforming thus the inverse of full matrices into convergent series. This product of series is
written as a single series which is truncated, for practical needs, at an order N such that

Sq,N = Sqd +

N∑
k=1

∆Sq,k (3.3.21)

with ∆Sq,k the k-th correction term added to the decoupled approximation Sqd . Thence,
provided a measure of HdJo is of order ε (a small parameter), the same measure of the
correction term ∆Sq,k is of order εk. Working out the algebra yields

∆Sq,1(ω) = −HdJoSqd − SqdJ
∗
oH
∗
d (3.3.22)

for the first correction term and a recurrence relation

∆Sq,k(ω) = − (HdJo∆Sq,k−1 + ∆Sq,k−1J
∗
oH
∗
d)−HdJo∆Sq,k−2J

∗
oH
∗
d (3.3.23)

for k ≥ 2 and ∆Sq,0 = Sqd . The correction terms do not require the inversion of any full
matrix, because they are expressed in terms of the decoupled system.

Although it is expected to be globally less than the first correction ∆Sq,1, ∆Sq,2 is not
systematically negligible compared with ∆Sq,1, because the elements of Sqd concerned with
the successive corrections are not necessarily identical. This is demonstrated by splitting up
the psd matrix of the generalized forces into its diagonal and out-of-diagonal elements

Sp = Spd + Spo , (3.3.24)

i.e. into the unilateral spectral generalized forces Spd(ω) and the cross-spectral generalized
forces Spo(ω). Insertion of (3.3.24) into (3.3.18) leads to

Sqd = HdSpdH
∗
d + HdSpoH

∗
d (3.3.25)

If the coherence between generalized forces is negligible, Equation (3.3.25) reduces to
Sqd ' HdSpdH

∗
d and is therefore diagonal dominant. Consequently, ∆Sq,1 becomes a zero-

diagonal matrix, as seen from (3.3.22), whereas ∆Sq,2 remains a full matrix. Thus, when the
generalized forces are almost uncorrelated, the first correction term ∆Sq,1 brings no significant
correction to the variance of modal coordinates, while ∆Sq,2 does.

Substitution of (3.3.21) into (3.3.10) provides the asymptotic expansion of the covariance
matrices Σq and Σq̇ that read

Σq,N = Σqd +
N∑
k=1

∆Σq,k and Σq̇,N = Σq̇d +
N∑
k=1

∆Σq̇,k. (3.3.26)
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The reference solutions of (3.3.11) will be denoted by Σq,∞ and Σq̇,∞ in the sequel. The first
correction terms for the modal covariance matrices defined in (3.3.10) read

∆Σq,1 = −
(
Lq,1 + L∗q,1

)
, ∆Σq̇,1 = −

(
Lq̇,1 + L∗q̇,1

)
(3.3.27)

with

Lq,1 =

ˆ
R

HdJoSqddω, Lq̇,1 =

ˆ
R
ω2HdJoSqddω. (3.3.28)

Replacing Jo by the expression (3.3.15), the matrices Lq,1 and Lq̇,1 are finally expressed as

(Lq,1)ij =

m∑
k

(Ωo)ik Iijk,0 +

m∑
k

(Do)ik Iijk,1 (3.3.29)

(Lq̇,1)ij = −

(
m∑
k

(Ωo)ik Iijk,2 +

m∑
k

(Do)ik Iijk,3

)
(3.3.30)

with

Iijk,α =

ˆ
R

(ιω)α (Hd)i (Hd)k (Sp)kj (H∗d)j dω, (3.3.31)

α = 0, ...3 and i, j, k = 1, ...m. The noteworthy advantage of this formulation is that the
integral Iijk,α only depends upon the decoupled system. The out-of-diagonal elements of Jo
are seen as higher-order perturbation sources of the virtual decoupled system. The reason
why the derivation ends up with such a simple formulation is that the whole concept is based
on linear algebra. Retrospectively, the matrix inversions in (3.3.17) are replaced by linear
combinations, thanks to the asymptotic expansion, and any operation in the derivation is
linear with respect to its arguments. The permutation of these linear operators precisely
allows the expression of the response of the coupled systems as a perturbation of the response
of the uncoupled system. From an algorithmic point of view, the integrals Iijk,α are promptly
established at each iteration. As explained next, they are also stored in order to set up the
Jacobian matrix used in the iterative resolution of the nonlinear equation set resulting from
the equivalent linearization.

Similarly, the second correction terms for the modal covariance matrices read

∆Σq,2 =
(
Lq,2,I + L∗q,2,I + Lq,2,II

)
, ∆Σq̇,2 =

(
Lq̇,2,I + L∗q̇,2,I + Lq̇,2,II

)
(3.3.32)

with

Lq,2,I =

ˆ
R

(HdJo)
2 Sqddω, Lq,2,II =

ˆ
R

HdJoSqdJ
∗
oH
∗
ddω (3.3.33)

Lq̇,2,I =

ˆ
R
ω2 (HdJo)

2 Sqddω, Lq̇,2,II =

ˆ
R
ω2HdJoSqdJ

∗
oH
∗
ddω. (3.3.34)

The computation of the second correction term is recommended but not mandatory for all
terms. Usually the first correction is sufficient for the estimation of out-of-diagonal terms in
∆Σq and ∆Σq̇, whilst the second correction offers a better estimation of diagonal elements
(variances). This general trend should be regarded with a discussion on the coherence in the
generalized loading, as shown with (3.3.25).
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3.3.4 Discussion on the convergence of the asymptotic expansion

The conditions upon which the expansion derived above shall be valid are now reviewed. A
necessary and sufficient condition for the series expansions in (3.3.20) to converge is

Γ [Hd(ω)Jo(ω)] < 1, ∀ω ∈ R (3.3.35)

with Γ [B] = max {|λB,i| , i = 1, ...m} the spectral radius of B ∈ Cm×m and λB,i the i-th
eigenvalue of B [Horn 13]. The spectral radius of HdJo also defines the index of diagonality
ρ of Jd + Jo [Horn 13, Morz 09],

Γ [Hd(ω)Jo(ω)] = ρ [Jd(ω) + Jo(ω)] , (3.3.36)

as it measures the relative importance of the diagonal terms in Jd compared with the out-of-
diagonal ones in Jo.

The general condition formulated in (3.3.35) must be checked for all the ω ∈ R. It is
relevant to first investigate the limit behaviors for ω tending to zero and to infinity, such that

lim
ω→0

HdJo = lim
ω→0

(
Ωd − ω2I + ιωDd

)−1
Jo = Ω−1

d Ωo, (3.3.37)

lim
|ω|→+∞

HdJo = lim
ω→+∞

− 1

ω2
Jo = 0. (3.3.38)

These conditions are related to the quasi-static and the inertial regimes of the linear system,
respectively. The smallness of the product HdJo is ensured for high-frequency responses, while
the smallness of Ω−1

d Ωo is required for the quasi-static response. In this case, the spectral
radius of Ω−1

d Ωo is also the diagonality index of Ω + Ωeq. If the spectral radius of Ω−1
d Ωo is

less than one, i.e.

ρ [Ω + Ωeq] = Γ
[
Ω−1
d Ωo

]
< 1, (3.3.39)

the matrix Ω+Ωeq is said to be diagonal dominant [Horn 13]. However, the criterion (3.3.39)
is only sufficient for ω → 0.

Concerning the resonant regime occurring for ω equal to a natural frequency of the de-
coupled system, a straight criterion is not easily derived. And yet, the Gerschgorin theorem
[Horn 13] allows to show that (i) all the Gerschgorin discs are concentric and centered on zero
regardless of ω and that (ii) the largest disc is one of the discs calculated for ω equal to a
natural frequency of the decoupled system.

Indeed, a subspace D of C in which all the eigenvalues of the matrices Hd(ω)Jo(ω) are
contained can be circumscribed. This subspace is the union of the so-called Gerschgorin discs

defined as Di ((HdJo)ii , Ri) with the radius Ri(ω) =
∑m

j=1,j 6=1

∣∣∣(HdJo)ij

∣∣∣ and (HdJo)ii the

center of the circle. The formal description of the disc Di is such that

Di =

z ∈ C, ω ∈ R, |z| ≤
m∑

j 6=i=1

∣∣∣(Hd)i (Jo)ij

∣∣∣
 , (3.3.40)
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because the diagonal elements of HdJo are equal to zero. Therefore, all the Gerschgorin discs
are concentric, such that

D(ω) =

m⋃
i=1

Di (0, Ri(ω)) = D

(
0, max
i=1,..m

Ri(ω)

)
, (3.3.41)

and the k-th eigenvalue λk ∈ D(ω) with k = 1, ...m. The inequality defining the i-th disc can
be rewritten and an upper bound can be calculated as

|z| ≤ |(Hd)i (ω)|
m∑

j 6=i=1

√
(Ωo)

2
ij + ω2 (Do,)

2
ij

< |(Hd)i (ωi)|
m∑

j 6=i=1

√
(Ωo)

2
ij + ω2

i (Do,)
2
ij (3.3.42)

with (Ωd)i = ω2
i . Therefore, the largest eigenvalue of HdJo can be potentially found in one

of these discs. Indeed, in the inertial regime, the disc radius tends to zero (Ri(ω) ∼ O
(

1
ω

)
as

ω →∞), while in the quasi-static regime it is equivalent to (3.3.6). The maximum of Γ [HdJo]
is thus more judiciously sought in the biggest disc D(ω), which is one of the discs D(ωi)
with i = 1, ...m. This explanation has the drawback to not properly justify the convergence
criterion by giving explicit expressions of the eigenvalues, but those expressions are quite hard
to calculate, a reason for rather trying to bound them, at least. Then, the convergence of the
series might be evaluated with the condition

ρJ = max {Γd,i = Γ [Hd(ωi)Jo(ωi)] , i = 1, ...m} < 1. (3.3.43)

The convergence criterion ρJ is a key indicator in this part. It must be calculated in each
application to check the validity of the expansion.

3.3.5 Integration of the correction terms

The proposed formulation relies on the estimation of the definite integrals Iijk,α and, to a
lesser extent Lq,2 and Lq̇,2, as defined previously. Taking into account the symmetry of the
integrand, integration can be carried out on R+ with available numerical integration methods
(rectangle rule, trapezoidal rule) [Pres 07]. The only subtlety in the estimation of these
integrals is related to the peakiness of the integrand, which requires an adaptive integration
scheme [Quar 07]. Actually a non-adaptive scheme, with a proper selection of the integration
points, could also be developed, since the poles of the integrands are readily identified. This is
consequence of the decoupling procedure, as the integrands are the mixed products of transfer
functions of single degree-of-freedom (SDOF) systems. Although this numerical procedure is
the standard application of the proposed method, by default, the estimation of these integrals
may be simplified (e.g. in the case that many modes are kept in the analysis), in some cases.

δ-correlated processes

For some simple analytical models of random excitation, Jordan’s lemma and Cauchy’s residue
theorem [Krey 06] may provide practical explicit expressions. For instance, if the excitations
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are uncorrelated white noises, the psd matrix Sp is full of frequency-independent elements.
This idea is inspired by well-known integrals (e.g. in the the CQC combination in earthquake
engineering [Clou 93]), such as

ˆ
R

(Hd)i (Sp)ij (H∗d)j dω = (Sp)ij
4π(ξiωi + ξjωj)(

ω2
i − ω2

j

)2
+ 4ωiωj (ξiωi + ξjωj) (ξjωi + ξiωj)

(3.3.44)

with (Ωd)i = ω2
i and (Dd)i = 2ξiωi and may be extended to the computation of the integrals

Iijk,α.

Extension of the background-resonant approximation

Approximate results may also be found, if the loading acts on a different timescale than the
structural response. Inspired by the background-resonant approximation introduced by Dav-
enport [Dave 61, Dave 67] for SDOF systems, the method has been extended to other classes
of problems [Deno 09a]. This approximation is a common method used in wind engineering
to compute the integral of the product between the psd of a background excitation and the
transfer function of a linear SDOF system in order to estimate the variance of the response.
The philosophy of the method is based on the evident separation between two timescales in
the process : (i) the quasi-static response of the system due to the low frequency content of
the excitation and (ii) the resonant response due to dynamical amplification of the system at
higher frequency.

This methodology is applied here in order to improve the computation of the integral Iijk,α,
since the excitation is a low frequency process like turbulent wind. The unique assumption
that different frequency bands contribute independently to the total definite integral, may
also be applied in a more general context to the determination of the integrals Iijk,α. For
instance, the approximate integrals

Iiii,0 ≈
(Σp)ii
ω6
i

+
π

4ξiω5
i

(
(Sp(ωi))ii −

ωi
2

(
S′p(ωi)

)
ii

)
(3.3.45)

Iiij,0 ≈
(Σp)ji
ω4
i ω

2
j

+
π

2ξiω3
i

<
(

(Sp(ωi))ji (Hd(ωi))j

)
(3.3.46)

indicate that these integrals are replaced by simple function evaluations, which indeed offers
a considerable computational speedup. The prime in (3.3.45) denotes here the derivative with
respect to the pulsation ω. Equations (3.3.45) and (3.3.46) are obtained by an analytical
technique exposed in Appendix B.1.

The formulas (3.3.45) and (3.3.46) are compared with numerical results in Figure 3.2. All
the elements of Sp(ω) (perfectly coherent) are supposed to be Ornstein-Uhlenbeck processes
SOU (ω) characterized by a drift coefficient aOU and a unit variance, i.e.

SOU =
aOU
π

1

a2
OU + ω2

. (3.3.47)

The accuracy of (3.3.45) depends upon the separation between the background bandwidth
and the resonant frequency, as illustrated in Figure 3.2-a. The higher the frequency ωi, the
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more significant the timescale separation, the better the approximation. For the coupled term
Iiij,0 illustrated in Figure 3.2-b, it is shown that the thickness of the peaks (influenced by
the damping ratios) and the separation between ωi and ωj are central in the approxima-
tion (3.3.46). This relation is accurate, especially as the peaks are narrower and the three
components well separated. More details about the criterion used to quantify the timescale
separation are available in [Deno 09a].

(a) (b)

Figure 3.2: Relative errors between the numerical computation and the proposed approxima-
tion (a) for Iiii,0 (ξi = 0.01) and (b) Iiij,0 (ωd,i = 2rad/s,aOU = 0.02rad/s), normalized with
respect to Iiii,0 numerically integrated.
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3.4 Validation in linear spectral analysis

3.4.1 About the sources of non-proportional damping

Although the structural damping in a structure is commonly supposed to be proportional, i.e.
a linear combination of the mass and stiffness matrices, there exists some cases where this
assumption cannot be stated. For instance, viscous dampers (shock absorbers) or aerodynamic
damping usually come along with their own damping models. Consideration of these models
yields a damping matrix that does not necessarily offer proportionality. In these cases, the
modal projection still enables to reduce the size of the system, as usually m � n, but cease
to decouple the modal equations.

The decoupling approximation, as proposed by Lord Rayleigh [Rayl 45], consists in ne-
glecting the out-of-diagonal elements of the modal damping matrix (Do = 0 in (3.3.13)).
This approach is motivated by the smallness of the off-diagonal elements compared with the
diagonal ones. Recently, some paradoxical results have been highlighted about this prac-
ticed assumption. Indeed, Morzfled et al. show [Morz 09] that the relative smallness between
off-diagonal and diagonal elements is not sufficient to ensure small decoupling errors.

Other methods have been proposed to deal with non-proportional damping. The complex
modal analysis, originally proposed by Foss [Foss 58], is an extension of the classical modal
analysis to complex modes in a state space. This method allows to decouple the equations of
motion in the state space of the system and therefore to perform deterministic or stochastic
analyzes in time or frequency domains without assumption about damping matrix. Never-
theless, engineers and practitioners, especially in civil engineering, have never considered this
approach as suitable, because the physical meaning of complex modes is interpreted with
more difficulty. In some applications, the use of complex mode can make the resolution really
inefficient [Prop 03b]. In an alternative approach, Ibrahimbegovic [Imbr 89] proposes a simple
numerical algorithm considering off-diagonal damping forces as pseudo-forces applied to the
uncoupled system. The asymptotic expansion-based method is here applied to the spectral
analysis of a large-dimensional linear structure with non-proportional damping. Because the
structure is linear, the modal basis is the one of the linear structure (K̃ = 0).

3.4.2 Wind buffeting analysis of the Millau viaduct

The wind velocity is usually supposed to be a Gaussian random variable characterized by a
mean value U and its power spectral density Su [Simi 96]. The effect of the mean loading
is easily determined by a simple static (or quasi-static) analysis, while a stochastic analysis
is required to evaluate the effects of turbulence. In a unidimensional turbulence model, the
wind velocity and the applied forces are related by the squared relative velocity V (t) between
the wind U + u(t) and the structure ẋ(t),

ftot = 1
2ρCdAV

2 = 1
2ρCdA(U + u− ẋ)2 (3.4.1)

where ρ is the air density, Cd is the drag coefficient and A is the surface exposed to wind.
Usually from (2.4.1) a simple linearized relation is adopted

ftot ' Ca(
U
2 + u− ẋ) (3.4.2)
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where Ca = ρCdAU . The first term of (3.4.2) is the mean force (static analysis), the second
term is the turbulent component of the force due to wind turbulence and the third term
is the aerodynamic source of damping. Replacing (3.4.2) into the equation of motion and
disregarding the mean force leads to

Mẍ + Csẋ + Kx = Ca(u− ẋ) (3.4.3)

where Cs is the proportional structural damping matrix. Equation (3.4.3) is rewritten as

Mẍ + (Cs + Ca)ẋ + Kx = f (3.4.4)

where f(t) = Cau(t) is the applied loading considering only the wind turbulence. The matrix
Ca can be seen as a diagonal aerodynamic damping matrix, which elements are not necessarily
equal, e.g. the mean velocity of wind or drag coefficients can vary along a structure. In this
application, not only drag but also lift and moment coefficients contribute to the establishment
of Ca. These contributions are calculated similarly to (3.4.2), as explained in [Simi 96]. More
details about the construction of buffeting wind forces are given in [Stro 10]. As previously,
Equation (3.4.3) is projected in the modal basis,

q̈ + (Ds + Da)q̇ + Ωdq = p (3.4.5)

where Ds = ΦTCsΦ is the structural modal damping matrix which is usually assumed to be
diagonal and Da = ΦTCaΦ is the modal aerodynamic damping matrix which is no longer
diagonal and generates modal coupling.

The concept of aerodynamic damping forces, summarized here for the purpose of clarity,
is readily extended to the buffeting analysis of a spatial structure with drag, lift and moment
aerodynamic coefficients, and in a 3-D wind-flow, i.e. with the three components of the wind
turbulence [Sola 01]. Such a refined model was considered in the following illustration, which
deals with a buffeting analysis of the Viaduct of Millau, see Figure 3.3. This seven-span
cable-stayed bridge (about 2.5km long), crossing the Tarn valley about 350m above the bed
of the river, is the highest bridge ever built in Europe. This bridge is also renowned for the
launching technique used to erect the deck.

Zone A Zone B Zone C

Figure 3.3: Sketch of the Viaduct of Millau.

The structure is modeled by means of a finite element software (FineLg, [Fine 03]) 2. The
model counts 1425 nodes and 2439 beam elements with 12 DOFs. The first forty modes are
kept and have natural frequencies below 1Hz. The structural modal damping matrix is built
to ensure a structural damping ratio of 0.3% in these forty modes. The characteristics of the
wind were chosen in accordance with [Euro 91] and with on-site measurements. Three zones

2The author personally acknowledges the design office Greisch for providing the finite element model of the
Viaduct.
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are considered with distinct characteristics of mean velocity U and standard deviations σu,
σv, σw (longitudinal, vertical and transversal turbulent wind) given in Table 3.1. Considering
the aerodynamic damping, the diagonality index ρ(D) = ρ(Ds + Da) is equal to 1.02, while
the index of convergence ρJ is equal to 0.58.

U [m/s] σu [m/s] σv [m/s] σw [m/s]

Zone A 38 6.5 6.5 4.5
Zone B 34 5.5 5.5 4.0
Zone C 36 5.5 5.5 4.0

Table 3.1: Millau Viaduct: main characteristics of the wind velocity from on-site measure-
ments.

Exact variances of the modal coordinates and the related correlation coefficients are rep-
resented in Figure 3.4. The modal truncation is justified by the decrease of the variance of the
modal coordinates as depicted in Figure 3.4-a. Concerning modes 17, 18 and 19, the vicinity
of their natural frequencies (resp. 0.531Hz, 0.533Hz and 0.534Hz) and the similarities of mode
shapes induce dynamic coupling and high modal correlations as shown in Figure 3.4-b. Also,
coupling is noticed for modes 29, 30 and 31. Additional observations about the structural
behavior of this structure are reported in [Deno 09a]. The covariance matrices Σq,∞, Σqd ,
Σq,1 and Σq,2 are computed and the respective correlation matrices ρq,∞, ρqd

, ρq,1 and ρq,2

are deduced.

(a) (b)

Figure 3.4: (a) Reference variances (diagonal of Σq,∞) of the modal coordinates and (b)
Reference correlation coefficients (ρq,∞) of modal coordinates.

Figure 3.5 depicts the relative error on the variance of the modal coordinates obtained with
the different approximations. For the three approximations, the errors are the most significant
for the two groups of correlated modes (17, 18, 19 and 29, 30, 31). Figure 3.5-a indicates that
neglecting modal coupling, i.e. neglecting off-diagonal terms, induces a maximum error of
+45% on the variance of mode 19. The proposed method does not neglect this coupling and
allows to reduce this error down to +10% (Figure 3.5-c). Comparison between Figure 3.5-a
and -b shows the influence of the first correction term on the variances: the sign of the errors
is changed but the order of magnitude is the same as before. With the proposed method
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(Figure 3.5-c) and an extension to the second order, the errors are significantly reduced even
if they remain maximum for the groups of coupled modes (+10%). Figure 3.5 also illustrates
the alternate convergence towards the exact values.

(a) (b) (c)

Figure 3.5: Relative error on the variance of the modal coordinates for different approxima-
tions (a) Σqd , (b) Σq,1 and (c) Σq,2. Relative errors are expressed with respect to Σq,∞.

In the event of negligible modal correlation, an SRSS combination (Square Root of the
Sum of the Squares) of modal amplitudes would be used to calculate variances of structural
responses. Because the proposed method reduces significantly the error on the modal am-
plitudes, the error in a SRSS combination will also be reduced. In this example however,
the importance of modal correlation (see Figure 3.4-b) requires a CQC approach (Complete
Quadratic Combination), at least in the establishment of structural responses that are con-
cerned by the clustered modes 17, 18, 19 or 29, 30, 31.

(a) (b)

Figure 3.6: Differences between exact correlation matrix of modal coordinates ρq,∞ and ap-
proximations (a) ρqd

and (b) ρq,2 .

Figure 3.6 shows the errors on the correlation coefficients obtained with the decoupling ap-
proximation (in this case, the correlation of modal coordinates just results from the correlation
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of generalized forces) and the proposed approximations. They are expressed as an absolute
difference with exact coefficients. The decoupling approximation (Figure 3.6-a) provides im-
portant differences (up to 0.2), especially for the groups of correlated modes. The proposed
method reduces significantly these differences down to 0.06 (Figure 3.6-b), precisely because
the correlation coming from non-proportional damping is integrated in this approximation.

(a) (b)

Figure 3.7: Histograms of the relative error on bending moments for approximations based
on (a) Σqd and (b) Σq,2. Both results are obtained with a complete quadratic combination
(CQC).

The covariance matrices of bending moments in 2058 beam elements are calculated using
a CQC approach with the full covariance matrices Σq,2 and Σqd . Therefore, both errors on
variances and correlation coefficients of the modal amplitudes influence the variances of the
bending moments. Figure 3.7 shows histograms of the relative errors on variances of bending
moments with the two approximations. The proposed method provides a better estimation
of the covariance of modal coordinates and therefore of the variances of the bending moment,
as shown in Figure 3.7-b. For instance, more than 98% estimated errors are less than 1%
(against only 50% errors for the decoupled approximation) and the most important error is
-3.4% (against -9.7% for the decoupled approximation). The error is homogeneously reduced
in the structure with the proposed method in spite of an index of diagonality close to 1. These
results emphasize not only the importance of modal coupling resulting from non-proportional
damping, but also the pertinence of the proposed method.

(a) (b)

Figure 3.8: (a) Bending moment diagram and (b) relative errors on bending moment for
different approximations in the third pile of Millau Viaduct.
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As shown in Figure 3.8, the error on bending moment in the third pile (from the left in
Figure 3.3) with the proposed method does not exceed 3%. The bending moment in this pile
depends on the correlated modes, especially 17, 18 and 19, see [Deno 09a]. In this figure, the
proposed method is compared with the amply used decoupling SRSS approximation (neither
coupling nor correlation is taken into account) and with decoupling CQC approximation
(no modal coupling is considered, but the modal correlation is taken into account). Figure
3.8-b shows that the common assumption consisting in neglecting coupling and correlation
induces unacceptable errors (around 50%). The proposed method compares favorably with
the other CQC approach, although both allow for a significant reduction of the discrepancy
pertaining to the SRSS combination. The reasons why the decoupling CQC approximation
provides acceptable results is that the errors due to coupling (overestimation, see Figure 3.5-
a) and correlation (underestimation by 20%, see Figure 3.6-a) compensate for this particular
application. This could not be the case for any other application. However, the proposed
approach seeks to reduce them both and successively with the first two corrections to the
covariance of modal coordinates. This makes it indisputably more robust and reliable. This
example illustrates clearly the validity and the interest of the method.

3.5 Stationary equivalent statistical linearization

3.5.1 Newton’s iterative procedure and asymptotic approach

In this Section, the application of Newton’s algorithm to solve (3.3.11) is discussed, in the light
of the asymptotic expansion formulation. As a major outcome, it will be observed that, again,
the linear algebra that is deliberately kept in the former derivation, results in a particularly
efficient formulation.

Because of the symmetry in the modal covariance matrices Σq and Σq̇, m(m+1) unknown
elements are identified in the set of equations (3.3.11). For the sake of simplicity in the
notations, they are gathered in a vector of unknowns σ, while operators F1 and F2 are
rearranged into the vector function s. The set of equations is finally written in the residual
form

r(σ) = σ − s(σ) = 0. (3.5.1)

The equation in this set are nonlinear, involving hidden integrals. Newton’s algorithm to solve
(3.5.1) requires the computation of a Jacobian matrix T, defined as

T(σ) = ∇σ rT = I−∇σ sT. (3.5.2)

Starting from an initial guess σ(0), which is the response of the linear subsystem in this case,
a new iterate σ(k+1) is obtained by

σ(k+1) = σ(k) −T
(
σ(k)

)−T
r
(
σ(k)

)
, k ≥ 0 (3.5.3)

and the procedure is repeated until a certain norm of r (σ) becomes less than a desired
threshold.

The formal derivation of T in the general case is rather cumbersome. For instance, the
construction of ∇σ sT, in the upper half of the Jacobian matrix (i.e. related to F1), requires
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the estimation of

∇σ

(ˆ
R

HSpH∗dω

)
=

ˆ
R

(∇σH) SpH∗dω +

ˆ
R

HSp (∇σH∗) dω, (3.5.4)

where∇σH further requires the application of the chain rule of differentiation, as H (ω; Ωeq,Deq)
defined with respect to Ωeq and Deq is differentiated with respect to σ. As a compensation, a
finite difference method may be used to estimate the Jacobian matrix T

(
σ(k)

)
. However, this

finite difference operation constitutes a heavy computational step in the method, precisely be-
cause the function estimation itself is already heavy computed. Indeed, for each perturbation
of the vector σ(k), the almost full modal transfer matrix must be inverted for every circular
frequency and then the integration of the psd matrices Sq and Sq̇ must be performed. The
repeated inversions and integrations make this method prima facie quite inefficient, a reason
why the fixed-point method is traditionally preferred.

Interestingly however, the previous asymptotic developments can be used to simplify the
computation of the Jacobian matrix and to offer, with a much less expensive algorithm, the
quality of a second-order method. According to the previous developments, the vector s(σ)
is replaced by its first order asymptotic approximation in (3.5.1). In this case, the Jacobian
matrix may be analytically and swiftly constructed. Indeed the construction of ∇σ sT in
(3.5.4), requires the estimation of ∇σH which is now regarded as

∇σH ' ∇σ ((I−HdJo) Hd) ' −Hd (∇σΩeq + ιω∇σDeq) Hd, (3.5.5)

where the two approximations correspond to first order developments. According to the
approximation (3.5.5), Equation (3.5.4) reads

∇σ

(ˆ
R

HSpH∗dω

)
' (∇σLq) +

(
∇σL∗q

)
(3.5.6)

with

(∇σLq)ij =
m∑
k

(∇σΩeq)ik Iijk,0 +
m∑
k

(∇σDeq)ik Iijk,1 (3.5.7)

and Iijk,α defined in (3.3.31). Similarly, the second half of the Jacobian matrix, which is
related to operator F2, is filled with ∇σLq̇ +∇σL∗q̇ where

(∇σLq̇)ij =
m∑
k

(∇σΩeq)ik Iijk,2 +
m∑
k

(∇σDeq)ik Iijk,3. (3.5.8)

A final substitution into (3.5.2) with the corresponding matrix-to-vector rearrangement pro-
vides an approximation of the Jacobian matrix, which is a cornerstone in this Newton al-
gorithm. Indeed, the numerical construction of this matrix is effectively efficient, since (i)
it mainly relies on the scalars Iijk,α which were computed in advance for the calculation of
r
(
σ(k)

)
, (ii) no matrix is inverted and (iii) no additional integral is performed. Only the re-

sults computed for a given guess of σ in the iterative procedure are exploited. The gradients
∇σΩeq and ∇σDeq can be established analytically or with a finite difference scheme.

All in all, the derivation of the Jacobian matrix in this Section shows that, with the
projection of the equation of motion into a suitable modal (generalized) basis, together with
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the asymptotic expansion, it is possible to rapidly construct an accurate approximation of the
Jacobian matrix. Compared to the finite difference estimation of the full residual vector, the
proposed method efficiently concentrates the time-consuming and ill-conditioned operations
(matrix inversion and integration) in analytical developments.

It is also remarkable that the proposed method does not require any user-tuned continu-
ation to converge towards the solution. In the problems investigated by the author, among
which a significant one is reported hereinafter (while others in [Cano 14]), a part of the so-
lution of the linear subsystem is always used as initial guess σ(0). While the fixed-point
algorithm is only able to handle limited nonlinearities in amplitude, the proposed algorithm
smoothly converges towards the solution of the problem, without recourse to any relaxation
nor backtracking artifacts.

3.5.2 Shear-type building under earthquake

The following example is inspired from [Lin 04b]. A multistorey shear-type building under
a unilateral seismic excitation is considered. The structural model consists of Ns stories
modeled by lumped masses m connected by clamped-clamped nonlinear beam elements. The
hardening behavior of a steel beam can be taken into account for large elastic displacements
by an additional cubic nonlinear stiffness as in [Ricc 07, Jin 12]. The structure is sketched in
Figure 3.9-a and the equation of motion for the j-th storey is

mŸj + k (Yj+1 − 2Yj + Yj−1) + gj(Yj−1, Yj , Yj+1) = −mü, (3.5.9)

where gj , i.e. the j-th component of the nonlinear force vector, is defined as

gj(Yj−1, Y j , Yj+1) = κk
(

(Yj − Yj−1)3 − (Yj+1 − Yj)3
)

(3.5.10)

with Yj the relative horizontal displacement (with respect to the ground displacement) of that
storey. At the first floor, Y0 is set equal to zero, while at the last floor, the term YNs+1 − YNs
is set equal to zero as well. In this illustration, the number of stories Ns is fixed equal to
10 and the characteristics of the structure are m = 1290tons, k = 108N/m. The damping
terms result from a proportional structural damping imposed to 1% in the first two linear
modes. The parameter κ, quantifying the intensity of the nonlinear forces, is adjustable in
this example. The natural frequencies of the first five linear normal modes are 0.21, 0.62, 1.02,
1.40, 1.75Hz. The unilateral excitation field is modeled by a modified Kanai-Tajimi spectrum
[Clou 93]

Sü = S0
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(3.5.11)

with ω1 = 5rad/s, ξ1 = 0.2, ω2 = 0.5rad/s, ξ2 = 0.6 and S0 = 0.03m2/s3 (see Figure 3.9-b).

Since all the degrees of freedom are involved in the nonlinear behavior, this example is a
pertinent application of our method. Furthermore, the classical fixed-point method might fail
to solve this problem for moderate nonlinear behavior.
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(a) (b)

Figure 3.9: (a) Sketch of the shear-type building. (b) Kanai-Tajimi spectrum with the afore-
mentioned parameters.

Indeed, in the nodal basis (n = 10), for a given guess of Σ
(k)
x , the equivalent stiffness

matrix Keq may shift the natural frequencies in the high-frequency domain, for which the

spectrum (3.5.11) is low. The updated response of the structure Σ
(k+1)
x is therefore reduced,

and so is the following guess of Keq. Thus, the natural frequencies decrease and the risk here

is to come back to the previous guess Σ
(k)
x . The fixed-point iterative process is thus eventually

trapped in oscillations between two states that are not solutions, as illustrated in Figure 3.10.
This argument briefly and physically explains why the equation set can be ill-conditioned and
why the convergence can be dramatically slow. Obviously, this fact corroborated by numerical
experiments, shall not be encountered with white noise excitations, as commonly assumed in
(much more) academic examples. This may justify why the fixed-point method has apparently
never been criticized.

Figure 3.10: Non-convergence of the fixed-point algorithm. Oscillations occur between a
state depicted in (∗) (left) and a state depicted in (◦) (right), although those states are not
solutions. Both the standard deviations σX of the linearized lateral displacements and the
related natural frequencies (on the Kanai-Tajimi spectrum) are illustrated.
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In this context, the proposed method (with N = 2) shows its relevance, because the
Newton algorithm is able to explore more efficiently the solution space. With the proposed
developments, the problem consists in minimizing the residue function (3.5.1), as well as
keeping the convergence criterion (3.3.35) as small as possible. This latter aspect is ensured
by a proper selection of the equivalent matrix K̃. Due to the nonlinear stiffness forces, the
initial choice of the matrix K̃ for the modal projection in (3.3.2) is important, because it
conditions the convergence of the series. Computing K in (3.2.6) with u0 gives a crucial
information about the distribution of the nonlinear forces and yet the amplitudes are roughly
estimated. In this example, a good initial trial for K̃ consists in computing K with a fraction
of u0. This fraction can be interpreted as a ratio between the internal forces coming from
the linear subsystem and from the equivalent linear one (in this problem the ratio 1/(1 + 3κ)
is used according to (3.2.7)). In this manner, both linear and equivalent linear forces are
taken into account with an adequate preponderance in the total stiffness matrix K + K̃. The
matrix K̃ may be updated, when a better assessment of ũ is known (K̃ = K(ũ)) or when
the convergence criterion is violated, in order to converge to a more accurate results. Here
the proposed method reveals another valuable aspect, because the expansion-based method
does not require a modal update at each iteration, as in a classical statistical linearization
[Robe 99]. In fact, examples show that one or two updates are by far sufficient to offer an
accurate result. The combination of a small convergence criterion and a small residual function
ensures that the solution is the sought one.

(c)

Figure 3.11: (a) Convergence criterion ρJ for three iterations on K̃. (b) Error [%] between
the proposed method (N = 2) and the formal statistical linearization. (c) Standard deviation
of the lateral displacements for different values of κ.

For all simulations, five modes are kept in the analysis and K̃ is updated twice in order to
satisfy the convergence criterion as illustrated in Figure 3.11-a. Even if ρJ is greater than one
with the first guess K̃(0), it does not mean that the problem cannot be solved, but it shows that
the solver does not converge to the good solution because the approximation of s(u) in (3.5.1)
is not accurate enough. However, the developed strategy just requires few iterations on K̃
before reaching a suitable guess, as illustrated in Figure 3.11-b, for strong nonlinearities. The
comparison between Figure 3.11-a and -b shows that a small index ρJ (with a small residue)
is a proof of convergence for the linearization. The nonlinear forces become more important,
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but a small index ρJ ensures the converge independently of κ. Figure 3.11-c highlights the
effects of the nonlinear forces on the structure through the standard deviation of the lateral
displacements.

The number of iterations inside the Newton solver for all the simulations in Figure 3.11
does not exceed four and the computation time does not exceed 1s per iterate (in MatLab,
our processor is an Intel CORE i5 ): the method is not extensively consuming in virtue of its
second-order accuracy. Figure 3.11-b shows the accuracy of the method. The error on the
diagonal terms and on the whole covariance matrix is at most 1% even for strong nonlinearities.
Figure 3.11-c shows profiles of the standard deviation of the lateral displacements for different
values of κ. The good agreement with the proposed method and the exact linearization is
noteworthy.

3.6 Conclusions

The spectral analysis is here applied in the context of equivalent statistical linearization in a
stationary setting. We aim at developing a method that can be used to analyze structures
with nonlinear behaviors subject to coherent random loads. We base our approach on an
asymptotic expansion of the modal transfer matrix related to linear or linearized structures.

This expansion is inspired by the usual smallness of the out-of-diagonal elements of the
modal damping and stiffness matrices, compared with the diagonal ones. These diagonal
matrices characterize a main decoupled structure, while the out-of-diagonal elements can be
seen as perturbations. Thanks to the asymptotic expansion, we can see the modal transfer
matrix of a structure as the modal transfer matrix of a main decoupled structure, corrected
by additional terms estimating the modal coupling in the system. These correction terms are
readily obtained by linear algebra, which leads to a smart and convenient formulation.

Evoking the Gerschgorin theorem, we derive a criterion of convergence, which measures
the modal coupling in the structure. The criterion ρJ must be less than one in order to ensure
the convergence of the series and the validity of our approach.

As a verification, our asymptotic approach is applied to the wind buffeting analysis of the
Millau Viaduct, assumed to linearly respond. Due to the aerodynamic damping forces, the
damping model of the structure ceases to be proportional and the resulting coupling must
be taken into account. This example highlights the alternate convergence of the expansion
and the properties of the different correction terms, i.e. the mechanical coupling is essentially
taken into account in the first correction term.

After this validation in linear structural analysis, we focus on equivalent statistical lin-
earization. This linearization aims at calculating the first two statistical moments of a struc-
tural responses through an optimization problem. The original nonlinear equation of motion,
with random forces, is thus replaced by a set of nonlinear algebraic equations. In spectral
analysis, the fixed-point procedure, usually applied to solve this set, may fail in dealing with
moderate nonlinearities and realistic excitation models. With our asymptotic expansion, we
propose an efficient formulation of a second-order numerical solver to circumvent those limi-
tations. Indeed, the computation of a Jacobian matrix is deeply improved and simplified by
our asymptotic method, allowing the use of a gradient-based solver.

About the convergence in this context, this criterion ρJ depends upon the considered
modal (or generalized) basis, in which the linearized equations of motion are projected. It
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may be required to take into account the linearized counterpart of nonlinear forces to evalu-
ate their influence on the natural frequencies and to keep a slight modal coupling. Therefore,
we introduce a stiffness matrix K̃ to take into account the linearized stiffness forces in the
computation of the modal basis. This matrix is a mathematical artifact to calculate a suit-
able linearized basis. In an iteration procedure, the matrix K̃ and the modal basis are not
necessarily updated at each step. The update of the generalized basis is discussed later in this
Part.

Both the second-order solver and the modal basis updating procedure are applied in this
Chapter to the equivalent linearization of a shear-type building subject to earthquake. This
example also highlights the difficulty to apply a first-order solver, such as the fixed-point, to
deal with realistic loadings. Indeed it results in a non-convergent solution, a consequence that
the power spectral density is non-uniformly distributed over the frequency domain.

The problems encountered in a stationary setting are different from those in a nonstation-
ary regime. Nonetheless, the asymptotic expansion-based method can be interestingly applied
to transient linear analysis, as presented in the following Chapter.
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Chapter 4

Linear Evolutionary Spectral
Analysis

4.1 Context and propositions

4.2 Spectral analysis of linear time-invariant systems

4.3 Asymptotic expansion in evolutionary spectral analysis

4.4 Efficient formulation for numerical computation

4.5 Multi-span bridge under differential ground acceleration

4.6 Nongeometric spectral moments and first passage time

4.7 Linear systems driven by non-Gaussian excitation

4.8 Conclusions

Purpose of the chapter

In linear transient analysis, some methods require to compute the impulse response
matrix of a structure. Since this matrix is determined with difficulty in practice other
approaches are usually considered. In this context, the asymptotic expansion-based
method developed in the previous Chapter may find an interesting application field.
Actually, it allows to efficiently compute a closed-form expression of the impulse response
matrix in a modal basis, key point in evolutionary approach.

The concept of evolutionary psd and the related spectral analysis are presented in Section
4.2. Then, the asymptotic expansion-based method is applied in Section 4.3. To improve
the implementation of the proposed developments, an efficient computational procedure
is described in Section 4.4. Finally, some reflexions about the concept of non-geometrical
spectral moment and non-Gaussian evolutionary spectral analysis are also shared in
Sections 4.6 and 4.7, respectively.

57
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4.1 Context and propositions

In the previous Chapter, the presented spectral analysis only focuses on stationary processes.
As said before, the wind is usually considered as a stationary loading, making the previous
developments quite pertinent to take into account localized nonlinear behaviors or nonlinear
damping. However, some concerns may be judiciously formulated about the use of stationary
equivalent linearization to perform seismic analysis, as earthquakes are transient by nature.
Furthermore, it would be fallacious to restrict wind analysis to stationary process. In civil
engineering, some aeolian phenomena are also transient by nature, like the aeroelastic forces
[Stro 10] and the flutter behavior [Jone 01]. In the case of wind buffeting analysis, downburst
or thunderstorm, more detailed in the following, require indubitably to take into account the
time evolution of the mean wind velocity, and so its influence on the intensity of turbulence.

This chapter may be interpreted as a generalization of the previous one to non-stationary
analysis for linear systems and linear phenomena. Indeed, it deals with a specific family of
transient processes largely encountered in civil engineering: the process derived from evolu-
tionary psd. An evolutionary power spectral density characterizes an unsteady process
by means of the psd of an embedded stationary process and a deterministic time win-
dow, as illustrated in Figure 4.1.

Figure 4.1: Evolutionary spectral analysis and evolutionary process: an embedded stationary
random process is modulated by a time window in order to generate an evolutionary random
process.

Therefore, the evolutionary spectral analysis may be understood as an extension of the
spectral analysis presented before for steady processes, because the second approach should
necessarily tend to the first one on large timescale provided the intensity envelope may remain
constant in time. Although this topic is quite old, it remains an elegant formulation of
transient phenomena, for which evolutionary spectral models are available, as for earthquakes.
Indeed, the frequency content of seismic excitation is usually modeled by a Kanai-Tajimi
spectrum or Clough-Penzien modified spectrum, while the time evolution is modeled by a
deterministic time window. The same philosophy applies to transient gusty wind.

As source and ground, the stricto sensu evolutionary spectral analysis has been timidly
initiated by Caughey and Stumpf [Caug 61], then formalized by Priestley [Prie 65, Prie 67].
The first pertinent applications to dynamical systems are due to Hammond for SDOF and
MDOF systems [Hamm 68, Hamm 73]. Those contributions were only focused on linear dy-
namics of time-invariant systems. Even though the spectral analysis is a natural extension
of Fourier analysis to random dynamics, the evolutionary spectral analysis expresses mathe-
matically the transience of the energy contained in the different harmonics of an excitation,
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and this description is thus less intuitive. The spectral analysis only requires to work in a
frequency domain, while the evolutionary spectral analysis needs both time and frequency
descriptions.

In a general theory, the time window may be time and frequency-dependent. In most
cases, the time envelope is only time-dependent. Although the spectral approach is the most
commonly used method to analyze large-dimensional linear structures subject to stationary
loading, the evolutionary spectral analysis has not encountered a real enthusiasm in the fields
of engineering.

Avoiding evolutionary spectral analysis, the analysis of structures subject to transient
loadings may be performed by cumulant method (see Appendix A.1), with a limitation to Itô’s
processes and the difficulty to generate coherence in the excitation fields. Actually, the use of
Monte Carlo method is in some cases the only feasible method to study transient dynamics
of complex structures. Assuming a coherent seismic field, the computational burden is real,
but limited by the duration of generated histories, not as long as for wind loads on structures.
Furthermore, the time history of an earthquake is small compared with the duration of a storm.
Indeed, an earthquake may last at most one minute, while a storm lasts about thirty minutes
for the period of strong intensity. The strategy for time history generation is thus completely
different in both situations. In seismic engineering, many earthquakes may be generated
from a single embedded stationary signal, while for storms a single generation applies to less
samples (for a given frequency resolution). This is partly due to the low frequency content of
the wind and the computational limitation.

In order to be as exhaustive as possible, we cannot limit the time domain approach of
transient dynamics to Monte Carlo simulation. At the end of the last millennium, To has de-
veloped the concept of stochastic integration scheme, based on the central difference [To 86]
and on the Newmark method [To 92]. These methods have been recently improved by Tootk-
aboni [Toot 10] and applied to non-white excitations. The method is constructed upon a
general recursive state space formalism: the covariance matrix between displacements and
velocities is updated at each time step by a recursive relation depending on the previous time
steps, the system properties and the integration scheme. The method deals with general non-
stationary random processes and with non-proportional damping. However, the method is
only applied to small-scale problems and the correlation amongst the random excitations is
never taken into account. Since many excitation models are characterized in the frequency
domain, we want to go back to the spectral analysis.

First, the concept of pseudo-excitation has been proposed in stationary [Lin 92] and non-
stationary [Lin 94] settings, in order to attach more importance to the dimension of the
structure and to the coherence within the excitation field. The pseudo-excitation method
consists in determining the random response of a structure driven by random loadings, as the
response of this structure under a series of harmonic loads. Basically, the method uses the
spectral decomposition, exposed in Section 2.4 for coherent field simulation. For stationary
response, the linearity of the system readily leads to harmonic superposition; this method has
been applied in wind [Xu 99] and earthquake [Lin 04a] engineering. For unsteady responses,
the method leads to a superposition of Duhamel integrals [Clou 93] in a modal basis. However,
this method is not able to deal with coupled systems, because its main drawback is hidden
in the numerical computation of the impulse response matrix of mechanically coupled MDOF
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systems. This limitation, encountered in evolutionary spectral analysis as well, may open
a new perspective for the developments of Chapter 3. Instead of the Duhamel integral in
the time domain, we propose to stay in the frequency domain with the evolutionary spectral
analysis and to consider the time as a parameter.

For SDOF systems subject to transient loadings, the evolutionary spectral analysis is a very
efficient tool, because closed-form solutions can be estimated, provided that the deterministic
time window has a convenient shape [Gupt 00]. For most of those functions encountered in
the literature, an instantaneous transfer function can be computed. The direct application
of this result leads to classic decoupled modal analysis, for which each mode is considered
independently as an SDOF system. A step beyond, Conte [Cont 96] enhances some closed-
form expressions of the covariance matrix of the modal coordinates for a linear time-invariant
system subject to white noises.

For MDOF systems, the main drawback of the evolutionary spectral analysis is in the
computation of the impulse response matrix of the system. In a modal basis with perfectly
decoupled coordinates, this problem is avoided. However, for structures with non-proportional
damping, Lord Rayleigh’s approximation may lead to poor results. Closed-form solutions or
analytical results cannot be used. This is a reason why some authors forget the transient
nature of the phenomena and apply directly the stationary theory. Provided the structure
has a small memory time, i.e. the main structural modes are highly damped, this assumption
is quite satisfactory and offers significant simplifications from a practical point of view. With
the so-called assumption of quasi-stationarity, the transient response is seen as a time
modulation of the stationary response. Nonetheless, we do not share this view because this
assumption denatures the analysis, especially in the context of extreme value problems. In-
deed, the past of the response conditions the statistics of extremes, especially for earthquakes
because of their short duration.

Even in a modal basis, the modal coupling leads to consider full modal impulse response
matrices, so the results from SDOF analysis cannot be used. The computation of this matrix
in a transient analysis becomes so time consuming, even for linear systems, that Monte Carlo
simulations are usually preferred. Nevertheless, the proposed expansion-based method may
find here a possible and clever extension. It may offer new perspectives in evolutionary spectral
analysis, for two main reasons: (i) the decoupled approximation in a suitable modal basis may
be expressed as a linear combination of the transient modal responses, (ii) the computation
of the correction terms is definitely simplified, since closed-form expressions can be computed
after few analytical developments. The application of our developments to the resolution of
extreme value problems can also be considered.

First of all, the spectral analysis of Linear Time-Invariant (LTI) systems is generalized
to transient excitation by use of evolutionary processes. The application of the asymptotic
expansion-based method is also proposed. Some computational aspects are also exposed in
order to extend the method to any time window. The question of nonstationary spectral
moments is also addressed in the context of a first passage problem. Some extensions of the
method to non-Gaussian transient analysis are exposed in the last Section of this Chapter.
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4.2 Spectral analysis of linear time-invariant systems

4.2.1 Expansion theorem and evolutionary spectrum

The concept of evolutionary psd is presented by considering the vector of the generalized
forces. Like in a stationary setting, the vector of forces is a random vector such as p(t, θ) :
R+×Θ 7→ Rm. A crucial assumption about the spectral distribution of the (modal) generalized
forces, and thus the generalized forces, states that the vector of forces may be written in the
form of a Fourier-Stieltjes integral, like

p(t, θ) =

ˆ
R
eιωta(t, ω)dp̃(ω, θ) (4.2.1)

with a(t, ω) : R+×R 7→ Rm×m a deterministic time window (also called intensity function or
time envelope) The unsteady process is thus built by modulating a stationary process by an
envelope depending on time (and possibly on frequency). In the particular case where a(t, ω) is
defined as a complex-valued matrix, it must be hermitian a = a∗. For sake of simplicity in the
following developments, a(t, ω) is supposed to be real. This formulation is used by Priestley
on the basis of the developments of Bartlett ([Bart 56], p.143). In a particular case, but amply
encountered, the scalar function a(t, ω) replaces the matrix a(t, ω), supposing therefore that
all the stationary forces on a structure are modulated by the same time window. Most of
the time, this assumption is used in seismic engineering. In wind engineering, the use of a
matrix a(t, ω) allows to model wind direction evolutions during a storm, but its relevance only
matters in presence of spatially coupled modes.

Without too many details, the validity of (4.2.1) comes from an expansion theorem: if
the process p(t) admits the integral representation

E[p(t1)p∗(t2)] =

ˆ
R2

φ(t1, ω1)φ∗(t2, ω2)dµ(ω1, ω2) (4.2.2)

with t1, t2 ∈ R+ and φ(t, ω) a quadratically integrable function with respect to the measure
dµ(ω1, ω2) for all t, then there exists an expansion of p(t) in terms of the random increment
dp̃(ω) given by the following Riemann-Stieljes integral

p(t, θ) =

ˆ
R
φ(t, ω)dp̃(ω, θ) (4.2.3)

with dµ(ω1, ω2) = E[dp̃(ω1)dp̃∗(ω2)]. Immediately, the stationary case is recovered by setting
φ(t, ω) = eιωt, while the expression (4.2.1) is obtained by setting φ(t, ω) = a(t, ω)eιωt in
(4.2.3). Assuming p(t) a zero-mean process, the covariance function of p(t), noted Σp(t), is
time-dependent. The stationary relation between the covariance matrix and the psd matrix
is transposed into an evolutionary formalism and Equation (4.2.2) yields

Σp(t) =

ˆ
R

Ŝp(t, ω)dω (4.2.4)

with Ŝp(t, ω) the evolutionary psd of p(t). The hat used to denote evolutionary spectrum
stems from [Lin 04b] to avoid any possible confusion with the stationary case. Using the
relation (2.2.6) in term of dp̃(ω) in (4.2.4), the evolutionary psd Ŝp(t, ω) is expressed in terms
of the psd of the embedded stationary processes Sp(ω) and the time window, as



62 CHAPTER 4. LINEAR EVOLUTIONARY SPECTRAL ANALYSIS

Ŝp(t, ω) = a(t, ω)Sp(ω)a∗(t, ω). (4.2.5)

This last equation expresses the whole philosophy of the evolutionary spectral represen-
tation: an embedded stationary process mainly described by its cross-psd matrix and a mod-
ulation matrix introducing the time dependency in the problem. Here also, the hermitian
assumption on a(t, ω) originates from (4.2.5), in order to ensure Ŝp(t, ω) hermitian. In the fol-
lowing Section, the evolutionary spectrum are used in spectral analysis of linear time-invariant
systems.

4.2.2 Evolutionary spectral analysis in physical coordinates

In this Section, the theory of linear time-invariant (LTI) system is exposed in presence of
transient random excitation. The dynamic of the structure is modeled by (3.2.1) without
nonlinear internal forces. The modal basis in this case gathers the linear normal modes of the
linear substructure. From linear system theory [Clou 93], we know that the modal response
function is expressed as the convolution integral between the impulse response matrix of modal
coordinates and the vector of modal random forces, such that

q(t, θ) =

ˆ t

t0

h(t− u)p(u, θ)du, (4.2.6)

where h(t) : R+ 7→ Rm×m denotes the matrix of impulse response functions and p(t)
is the m-dimensional vector of random generalized forces as previously defined. Equation
(4.2.6) is a classical result in structural dynamics. Hence, according to (4.2.1), the convolution
integral (4.2.6) is rewritten as

q(t, θ) =

ˆ
R

G(t, t0, ω)dp̃(ω, θ) (4.2.7)

with G(t, t0, ω) the evolutionary transfer matrix defined as

G(t, t0, ω) =

ˆ t

t0

h(t− u)a(u, ω)eιωudu. (4.2.8)

The vocable used to denote the matrix G(t, t0, ω) has certainly a conceptual origin, because
a(t, ω) tends to I as t → ∞, the matrix G(t, t0, ω) tends to the transfer matrix defined in
(3.3.7). The evolutionary transfer function, as the convolution integral between the impulse
response matrix h(u) and the time window, expresses the effects of the past intensities (of the
embedded process) on the present state.

In the previous Section, the concept of quasi-stationary analysis has been introduced.
With this hypothesis, the convolution integral is avoided and the intensity function is taken
out of the integral, leading to the approximation

Gqs(t, ω) = H(ω)a(t, ω). (4.2.9)

Results with this formulation are used and criticized in the illustrations of this Part.
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For the sake of convenience in the developments ahead, we abandon the use of the second
order differential equation in terms of the modal coordinates q(t) in favor of the first-order
differential equation in terms of a modal state vector z(t). A physical argument leading to
use this formalism is the correlation existing between displacements and velocities in transient
dynamics, more efficiently grasped with this formalism. Nonetheless, Equation (4.2.8) remains
central in the following developments.

4.2.3 Evolutionary spectral analysis in state space

The equation of motion (3.3.5) in a modal basis is now rewritten in a state space formalism

ż = Az + B

(
0

p(t, θ)

)
, (4.2.10)

with A a 2m-dimensional matrix, constant in time, and z(t, θ) : R+ ×Θ 7→ R2m×1 the modal
state vector of the system, both defined as

A =

(
0 I
−Ω −D

)
, B =

(
0 0
0 I

)
and z =

(
q
q̇

)
. (4.2.11)

In this approach, we do not confuse (4.2.11) with the state space formalism of the nodal equa-
tion of motion (3.2.1), which leads to use complex normal modes [Foss 58]. As previously
said, the complex modal analysis has the main drawback of dealing with possible huge matri-
ces, as long as increasing the computational burden by adding the complex dimension in the
problem. In (4.2.11), the modal basis is real-valued and results from the eigenproblem (3.3.2)
with K̃ = 0.

The general solution of an LTI system is expressed as

z(t, θ) = Ψ(t, t0)z(t0) +

ˆ t

t0

Ψ(t, u)B

(
0

p(u, θ)

)
du (4.2.12)

with Ψ(t, t0) : R+×R+ 7→ R2m×2m the state transition matrix of the system in the modal
basis from a time t0 to a time t and z(t0) the initial condition (t > t0).

The developments of Section 4.2.2 also apply to the state-space formalism of the equation
of motion and a state space evolutionary transfer matrix Υ(t, t0, ω) : R+ × R+ × R 7→
C2m×2m may be defined as

Υ(t, t0, ω) =

ˆ t

t0

Ψ(t, u)

(
0 0
0 a(u, ω)

)
eιωudu. (4.2.13)

This evolutionary transfer matrix differs from H(ω), as it is expressed in a state space formal-
ism and it also depends on the initial time t0, but a relation can be easily established between
Υ(t, t0, ω) and G(t, t0, ω).

The objective is now to highlight, thanks to the previous developments, an evolutionary
and spectral relation between the evolutionary psd of the input and the evolutionary psd
of the output, similarly to the stationary case. The correlation matrix between the modal
coordinates at two different instants t1 and t2 is expressed as
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E[z(t1)z∗(t2)] =

ˆ t1

t0

ˆ t2

t0

Ψ(t1, u1)B

(
0 0
0 E [p(u1)p∗(u2)]

)
B∗Ψ∗(t2, u2)du1du2,

(4.2.14)

where the initial condition is supposed to be at rest, i.e. z(t0) = 0, thus dropping the first
term in (4.2.12). According to the assumption of orthogonal increments in the spectral process
p̃(ω), the relations (4.2.2) to (4.2.4) are used and the correlation function (4.2.14) now reads

E[z(t1)z∗(t2)] =

ˆ
R

Υ(t1, t0, ω)

(
0 0
0 Sp(ω)

)
Υ∗(t2, t0, ω)dω. (4.2.15)

The variance of z(t) at a given time t is given by assuming that t = t1 = t2 in (4.2.15).
Therefore, an evolutionary psd Ŝz(t, t0, ω) for the modal state vector can be defined, according
to the same argument previously given,

Ŝz(t, t0, ω) = Υ(t, t0, ω)

(
0 0
0 Sp(ω)

)
Υ∗(t, t0, ω). (4.2.16)

The covariance matrix of the modal coordinate depending on time is given by

Σz(t, t0) =

ˆ
R

Ŝz(t, t0, ω)dω. (4.2.17)

From (4.2.13) and (4.2.16), it is admitted that evolutionary spectral analysis for LTI systems,
is a simple extension of the stationary spectral analysis.

To conclude this Section in an exhaustive manner, a method to calculate the state transi-
tion matrix Ψ(t, t0) must be briefly explained. The state transition matrix can be defined as
the unique solution of the partial differential equation

∂

∂t
Ψ(t, t0) = AΨ(t, t0) (4.2.18)

with Ψ(t0, t0) = I. So, the i-th column of the matrix Ψ(t, t0) is the vector resulting from
the homogeneous differential equation appearing in (4.2.18) with the i-th canonical vector of
the state space as initial condition. According to this definition and because the properties of
the system are supposed to be time independent [Hesp 09], the transition matrix Ψ(t1, t0) is
given by

Ψ(t1, t0) =

(
ĥ(t1 − t0) h(t1 − t0)

∂t1ĥ(t1 − t0) ∂t1h(t1 − t0)

)
= eA(t1−t0). (4.2.19)

We recognize h(t) first introduced in (4.2.6), while ĥ(t) is the matrix gathering the vectors
ĥi(t), i.e. the response of the system at a time t1, if a unit displacement is imposed at the
i-th mode as initial condition. The matrix ĥ(t) does not need to be computed in the second
term of (4.2.13) and so the state space evolutionary transfer matrix Υ(t, t0, ω) simply reads

Υ(t, t0, ω) =

ˆ t

t0

(
0 h(t− u)a(u, ω)
0 ∂th(t− u)a(u, ω)

)
eιωudu. (4.2.20)
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The association of those convolution integrals to the evolutionary transfer matrix yields

Υ(t, t0, ω) =

(
0 G(t, t0, ω)
0 ∂tG(t, t0, ω)

)
(4.2.21)

with h(0) = 0 and G(t, t0, ω) defined in (4.2.8). Equations (4.2.18) and (4.2.19) show that
the state transition matrix is also equal to the exponential matrix of the matrix A multiplied
by the time interval of transition. The exponential matrix, defined as

eA(t1−t0) =

∞∑
k=0

(t1 − t0)k

k!
Ak, (4.2.22)

can be conveniently and efficiently computed by a Padé approximation (as used in MatLab),
without solving the initial value problem (4.2.18) to get ĥ(t) and h(t).

Now that the basics of the evolutionary spectral approach have been stated, some com-
ments about this method may be more concretely formulated. Although the statements of
this method are old and well-known, its application has never been really popular or common.
Some details may be given in order to situate the contributions of this work.

According to Lin and Cai [Lin 04b],“the time spent to determine the impulse response func-
tion is greater than what is required subsequently to calculate the evolutionary cross-spectra”.
They suggest the use of the inverse Fourier transform of the transfer matrix, such that

h(t) =

ˆ
R

H(ω)eιωtdω (4.2.23)

with H (ω) defined in (3.3.7) for linear time-invariant structures. This general expression is
not readily computed, even though it is a well-known inverse Fourier transform. For perfectly
decoupled systems, h(t) is a diagonal matrix containing the impulse response function of
each modal coordinate. The use of a closed-form expression for h(t) may considerably speed
up the computation of (4.2.8). For coupled systems, like non-classically damped structures,
the decoupled approach as proposed by Lord Rayleigh and summarized in Section 3.4.1 is
definitely insufficient.

The efficient computation of (4.2.23) is the key to perform evolutionary spectral analysis.
The developments realized in Section 3.3.3 find here a great interest. Indeed, the matrix H(ω)
is advantageously replaced by its asymptotic expansion (3.3.19), provided the out-of-diagonal
matrices contain moderate elements. By means of linear algebra, we can develop H(ω) in a
series of terms, of which the closed form is known and easily integrated. All the analytical
details are given in the next Section.
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4.3 Asymptotic expansion in evolutionary spectral analysis

4.3.1 Derivation of an approximation for the impulse response matrix

In Chapter 3, the asymptotic expansion-based method takes advantage of the dynamical
specificities of LTI structures in a modal basis. The same approach is used in this Section for
the computation of (4.2.8) and (4.2.23). Hence, the matrix h(t) may be obtained by replacing
H(ω) in (4.2.23) by its asymptotic expansion (3.3.19). Thus, the impulse response matrix
reads

h(t) =

ˆ
R

Hd(ω)eιωtdω +
∞∑
k=1

(−1)k
ˆ
R

(HdJo)
k Hde

ιωtdω. (4.3.1)

How might these developments help us in performing integral (4.2.23), because replacing
(4.2.23) by (4.3.1) is not prima facie a significant progress? The dependence in ω is only
contained in the elements of the matrix Hd(ω). The higher-order correction terms have
no intrinsic dependence on ω, they are just products of elements of Hd(ω) besides ω itself
(through Jo). Yet, the poles of the functions (elements) in Hd(ω) are easily extracted according
to (3.3.16). The impulse response matrix may thus be interpreted as the impulse response
matrix of a main decoupled system perturbed by higher-order correction terms,

h(t) = hd(t) +
∞∑
k=1

(−1)k∆hk(t), (4.3.2)

where the integral expressions of the correction terms of h(t) are

hd(t) =

ˆ
R

Hd(ω)eιωtdω, ∆hk(t) =

ˆ
R

(HdJo)
k Hde

ιωtdω. (4.3.3)

The diagonal matrix hd(t) is the impulse response matrix of the main decoupled system,
i.e. the i-th element on the diagonal is the impulse response function of the i-th mode of
the structure. Indeed, because of the decoupling assumption, the system is interpreted as
responding independently in m modes. This matrix is obtained by neglecting the out-of-
diagonal elements in Ω and D. The computation of the terms ∆hk(t) is discussed in the
following, because some linear algebra may facilitate these integrals. As previously, the series
(4.3.2) must be truncated at a reasonable order N to be implemented efficiently, so

hN (t) = hd(t) +

N∑
k=1

(−1)k∆hk(t). (4.3.4)

The convergence of the series (4.3.2) is naturally related to the convergence of the asymp-
totic expansion HN (ω). Provided the criterion ρJ is less than one, the series hN (t) is also
convergent due to the linearity of the Fourier operator. However, the difference concerns the
convergence rate with respect to time. Indeed, the truncation error between h(t) and hN (t)
is time dependent, i.e. the required number of correction terms N for a given accuracy is not
identical at each time t. It is noteworthy that the shorter the time interval [0, t], the smaller
the number N . This convergence property will be of paramount importance in the develop-
ment of an efficient evolutionary spectral method. Nevertheless, it is tediously demonstrated,
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particularly because of the alternating series of matrices and the integral operation in (4.3.3).
An heuristic demonstration and an explicit illustration are proposed in Section 4.3.2 and in
Appendix B.3, respectively.

In Section 4.2.2, the fundamental relation of evolutionary spectral analysis (4.2.16) relates
the evolutionary transfer function to the power spectral density of the embedded stationary
process in the excitation. The goal of the method is to gather the time depending functions
h(t) and a(t) in a same function G(t, t0, ω), the evolutionary transfer function. With the same
philosophy, the asymptotic expansion of h(t) is used in order to find a suitable asymptotic
expansion of this evolutionary transfer matrix. Introducing (4.3.4) into (4.2.8), the N -order
asymptotic expansion GN (t, t0, ω) is obtained as

GN (t, t0, ω) = Gd(t, t0, ω) +
N∑
k=1

(−1)k∆Gk(t, t0, ω). (4.3.5)

The leading order term of this expansion is a diagonal matrix containing the evolutionary
transfer functions of the modes of the main decoupled system, and it is given by

Gd(t, t0, ω) =

ˆ t

t0

hd(t− u)a(u, ω)eιωudu, (4.3.6)

while the higher-order correction terms are obtained by the convolution integral between the
time window and the correction terms of the impulse response matrix

∆Gk(t, t0, ω) =

ˆ t

t0

∆hk(t− u)a(u, ω)eιωudu. (4.3.7)

Equations (4.3.5)-(4.3.7) constitute the core of the method developed in this Chapter for
LTI systems. The proposed method allows to avoid the computation of the inverse Fourier
transform of the transfer matrix in order to get the impulse response matrix of the coupled
system. For usual time envelopes, closed-form expressions can be found for the leading order
and the correction terms. To the knowledge of the author, this method is the most efficient
to deal with coupling in evolutionary spectral analysis, because the most important part
of the computation is treated analytically. Now, the rest of this Section is devoted to the
explicit calculation of the terms of the asymptotic expansion. Like the underlying philosophy
in Chapter 3, the purpose of this Chapter is to show that returning to linear algebra
may lead to reliable results for the resolution of classic problems in engineering
by contradicting the notorious idea that a transient problem can only be solved
with simulations.

For the sake of simplicity and clearness in the equations and developments, the matrix
a(u, ω) is replaced by the more suitable expression

a(u, ω) = a(u, ω)I, (4.3.8)

which allows to consider only one real-valued function for all the time evolution processes.
This is the case in most earthquake and engineering problems.
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Decoupled approximation

Only keeping the leading order in the expansion (4.3.5), the covariance matrix of the modal
coordinate reads

Σqd(t) =

ˆ
R

Gd(t, t0, ω)Sp(ω)G∗d(t, t0, ω)dω, (4.3.9)

since it is the response of the main decoupled linear system, with Gd(t, t0, ω) defined in
(4.3.6). At this stage, the coherence between the modal coordinates only results from the
coherence in the excitation field Sp(ω), as explained in Section 3.3.2. According to (4.2.23),
the inverse Fourier transform of the decoupled transfer function of the system reads

(hd(t))i =
e−ξωit

ωi

√
1− ξ2

i

sin(ωi

√
1− ξ2

i t) =
eΩ+

i t − eΩ−i t

2ιωi

√
1− ξ2

i

(4.3.10)

with

Ωα
i = −ξiωi + αιωi

√
1− ξ2

i , (4.3.11)

α = {+,−}, i = 1, . . .m and (Ωd)i = ω2
i and (Dd)i = 2ξiωi as previously. The choice

to express the impulse response function in terms of an imaginary exponential is a way to
facilitate the presentation of former results. Introducing now (4.3.10) into (4.3.6), the diagonal
elements of the evolutionary transfer function at a time t are given by

(Gd(t, t0, ω))i =
I+
i (t, t0, ω)− I−i (t, t0, ω)

2ιωi

√
1− ξ2

i

(4.3.12)

with the integral Iαk (t, t0, ω) defined as

Iαk (t, t0, ω) = eΩαk (ω)t

ˆ t

t0

a(u, ω)e−C
α
k (ω)udu (4.3.13)

with
Cαk (ω) = Ωα

k − ιω. (4.3.14)

Definitely, the computation of the integral (4.3.13) depends upon the analytical form of the
time envelope a(t). Section 4.3.3 deals with this problem in depth. They might be readily
obtained in closed form for usual time windows.

For slightly coupled systems, the computation of the decoupled approximation offers al-
ready a good insight into the behavior of the system, especially about the variance of q(t).
For moderately coupled systems, the computation of higher-order correction terms is required
and they are partly presented hereinafter.

First-order correction term

The first correction term of the evolutionary transfer matrix reads

∆G1(t, t0, ω) =

ˆ t

t0

a(u, ω)∆h1(t− u)eιωudu. (4.3.15)
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The term ∆h1(u) of the impulse response matrix must be computed. Some algebra in (4.3.3)
with k = 1 emphasizes two integrals involving elements of Hd(ω),

(∆h1(u))ij = (Ωo)ij

ˆ
R

(Hd)i (Hd)j e
ιωudω + (Do)ij

ˆ
R
ιω (Hd)i (Hd)j e

ιωudω, (4.3.16)

which is more conveniently formulated as

∆h1(u) = Ωo ◦∆h1,1(u) + Do ◦∆h1,2(u) (4.3.17)

with the operator ◦ denoting the Hadamard product. The matrices ∆h1,1 and ∆h1,2 are
defined as

(∆h1,L(u))ij =

ˆ
R

(ιω)L−1 (Hd)i (Hd)j e
ιωudω (4.3.18)

with L = 1, 2 and i, j = 1, ...m.
The poles of the integrand (Hd)i (Hd)j in (4.3.18) are readily obtained. Evoking Cauchy’s

theorem, the integral (4.3.18) becomes

(∆h1,L(u))ij = (VL,1)ij exp(Ω+
i u)+(VL,2)ij exp(Ω−i u)+(VL,3)ij exp(Ω+

j u)+(VL,4)ij exp(Ω−j u)
(4.3.19)

for i 6= j. The case of i = j is particular, as the multiplicity of the poles is changed and
Equation (4.3.19) is not proper anymore and must be adapted. This case is not broached here,
because the matrices Ωo and Do have zero elements on their diagonal, so the computation
of (∆h1,1)ii and (∆h1,2)ii is not necessary. The constant matrices V1,k and V2,k (with k =
1, ...m) are given by

(V1,1)ij =
−ι

2ωi

√
1− ξ2

i (Ω+
i − Ω−j )(Ω+

i − Ω+
j )
, (V2,1)ij = (V1,1)ij Ω+

i

(V1,2)ij =
ι

2ωi

√
1− ξ2

i (Ω−i − Ω−j )(Ω−i − Ω+
j )
, (V2,2)ij = (V1,2)ij Ω−i

(V1,3)ij =
−ι

2ωj
√

1− ξ2
j (Ω+

j − Ω+
i )(Ω+

j − Ω−i )
, (V2,3)ij = (V1,3)ij Ω+

j

(V1,4)ij =
ι

2ωj
√

1− ξ2
j (Ω−j − Ω+

i )(Ω−j − Ω−i )
, (V2,4)ij = (V1,4)ij Ω−j (4.3.20)

with Ωα
i previously defined. Those constants are time-invariant and only depend on the

projection in the modal basis. Consequently, for LTI systems, they must be calculated once
and for all at the beginning of the analysis. The m×m-integrals (4.3.16) are thus transformed
thanks to the asymptotic expansion-based method into a sum, for which only the computation
of 2m2 constants is required. However, the major computational gain of the method is found in
the convolution integral (4.3.15). Actually, the first-order correction term of the instantaneous
transfer function GN (t, t0, ω) now reads



70 CHAPTER 4. LINEAR EVOLUTIONARY SPECTRAL ANALYSIS

∆G1(t, t0, ω) = Ωo ◦∆G1,1(t, t0, ω) + Do ◦∆G1,2(t, t0, ω), (4.3.21)

since the system is time-invariant and the matrices Ωo and Do are time-independent. The
terms ∆G1,1 and ∆G1,2, defined as

∆G1,L(t, t0, ω) =

ˆ t

t0

a(u, ω)∆h1,L(t− u) eιωudu (4.3.22)

with L = 1, 2, are computed by use of the previously defined integral Iαk (t, t0, ω). Indeed,
introducing (4.3.19) into (4.3.22) leads to

(∆G1,L(t, t0, ω))ij = (VL,1)ij I
+
i + (VL,2)ij I

−
i + (VL,3)ij I

+
j + (VL,4)ij I

−
j . (4.3.23)

The computation of this first correction term is rapid. It does not demand any more com-
plicated operation than the computation of the constants (VL,·)ij , which are time invariant.
Actually, the integral Iαk (t, t0, ω) is already computed for the decoupled leading order.

The underlying philosophy of this work is here clearly highlighted. The application of
analytical methods and linear algebra allows to avoid some heavy computational operations.

We do not seek to utterly apply analytical methods. However, the understanding of the
governing equations and the identification of general properties in structures lead us to develop
mathematical tools in order to extract blocks of elementary results. Although rough numerical
methods can be applied for those kinds of problems, the main advantage in semi-analytical
approach is to simplify them into more basic problems.

Second-order correction term

The second correction term of the evolutionary transfer function reads

∆G2(t, t0, ω) =

ˆ t

t0

a(u, ω)∆h2(t− u)eιωudu. (4.3.24)

The second correction term of the modal impulse response matrix ∆h2(u) is given by

(∆h2(u))ij =
M∑
k=1

ˆ
R

(Hd)i (Jo)ik (Hd)k (Jo)kj (Hd)j e
ιωudω

=
M∑
k=1

(Ωo)ik (Ωo)kj

ˆ
R

(Hd)i (Hd)j (Hd)k e
ιωudω

+

M∑
k=1

(Do)ik (Do)kj

ˆ
R

(
−ω2

)
(Hd)i (Hd)j (Hd)k e

ιωudω (4.3.25)

+
M∑
k=1

(
(Ωo)ik (Do)kj + (Do)ik (Ωo)kj

)ˆ
R
ιω (Hd)i (Hd)j (Hd)k e

ιωudω.
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As previously, for i = k or j = k, the result is trivial and should not be computed.
Therefore, only the cases i = j 6= k and i 6= j 6= k must be studied. In a more general way,
contributions to the second correction term are defined as

(∆h2,L(u))ijk =

ˆ
R

(ιω)L−1 (Hd)i (Hd)j (Hd)k e
ιωudω (4.3.26)

with L = 1, 2, 3. For i 6= j 6= k, the three poles of the integrand in (4.3.26) are distinct from
each other, while the i-th pole has a multiplicity of two for i = j 6= k. The Cauchy theorem
applied to (4.3.26) leads to

(∆h2,L)ijk =
(
V′L,1

)
ijk

exp(Ω+
i u) +

(
V′L,2

)
ijk

exp(Ω−i u)

+
(
V′L,5

)
ijk

exp(Ω+
k u) +

(
V′L,6

)
ijk

exp(Ω−k u)

+
(
V′L,3

)
ijk
uδij exp(Ω+

j u) +
(
V′L,4

)
ijk
uδij exp(Ω−j u) (4.3.27)

with δij the Kronecker index. Equation (4.3.27) is an expression similar to (4.3.19) for the
first order correction term. Even if the use of uδij may seem exotic, it is convenient to gather
the analytical expression in a compact and tractable form. As previously, introducing (4.3.27)
into (4.3.24) leads to

(∆G2,L)ijk =
(
V′L,1

)
ijk
I+
i +

(
V′L,2

)
ijk
I−i +

(
V′L,3

)
ijk
I+
j

+
(
V′L,4

)
ijk
I−j +

(
V′L,5

)
ijk
I+
k +

(
V′L,6

)
ijk
I−k (4.3.28)

for i 6= j 6= k, because the system is time invariant. For i = j 6= k, the knowledge of the
integral Iαk is not sufficient and a new integral must be defined as

J αk (t, t0, ω) = eΩαk t

ˆ t

t0

(t− u) a(u, ω)e−C
α
k udu (4.3.29)

in order to write

(∆G2,L)iik =
(
V′L,1

)
iik
I+
i +

(
V′L,2

)
iik
I−i +

(
V′L,3

)
iik
J +
i

+
(
V′L,4

)
iik
J −i +

(
V′L,5

)
iik
I+
k +

(
V′L,6

)
iik
I−k (4.3.30)

with Cαk previously defined. Hence, the second correction term of the evolutionary transfer
function reads

(∆G2)ij =
M∑
k=1

(Ωo)ik (Ωo)kj (∆G2,1)ijk +
M∑
k=1

(Do)ik (Do)kj (∆G2,3)ijk

+
M∑
k=1

(
(Ωo)ik (Do)kj + (Do)ik (Ωo)kj

)
(∆G2,2)ijk . (4.3.31)

A short analysis of J αk (t, t0, ω) highlights possible simplifications of that integral, such that

J αk (t, t0, ω) = tIαk (t, t0, ω)− eΩαk t

ˆ t

t0

u a(u, ω)e−C
α
k udu (4.3.32)

after some algebra. The constants V′L,· are given in Appendix B.2.
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Derivative of the evolutionary transfer matrix

From (4.3.12), (4.3.20) and (4.3.30), the N -order expansion of ∂tG(t, t0, ω) required in (4.2.21)
is directly computed by replacing in those equations, the terms Iαk and J αk by their time
derivatives, which are easily computed. Analytically, they are given by

d

dt
Iαk = Ωα

kIαk + a(t, ω)eιωt and
d

dt
J αk = Iαk + Ωα

kJ αk , (4.3.33)

while they can also be numerically computed with a finite difference scheme. However, the
time step must be adapted according to the natural frequencies of the structure. This fact
may require really small steps, while the purpose of this chapter was to keep the time as an
unconstrained parameter.

4.3.2 Convergence of the series hN(t)

In Section 3.3.4, the convergence of the asymptotic expansion HN (ω) is largely addressed. It is
emphasized that the convergence criterion ρJ must be less than one to ensure the convergence
of the series. In (4.2.23), the inverse Fourier transform of the expansion HN (ω) is calculated
to obtain an asymptotic expansion of the impulse response matrix hN (t) of the structure, in
the same modal basis.

We are now concerned about the convergence of hN (t). The criterion ρJ < 1 ensures that
the series HN (ω) converges. Therefore, the series hN (t) is also convergent, because of the
linearity of the Fourier operator. As experienced by the author, the computation of correction
terms for a non-convergent series HN (ω) may have for consequences that the elements of
the impulse response matrix do not start at zero as expected. Naturally, this criterion is a
convergence criterion on the long term (since HN (ω) is related to the stationary response of
the structure in the frequency domain). The matrix hN (t) features a transient regime before
this stationary response. Numerical experiments have shown that the convergence criterion
might be relaxed over the short term, i.e. in the transient regime. For short time intervals
[0, t], the number of correction terms N required for a certain accuracy is thus smaller, than
for the stationary solution.

We illustrate this statement with the particular case Jo = ιωDo. Thus, the term ∆hk(t)
reads

∆hk(t) =

ˆ
R

(ιω)k (HdDo)
k Hde

ιωtdω. (4.3.34)

We propose to set Hd(ω) = H̄(ω)I with

H̄(ω) =
1

(ω2
0 − ω2) + (2ιξω0ω)

, (4.3.35)

assuming thus, for the sake of simplicity, that all the modes have the same natural frequency
and the same damping ratio. Indeed, the integral (4.3.35) may thus be written

∆hk(t) = }k(t)Dk
o (4.3.36)

with the time-dependent function
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}k(t) =

ˆ
R

(ιω)kH̄(ω)k+1eιωtdω. (4.3.37)

We notice that the integral (4.3.37) exists and is well-defined for k ∈ N. Evoking Cauchy’s
theorem, we can compute closed-form expressions for (4.3.37). Nonetheless, we are mainly
interested in the behavior of those coefficients }k around t = 0. Thus we only provide the first
terms of their Taylor expansion, such that

}1(t) =
1

ω2
0

(
π(tω0)2 − 4

3
πξ(tω0)3

)
+O(t4)

}k(t) =
2πtk+1

k + 1!
+O(tk+2) (4.3.38)

Provided the product (tω0) is small, the correction given by }k becomes negligible. This
short demonstration heuristically explains the reason why the number of required terms in
hN (t) is limited on short time intervals. This property will be of paramount importance in
the following developments.

4.3.3 Analytical expressions for Iαk and J α
k

The expressions of Iαk (t, t0, ω) and J αk (t, t0, ω) may be obtained for many analytical expres-
sions of the time envelope a(t, ω). The factor eιωu in (4.3.13) and (4.3.32) contains a range
of harmonic that must be taken into account as accurately as possible. For instance, a loss
of precision in a numerical representation of this factor may lead to poor approximation of
(4.3.18), an integral in the frequency domain. The possibility to avoid numerical integration
will be received by programmers and practitioners as a great advantage for the computational
cost and the accuracy of the method, because the question of the convergence of the integrals
is discarded. Conceptually, the reason for simplifying the problem posed in both frequency
and time domains is pursued in this chapter by trying to avoid crude numerical integration
in both domains.

First, two antiderivatives Pαk (u, ω) : R+ ×R 7→ C and Qαk (u, ω) : R+ ×R 7→ C are defined
as

Pαk (u, ω) =

ˆ
a(u, ω)e−C

α
k (ω)udu (4.3.39)

Qαk (u, ω) =

ˆ
u a(u, ω)e−C

α
k (ω)udu (4.3.40)

in order to compute the integrals Iαk (t, t0, ω) and J αk (t, t0, ω), such that

Iαk (t, t0, ω) = eΩαk t

ˆ t

t0

a(u, ω)e−C
α
k udu

= eΩαk t [Pαk (t, ω)− Pαk (t0, ω)] , (4.3.41)
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J αk (t, t0, ω) = eΩαk t

ˆ t

t0

(t− u) a(u, ω)e−C
α
k udu

= tIαk (t, t0, ω)− eΩαk t [Qαk (t, ω)−Qαk (t0, ω)] . (4.3.42)

Elegant analytical expressions for Pαk and Qαk can be found for some well-known and
largely-used time envelopes a(t, ω). The technique used in (4.3.41) and (4.3.42) works with
the ease of simplicity. Before giving some results, two families of spectra must be defined: the
separable spectra are distinct from the non-separable spectra.

A spectrum Ŝ(t, ω) is said to be separable, if the frequency and the time dependencies are
gathered in two separate functions, i.e.

Ŝ(t, ω) = |a(t)| 2S(ω). (4.3.43)

In this case, the time envelope is a deterministic function and the spectrum S(ω) is a Kanai-
Tajimi (modified or not) spectrum, for instance. This definition applies also to seismic field.

For instance, the famous Shinozuka window reads

a(t) = c
(
e−b1t − e−b2t

)
H(t) (4.3.44)

with H(t) the Heaviside function. The exponential terms and the continuous formulation
make Shinozuka’s window useful to compute the previous integrals. Closed-form solutions of
the primitive integrals are

Pαk (u, ω) = ce−C
α
k u

(
e−b2u

b2 + Cαk
− e−b1u

b1 + Cαk

)
(4.3.45)

Qαk (u, ω) = ce−C
α
k u

(
e−b1u (1 + (b1 + Cαk )u)(

b1 + Cαk
)2 −

e−b2u (1 + (b2 + Cαk )u)(
b2 + Cαk

)2
)
. (4.3.46)

Now, the Jenning window is considered, as it expresses intuitively the three phases of
an earthquake (build-up, plateau and decay). This piecewise window models each phase by
distinct analytical functions, as

a(t) =


(
t
t1

)2
, 0 < t < t1

1 , t1 < t < t2

eγ(t2−t) , t > t2

. (4.3.47)

The main disadvantage of this window is that the integration must be performed interval by
interval. The primitive integrals are

Pαk (u) = −e−Cαk u


2+Cαk u(2+Cαk u)

t21(Cαk )
3 , 0 < u < t1

1
Cαk

, t1 < u < t2
eγ(t2−u)

Cαk+γ , u > t2

(4.3.48)
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Qαk (u) = −e−Cαk u


6+Cαk u(6+Cαk u(3+Cαk u))

t21(Cαk )
4 , 0 < u < t1

1+uCαk
(Cαk )

2 , t1 < u < t2

eγ(t2−u)

(Cαk+γ)
2 (1 + u (Cαk + γ)) , u > t2

(4.3.49)

These two time envelopes are depicted in Figure 4.2-a. Many other functions exist in the
literature ; most of them can be easily integrated according to (4.3.39) and (4.3.40). Hence,
the method can be applied to a large range of envelopes.

(a) (b)

Figure 4.2: Separable spectrum (a) : Jenning’s and Shinozuka’s time windows. Non-separable

spectrum (b) : Liu’s spectrum with γ(ω) = β(ω) =
(
ω

15π

)2
, S̄ = 1m2/s3 and b = 0.2Hz.

In the second family of spectrum, the time window is frequency dependent. Indeed,
the separable spectrum are not able to precisely model some phenomena occurring during
an earthquake: the frequency content evolves in time, but it is not necessarily homothetic
between different instants. Liu [Liu 70] and then Spanos [Span 83], propose to use a non-
separable evolutionary spectrum, the so-called Liu spectrum, modeled as

ŜLiu(t, ω) = S̄γ(ω)t2e−bt−β(ω)tH(t) (4.3.50)

with S̄ the excitation amplitude. This spectrum is depicted in Figure 4.2-b. Equation
(4.3.50) is an elegant way to gather in a simple formulation different existing models for
non-separable (or not) earthquake evolutionary spectrum. The spectrum (4.3.50) enables to
represent two main features of a seismic excitation as the accumulation phase and the extinc-
tion one [Span 83]. Furthermore, for realistic earthquakes, the dominant frequency range is
decreasing with time [Span 83, Koug 13], the time-frequency dependence must be taken into
account.

Even though the function is not separable in the strict sense, Equation (4.3.50) is split into
two main factors: a purely frequency dependent factor and a mixed time-frequency dependent
factor. A time window can thus be extracted such that

a(t, ω) = t2e−bt−β(ω)t, (4.3.51)



76 CHAPTER 4. LINEAR EVOLUTIONARY SPECTRAL ANALYSIS

while the factor S̄γ(ω) may be interpreted as the psd of an equivalent non-physical stationary
process. The primitive integrals Pαk and Qαk are given by

Pαk (u, ω) =

ˆ
u2e−φ

α
k (ω)udu = −

e−φ
α
ku
(

1 + (φαku+ 1)2
)

(
φαk
)3 (4.3.52)

Qαk (u, ω) =

ˆ
u3e−φ

α
k (ω)udu = −

e−φu
(

6 + 3φαku+ (φαku+ 1)3
)

(
φαk
)4 (4.3.53)

with φαk (ω) = b + β(ω) + Cαk (ω). This example highlights that the proposed developments
are not limited to time windows only depending on time. The generation method based on
spectral decomposition [Shin 91], similar to the method described in Section 2.4, cannot be
applied to that kind of spectra, more advanced generation techniques must be used to create
the dependency between time and frequency in the seismic signal.

As the results of this Section show, the time in the analysis may be effectively seen as a
parameter, independently of the past in the computation. This goal is achieved at this stage
for some well-know and often used time envelopes. However, we cannot be just satisfied with
these closed-form expressions. Actually, from a numerical point of view, the computation
of the functions P(t, ω) and Q(t, ω) for a range of frequency ω may become time-consuming,
depending on their complexity and on the number of required elementary operations. In other
words, computing closed-form solutions is a first step, but it is not a guarantee of efficiency,
as experienced by the author. Therefore, we need to generalize our method to any intensity
function with a more convenient form, and perhaps more elementary. In the following Section,
an efficient approach is proposed in order to improve the numerical implementation of our
method. Although the evolutionary transfer matrix is developed in terms of physical (modal)
coordinates, the state space formalism with the functions Ψ(t, t0) and Υ(t, t0, ω) will be of
paramount importance.

4.4 Efficient formulation for numerical computation

In the preceding Section, all the functions are expressed as function of two times, both t0
and t. For instance, Equation (4.2.8) highlights that G(t, t0, ω) requires to compute the
convolution integral between h(t) and a(t, ω)eιωu from an initial time t0 to an instant t. This
integral means that the whole history of the response must be known until time t to perform
the integration. This formulation of the problem suits clearly well the aforementioned time
windows, because closed-form expressions of primitive integrals may be found. Although the
Shinozuka, Liu and Jenning time windows are common in civil engineering, a more general
approach may be implemented knowing the time window of the evolutionary random process.
Indeed, the previous envelopes are from classical applications in earthquake engineering. In
wind engineering and downburst models, the time modulation results from a more complex
relation between translation wind velocity and radial wind velocity [Holm 00], even if Chen
uses analytical time windows to study transient wind on building [Chen 08].

In this Section, a strategy based on recurrence formula is derived from the elementary
properties of LTI systems. This strategy will be of paramount importance in the following
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Chapter in which nonlinear forces will be considered as evolving linearized forces. Indeed, the
properties used in the following, called the semi-group property is not only a property of LTI
systems, but of linear systems in general.

First, the whole time interval is divided into M + 1 non-overlapping intervals, such as

t0 = 0 < . . . < tk < . . . tM ≤ t ≤ tM+1, (4.4.1)

with k,M ∈ N0 and with possible different lengths. Assuming piecewise continuity of the
functions involved in the state space evolutionary transfer matrix Υ(t0, t, ω), the integral over
the time domain [t0, t] may be rewritten as

Υ(t, t0, ω) =

M∑
k=1

ˆ tk

tk−1

a(u, ω)Ψ(t, u)Beιωudu+

ˆ t

tM

a(u, ω)Ψ(t, u)Beιωudu (4.4.2)

The well-known property of the transition matrix Ψ(t, t0) is called the semi-group prop-
erty [Hesp 09], expressing that the transition between two instants t0 and t is equivalent to
a first transition from t0 to an intermediate time t1, then a second transition from t1 to t, i.e.

Ψ(t, t0) = Ψ(t, t1)Ψ(t1, t0). (4.4.3)

This useful property allows to make the integral (4.4.2) independent of t, such that

Υ(t, t0, ω) =
M∑
k=1

Ψ(t, tk)

ˆ tk

tk−1

a(u)Ψ(tk, u)Beιωudu+

ˆ t

tM

a(u, ω)Ψ(t, u)Beιωudu (4.4.4)

In this last equation, we identify the last term as the state evolutionary transfer matrix
in the interval [tM , t], i.e.

Υ(t, tM , ω) =

ˆ t

tM

a(u)Ψ(t, u)Beιωudu. (4.4.5)

Then, we use the semi-group property between the three instants t, tM and tk, i.e. Ψ(t, tk) =
Ψ(t, tM )Ψ(tM , tk), in the summation (4.4.4). Therefore, we can highlight a convenient re-
currence relation for the computation of Υ(t, t0, ω), i.e.

Υ(t, t0, ω) = Ψ(t, tM−1)Υ(tM , t0, ω) + Υ(t, tM , ω). (4.4.6)

The physical meaning of the two terms in (4.4.6) is noteworthy. The first term expresses
that the past of the stochastic system up to the time tM is readily projected at the time t by
the transition matrix between these two instants. The second term models the linear response
of the system for the loads appearing during the interval [tM , t]. This recurrence formula is
of paramount importance from a computational point of view, because it highlights that a
transition from one state to another requires only to compute information during this interval,
the past being summarized in the function Υ(tM , t0, ω). Equation (4.4.5) may also read

Υ(t, tM , ω) =

(
0 G(t, tM , ω)
0 ∂tG(t, tM , ω)

)
(4.4.7)
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by use of the evolutionary transfer matrix and its time derivative computed by use of the
integrals Iαk (t, tM , ω) and J αk (t, tM , ω) previously defined.

In order not to bound these developments to the windows of Section 4.3.3, a generalized
procedure may be imagined to perform those integrals with a limited numerical burden. Ac-
tually, this approach has been imagined to become able to deal with transient wind loads
and with the time evolution proposed by [Holm 00]1. It is proposed to sample the time win-
dow and to interpolate it linearly between the sample points. The integrals Iαk (t, tM , ω) and
J αk (t, tM , ω) may read

Iαk (t, tM , ω) = eΩαk t

ˆ t

tM

aM (u) e−C
α
k (ω)udu, (4.4.8)

J αk (t, tM , ω) = eΩαk t

ˆ t

tM

(t− u) aM (u) e−C
α
k (ω)udu (4.4.9)

with aM+1(u) a linear interpolation of a(u) between a(tM ) and a(tM+1), such that

aM+1(u) =
a(tM+1)− a(tM )

tM+1 − tM
(u− tM ) + a(tM ). (4.4.10)

In [Sun 89], the intensity function is replaced by a staircase function. However, the linear
interpolation allows to keep the continuity and to have a better accuracy over the whole
function for a similar computational effort compared with Sun’s approximation. Even if it is
trivial, the following primitive integral is central in that case,

ˆ
uj e−C

α
k (ω)udu =

e−C
α
k (ω)u

−Cαk (ω)
uj +

j

Cαk (ω)

ˆ
uj−1e−C

α
k (ω)udu (4.4.11)

with j ∈ N. These results and the procedure described in this Section allow to efficiently and
generally implement the evolutionary spectral analysis for a large family of windows.

The sampling of the interval [0, t] proposed in (4.4.1) should naturally take into account
the shape of the time window in order to reproduce properly the true one. This method
advantageously allows the use of different time steps in the simulation. For instance, for
window presenting a large plateau, few (even a single one) steps may be considered. The time
intervals may be chosen regardless of the dynamics of the system to capture the evolution of
the window.

4.5 Multi-span bridge under differential ground acceleration

An application in earthquake engineering is now proposed. It is inspired from [Pero 90], in
which the evolutionary spectral analysis is used to compute the response of a multi-span bridge
subject to earthquake modeled as a coherent random field. Some assumptions formulated in
[Pero 90] may be overtaken by the theoretical developments of this work. Indeed, the structure
is supposed to be linear and the damping proportional according to Rayleigh assumption.
In this case, the example illustrates the developments of this Chapter limited to the main
decoupled approximation.

1An application is proposed in the next Chapter with this window.



4.5. MULTI-SPAN BRIDGE UNDER DIFFERENTIAL GROUND ACCELERATION 79

Model of coherence in earthquake engineering

This application allows to illustrate the purpose of this work on a large structure subject to
coherent excitation field. As explained in Chapter 2, the concept of random field is distinct
from a random process, since the former one depends on both time and space. During an
earthquake, the coherence mainly origins from the propagation of the seismic waves taking
into account their direction of propagation. For long structures, assuming fully coherent
ground motion is phenomenologically fallacious and may lead to response overestimation. On
the other hand, considering the acceleration on the structure as purely non-coherent may
lead to underestimate the response. Some details can now be given about classic coherence
functions used to model the spatial variation of seismic ground motions without taking the
risk of excessive details, while extensive discussions can be found in [Kaha 96, Zerv 02].

Although the wind coherence function is mainly considered as a real-valued function, in
earthquake engineering this is not the case due to the concept of wave transportation. It should
be pointed out that this assumption in wind engineering is not systematically encountered
in practice, but this discussion is beyond the scope of this work. The psd matrix of seismic
ground acceleration can be modeled by

(Sü(ω))ij = Sü(ω) |Γij(ω, dij)| exp

(
−ιωdij

V

)
(4.5.1)

with Sü(ω) the unilateral psd of ground acceleration (e.g. the Kanai-Tajimi spectrum in
(3.5.11)), dij the distance between the points i and j and V the apparent wave velocity
(between 1 and 4km/s), i.e. the velocity detected by the structure. The imaginary exponential
in (4.5.1) models the wave passage effect, i.e. the delay between wave arrival times at different
points. The norm of the function Γij(ω, dij), usually referred to as the lagged coherency
[Zerv 02] or the incoherency [Kiur 96], expresses the linear relation between two acceleration
signals. It is expected that for a short separation distance between two points and a low
frequency content, the signal measured at those points are almost similar, so the coherence
function tends to one. In the opposite case, the coherence function tends to zero. As suggested
in [Kiur 96], parameters can be added in the model to take into account possible site effects.

Before addressing any mathematical formulation, it should be noticed that the modeling
of coherence function in earthquake engineering is achieved with difficulty, because it requires
dense installation of instruments, explaining the scarcity of the recorded data. Even if it was
not the first one, the project SMART-1 (Strong Motion ARray in Taiwan), located in Lotung
and initiated in 1980, has provided valuable data for small and large magnitude earthquakes,
and more precisely for modeling the intrinsic coherence. Since the 70’s, many empirical models
have been proposed in order to judiciously capture the incoherency [Luco 86, Some 91]; all of
them are based on an exponential decay. However, Hariachandran and Vanmarcke [Hari 86]
proposed the following expression based on the SMART-1 data,

|Γij(ω, dij)| = A exp

(
−2dij
αϑ(ω)

(1−A+ αA)

)
+ (1−A) exp

(
−2dij
ϑ(ω)

(1−A+ αA)

)
(4.5.2)

with
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ϑ(ω) = kϑ

(
1 +

∣∣∣∣ ωωϑ
∣∣∣∣b
)− 1

2

(4.5.3)

and A = 0.736, α = 0.147, ωϑ = 6.85rad/s and b = 2.78. The length kϑ (between 5 and 10km)
may be adjusted to modify the coherence function. This model, used in this application, is also
applied in [Pero 90]. In the following, the apparent velocity is fixed at 1km/s and the length
kϑ at 5km. Synthetic ground accelerations can also be generated by numerically computing
the wave transportation from the seismic source through the different ground levels [Shin 99];
statistics may then be computed on these samples.

Structural dynamics under differential ground motion

Because the seismic excitation is due to ground motion, the excitation comes from the foun-
dation of the structure. Therefore, we do not write directly (3.2.1), because the forces on
the structure do not act directly. Furthermore, due to the differential seismic excitation, the
equation of motion is not given by (3.5.9), in which all the supports of the structure are
excited by the same ground acceleration.

To derive the equation of motion in our situation, we must split the vector of nodal
displacement x(t) into two vectors: a first vector xS(t) containing the DOF of the structure
and a vector ug the ones of the foundation (i.e. the fixed DOFs). The equation of motion
(3.2.1) thus reads

(
M Mc

MT
c Mg

)(
ẍS
üg

)
+

(
C Cc

CT
c Cg

)(
ẋS
u̇g

)
+

(
K Kc

KsTc Kg

)(
xS
ug

)
=

(
0
fg

)
(4.5.4)

with MS , Mc and Mg the blocks of the global mass matrix. The same division is applied to
the damping and the stiffness matrices. The vector fg(t) gathers virtual forces inducing the
accelerations ü(t) at the ground level. Then, the first line of (4.5.4) is recast into

MẍS + CẋS + KxS = −Mcüg −Ccu̇g −Kcug. (4.5.5)

Since the ground acceleration ug(t) is supposed to be a vector of Gaussian processes with
zero mean, the vector xS(t) gathers also zero mean processes, because the structure is supposed
to start from rest. Without any lost of generality, the vector xS(t) can be decomposed into a
pseudo-static (or background) component and a dynamic (or resonant) one, such that

xS = xB + xR. (4.5.6)

The background component xB(t) results from a static analysis

xB = Rug (4.5.7)

with
R = −K−1Kc. (4.5.8)

Substitution of (4.5.6) into (4.5.5) yields

MẍR + CẋR + KxR = − (MR + Mc) üg − (CR + Cc) u̇g. (4.5.9)



4.5. MULTI-SPAN BRIDGE UNDER DIFFERENTIAL GROUND ACCELERATION 81

We could admit, as previously, that Mc is negligible with respect to MR. In typical
applications, we expect MR to be fully populated, while Mc has non-zero entries only for
structural DOFs coupled with supports. Several authors ([Clou 93, Hari 96]) claim that the
term related to the damping forces in (4.5.9) may be neglected, and so do we in the following.
Thus, the remaining equation to solve is

MẍR + CẋR + KxR = − (MR + Mc) üg. (4.5.10)

Equations (4.5.7) and (4.5.10) highlight that the pseudo-static response is trivially ob-
tained in the nodal basis and that the effective loading on the resonant contribution is high-
passed filtered. Considering the set of linear normal modes of vibration Φ, the projection of
(4.5.10) into the modal space reads

q̈R + Dq̇R + ΩqR = −ΦT (MR + Mc) üg (4.5.11)

with the notation similar to (3.3.5) and with xR = ΦqR.

In a stochastic framework now, the resolution of the equation set (4.5.7) and (4.5.10) can
be performed with the method developed in this Chapter. The random transient pseudo-static
response is readily given by

ŜxB (t, ω) = RŜug(t, ω)RT . (4.5.12)

It should be noticed that for evolutionary spectrum Ŝüg 6= ω4Ŝug , due to (4.2.1). In the
following of this application, we only focus on the resonant response, a reason for dropping
the index R in (4.5.11), as no confusion is possible.

Characteristics of the multi-span bridge

The bridge, considered in this example and depicted in Figure 4.3, counts 20 spans of 40m
long and the piles are 20m high. The characteristics of the deck are E = 40GPa, I = 40m4,
A = 6m2 and the ones of the piles are E = 30GPa, I = 9m4, A = 14m2. The density of
both elements is 3000kg/m3. Perotti’s problem is now slightly modified. The connections
between the piles and the deck are relaxed and the damping devices are set up on different
connections in order to mitigate seismic vibration. By this way, a mechanical coupling is
created within the structure. The connection stiffness is equal to 100MN/m. Based on these
structural properties, a FE model is built up with 5 elements for both piles and spans. The
damping matrix of the initial structure is constructed by imposing the damping ratio equal
to 1.0% in the first and third modes. The first five natural frequencies of this structure are
1.28, 1.29, 1.30, 1.33 and 1.40Hz. The shape of the first mode is also shown in Figure 4.3.

About the excitation, the parameters of the Kanai-Tajimi spectrum (Sü in (4.5.1)) are
S0 = 3 · 10−3m2s−3, ω1 = 2.5πrad/s, ξ1 = 0.2, ω2 = 0.5rad/s, ξ2 = 0.6 and Jenning’s window
(4.3.47) is considered with t1 = 3s, t2 = 10s and γ = 1Hz.
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Figure 4.3: Multiple-span bridge subject to coherent earthquake. Dampers are set on the top
of piles 4, 10 and 16. Sketch of a damped connection at pile 10. Shape of the first mode.

The structure is first analyzed without damping device, then a linear coupling is investi-
gated by assuming a linear behavior of the dampers. From the example presented in Section
3.5, we know that the validity of the approach mainly depends on the projection of the non-
linear forces in the modal basis. Hence, in order to show a case where more correction terms
are involved in the computation, the dampers are supposed to be set on the connections 4, 10
(mid-length of the bridge) and 16, leading to a non-classically damped structure.

(a) (b)

Figure 4.4: Multi-span bridge under earthquake. Absolute value of the covariance matrices
of the generalized forces Σp in [kN2] for coherent (a) and non-coherent (b) excitations
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Initial structure and coherence model

In the initial structure, the response is linear and the structural damping is built up to
be proportional. This case allows to illustrate explicitly, the effect of coherence within the
earthquake on the modal response of the structure. Figure 4.4 highlights the influence of
the coherence on the generalized forces. With coherence the second mode is mainly excited,
while the first five modes are similarly excited without coherence. Neglecting the coherence
underestimates the forces on the structure.

(a) (b)

(c) (d)

Figure 4.5: Multi-span bridge under (a,b) coherent and (c,d) non-coherent earthquake. (a,c)
Variance of the first four modes with respect to time. Comparison between equivalent lin-
earization and Monte Carlo simulation (thin dotted line). (b,d) Variance of the deck displace-
ments at four different times.

Figure 4.5-a shows the time evolution of the variance of the first four modes under coherent
earthquake, while Figure 4.5-c depicts these variances for a purely uncorrelated excitation,
which is equivalent to an infinite apparent velocity. In the present problem, the response
is deeply influenced by the coherence function: the modal amplitudes are more important
for a coherent loading and the intensities among the modal amplitude is completely changed.
Indeed, the loss of coherence along the bridge reduces the response in the first mode compared
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with the second one. The results obtained with the asymptotic expansion-based method are
in accordance with the Monte Carlo simulations (1000 samples). The loss of coherence is also
noteworthy in comparing Figures 4.5-b and -d. In Figure 4.5-b we show clearly the seismic
wave propagation along the structure leading up to non-uniform response in displacement.
This is not the case in Figure 4.5-d.

Structure with linear dampers

Now the dampers with linear constitutive law are supposed to be set up on the structure at the
connections 4, 10 and 16. In this application, the structure behaves linearly and the analysis is
performed according to the efficient approach exposed in Section 4.4. The time window of 20s
is sampled with a 0.5s time step and the cross-psd of the excitation is sampled with 5000 points
essentially gathered around the natural frequencies. The results are validated by comparison
with 10000 digital simulations computed with a time step of 2.4ms. The embedded stationary
process is simulated on a 320s time interval before being divided in 20s earthquakes, so the
frequency resolution is about 3mHz. Two different values of the damper constant CD are
studied.

In Figure 4.6, the convergence of the truncated series is investigated. For CD = 5MNs/m
(i.e. ρJ = 0.36), the modal responses obtained with N equal to 0 and 2 are perfectly super-
imposed and they are not distinguished. For CD = 20MNs/m (i.e. ρJ = 0.74), the modal
responses obtained with the decoupled approximation (N = 0), is not accurate enough in this
case. Figure 4.6-a also shows the good agreement between the numerical simulations and the
proposed method. From a computational point of view, a single time step with the proposed
method is computed in about 0.5s.

(a) (b)

Figure 4.6: Multi-span bridge under coherent earthquake. Variances of the modal responses.
(a) CD = 5MNs/m and ρJ = 0.36. Results obtained with N = 0 and N = 2 are perfectly
superimposed. Comparison with Monte Carlo simulation (black curves). (b) CD = 20MNs/m
and ρJ = 0.74. Results obtained with N = 0 and N = 2 cease to be superimposed.

In Figure 4.6, we see that the asymptotic expansion converges quite fast, in spite of a large
index of convergence. This is partly explained in Section 4.3.2, in which we show that the
convergence of the series hN (t) is improved on shorter time interval, provided the series HN (ω)



4.5. MULTI-SPAN BRIDGE UNDER DIFFERENTIAL GROUND ACCELERATION 85

is convergent. The convergence is thus different in stationary and nonstationary settings. To
highlight this difference, we propose to compare the stationary approach of Chapter 3 with
respect to the method of this Chapter.

(a) (b)

Figure 4.7: Multi-span bridge under coherent earthquake. Variances of the modal responses.
The legend is similar to Figure 4.6. (a) CD = 5MNs/m. Results obtained with N = 0 and
N = 2 are perfectly superimposed. (b) CD = 20MNs/m. Results obtained with N = 0
and N = 2 cease to be superimposed. Results from stationary spectral analysis shown with
markers: Σqd(�), i.e. decoupled approximation, and Σq,∞ (•).

The Jenning window is therefore modified with γ = 0, such that the system evolves to its
steady-state response. The same two damping coefficients CD are chosen in order to compare
different convergence criteria. In a nonstationary setting, the truncation order N is equal to 0
and 2. As in Figure 4.7-a, the three curves are virtually superimposed even for ρJ = 0.36, but
in Figure 4.7-b the decoupled approximation differs from the case N = 2. In Figure 4.7, the
reference stationary response Σq,∞ (•) and the decoupled approximation Σqd(�) are depicted
around the time t = 30s. As expected, the difference between these two responses is more
important in Figure 4.7-b, because the convergence criterion is higher with ρJ = 0.74.

The comparison between the curves and the markers illustrates explicitly our purpose.
The transient decoupled approximation (dotted line) is much closer to the target Σq (•) than
the stationary decoupled one (�), while the transient coupled approximation N = 2 meets
the target response. We attribute the origin of this difference to the efficient formulation of
Section 4.4. Indeed, the recurrence formula (4.4.6), recalled here

Υ(t, t0, ω) = Ψ(t, tM )Υ(tM , t0, ω) + Υ(t, tM , ω),

presents two main advantages with regard to the analytical expressions calculated in Section
4.3.3.

First, the state transition matrix Ψ(t, tM ) is not frequency dependent and can be computed
efficiently by a Padé approximation of the exponential matrix taking into account the modal
coupling. Therefore, the asymptotic approximation of the modal coupling is only considered
on the interval [tM , t]. Thus, the asymptotic approximation is not exactly decoupled all along
the interval [t0, t], but only for the computation of Υ(t, tM , ω), the coupling is taken into
account through Ψ(t, tM ) in the projection of the past [t0, tM ] to the instant t.
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Secondly, the modal coupling computed with the asymptotic expansion-based method is
taken into account on the interval [tM , t]. Provided this interval is not too long compared
with the characteristic times of the structure (related to the natural frequencies), a single
correction term is sufficient.

4.6 Nongeometric spectral moments and first passage time

In this Section, the author would like to broach the subject of evolutionary spectral charac-
teristics derived from the spectral functions of evolutionary random processes. A significant
advantage of the spectral analysis compared with Monte Carlo simulations pertains to the
computation of extreme values. Indeed, for unsteady Gaussian processes, the related spectral
moments allow thus to compute extreme value problems, while the Monte Carlo approach
requires a lot of samples, moreover the ergodicity principle does not apply.

First, the spectral characteristics and the spectral moments for real-valued nonstationary
processes was a straightforward extension of the geometric definition given by Vanmarcke
[Vanm 72]. On a probability space (Θ,F,P), for a L2-stationary process Xs(t, θ) : R+×Θ 7→ R,
the stationary spectral moments λn reads

λn =

ˆ
R
|ω|n SXsXs(ω)dω (4.6.1)

with SXsXs(ω) the psd of Xs(t). From these spectral moments, some parameters are com-
puted, as the central frequency ωc(t) and the bandwidth parameter e(t) of the process. In a
stationary setting, the first parameter expresses the center of mass of the one-sided psd of the
process, while the second one may be seen as the inverse of the gyration radius of the same
psd around the central frequency. Therefore, we understand the description more geometrico
of those parameters for the spectral content of a random process.

However, the moments (4.6.1) may be unbounded for nonstationary processes, what makes
this extension questionable (even wrong) from the mathematical point of view. Based on this
major drawback, Di Paola [DiPa 85] has introduced the concept of nongeometric spectral
moments applied to nonstationary processes, defined by use of the modulation of the Hilbert
transform of the embedded stationary process. Di Paola’s work has then been applied by
Michaelov [Mich 99] in order to define nongeometric spectral characteristics. Nevertheless,
this geometrical view ceases to be valid for unsteady processes, but Di Paola’s definition
allows them to be interpreted as instantaneous parameters.

In the works of Barbato [Barb 08, Barb 10], the nongeometric spectral characteristics are
extended to complex-valued random processes in order to apply these concepts to complex
modal analysis. In those papers, some analytical expressions for ωc(t) and e(t) are given for
systems subject to modulated white noise excitations.

In this Section, we want to emphasize that our method can be used to solve such proba-
bilistic problems, in a competitive manner with Monte Carlo simulation, without resorting to
complex modal analysis.

Considering a real-valued evolutionary random process X(t, θ) : R+ × Θ 7→ R defined
on L2(Θ,F,P), the definitions of the first three nongeometric spectral moments [DiPa 85,
Mich 99] are
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cXX(t) =

ˆ
R
ŜXX(t, ω)dω = σ2

X(t), cẊẊ(t) =

ˆ
R
ŜẊẊ(t, ω)dω = σ2

Ẋ
(t),

cXẊ(t) = −2ι

ˆ ∞
0

ŜXẊ(t, ω)dω 6= σXẊ(t). (4.6.2)

The process X(t) can be interpreted as a response inherent to the structure (e.g. internal
bending moments in a critical section, absolute or relative displacements) computed with
the statistics of both q and q̇, i.e. the covariance matrix Σz. Indubitably, the definitions
(4.6.2) bear a striking resemblance to the corresponding stationary definition (4.6.1), except
that the relation between the psd is not straightforward. Equation (4.6.1) does not apply in
evolutionary spectral analysis, because the second moment λ2 is not equal to the variance of
the velocity in this case, as shown by [Mich 99]. Actually, the definition of cXẊ may seem
quite unexpected. This spectral characteristic is such that

cXẊ = σXẎ (t)− ισXẊ(t) (4.6.3)

with Y (t) defined as the modulation of the Hilbert transform of the embedded process Xs(t)
of X(t). The difference between cXẊ(t) and σXẊ(t) comes from the integration domain: the
domain being limited to R+, the imaginary part of the integral is not equal to zero.

According to definitions (4.6.2), the central frequency ωc(t) and the bandwidth parameter
eX(t) used in reliability analysis to calculate the peak distribution or the time of first-passage,
can be calculated as

ωc(t) =
<
[
cXẊ

]
cXX

, eX(t) =

(
1−
<
[
cXẊ

]2
cXX cẊẊ

) 1
2

. (4.6.4)

The spectral moments may be used in a large range of extreme value problems or in
reliability analysis, such as the first-passage reliability problem [Ghaz 12]. Considering
a well-defined reliability domain, the stochastic problem of first-passage aims at finding the
probability distribution of the instants at which a process reaches the reliability domain for
the first time. In this work, it is supposed that the reliability domain is determined by extreme
states. Hence, the initial configuration of the structure may be supposed to be in the reliability
domain. Many instances of this problem may be provided, as it is a classic problem addressed
by many authors for years in the different fields of science [Sieg 50, Spen 93, Preu 94, Musc 05],
e.g. the probability of failure, the probability of pounding between adjacent buildings. The
first-passage time is also called the first hitting time, a member of the family of the exit times,
well-known in economy and finance.

In probability theory, provided the reliability domain may be interpreted as a threshold `,
i.e. a rigid barrier, the time of first passage tfp may be defined, in a probabilistic framework,
as

tfp = inf [t : X(t) = `] . (4.6.5)

This is called a single-barrier first passage problem. A double-barrier reliability problem is
defined in the same way, but with the absolute value of X(t).
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The first passage time problem usually consists in finding the probability distribution of
tfp, a random variable. The probability of failure at time t is usually expressed as [Preu 94,
Tuba 12, Ghaz 12]

Pf (t) = 1− exp

(
−
ˆ t

0
χ`(τ)dτ

)
, (4.6.6)

with the hazard function χ`(t) a real-valued function depending on e(t) and ν+
X(t, `), the mean

out-crossing rate function of X(t) with a positive slope (Ẋ(t) > 0). This rate is calculated as

ν+
X(t, `) =

ˆ +∞

0
ẋψXẊ(t, `, ẋ)dẋ. (4.6.7)

Equation (4.6.7) is refereed to as Rice’s formula. According to [Shin 88], the up-crossing rate
of a threshold ` is given by

ν+
X(t, `) =

√
1− ρ2

XẊ

2π

σẊ
σX

exp

(
−κ2

1

ρ2
XẊ

){
1 +
√
πκ1 exp

(
κ2

1

)
erfc (κ1)

}
(4.6.8)

with ρXẊ(t) the correlation coefficient between X and Ẋ, erfc(·) the complementary error
function and the dimensionless constant

κ1 =
`ρXẊ

σX

√
2
(

1− ρ2
XẊ

) . (4.6.9)

Knowing a closed-form expression for ν+
X(t, `), the function χ`(t) can be expressed as

χ`(t) = ν+
X(t, `)

1− exp
(
−
√

2πeX(t) `
σX(t)

)
1− exp

(
− `2

2σ2
X(t)

) (4.6.10)

with the assumption of a Markov process for the maxima, the so-called Vanmarcke formula
[Vanm 72]. If the function χ`(t) equals ν+

X(t, `), the extrema are supposed to occur indepen-
dently from each other, like a Poisson process. This last assumption is relatively frequent in
practice for its simplicity, in spite of rough approximation. For a double barrier reliability
problem, the hazard function reads

χ`(t) = 2ν+
X(t, `)

1− exp
(
−
√

π
2 eX(t) `

σX(t)

)
1− exp

(
− `2

2σ2
X(t)

) . (4.6.11)

An exponent 1.2 over the bandwidth parameter eX(t) in (4.6.10) and (4.6.11) was used by
Vanmarcke himself in order to get a better agreement between his formula and simulations
[Vanm 72]. This case is refereed as to the modified Vanmarcke formula in the sequel.
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Application

In order to illustrate the applicability of our method, we propose to go back to the example
given in Section 3.5.2, i.e. the shear-type building under earthquake. The structure is sup-
posed to be linear (κ = 0), the inter-storey stiffness k is fixed at 1GN/m and the damping
ratio is equal to 2% for the first two modes. By construction, this structure is decoupled
in its modal basis (K̃ = 0) in a first case. In a second case, three linear viscous dampers
(CD = 16 · 106Ns/m) are set up at the first three levels of the structure in order to mitigate
vibrations. The structure is thus non-classically damped. The damping ratios of the first
three modes become 0.04, 0.05 and 0.06; the convergence criterion is ρJ = 0.44.

We recognize the academical nature of this example, though it is basically comparable to
the benchmark given in [Barb 11]. We propose to compute the probability of first passage of
the top of the building, i.e. tfp = inf [t : |X(t)| = `] with ` equal to both 1.35m and 1.3635m.
These two values have been chosen really close in order to highlight the great sensitivity
on ` of the relation (4.6.8). In this example we consider Shinozuka’s envelope (4.3.44) with
b1 = 0.045π, b2 = 0.050π and a maximum value equal to one.

For the resolution with the proposed asymptotic expansion-based method, the time step
is equal to 0.5s (it is not illustrated here, but a time step of 0.1s was also considered without
any difference). The resolution of the problem is carried out with 5 modes and takes about
20s cpu time. For the decoupled structure, 128000 simulations have been run (∆t = 0.006s)
and 106 samples (∆t = 0.02s) for the non-classically damped structure. The main results
about the first passage time are given in Figures 4.8 and 4.9.

(a) (b)

Figure 4.8: Non-geometrical spectral parameters. (a) bandwidth parameter eX(t) and (b) nor-
malized central frequency for both initial (classically damped) and (non-classically) damped
structure; ω0 denotes the first natural pulsation of the structure.

In Figure 4.8, we show the time evolution of the bandwidth parameter eX(t) and the
central pulsation ωc(t) for both situations. The bandwidth parameter decreases with time. In
the strong phase of the earthquake, ωc is equal to the first natural pulsation of the structure
and eX is less than 0.1. A small bandwidth parameter eX ensures a limited dispersion for
the spectral content of X(t) around the central frequency. In a stationary setting, we know
that the smaller this parameter, the better the Vanmarcke approximation [Vanm 72]. By
considering these parameters as instantaneous, we may expect a good agreement between the
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spectral moment approach and Monte Carlo simulation.

In Figure 4.9, we compare different approximations for two different thresholds according
to the two configurations. First, the comparison between Figures 4.9-a and -c shows that the
effect of the dampers is to reduce by a factor 10 the probability of overcrossing the reliability
domain. In Figures 4.9-a and -b, we can see the poor results obtained with Rice’s formula.
Roughly speaking, Rice’s formula overestimates by a factor 4 the target probability (the ref-
erence being the probability obtained by simulation). Indeed, the assumption of independent
crossings is not justified for short transient phenomenon. In Figures 4.9-c and -d, this formula
overestimates the target by a factor 2.5. This reduction from a factor 4 to 2.5 can be ex-
plained by the Poisson assumption, a bit more suitable for high thresholds, and thus smaller
overcrossing probability.

(a) (b)

(c) (d)

Figure 4.9: Non-geometrical spectral parameters. Application of the asymptotic expansion
based method to a first passage problem for two different thresholds lcr. (a,b) Classically
damped structure. (c,d) Non-classically damped structure.

We shall notice the good agreement in the four cases between Monte Carlo simulation
and the Vanmarcke formula. In this case, the Markovian property for the crossings is much
more suitable than the Poisson approximation. In this context, we must point out the dra-
matic underestimation obtained with the modified Vanmarcke formula. We cannot justify
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theoretically the exponent suggested by Vanmarcke, especially for nonstationary processes.
In the opinion of the author, it is safer in this kind of problems to use the original Van-
marcke formula, but with precaution, because of the parameter sensitivity in extreme value
problems. As illustrated by comparing Figures 4.9-a and -b together, or Figures 4.9-c and
-d, the threshold increased by 1% modifies the target probability of about 10%. Even if this
modification is not notable in this range of probability, it may lead to wrong interpretations
and comparisons, abundant in the literature. Without details, we also would like to recall
the importance of time steps in extreme value simulations. Monte Carlo simulation is neither
exempt from precautions: an approximate digitalization may lead to poor results.

4.7 Linear systems driven by non-Gaussian excitation

Although the spectral analysis has been presented in this Chapter as limited to Gaussian
excitations, the effects of non-Gaussian forces on linear systems in a transient framework can
also be dealt with an evolutionary spectral analysis. Indeed, in a spectral approach, the defini-
tion of higher-order spectra is basically required as the natural extension of the evolutionary
spectrum in (4.2.1). Broaching such a question at this stage opens a Pandora’s box. The
non-Gaussianity in transient loading has been addressed by different authors, but especially
in the case of Poisson processes or impulse trains [DiPa 96]. In earthquake engineering, the
spectral approach is amply used, but the characterization of a ground acceleration model by
non-Gaussian properties is not an easy task. For instance, Kafali and Grigoriu [Kafa 06] pro-
pose to use a Student t-distribution. However, as the evolutionary spectral analysis remains
an open question, the development of an efficient higher-order spectral analysis also remains
open, especially for linear systems [Unsa 03] and non-Poisson processes.

For large linear structures, like bridges or buildings, the use of spectral approach can
effectively compete with Monte Carlo simulations, also in nonstationary and non-Gaussian
analysis. This section is not pretending to develop new non-Gaussian models for transient
excitation. Independently of the excitation, provided their spectral characteristics are known,
the proposed developments can be applied.

According to the Wiener-Kitchnine theorem (Section 2.2), the power-spectral density of
a process is the Fourier transform of the correlation function of the process. As a formal
extension of this definition to higher-order spectral theory, the evolutionary bispectrum is
defined as the bidimensional Fourier transform of the bicorrelation function

E
[
(q(t1))i (q(t2))j (q(t3))k

]
= E

 m∑
l1,l2,l3

ˆ t1

0

ˆ t2

0

ˆ t3

0

(h(t1 − u1))il1 (h(t2 − u2))jl2

(h(t3 − u3))kl3 (p(u1))l1 (p(u2))l2 (p(u3))l3 du1du2du3

]
. (4.7.1)

As previously introduced in Section 2.2, the correlation function captures the statistical
information contained between two different instants of two components of a random vec-
tor. The bicorrelation tensor is an extension of the correlation matrix definition to third
dimension statistics. Indeed, the bicorrelation function captures the statistical information
contained in signals between three instants. For weakly stationary processes, only two time
lags are required to model the aforementioned tensor. In the case of Gaussian processes, the
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bicorrelation function is only dependent on the first and second order statistical moments, so
the computation of a bicorrelation is straightforward. The purpose of bicorrelation function
(or tricorrelation function and so on) is the first measure of the non-Gaussianity within a
random process.

Few details are now given to highlight the possibilities offered by the asymptotic expansion-
based method to perform a third-order spectral analysis in a transient regime. The extension
theorem ensures that the vector of generalized forces p(t) admits the Riemann-Stieljes repre-
sentation (4.2.1). Furthermore, the modal evolutionary transfer matrix (4.2.8) , together with
(4.7.1), leads to

E
[
(q(t1))i (q(t2))j (q(t3))k

]
=

m∑
l1,l2,l3

˚
R3

(G(t, ω1))il1 (G(t, ω2))jl2
(
Ḡ(t3, ω3)

)
kl3

E
[
(dp̃(ω1))l1 (dp̃(ω2))l2 (dp̃(ω3))l3

]
. (4.7.2)

The assumption of orthogonal increments formulated about p(t) allows to define an
adapted measure on the probability space, as in Section 2.2, such that

E [(dp̃(ω1)) l1 (dp̃(ω2)) l2 (dp̃(ω3)) l3 ] = (Bp(ω1, ω2, ω3))l1l2l3 δ(ω1 + ω2 + ω3)dω1dω2dω3

= (Bp(ω1, ω2))l1l2l3 dω1dω2 (4.7.3)

with B(ω1, ω2) the bispectrum (a third-order tensor) of the stationary process sustaining
the transient excitation. The δ-Dirac function comes from the hypothesis of stationarity
formulated on the stationary process embedded in p(t) [Unsa 03, Deno 05].

The bicorrelation at a given instant t allows to compute the time evolution of the skewness
of the modal coordinates, such that

E[(q)i (q)j (q)k (t)] =
m∑

l1,l2,l3

¨
R2

(G(t, ω1))il1 (G(t, ω2))jl2(
Ḡ(t, ω1 + ω2)

)
kl3

(Bp(ω1, ω2))l1l2l3 dω1dω2 (4.7.4)

as (G(t,−ω))ij =
(
Ḡ(t, ω)

)
ij

. A particular tensor can be identified from (4.7.4). Indeed, in

the theory of Volterra series [Sche 80], the product of transfer functions in (4.7.4) is called
the second evolutionary Volterra kernel. By a semantic shift, the vocable instantaneous
or evolutionary is assigned to the Volterra kernel. The evolutionary transfer matrix (4.2.8) is
thus the first evolutionary Volterra kernel.

As previously, the crude computation of the evolutionary transfer matrix is not an easy task
due to the convolution integral in (4.2.8). Although the elements of G(t, ω) may be efficiently
computed for coupled or uncoupled systems with the proposed asymptotic expansion-based
method, a formal asymptotic expansion of the Volterra kernel is expressed with difficulty. At
this stage, we keep on working with the asymptotic expansion of the evolutionary transfer
matrix, since using a N -order asymptotic expansion of G(t, ω) ensures that at least the N -
order approximation of the bicorrelation function is achieved.

Equation (4.7.4) becomes
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E
[
(q)i (q)j (q)k

]
N

=

m∑
l1,l2,l3

¨
R2

(GN (t, ω1))il1 (GN (t, ω2))jl2
(
ḠN (t, ω1 + ω2)

)
kl3

(Bp(ω1, ω2))l1l2l3 dω1dω2. (4.7.5)

Equation (4.7.5) highlights an important contribution of this thesis. Thanks to the asymp-
totic expansion based-method, the integration on the time dimension is performed by analyt-
ical methods. The time variable in (4.7.5) may be seen as a parameter. As previously, those
results constitute a major gain of this method, because it deals efficiently with coupling in
dynamical systems at a low computational cost. The computation of higher-order moments
requires to compute higher-order Volterra kernels, but this extension is beyond the scope of
this research. The methodology is straightly extended, yet.

At this stage, the big issue is therefore in the computation of the bispectrum (and higher-
order spectra) of the generalized forces, but it is not inherent to the proposed method. The
Volterra series can be used in nonlinear dynamics, but it requires a non-reasonable computa-
tional effort. To conclude this digression about non-Gaussian response of linear systems, an
academic application is proposed to validate the developments with some digital simulations.

Application

In order to illustrate and validate the former developments in a non-Gaussian framework, the
system depicted in Figure 4.10 is considered. The mass, damping and stiffness matrices are
given by

M =

(
1 0
0 µ

)
, C = 4π

(
ξ + ζ −ζ
−ζ ξ

√
µ+ ζ

)
, K = 4π2

(
1 + κ −κ
−κ 1 + κ

)
, (4.7.6)

where ξ, ζ, µ and κ are parameters of the studied system. For ξ = 0.5%, ζ = 5%, µ = 0.8
and κ = 0.1, the index of convergence is ρJ is equal to 0.6 highlighting a strong coupling in
the system after projection within the modal basis. The natural frequencies are 6.5 and 7.5
rad/s. The damping model of the system is thus non-proportional provided κ not too high.

Figure 4.10: Sketch of a 2-DOF dynamical system

The modal equation of motion reads

q̈ + Dq̇ + Ωdq = a(t)

(
p1

p2

)
(4.7.7)

with a(t) a Shinozuka time window (b1 = 0.1 and b2 = 0.3) and pi(t) a nonlinear function of
ui(t), an Ornstein-Uhlenbeck process (O-U), such that
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pi(t) = (U0 + ui(t))
2 (4.7.8)

with i = 1, 2. The psd of these O-U processes, supposed to be independent, is given by

Su(ω) =
α

π

σ2
u

α2 + ω2
. (4.7.9)

Hence, the lack of coherence between the forces in a modal basis allows to focus on the coupling
in the response only coming from the system.

The bicorrelation function of the process ui is given by the expectation of a product of ui
evaluated at three different instants, i.e.

E
[(
U2

0 + ui(t)
)2 (

U2
0 + ui(t+ τ1)

)2 (
U2

0 + ui(t+ τ2)
)2]

, (4.7.10)

then the bispectrum is obtained by a double-Fourier transform of the previous equation (a
function of τ1 and τ2). As a result of the assumption on the independence between the O-U
processes, the psd of p(t) is given by

(Sp(ω))i1i2 = Sp(ω)δi1i2 =
4α

π

(
U2

0σ
2
u + σ4

u

)
α2 + ω2

δi1i2 , (4.7.11)

where the effects of the non-Gaussian contributions on the spectrum are taken into account.
Then, the bispectrum of p(t) is such that

(
B̃p(ω1, ω2)

)
i1i2i3

= Bp(ω1, ω2) δi1i2δi2i3 (4.7.12)

with

Bp(ω1, ω2) =
8α2

π2

(
U2

0σ
4
u (3α2 + ω2

1 + ω2
2 + (ω1 + ω2)2)

(α2 + ω2
1)(α2 + ω2

2)(α2 + (ω1 + ω2)2)
+

2σ6
u (12α2 + ω2

1 + ω2
2 + ω1ω2)

(4α2 + ω2
1)(4α2 + ω2

2)(4α2 + (ω1 + ω2)2)

)
. (4.7.13)

First, in this example, the parameters U0, α and σu are set to 10, 0.5 and 0.5U0, re-
spectively. The spectrum Sp(ω) and the bispectrum Bp(ω1, ω2) are depicted in Figure 4.11-a
and -b, respectively. With these values, the excitation is essentially a background process.
In that case, it is well-known [Grig 88, Grig 02] that the background component creates the
non-Gaussianity in the response, while the resonant response, resulting from the amplification
of the resonant peaks, generates Gaussian contributions.
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(a) (b)

Figure 4.11: Power spectral density (a) and bispectrum (b) of the stationary process p =
(U0 +u)2 with U0 equal to 10 and u(t) an Ornstein-Uhlenbeck process (α = 0.5, σu/U0 = 0.5).

The establishment of those relations require many developments, but the Gaussianity of
u(t) deeply simplifies the analytical manipulations. As shown in [Deno 05], the exact bispec-
trum related to (4.7.13) counts also other terms, but they do not contribute to the computation
of the third-order cumulant, and are therefore disregarded in this example. Indeed, the main
target of a third-order spectral analysis is to compute the skewness coefficient which is de-
fined in terms of the third-order cumulants. Introducing the bispectrum in (4.7.5), the time
evolution of the this cumulant reads

Ẽ
[
(q)i (q)j (q)k

]
=

m∑
l=1

¨
R2

(
B̃p(ω1, ω2)

)
lll

(G(t, ω1))il (G(t, ω2))jl
(
Ḡ(t, ω1 + ω2)

)
kl
dω1dω2

(4.7.14)
with Ẽ[·] designating the expectation operator for the central moments. We use the analytical
expressions developed in Section 4.3.3.

The evolutionary transfer function and the evolutionary second Volterra kernel related to
the first normal mode are shown in Figure 4.12 at different time steps. The oscillations in
the transfer function are of paramount importance, because they result from the convolution
operation and the imaginary exponential in (4.2.8). The same behavior can be observed in
the second kernel. The results shown in Figure 4.12 only depend on the system properties
and the time window, independently of the underlying process actually. The band around
the natural frequency becomes narrower, when the time passes. For the second kernel, the
position of six peaks are identified : if ω1 or ω2 are set equal to zero, two peaks are identified
at the first natural frequency, while the two last peaks come from the summation ω1 +ω2 and
the conjugate term in (4.7.14).

Figures 4.13 and 4.14 show the results in terms of the second- and third-order cumulants
for the modal coordinates of the system with the aforementioned values of parameters. In
Figure 4.13, the convergence of the asymptotic expansion is checked. Since the convergence
criterion is relatively high (ρJ = 0.6), at least two terms in the series are required, as we use
the results of Section 4.3.3. As expected, the decoupled approximation is not able to compute
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the correlation between the two modal coordinates, because the generalized forces are not
coherent. Figure 4.13-b shows that the second-order moments are well estimated with two
correction terms. The Monte Carlo simulations are performed: Ornstein-Uhlenbeck processes
are generated with an ARMA filter, then a linear Newmark algorithm (0.25,0.5) is used to
simulate the dynamics of this 2-DOF system.

Figure 4.14 compares marginal and cross third-order moments with two runs of Monte
Carlo simulations with different number of samples. The convergence of the simulations is
slower on the cross moments, for which 50000 simulations have not yet converged. A rapid
estimation of the maximum skewness coefficient is about 0.7, highlighting a antisymmetry in
the marginal pdf of the modal coordinates. About the computational time, a single time step
(the time is here a parameter) in the spectral approach takes about 7s of cpu time. Although
this time may be seen as prohibitive on a 2-DOF system, no optimization of the integration
has been performed. Indeed, the integral (4.7.14) is operated with a rectangle method in the
plane (ω1, ω2). Since peaks are identified in the second-order Kernel and the excitation is
mainly a background process, simple procedure can be imagined to refine those functions only
where it is required. Extension of the background-resonant as exposed in Section 3.3.5 can
be imagined, too.

To conclude this application, the parameters of the excitation are modified: α is now
equal to 10. The excitation is not anymore a purely background excitation. Although the
convergence of the second order moment is assessed in Figure 4.15-a, the convergence of the
third-order moment is much slower. Runs of 106 and 5 · 106 simulations have been performed,
but the convergence of the moment Ẽ[q3

1] is slow. These results highlight the precautions
that must be used in the crude application of Monte Carlo simulations. Nevertheless, the
maximum skewness coefficient is about 0.01, so the distribution is almost symmetric (and
almost Gaussian by experience). This fact is well-known for such a small skewness. As
explained previously, the non-Gaussian component in the response comes mainly from the
background component. The lower α, the higher this component.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: N -order transfer matrix GN (left column) and N -order second Volterra kernel
(right column) of the first mode of system depicted in Figure (4.10) at different time steps :
t = 5s (a-b), t = 15s (c-d) and t = 30s (e-f) with N = 2.
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(a) (b)

Figure 4.13: Second-order cumulants of the system response depicted in Figure (4.10). Com-
parison between the spectral approach (bold line) (a) N = 0 and (b) N = 2 with Monte Carlo
simulation (104 samples).

(a) (b)

(c) (d)

Figure 4.14: Third-order cumulants of the response of the system depicted in Figure (4.10).
Comparison between the spectral approach with N = 2 and Monte Carlo simulations for two
different numbers of sample (MC 1 with 104 samples and MC 2 5 · 104 samples).
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(a) (b)

Figure 4.15: Cumulants of the non-Gaussian response. Random response of the 2-DOF system
in Figure (4.10) subject to an excitation characterized by the parameters U0 = 10, α = 10 and
σu/U0 = 0.2. (a) Second cumulants : comparison between the spectral approach with N = 2
and Monte Carlo simulations with 105 samples. (b) Third cumulant : comparison between
the spectral approach with N = 2 and Monte Carlo simulations for two different numbers of
samples (MC 1 with 105 samples and MC 2 5 · 105 samples).

4.8 Conclusions

Throughout this Chapter, we have been concerned about evolutionary spectral analysis for
linear structures. In civil engineering, evolutionary spectra are common models for transient
phenomena: an embedded stationary process, with a well-known spectral representation, is
modulated by a time envelope. This time-frequency dual description of a random process
allows to take advantage of the classic spectral analysis, exposed in Chapter 2. The crux
of the problem in evolutionary spectral analysis is the computation of the impulse response
matrix of the structure.

Thanks to the asymptotic expansion-based method developed in Chapter 3, we are able to
efficiently compute an asymptotic approximation of the impulse response matrix. Hence, its
computation, sometimes considered as intractable or computationally prohibitive, ceases to
be a drawback. The correction terms in the expansion allow to take into account the modal
coupling. For some common and well-known time envelopes, closed-form expressions can be
derived after few analytical developments. In this approach, the time is seen as a parameter
and the covariance of the response is thus readily computed by a numerical integration over
the frequency domain.

Nevertheless, we do not want to limit our method to envelopes with some simple analytical
expressions. Thus, a procedure is developed to deal with different windows. Thanks to the
semi-group property inherent to linear systems (time-variant or -invariant), we have found
a recurrence relation to build up the state space evolutionary transfer matrix of the modal
coordinates. This relation, demonstrated in Section 4.4, is central in this work for two main
reasons. First, by use of linear piecewise descriptions, we are able to deal with a large set of
time windows. Secondly, we take advantage of the convergence of the asymptotic expansion
of the impulse response matrix, improved on short time intervals. Even if the time ceases to
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be considered as a parameter, this provides a general and easily-implemented procedure to
perform evolutionary spectral analysis. This method has been applied to the study of a non-
classically damped bridge subject to nonstationary coherent ground motion. The accuracy
and the computational efficiency have been emphasized.

We want to insist that returning to linear algebra may lead to reliable results for the
resolution of civil engineering problems, by contradicting the notorious idea that a transient
problem can only be solved with simulations. For this reason, we hope that our method will
be considered with interest by practitioners in the future, independently of its extension to
nonlinear structures, another objective of this work, discussed in the following Chapter.

Due to the linearity of the structure, we may apply the asymptotic expansion-based method
to two other structural engineering problems.

Provided the excitations are Gaussian processes, the structure responds with Gaussian
processes as well. Therefore, we can use the non-geometrical spectral moments to solve some
probabilistic problems, as the first passage time. We have seen that our method, together with
these spectral moments, is able to match quite well the Monte Carlo results, for classically
and non-classically damped structures. We know now that our method may be applied to
such problems, without necessarily using complex modal analysis. Naturally, these spectral
moments remain an approximate tool and they must be used carefully. The original Vanmar-
cke formula gives very good results, while the Rice formula remains excessively safe. Some
authors suggest the use of the modified Vanmarcke formula, but with dubious evidences with
regard to our illustration. Nevertheless, we are convinced that improvements and limitations
for this approach could be further investigated in the future. The literature does not propose
today a regular analysis of the different approximations, grounded on mathematical evidences.

The linear assumption on the structural behavior also gives novel perspectives in high-order
evolutionary spectral analysis. Indeed, we may use the asymptotic expansion-based method
to estimate higher-order Volterra kernels. They allow to compute higher-order moments
of non-Gaussian structural responses. We provide an academic example to illustrate our
developments about this topic. At this stage, the method being validated, we think that
it could be applied to more realistic structures. However, improvements must be formally
performed on the numerical (or analytical) integration of higher-order spectra. Due to their
analytical properties, we could be able to spread out more efficiently the distribution of the
integration points. Nevertheless, the characterization of real or realistic bispectra, e.g. in
wind engineering, remains an issue.

In the following Chapter, we return to the asymptotic expansion-based method for Gaus-
sian equivalent linearization. We aim to show that the developments for linear evolutionary
spectral analysis may be applied to equivalent linearization in a nonstationary setting.



Chapter 5

Nonlinear Evolutionary Spectral
Analysis

5.1 Context and propositions

5.2 Multiple scales approach in stochastic linearization

5.3 Evolutionary spectral analysis for equivalent LTV systems

5.4 Application in wind and earthquake engineering

5.5 Update of the equivalent modal basis

5.6 Conclusions

Purpose of the chapter

This chapter aims at efficiently and rigorously unifying the equivalent statistical lineariza-
tion presented in Chapter 3 and the evolutionary spectral analysis developed in Chapter 4.
Based on a multiple scales approach, we demonstrate that a linearized structure, basically
a statistical time-variant system, can be regarded as a piecewise linear time-invariant
structure under the assumptions given in Section 5.2.

This method is then applied to two main examples in wind and earthquake engineering.
Finally, Section 5.5 presents a statistically consistent procedure to adapt a modal
(or generalized) basis throughout a transient solution, stumbling block of equivalent
linearization for large structures in transient analysis.
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5.1 Context and propositions

In Chapter 3, we expose the concept of asymptotic expansion of modal transfer matrix to
perform linear spectral analysis and equivalent statistical linearization in a stationary setting.
Then, in Chapter 4, this asymptotic method is used in linear evolutionary spectral analysis.
The concept is now extended to nonlinear and nonstationary problems with the main objective
to efficiently apply statistical linearization to large structures subject to coherent loadings.
Thanks to the previous developments, this objective is achieved in this Chapter. However,
the extension is not straightforward and some justifications are required in order to define a
practical application field for the asymptotic expansion-based method in equivalent statistical
linearization.

Although we deal with Gaussian equivalent linearization, we would like to give some
comments about the possible relation between this Chapter and Section 4.7 coping with non-
Gaussian loadings. Since the random response of a nonlinear system is non-Gaussian, it
could be worth considering higher-order spectral analyses to perform equivalent linearization.
Nevertheless, we keep on working in the context of Gaussian equivalent linearization. Indeed,
though some comments are already given in Section 2.5, we reaffirm our severe opinions
about the non-Gaussian linearization. The stochastic linearization is not simplified by the
calculation of higher-order (cross and marginal) moments, since the moment truncation is
still a problem, the number of moments to compute is a priori unknown and their number
dramatically increases with this truncation. Furthermore, the computation of the equivalent
matrices is deeply simplified by the Gaussian process assumption. Practitioners are aware
that stochastic linearization is a simplified method, tarnished by an error inherent to the
assumption of Gaussianity. Nevertheless, the trend on the parameters is usually well estimated
at a low computational cost, as illustrated in this Chapter.

The search for suitable techniques to perform transient analysis has been carried out for
a while. Proppe et al. [Prop 03b] show that Monte Carlo simulation and the equivalent lin-
earization are the only two feasible methods to perform stochastic analysis of large-dimensional
structures, especially in a nonstationary framework. Although the crude Monte Carlo simula-
tions present few perspectives of improvement for structures driven by random forces, the field
of nonstationary equivalent linearization has been the object of research and publications in
the last thirty years. By presenting some methods, their concepts, advantages and drawbacks,
we emphasize why our method is innovative and relevant.

First of all, we want to investigate whether linear methods can be extended to equivalent
linearization. The pseudo-excitation algorithm briefly exposed in Section 4.1 is limited to un-
coupled systems and the use of Duhamel integral, even piecewisely, is not feasible. According
to Tootkaboni [Toot 10], the direct integration scheme, exposed in Section 4.1 as well, can be
extended to nonlinear systems by considering them as piecewise linear. This idea is definitely
pertinent and must be extended to piecewise linearized systems. Hence, though the original
system is nonlinear and time-invariant, the linearized system can be seen as a piecewise linear
time-variant system. This concept, roughly drawn here, is amply exposed in this Chapter
with other assumptions.

Evolutionary power spectrum is not the unique way to deal with unsteady processes. In
[Naso 00], an evolutionary wavelet spectrum is used to quantify how a process varies locally
over time and frequency. For the statistical linearization approach, Spanos [Span 12] uses this
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concept to obtain the excitation-response relation based on the orthogonality properties of
the harmonic wavelet representation. The equivalent stiffness and damping elements depend
on the response, defined itself on a specific frequency band and time window. An iterative
procedure is then involved to determine the optimal representation of the response spectrum.

The question of nonstationary equivalent linearization has been also addressed wisely by
the team of Innsbrück led by Pr. Schuëller in [Prad 03, Sche 04, Sche 05]. They develop a
method based on the Karhunen-Loéve (K-L) representation of the random processes involved
in the dynamics of structure. The K-L expansion is a series aiming at representing a stochastic
process according to a spectral decomposition of its correlation function [Le M 10]. Knowing
the covariance matrix of the excitation (measured or assumed), the K-L expansion of the
excitation is built. Then, the K-L expansion of the state space vector (displacements, velocities
and history variables) of the structure is plugged into the linearized equation of motion.
This equation is thus integrated to find a finite set of deterministic K-L vectors. The task
also requires to adapt the linearized functions of the nonlinear forces. The reduction model
proposed in [Sche 05] makes use of normal modes of the linear subsystem, as explained in
Chapter 3 of this manuscript, especially because the nonlinear forces are non-essential and
localized. We must point out the main advantage of the K-L decomposition: it can be used
efficiently when measured data are available [Smyt 02]. However, as mentioned in [Sche 04],
they are rare and scattered, a reason why the use of modulated Kanai-Tajimi spectrum remains
definitely pertinent. A main drawback of this method is its difficulty to deal with large-
dimensional coherent fields. Nonetheless, the philosophy to develop a method able to deal
with large-dimensional systems encountered throughout these works is of great interest.

Actually, the possibility to apply a stochastic linearization method to large-dimensional
structures subject to coherent random loading is a possible and reasonable argument to eval-
uate the pertinence of a proposed method. It is also an argument to discard many methods
encountered in the literature.

The concept of evolutionary spectral analysis has not been effectively applied in equivalent
statistical linearization, mainly for computational reasons. Indeed, some operations in evolu-
tionary spectral analysis are implemented with difficulty. For instance, Kougioumtzoglou and
Spanos [Koug 13] qualify the convolution integral between the impulse response matrix and
the time window as “intractable” (see (4.2.8)). From Chapter 4, we know that the asymptotic
expansion-based method can be efficiently used to compute modal impulse response function,
even for coupled systems. However, these authors highlight the particular case for which the
timescale of the deterministic envelope and the ones of the system are clearly separated, so
the convolution integral can be deeply simplified, even avoided in some circumstances.

This assumption leads to the quasi-stationary approach (see (4.2.10)). The evolution of
the structural properties is put aside and the time is seen as a parameter. The equivalent
statistical linearization is thus similar to the problem addressed in Chapter 3. In Section 4.1,
we say our critical and severe opinion about this restrictive assumption for linear systems. In
an equivalent linearization context, the separation of the timescales does not theoretically lead
to the quasi-steady assumption, but actually to a multiple scales formulation of the problem,
in which the equivalent properties evolve at a different timescale than the ones of the structure.

Now that the context is outlined, we are ready to assemble the developments of Chapters 3
and 4. First, the multiple scales formulation for the proposed approach is rigorously justified in
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Section 5.2. Since an unsteady linearized system is Linear Time-Variant (LTV), the theoretical
background is briefly exposed. Then, we introduce the concept of piecewise LTI system,
together with the asymptotic expansion-based method. In Section 5.5, the concept of modal
basis adaptation throughout a transient solution is presented.

5.2 Multiple scales approach in stochastic linearization

On a probability space (Θ,F,P), we consider the random vector of modal coordinates q(t, θ) :
R+×Θ 7→ Rm. According to (3.3.5), the time evolution of the vector q(t) of modal coordinates
is modeled by the linearized modal equation of motion

q̈ + (D + Deq(Σq(t),Σq̇(t))) q̇ + (Ω + Ωeq(Σq(t),Σq̇(t))) q = a(t)w(t) (5.2.1)

with w(t, θ) : R+ × Θ 7→ Rm a random excitation vector and a(t) a deterministic envelope.
For the sake of simplicity and clarity, the vector w(t) is supposed to be full of δ-correlated
processes, i.e. white noises. This vector may be possibly colored in order to model more
realistic excitations. As in (4.2.11) and (4.2.12), Equation (5.2.1) is recast into a state space
formalism

ż =

(
0 I

− (Ω + Ωeq) − (D + Deq)

)
z +

(
0 0
0 a(t)I

)(
0

w(t)

)
(5.2.2)

with Aeq the equivalent convection matrix, readily identified as the equivalent statistical
extension of (4.2.11).

Since the system is linearized, a Lyapunov equation [Preu 94] in terms of the covariance
matrix Σz can be written after application of Itô’s lemma. It describes the time evolution of
the second-order moments of the modal state vector z as in (4.2.11), such that

Σ̇z = AeqΣz + ΣzA
T
eq +

(
0 0
0 a(t)2SW

)
and Σz(t) = E

(
qqT qq̇T

q̇qT q̇q̇T

)
(5.2.3)

with SW the matrix of the white noise intensities.
The equation of motion highlights different behaviors characterized by different timescales.

The application of the multiple scales technique [Nayf 73, Hinc 91], amply used for decades
in mechanics [Luon 99, Emam 04, Deno 10], looks perfectly appropriate. An analysis of the
different regimes is mandatory at this step. A convenient way to sort the timescales is to
introduce a distinction between t1 the fast timescale related to both the system natural periods
and the frequency content of the excitation and t2 the slow timescale related to the envelope
and the memory time of the system. The first timescale is related to high frequency contents of
the mechanical system, while the second one to the statistical timescale. Indeed, the memory
time of the system and the deterministic envelope condition the evolution of the statistical
moments in the system.

Fast timescale

Now, a small parameter ε is introduced to compare the times t1 and t2 with respect to the
physical time t, such that
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{
t1 = t

t2 = εt
, (5.2.4)

and the time t becomes a function of t1 and t2. Therefore, ordinary differential equations in
time become partial differential equations, because

d ·
dt

=
dt1
dt

∂ ·
∂t1

+
dt2
dt

∂ ·
∂t2

=
∂ ·
∂t1

+ ε
∂ ·
∂t2

. (5.2.5)

Thus, the modal equation of motion (5.2.1) reads

∂2q

∂t21
+ 2ε

∂2q

∂t1∂t2
+ ε2∂

2q

∂t22
+ (D + Deq)

(
∂q

∂t1
+ ε

∂q

∂t2

)
+ (Ω + Ωeq) q = a(t2) (w(t1) + εw(t2)) .

(5.2.6)

The white noises in w(t) are split into two different terms by using the artifact that they
can be expressed more conveniently (in an “engineering” framework) as the time derivative of
a Brownian motion. Similarly, it consists in using the fractal property of the Wiener process.
The choice to assume a(t) only dependent on t2 (and not on t1) is inspired by the physics
of the phenomena. For instance, the duration of an earthquake is usually longer than the
fundamental period of a structure.

In a classical multiple scales technique, the function q, initially a function of time t,
becomes a function of both t1 and t2. A Poincaré expansion of q, defined as

q(t1, t2) = q0(t1, t2) + εq1(t1, t2) + ε2q2(t1, t2) + . . . (5.2.7)

is introduced in (5.2.6). The leading order equation, i.e. the equation extracted from the
terms of order ε0 = 1, is given by

∂2q0

∂t21
+ (D + Deq(Σz))

∂q0

∂t1
+ (Ω + Ωeq(Σz)) q0 = a(t2)wθ(t1) (5.2.8)

and the equation at order ε1 is

∂2q1

∂t21
+ 2

∂2q0

∂t1∂t2
+ (D + Deq(Σz))

(
∂q1

∂t1
+
∂q0

∂t2

)
+ (Ω + Ωeq(Σz)) q = a(t2)w(t2) (5.2.9)

with q0 and q1 both depending on t1 and t2. Calculating the ε-asymptotic expansion of the
covariance matrix

Σz(t1, t2) = Σz,0(t1, t2) + εΣz,1(t1, t2) + ε2Σz,0(t1, t2) + . . . , (5.2.10)

by means of (5.2.7) gives the leading order term of (5.2.10)

Σz,0(t1, t2) = E

 q0q
T
0 q0

(
∂q0

∂t1

)T(
∂q0

∂t1

)
qT0

(
∂q0

∂t1

)(
∂q0

∂t1

)T
 . (5.2.11)
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Slow timescale

From the physics of the underlying phenomena, it is expected that the second-order moment of
the system evolves according to the slow timescale t2. This fact is emphasized by introducing
in the Lyapunov equation (5.2.3), the same timescales while modifying the role of ε in (5.2.4).
Indeed, this substitution consists in reducing the slow timescale to capture its influence on
the fast dynamics. In the context of the Lyapunov covariance equation, the fast timescale
is stretched to be of the same order of magnitude as the slow one. Equation (5.2.4) may be
rewritten as {

t1 = t/ε

t2 = t
(5.2.12)

and the ratio between t2 and t1 is still ε in both (5.2.4) and (5.2.12). This artifact is a key
principle of the method, because it allows to separately focus on the fast dynamics by invoking
(5.2.4) or on the slow dynamics with (5.2.12), without changing the physical meaning of the
time variables. From another point of view, this technique is also used to analyze separate
asymptotic behaviors in a system.

The differential operator (5.2.5) now reads

d ·
dt

=
dt1
dt

∂ ·
∂t1

+
dt2
dt

∂ ·
∂t2

=
1

ε

∂ ·
∂t1

+
∂ ·
∂t2

(5.2.13)

and the Lyapunov equation (5.2.3) yields

∂Σz

∂t1
+ ε

∂Σz

∂t2
= εAeqΣz + εΣzA

T
eq + ε

(
0 0
0 a(t2)2Sw

)
(5.2.14)

with the term coming from the excitation and the white noises only dependent on t2. From
(5.2.14), the leading-order equation is given by

∂Σz,0

∂t1
= 0 (5.2.15)

and therefore it does not depend on the fast timescale t1. This result is the key point of
the proposed demonstration, because it means that the covariance matrix, through its
leading order in a formal asymptotic expansion, only depends on t2 and so are
the equivalent matrices in (5.2.1). This last equation now reads

∂2q0

∂t21
+ (D + Deq(Σq,0(t2),Σq̇,0(t2)))

∂q0

∂t1
+ (Ω + Ωeq(Σq,0(t2),Σq̇,0(t2))) q0 = a(t2)w(t1),

(5.2.16)
or more conveniently,

∂2q0

∂t21
+ (D + Deq(t2))

∂q0

∂t1
+ (Ω + Ωeq(t2)) q0 = a(t2)w(t1). (5.2.17)

Equation (5.2.17) is the leading order component of the modal equation of motion taking into
account the physical separation between the structural and the statistical times.
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For the sake of completeness, it shall be pointed out that the methodology of multiple scales
may be applied in the case of non-zero mean processes. In this case, the main conclusion is
equivalent to the one drawn after considering the Lyapunov equation (5.2.3) : if two timescales
can be highlighted in the problem, the mean vector of the state space vector evolves according
to the slow time t2, like the covariance matrix. It must be emphasized that the mean response
of the system is more rigorously calculated in the nodal basis (x = Φq). The mean vectors
µx and µẋ are calculated by solving the following differential equation

d

dt

(
µx

µẋ

)
=

(
0 I

−M−1 (K + Keq) −M−1 (C + Ceq)

)(
µx

µẋ

)
+a(t)

(
0

M−1f̄

)
(5.2.18)

with f̄ the mean value of the embedded stationary process f(t) in (5.2.18). The same math-
ematical artifact about the timescales leads to ∂t1µx,0 = ∂t1µẋ,0 = 0, i.e. the leading order
term of the mean vector does not evolve according to the fast time.

Multiple scales approach and quasi-stationary assumption

Assuming that the leading order is exclusively considered (for sufficiently small values of ε,
this approximation is sufficient), the Fourier transform in terms of the fast timescale (the only
one relevant for this operation) of the right-hand side of (5.2.17) leads to

(
−ω2I + ιω (D + Deq(t2)) + (Ω + Ωeq(t2))

)
Q0(ω, t2) (5.2.19)

with Q0(ω, t2) the Fourier transform of q0 with respect to t1, which highlights an instantaneous
transfer function of the system at the leading order of the fast timescale. The t2-dependence
of Q0 emphasizes that the frequency distribution of the energy in the process q0 is time and
frequency dependent, as expected in evolutionary spectral analysis.

According to (5.2.19), the quasi-stationary philosophy considers a single timescale by an-
nihilating the influence of the past. The dependence on t2 is simply omitted according to
the assumption that “the system natural period is small compared to the duration of the evo-
lutionary excitation [the quasi-stationary approach] can yield satisfactory results” [Koug 13].
However, this assumption does not lead to the quasi-stationary approach, but to the multi-
ple scales philosophy. Indeed, the validity of the quasi-stationary approach should take into
account the time memory of statistically equivalent properties. More prosaically, this is the
capability of the system to “forget the past”. The proposed method offers another insight
into the problem and a more rigorous approach to take into account the time-evolution of the
system, provided that distinct timescales may be a priori identified. Indeed, the separation
between the two timescales does not indicate that the past may be omitted or that its influ-
ence is negligible, but that the functions only depending on t2 are evolving much slower than
q0. Thanks to the multiple scales demonstration, it becomes natural that the time evolution
of the equivalent matrices Ωeq and Deq may be approximated on time intervals larger than
the period of the system. In other words, these matrices may be supposed to be constant on
intervals including several periods of vibration.
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5.3 Evolutionary spectral analysis for equivalent LTV systems

5.3.1 Equivalent statistical linearization for LTV systems

In (5.2.1), the equivalent structural matrices depend on the covariance response matrix which
is time dependent. The time evolution of the statistical properties of the system must be
taken into account in the computation of the equivalent matrices. Equation (5.2.1) models a
linear or linearized system, but the time-depending parameters of the system are such that
the relation (4.2.23), between the impulse response matrix and the transfer matrix of the
system, cannot be used anymore. Indeed, for linear time-invariant systems, their response
only depends on the lag between the considered time and the time at which the force is
applied. In the case of Linear Time-Variant systems, the instant at which the load is applied
is relevant by itself.

The theory of LTV systems has not been effectively applied in the transient stochastic lin-
earization method, because the formal developments of this theory lead to intricate equations.
However, the results obtained before about the different timescales in the system, associated
with the practical method to compute impulse response matrix of slightly (even moderately)
coupled systems, may offer novel perspectives with respect to other methods proposed in the
literature.

First of all, the equation set (3.3.6)-(3.3.9) in a stationary setting and in a modal basis, is
now updated to take into account the time-variability of the system, such that

Σq(t) =

ˆ
R

Ŝq(t, ω)dω and Σq̇(t) =

ˆ
R

Ŝq̇(t, ω)dω (5.3.1)

with Ŝq(t, ω) and Ŝq̇(t, ω) the evolutionary power spectral densities of the modal coordinate
vector and the related velocity vector, and

Keq(t) = K (Σxx(t),Σẋẋ(t),Σxẋ(t)) , and Ceq(t) = C (Σxx(t),Σẋẋ(t),Σxẋ(t)) . (5.3.2)

As in (5.2.1), the equivalent matrices are thus implicitly time-dependent [Robe 99]. Once
again, the Kazakov derivative can be used to compute the equivalent structure, since the
response of the equivalent system remains Gaussian at any time.

For convenience, in (5.2.1) we consider that the random excitation is a vector of uncorre-
lated white noises, which is restrictive anyway. The objective is now to develop a more general
purpose. In a state formalism similar to (5.2.2), the equation of motion (5.2.1) is readily given
by

ż = Aeq(t)z +

(
0

p(t)

)
(5.3.3)

with p(t) a vector gathering evolutionary random processes with orthogonal increments. The
general solution of an LTV system is expressed as

z(t, θ) = Ψeq(t, t0)z(t0) +

ˆ t

t0

Ψeq(t, u)

(
0

p(u, θ)

)
du (5.3.4)

with Ψeq(t, t0) the equivalent state transition matrix from a time t0 to a time t. This
equation is identical to (4.2.12) with the noteworthy difference that this matrix is here defined
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for the equivalent system. As done before for LTI systems, an equivalent state space
evolutionary transfer matrix Υeq(t, t0, ω) : R+ × R+ × R 7→ C2m×2m (with t > t0) is
defined as

Υeq(t, t0, ω) =

ˆ t

t0

a(u, ω)eιωuΨeq(t, u)Bdu (5.3.5)

The spectral relation (2.2.12) becomes

Σz(t) =

ˆ
R

Υeq(t, t0, ω)

(
0 0
0 Sp(ω)

)
Υ∗eq(t, t0, ω)dω, (5.3.6)

which is similar in form and substance to (4.2.17).

5.3.2 Piecewise approximation of equivalent systems

All those developments do not simplify prima facie the transient statistical linearization.
Before applying the LTV theory, different possibilities have been tried in order to capture
as precisely as possible the transient dynamics, while conserving the philosophy and the
efficiency of the LTI approach. A first trial was to consider that the equivalent matrices
were constant on [0, t] with the value at t, so the integrals could be directly computed. In
spite of good results in the “build-up” regime, the system could be notably overdamped in
the strong period of excitation. Other approximations have been tried in order to replace
the time-dependent parameters by suitable values on the intervals : the mean value on the
interval of the equivalent matrices or a balanced mean value of those matrices. However, all
the approaches aiming at using an adapted LTI theory have been discarded, because those
approximations led to very poor results and dubious evidences.

Our objective remains to get results as close as possible to those obtained with Monte
Carlo simulations, considered as our reference, in the different periods of a transient response.
The elegance of analytical developments might not be spoiled in rough assumptions. Now,
some motivated hypotheses are used in order to make the LTV theory easier to apply to the
problem exposed in this Section.

According to the developments carried out in Section 5.2 and the conclusion of the demon-
stration, the equivalent damping and stiffness matrices evolve with the statistical
time (or slow timescale of the system). Based on this fact, the interval [0, t] can be
divided with regard to information about the time envelope and the memory
time of the system. Then, the continuous representation of the equivalent matrices can be
approximated by a piecewise constant function, i.e.

Keq(t) ≈
M+1∑
k=1

Keq(t̄k)I(t ∈ [tk−1, tk]), (5.3.7)

with t̄k ∈ [tk−1, tk] (k = 1, ...M + 1) and I(A) the indicator function of a set A. The same
approximation is applied to Ceq(t) and Aeq(t). The integration interval is divided into M + 1
non-overlapping intervals, such that

t0 = 0 < . . . < tk < . . . tM ≤ t ≤ tM+1. (5.3.8)
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Using the piecewise approximation (5.3.7) of the equivalent matrices, the transient transfer
function Υeq(tM+1, t0, ω) now reads

Υeq(tM+1, t0, ω) =
M+1∑
k=1

ˆ tk

tk−1

a(u, ω)Ψeq,k(tM+1, u)Beιωudu, (5.3.9)

provided the system response evolves continuously on [0, t]. The matrices Ψeq,k(t2, t1) with
t1, t2 ∈ [tk−1, tk] form a family of M + 1 state transition matrices, each one valid on the k-th
interval calculated with the equivalent properties on this interval.

Back to Section 4.2.2, the transition matrix can be defined as the unique solution of the
partial differential equation

∂

∂t
Ψ(t, t0) = Aeq(t)Ψ(t, t0) (5.3.10)

with Ψ(t0, t0) = I. According to this definition and since the properties of the system are
supposed to be constant on an interval [tk−1, tk], the transition matrix Ψeq(t2, t1) is given, for
t1, t2, t̄k ∈ [tk−1, tk], by

Ψeq,k(t2, t1) = eAeq(t̄k)(t2−t1). (5.3.11)

The semi-group property of the transition matrices Ψeq,k(t2, t1) applies to the piecewise
approximation, as well as the developments exposed in Section 4.4. The equivalent state
transfer matrix reads

Υeq(t, t0, ω) = Ψeq,M (t, tM )Υeq(tM , t0, ω) + Υeq(t, tM , ω), (5.3.12)

where

Υeq(t, tM , ω) =

ˆ t

tM

a(u)Ψeq,M+1(t, u)Beιωudu (5.3.13)

and t ∈ [tM , tM+1]. Equation (5.3.12), similar to (4.4.6) in the context of equivalent statistical
linearization, is a fundamental result of this work. Thanks to the multiple scales approach,
we demonstrate that the efficient formulation developed in Section 4.4 can be applied in
this nonlinear context. The main difference is that the equivalent matrices are modified
on each interval. The asymptotic expansion-based method, initially developed in a
stationary setting, then extended to linear evolutionary analysis, is now definitely
applicable to nonstationary equivalent statistical linearization.

The last equation (5.3.13) may also be rewritten as

Υeq(t, tM , ω) =

(
0 Geq(t, tM , ω)
0 ∂tGeq(t, tM , ω)

)
, (5.3.14)

where Geq(t, tk−1, ω) (t ∈ [tk−1, tk]) is the equivalent evolutionary transfer matrix of q(t) on
the interval [tk−1, tk] with the equivalent properties constant on this interval.

With this approach, the convolution integral leading to Geq and ∂tGeq is performed at
a negligible computational cost by the proposed asymptotic expansion-based method. In
(5.3.14), these two matrices may be replaced by their asymptotic expansion Geq,N and ∂tGeq,N
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defined in (4.3.5). That is performed for each of the M + 1 time intervals. For instance,
assuming t1, t0 ∈ [tk−1, tk], the main decoupled term is given by

(Geq,d(t2, t1, ω))i =
I+
i (t2, t1, ω)− I−i (t2, t1, ω)

2ιωd,i
(5.3.15)

with the integrals Iαi (t1, t0, ω) defined in (4.3.13). This is also applied to higher-order correc-
tion terms computed interval per interval.

5.3.3 Comments about the underlying assumptions

Some questions are risen at this step with regard to the developments of this chapter : (i) how
to determine a suitable a priori division of the interval [0, t], (ii) how to choose the time t̄k in
(5.3.11), (iii) is the analytical integration necessary? All these questions precisely pertain to
the stochastic linearization method in a transient regime and they are addressed in the sequel.

(i) The division of the time interval [0, t] depends upon the different timescales involved
in the system. Increasing the damping in a structure leads to decrease its memory time.
For highly to moderately damped structures, the statistics of the response is thus mainly
conditioned by the time window which must not be limited to the duration of the action. For
instance, in the Jenning window, the three phases (build up, plateau and decrease) of the
earthquake must be considered individually. A small natural period compared with a phase
of the time envelope and the memory time of the system allows to consider large time steps in
the resolution. In transient wind problems, the time window evolves much slower than seismic
windows, while the structure periods are about few seconds, justifying thus the smallness of
ε in these applications. For instance, Holmes’ window used to model downburst has a strong
period of 10 minutes, while the duration of earthquake exceeds rarely one minute.

These considerations allow to work with larger time steps in order to improve the numerical
efficiency of the method. However, from the previous developments, the time interval used
for the piecewise approximation of the equivalent matrices may be of the order of the fast
timescale t1 in (4.5.8). Any well modeled adaptation of the structure over a slow time interval
is identically modeled over smaller time interval.

The convergence in the problem is such that the refinement of the division of [0, t] does
not necessarily yield to a better result. This fact is illustrated in the following examples.

(ii) Inside the k-th time interval [tk−1, tk], the time t̄k can be efficiently chosen as the
lower bound of the interval. The discussion on this choice pertains to a balance between
the computational burden and the accuracy of the implementation. Because of the causality
principle, at the stage tk−1 no information about the property on the k-th interval is known.
Hence, the best approximation for (5.3.7) is made with the covariance matrix Σz at tk−1.
Otherwise, a solver must be used to find a better value of the parameters to minimize a residue
equation (like exposed in Chapter 3). Instead of using a solver, taking into consideration the
convergence of the piecewise approximation, it will be sufficient to improve the time division
of the whole interval.

(iii) We understand that the asymptotic expansion-based method conveniently associates
analytical developments and numerical methods. The efficiency of this semi-analytical ap-
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proach is deliberately tackled at this stage by comparing it with a purely numerical evolution-
ary spectral analysis. Considering that the system is effectively decoupled in the modal basis,
the evolutionary transfer matrix must be computed according to (5.3.15). The numerical com-
putation of the integrals Iαi requires a small time step in order to capture the timescales of the
system and the range of frequencies in the term eιωt. The numerical integration is therefore
definitely inefficient. Cutting the chase, this semi-analytical approach allows to circumvent
heavy computational tasks.

5.3.4 Application to a 2-DoF nonlinear system

In this Section, a 2-DOF nonlinear system is considered. Although this example may seem
theoretical, it is pertinent to illustrate the proposed LTV-method. Actually, the developments
of this chapter are inspired by the reading of [Koug 13], in which this example is discussed.
It allows a simple comparison between the proposed approach and the one of [Koug 13], with
an insight on the computational burden.

The equation of motion is

Mÿ + Cẏ + Ky + g(y, ẏ) = a(t)p(t)

(
1
1

)
(5.3.16)

with the corresponding matrices

M = ms

(
1 0
0 1

)
, C = cs

(
2 −1
−1 1

)
, K = ks

(
2 −1
−1 1

)
, (5.3.17)

and the vector of nonlinear internal forces

g(y, ẏ) =

(
ε1ksy

3
1 + ε2csẏ

3
1

ε1ks (y2 − y1)3 + ε2cs (ẏ2 − ẏ1)3

)
. (5.3.18)

This system presents nonlinear behaviors in both stiffness and damping. The exogenous
forces p(t) are given by a Kanai-Tajimi excitation (ω1 = 4rad/s, ω2 = 15rad/s, ξ1 = 0.5,
ξ2 = 1 and S0 adjustable) modulated by a Shinozuka time window (b1 = 0.1 and b2 = 0.3).
The same process is applied to both DOFs. For the numerical application, the parameters
ms, ks and cs equal 1, 1600 and 4, respectively. The parameters ε1 and ε2 are equal to 2 and
0.5, respectively.

The natural frequencies of the linear subsystem are 24.7 and 64.7 rad/s. In this example,
the index of convergence in the modal basis of the linear subsystem (g(y, ẏ) = 0) evolves in
time, but remains sufficiently small to limit the asymptotic expansion to the main decoupled
approximation. We use the analytical expression of Section 4.3.3 between 0 and t. This fact
is illustrated hereinafter. Therefore, the natural periods of the system are 0.1 and 0.25s, i.e.
small compared with a 20s earthquake, and the multiple scales approach can be applied with
confidence. The length of the time intervals in (5.3.8) is chosen equal to 0.5s, but its influence
is then investigated. This length is justified by the timescales in the problem, i.e. twice the
larger natural period of the linear subsystem.
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(a) (b)

Figure 5.1: Kougioumtzoglou and Spanos’ example for S0 equal to 25 (1), 50 (2) and 100 (3).
Time evolution of the variance of (a) x1 and (b) x2. Comparison with Monte Carlo simulation
(1280 samples) and Kougioumtzoglou’s approach.

Figures 5.1-a and -b compare the results of the equivalent linearization with the proposed
method and Monte Carlo simulation (1280 samples). Different intensities have been tested,
i.e. S0 is equal to 25, 50 and 100. The equivalent linearization matches the simulations for the
different intensities in the different phases of the excitation. Figures 5.1-a also compares the
proposed method with the quasi-stationary approach given by [Koug 13], which is not able
to exactly follow the different phases of the response of the system. The computational cost
is about 0.1s cpu time per time step; it is not an issue. Only the decoupled approximation
is calculated in this application, because the index of convergence remains sufficiently small
to avoid the computation of higher-order correction terms as illustrated in Figure 5.2-b. The
modal damping ratio taking into account both the linear and the linearized damping forces
is shown in Figure 5.2-a. This picture highlights the importance of the nonlinear damping
forces.

(a) (b)

Figure 5.2: Kougioumtzoglou and Spanos’ example. Time evolutions of (a) the equivalent
damping ratios (S0 = 100) and (b) the convergence criterion ρJ for different S0.
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A question arising at this stage pertains to the length of the time intervals. The time step
∆t = 0.5s has been chosen with regard to the the parameters of the linear subsystem. Figure
5.3 shows the time evolutions of the second-order moment of q1 computed with different time
steps. For a time step of 0.2s the results do not change compared to the initial choice of
0.5s. This comparison emphasizes the convergence of the equivalent properties of the system
with respect to (5.3.7). However, the use of a larger time step, i.e. ∆t = 2s completely
degrades the quality of the results. The research of an optimum is important, because the
whole linearization and the multiple scales assumption takes its advantage in the definition
of larger time steps, comparing with the time step of the time domain approach.

(a) (b)

Figure 5.3: Kougioumtzoglou and Spanos’ example. Influence of the time step for (a) S0 = 25
and (b) S0 = 100.

5.4 Application in wind and earthquake engineering

5.4.1 Multi-span bridge subject to earthquake

To first illustrate the multiple scales approach on a realistic example with coherent excitation
field, we propose to come back to the example developed in Section 4.5, namely the multi-
span bridge subject to coherent ground motion. The characteristics of the excitation and the
structure are similar in this application. The behavior of the dampers, supposed to be linear
in Section 4.5, is here considered as nonlinear, with the classic velocity-force law

FD(v) = CDsign(v) |v|α (5.4.1)

with v the relative velocity between the top of the pile and the deck and CD the damping
coefficient. The exponent α is generally less than one in order to mitigate vibration at limited
velocity. We consider three different laws (5.4.1) : (i) α = 0.75, CD = 5 · 106N(s/m)α; (ii)
α = 0.50, CD = 3 · 106N(s/m)α and (iii) α = 0.25, CD = 106N(s/m)α.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Multi-span bridge under coherent earthquake for different nonlinear damping
laws (a,b) α = 0.75 , (c,d) α = 0.50 and (e,f) α = 0.25. The unity of CD is N(s/m)α.
(a,c,e) Variance of the first four modal coordinates with respect to time. Comparison between
equivalent linearization (bold) and Monte Carlo simulation (thin) . (b,d,f) Variance of the
deck displacements at four different times.
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This damping law is non-differentiable for v = 0, meaning that the initial increment of the
damping force, for a structure starting vibrating from rest, is infinite. The Kazakov formula
(2.5.5) directly emphasizes an ill-conditioned linearization, especially in a transient regime.
To circumvent this difficulty, we replace the force (5.4.1) by a linear law in v ∈ [0, v0] with
v0 = 0.01m/s. Naturally, this modification is considered in the Monte Carlo simulations as
well.

As previously, the time window is sampled with a step of 0.5s, slightly less than the
fundamental period of the bridge. This choice is a compromise between the characteristic
times of the structure and a correct representation of the time envelope a(t). The structure
is projected in the modal basis related to the linear subsystem (K̃ = 0). The cross-psd
of the excitation is sampled with 5000 points mainly gathered around the first five natural
frequencies. In our method, the truncation order N is equal to 2. Though the convergence of
the results has been compared with N = 1, it is not illustrated here. We think the comparison
with Monte Carlo simulation (∆t = 0.01s, ∆f = 1mHz and 3200 samples) is sufficient to assess
the convergence for the concerned reader.

The main results obtained for this example are plotted in Figure 5.4 for three different
coefficients α. In Figures 5.4-a, -c and -e, we notice the good agreement of our method with
Monte Carlo simulations. In Figure 5.4-e, the results obtained with our method match less
well the simulations, because of the higher intensity of the nonlinear forces. We do not forget
that the equivalent statistical linearization is an approximate method all the more accurate
that the nonlinear forces are small. By comparing Figures 5.4-b, -d and -f, the effect of the
nonlinear dampers is to significantly limit the vibrations of the deck. The dampers introduce
a strong connection between the top of the piles and the deck.

(a) (b)

Figure 5.5: Multi-span bridge under coherent earthquake with α = 0.25 and CD =
5 ·106N(s/m)α. (a) Standard deviation of the relative velocity between the top of the piles and
the deck at the three damped connections. (b) Time evolution of the convergence criterion
ρJ for the three different values of α.

In order to quantify the intensity of the nonlinear forces, the standard deviation of the
relative velocity at the three connections for α = 0.50 is shown in Figure 5.5-a. This figure
shows that the linear behavior up to v = v0 is not significant in the problem. Figure 5.5-b
emphasizes that the convergence criterion ρJ of the series is high, but less than one throughout



5.4. APPLICATION IN WIND AND EARTHQUAKE ENGINEERING 117

the solution.

In Figure 5.6, we emphasize a particular case, in which the damping coefficient CD is equal
to 5 · 106N(s/m)α for α = 0.25. In this situation, the bridge response is highly nonlinear. By
comparing the results we obtain, shown in Figure 5.6-a with m = 7, with Monte Carlo
simulations, we notice a quite good agreement, in spite of a significant nonlinear behavior.
Nevertheless, we cannot rush headlong into asserting the efficiency of our method in dealing
with high nonlinearities. Indeed, the convergence criterion ρJ is greater than one throughout
the solution, as emphasized in Figure 5.6-c, indicating that the modal transfer matrix with
seven modes is not well represented by the asymptotic expansion.

(a) (b)

(c) (d)

Figure 5.6: Multi-span bridge under coherent earthquake. Variances of the modal coordinates
for (a) m = 7 and (b) m = 5. (c) Time evolution of the convergence criterion ρJ. Modal
damping matrix D + Deq (linear + equivalent damping matrices) at t = 10s [Ns/m].

Since the criterion ρJ is related to the modal evolutionary transfer matrix, it also depends
on the number of modes we keep in the analysis. Figure 5.6-b shows the variance of the modal
coordinates for five modes (m = 5). These results do not match Monte Carlo simulation as
well as for m = 7, although the criterion ρJ is less than one as shown in Figure 5.6-c. Indeed,
the modal damping matrix D + Deq (at t = 10s) is depicted in Figure 5.6-d to highlight
the significant mechanical coupling existing between the first and the seventh modes. These



118 CHAPTER 5. NONLINEAR EVOLUTIONARY SPECTRAL ANALYSIS

observations emphasize the dependence of ρJ on the modal truncation. Nevertheless, we
do not explain the so good agreement between Monte Carlo simulation and our method for
m = 7.

Actually, we have investigated different explanations and the following one seems coherent
with our developments, according to our opinion. We might justify these observations by
understanding the essence of the criterion ρJ. This criterion is actually extremely severe,
because it ensures the convergence of the matrices HN (ω) and GN (t, t0, ω), for all ω ∈ R and
all the modes. Therefore, a criterion greater than one mainly indicates a non-convergence
around the peaks of Hd(ω). Although the series HN (ω) does not converge for ρJ > 1, it is
possible that, at short time, the series hN (t) converges. This statement is not demonstrated
and constitute an extension of the reflexions shared in Section 4.3.2. Further investigations
could more deeply focus on the effect of the inverse Fourier transform of HN (ω) on the
convergence of hN (t). Nevertheless, in the sequel, we keep in mind that the criterion ρJ
remains a trustworthy indicator.

5.4.2 Tower subject to downburst

In wind buffeting analysis, the wind velocity is usually assumed to be a stationary Gaussian
process. Then, the wind pressure are also assumed to be stationary Gaussian processes ob-
tained by a linear transformation of the velocity (see Section 3.4 and the application on the
Millau Viaduct). The random characteristics of the wind velocity summarized in a psd (tur-
bulence length, turbulence intensity, mean velocity) are generally estimated by an average of
10-minute samples on the measured velocities. The spatial coherence between different points
is a quantity estimated with difficulty, but the exponential decay proposed by Davenport
[Dave 61] is widely used. For instance, this model is quite realistic for the measured pressures
on a wind ward building face. However, the stationary paradigm assumed in wind suffers
from statistical inconsistency, especially for properties extracted from a long-length sample
assuming ergodic processes. In practice, ergodicity cannot be applied because of the time
evolution of the wind properties.

In substance, some phenomena well-known in wind engineering fail to be physically mod-
eled with the stationary assumption. Tornadoes and downbursts are two notable examples.
A downburst is a sudden fall of a column of air sinking from the higher atmospheric level
that spreads out in all directions after hitting the ground. According to [Holm 00], such an
event normally occurs during thunderstorm. Contrarily, tornadoes are rotating columns of
air, joining the earth and the cloud stratum. It should be pointed out that Jone’s assumption
[Jone 01] consisting in decoupling the buffeting forces from the aeroelastic ones ceases to be
valid for transient wind loading, because all the phenomena are nonstationary and coupled.

In particular, some pertinent theories have been developed in the last decade to apply
more realistic models of transient wind velocity. For downburst, Holmes and Oliver [Holm 00]
propose an empirical model based on the translation velocity of the storm and the radial
velocity of the air. This empirical approach allows to fit interestingly some measured cases
as shown in [Chen 07]. More precisely, Holmes’ model depends upon an observation point
compared with the trajectory of the storm supposed to be a straight line. This model is now
briefly exposed, according to Figure 5.7. Then, a factual application is proposed, in which
the modal coupling is a dominating fact.
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(a) (b)

Figure 5.7: Downburst model. (a) Vector combination of radial and translation velocities. (b)
Profile of radial wind velocity.

First, we assume that the storm moves along a straight line (y = 0) with a translation
velocity Vt which is constant, as shown in Figure 5.7-a. The offset distance between this line
and the observation point P is noted `. The center of the storm, so-called stagnation point,
is denoted by O and located at a distance Vtt from Q. Like in [Chen 04], a point Q (d0 is the
distance between Q and P along the x-axis) locates where the center of the storm starts its
path. At an instant t, the vector r(t) separating the center O and the observation point P is
r = (d0−Vtt, `), while the radial velocity induced by the divergence of the air flux is given by

Vr =
r

‖r‖
Vr(‖r‖) and Vr(r) = Vr,max

{
r

rmax
, 0 < r < rmax

exp
(
− (r−rmax)2

R2
r

)
, r ≥ rmax

, (5.4.2)

where Vr,max is the maximum radial velocity, rmax is the distance from the stagnation point and
Rr is a scaling length. The function Vr(r) for the velocity distribution, shown in Figure 5.7-b,
has been documented by Poreh and Cermak [Pore 59]. This function models the divergent
nature of the event: at the center (r = 0), the wind velocity is zero, then it increases linearly
on a short distance, before decreasing smoothly. This model integrates the axisymmetric
distribution of the radial velocity around the storm center.

Consequently, the time envelope is determined by

a(t) =
‖Vr + Vt‖

maxt∈[0,T ] [‖Vr + Vt‖]
(5.4.3)

with Vt = (Vt, 0) and T the duration of the phenomenon. In this application, we choose
Vt = 12m/s, rmax = 1000m, Vr,max = 47m/s, Rr = 700m, d0 = −8000m and ` = 150m, as
depicted in Figure 5.8-a.
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(a) (b)

Figure 5.8: Downburst model. (a) Holmes’ time window. (b) Vertical mean wind profile.

A downburst also presents a mean wind vertical profile different from the classic wind
profile. Indeed, in stationary buffeting analysis according to European Standard [Euro 91]
for instance, the mean wind profile Vt is assumed to increase with height according to a
logarithmic-like function. For a downburst, the mean wind profile starts from zero, reaches a
maximum before asymptotically decreasing to zero, as depicted in Figure 5.8-b. Different em-
pirical descriptions of this profile have been proposed by several authors as Oseguera [Oseg 88]
and Vicroy [Vicr 92], but we use in this application the one proposed in [Wood 01],

V (z) = 1.55
(z
δ

)1/6 (
1− erf

(
0.7

z

δ

))
Vmax (5.4.4)

with z the vertical coordinate. Therefore, the evolutionary mean wind speed reads Ū(t, z) =
a(t)V (z). In the following, the parameter δ is chosen equal to 234.4m, while Vmax depends on
Vr,max and Vt.

The mean wind velocity being determined, the fluctuating random contribution must be
adequately modeled. Few data are available about the turbulence in downburst, so it is
common practice to use any available psd of wind speeds. In this application, we use the von
Karman psd defined as

Su(f, z) =
4Lu(z)

V (z)

σ2
u(

1 + 70.78
(
fLu(z)
V (z)

)
2
)5/6

(5.4.5)

with σu = Iu V (z) the standard deviation of the wind turbulence, Iu(z) the turbulence in-

tensity (Iu(z) = Iu,10

(
10
z

)1/6
), Lu(z) the turbulence length (Lu(z) = 300

(
max(z,2)

200

)0.52
) deter-

mined according to [Euro 91] for a class 2 event. In the following, the turbulence intensity
Iu,10 at 10m high is equal to 10%.

In order to build up a realistic and coherent random wind field, a coherence function
is considered. In wind engineering, the model of common practice is the exponential decay
[Simi 96], such that

(Su(ω))ij =
√
Su(f, zi)Su(f, zj) Γ(f, zi, zj) (5.4.6)

with the coherence function given by
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Γ(f, zi, zj) = exp

(
− Crf |zi − zj |

1
2 (V (zi) + V (zj))

)
, (5.4.7)

Cr is equal to 7 in this application (as in [Xu 92], though this value is more related to
undisturbed oncoming flow). The randomly fluctuating component of the wind now reads
û(t, z) = a(t)u(t, z) with the distinction between u(t, z) the stationary process characterized
by Su and the evolutionary process û(t, z).

Figure 5.9: (a) Tower subject to downburst with a TLCD set on the top. (b) Sketch of a
TLCD.

After this brief introduction to downburst phenomenon and related models, the transient
coherent wind model is applied to a realistic structure inspired from [Xu 92, Chen 04]. The
considered structure is the TV tower counting nine floors, depicted in Figure 5.9-a. The
characteristics of inertia EIi, wind surface Ai, mass mi and height hi are gathered in Table
5.1. The drag coefficient is equal to 0.7. A finite element model is built based on these
characteristics. Each inter-storey is divided into four elements in order to better estimate
the coherence between the different points. The damping ratio of the initial structure is set
equal to 0.5% for the first and third modes. The natural frequencies of the first five structural
modes are 0.23Hz, 0.35Hz, 0.92Hz, 1.39 Hz and 2.12Hz, respectively. Their mode shapes are
depicted in Figure 5.10-a.

Storey i 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

hi [m] 20.00 28.00 28.00 27.25 19.25 12.50 17.75 17.75 14.25
EIi [108kNm²] 145.35 47.23 25.47 7.41 4.13 1.06 0.27 0.02 0.01
mi [tons] 6134 3853 2578 3032 692 85 72 51 23
Ai [m²] 489 460 320 474 125 75 49 24 10

Table 5.1: Characteristics of the TV tower.
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On top of this structure, a Tuned Liquid Column Damper (TLCD) is set up in order to
mitigate the vibrations of the tower. A TLCD is a nonlinear damping device, which controls
the vibrations of a structure with the motion of liquid mass in a tube-like container [Xu 92], as
depicted in Figure 5.9-b. The damping forces result from the head loss due to the presence of
orifices in the container. The governing equation of the liquid elevation v due to the horizontal
displacement x of the device [Saok 88] is a source of nonlinear damping, modeled by

ρwAwLwv̈ +
1

2
ρwAwδ |v̇|v̇ + 2ρwAwgv = −ρwAwBwẍ, (5.4.8)

where ρw, Aw, Bw and Lw are the density, the cross-sectional area, the width and the length of
the liquid column, respectively, while δ, g are the head loss coefficient and the acceleration of
gravity, respectively. Applying the statistical linearization, the equivalent equation to (5.4.8)
reads

ρwAwLwv̈ +

√
2

π
ρwAwδ σv̇v̇ + 2ρwAwgv = −ρwAwBwẍ. (5.4.9)

The container is only connected in mass with the top of the tower. The term ρwAwLw is
added to the lumped mass at the tower top and the coupling between this mass and the TLCD
is modeled by the term ρwAwBw in the mass matrix (see [Xu 92]). The mitigation of vibration
with TLCD is developed in [Bale 95, Won 96, Gao 97] and the stochastic linearization gives
good agreement with Monte Carlo simulations, because experiments have demonstrated that
nonlinearity at the orifice remains small. In this application, we do not pretend to investigate
extensively the behavior of that kind of damping devices. However, we propose to use it be-
cause its behavior is intrinsically nonlinear. The parameters ρw, Aw, Lw, Bw and δ are chosen
equal to 1000kg/m³, 1.18m², 12.73m, 0.9Lw, and 200, respectively. Due to the installation of
the TLCD, the natural frequencies of the first five structural modes become 0.17Hz, 0.24Hz,
0.36Hz, 0.92 Hz, 1.38Hz, respectively. Their shapes are depicted in Figure 5.10-b.

In the following, the computational procedure exposed in Section 4.4 is used. The storm
is simulated over a 1200s time window, the time step is equal to 10s for the first 400s and in
the interval between 1000s and 1200s, it is reduced to 5s between these two intervals.

Figure 5.10 compares the response of the structure with and without TLCD. The effect
of the TLCD is mainly to split the first natural frequency of the initial structure. Figures
5.10-c and -d show that the vibrations remain mainly in a global quart-sine mode, both in
the initial and damped structures (mode 1 and mode 2, respectively). For the acceleration
response, more modes are involved in the dynamics of the structure. The convergence on
acceleration justifies the basis truncation at 5 modes. In Figures 5.10-c and -d, we show that
the presence of the damper increases the response in the higher modes compared to the second
global mode.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Tower subject to downburst without TLCD (a,c,d) and with TLCD (b,d,f). (a,b)
Mode shapes of the structure. (c,d) Modal response in displacement. (e,f) Modal response in
acceleration.
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In Figure 5.11, the effect of the damper is illustrated : the responses in acceleration of the
last four floors of the tower are reduced by a factor five. For the initial structure in Figure
5.11-a, the truncation order is N = 0. The convergence is investigated on the structure with
the TLCD in Figure 5.11-b: the results obtained with N = 0 are in good agreement with
N = 2 even a small difference around the first peak, while the results obtained with N = 1
and N = 2 are superimposed, confirming the convergence of the approximation.

(a) (b)

Figure 5.11: Tower subject to downburst without TLCD (a) and with TLCD (b). Time
evolution of the four last floor displacements. Influence of the truncation order.

(a) (b)

Figure 5.12: Tower subject to downburst. Time evolutions of (a) the convergence criterion ρJ
and (b) the modal damping ratios.

Figure 5.12-a shows the time evolution of the convergence criterion ρJ, highlighting the
strong coupling. With TLCD, the variance of the accelerations is divided by six. From these
two figures, it is noteworthy that the damper also reduces the duration of the maximum
response. In the initial structure, the effects of the first peak are still affecting the response on
the second one. This is explained by the increase of the equivalent damping ratios as shown
in Figure 5.12-b. The damping ratio ξ2 at time 600s is at least multiplied by a factor 10
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compared to the initial structure. The damping ratio ξ1 is more related to a local vibration
mode of the top of the tower.

From a computational point of view, the resolution with the proposed approach has re-
quired of 80s of cpu time (Intel Core i5) with five modes (m = 5) and one correction term
(N = 1). Table 5.2 compares different total cpu times required for different computations
depending on the number of selected modes m and the truncation order N . Those times are
given, not as absolute references, but just to show that the developed method is absolutely
not time consuming compared to Monte Carlo simulations (about one hour of computation
for a resolution in a modal basis and 1000 samples). Furthermore, no specific optimization of
the MatLab routines has been performed. For instance, we work in a pulsation domain over
R (for theoretical reasons), while a representation over R+ is sufficient and reduce the number
of integration points. From Table 5.2, it seems that the truncation order is not a consuming
operation. Anyhow, the more consuming operation remains the computation of the integrals
Iαk , J αk and their derivatives.

N = 0 N = 1 N = 2

m = 5 78 80s 94s
m = 7 115s 127s 167s

Table 5.2: Tower subject to downburst. Computation time for different truncation orders and
number of modes.

To conclude this application in transient wind engineering, the asymptotic expansion-
based method and the stochastic linearization, more generally, are validated with Monte Carlo
simulations (600 samples) in Figure 5.13. The transient equivalent linearization computed
with our approach is in really good agreement with the simulations, validating the multiple
scales assumptions, the use of equivalent linearization for TLCD and the efficient computation
procedure exposed in Section 4.4.

(a) (b)

Figure 5.13: Tower subject to downburst with TLCD. Comparison of the asymptotic
expansion-based method with Monte Carlo simulation (black curves) and the quasi-stationary
assumption (dot curves).
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Often in the previous Chapters it is referred to the quasi-stationary hypothesis: the vari-
ance of the equivalent stationary response of the structure is readily modulated by the square
of the time window. In Figure 5.13, this method is also applied to this example in order to
show that this assumption leads to satisfactory results in this case especially in terms of the
maximum variance, but the time evolution is poorly analyzed with this assumption.

5.5 Update of the equivalent modal basis

In Section 3.5, a Newton-Raphson iterative method combined with the asymptotic expansion
based-method is applied to the stochastic linearization of a nonlinear structure in a stationary
setting. That application is noteworthy, as the intensity of the nonlinear stiffness forces
requires a modification of the modal basis in order to converge to the correct equivalent
statistical linearization. In this Chapter, the question of the modal basis adaptation has
not been addressed yet, because it requires a specific attention and some adaptations in the
previous developments. Indeed, in the analysis of equivalent LTV systems, nothing guarantees
that the initial basis (e.g. the modal basis of the linear subsystem) will remain suitable
throughout the solution.

The problematic of modal basis adaptation in a transient equivalent linearization is consid-
ered by Proppe [Prop 03b] as central, a reason for extending our developments. The interest
in the modal basis is mainly in the size reduction of the problem, but also in the estimation
of the natural frequencies, gathered in Ωd, since the excitation psd is not constant.

The pertinence of a modal basis depends mainly on the intensity and the spatial distri-
bution of the nonlinear stiffness forces. In this circumstance, the matrix K̃ introduced in
Section 3.3 may be changed with respect to the intensity of these forces. Naturally, a criterion
to adapt this basis depends on the index ρJ. If this criterion becomes close to one, another
linearized modal basis may be computed in order to ensure the convergence of the asymptotic
expansion. Actually, no modal adaptation is required in the example presented in Section
5.3.4, especially because the linearized stiffness remains small compared with the linear one.

Let consider the vector of nodal coordinates x(t) and the related velocity vector ẋ(t) in
the interval [tk, tk+1] projected in a modal basis Φ[k+1], this operation gives the state vector
z[k+1](t). In this interval, the solution of the piecewise LTI system subject to evolutionary
rand excitations is given by

z[k+1](tk+1) = Ψ[k+1](tk+1, tk)z[k+1](tk) +

ˆ
R

Υ[k+1](tk+1, tk, ω1)dp̃[k+1](ω1) (5.5.1)

with p̃(ω, θ) : R × Θ 7→ C2m. The underscored index in brackets indicates the considered
modal basis in the interval. At the initial time t0, the structure is supposed to be at rest. The
state vector at t1, in the modal basis Φ[1], reads

z[1](t1) =

ˆ
R

Υ[1](t1, t0, ω1)dp̃[1](ω1). (5.5.2)

At this stage, the delicate operation consists in calculating the covariance matrix (or
the correlation function) of the vector z[k+1](tk+1), because the system must now be seen
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piecewisely as an LTI system with random initial condition depending upon a past history
that cannot be readily forgotten. The covariance matrix at tk+1, i.e. the expectation operator
of the product z[k+1]z

∗
[k+1], is given by

E
[
z[k+1](tk+1)z∗[k+1](tk+1)

]
= T1 + T2 + T∗2 + T3 (5.5.3)

with

T1 = Ψ[k+1](tk+1, tk)E
[
z[k+1](tk)z

∗
[k+1](tk)

]
Ψ∗[k+1](tk+1, tk) (5.5.4)

T2 = Ψ[k+1](tk+1, tk)

ˆ
R
E
[
z[k+1](tk)dp̃

∗
[k+1](ω1)

]
Υ∗[k+1](tk+1, tk, ω1) (5.5.5)

T3 =

ˆ
R2

Υ[k+1](tk+1, tk, ω1)E
[
dp̃[k+1](ω1)dp̃∗[k+1](ω2)

]
Υ∗[k+1](tk+1, tk, ω2). (5.5.6)

The three terms in (5.5.3) have different meanings. The operation (5.5.3) is not easilly
explained, whilst it is not difficult to implement. The first term expresses the randomness
at the lower bound of the interval [tk, tk+1], while the last one deals with the effect of new
loadings acting during this interval. However, as previously mentioned, the condition at tk
cannot be considered as independent of the past of the evolutionary process, i.e. independent
of the time interval from t0 to tk. The second term expresses the correlation between the
random state vector at tk and the evolutionary process p(t). This operation presents some
difficulties to be computed, but a relevant and helpful implementation is provided.

As previously said, an expensive operation in modal analysis is the projection of the psd
matrix of the nodal forces into the modal basis. Adapting the modal basis requires also an
adaptation of this psd. Instead of projecting the nodal forces into any modal basis, this
operation may be replaced by a linear application projecting the forces from one basis to
another, i.e.

dp̃[k+1](ω1) = Φ̂
T

[k+1]

(
Φ̂
T

[k]

)†
dp̃[k](ω1) = V̂

[k+1]
[k] dp̃[k](ω1) (5.5.7)

with

Φ̂[k] =

(
Φ[k] 0

0 Φ[k]

)
(5.5.8)

a 2n×2m-dimensional matrix and the operator † defining the pseudo-inverse operation, since
a modal basis is usually truncated. The same relation is applied to the state space vector,
such that

z[k+1](tk) = Φ̂
†
[k+1]Φ̂[k]z[k](tk) = Ŵ

[k+1]
[k] z[k](tk). (5.5.9)

The basis Φ[k] results from the eigenproblem
(
K + K̃[k]

)
Φ[k] = ω2MΦ[k], as explained in

Section 3.3.
Thanks to (5.5.9), the term T1 is readily computed: the covariance matrix of z[k](tk) is

projected into another basis. The term T2 requires more attention to highlight an efficient
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recursive formulation. First, the value of z[k](tk) is explicitly written from the time tk−1 to tk
in the modal basis Φ[k], i.e.

z[k](tk) = Ψ[k](tk, tk−1)z[k](tk−1) +

ˆ
R

Υ[k](tk, tk−1, ω1)dp̃[k](ω1). (5.5.10)

Then, by means of the relations (5.5.7) and (5.5.9), the expectation operation in the term T2

becomes

E
[
z[k+1](tk)dp̃

∗
[k+1](ω1)

]
=
(
Ŵ

[k+1]
[k]

)
E
[
z[k](tk)dp̃

∗
[k](ω1)

] (
V̂

[k+1]
[k]

)∗
, (5.5.11)

and the expectation only operates on variables defined in the modal basis Φ[k]. Thanks to
(5.5.10), the expectation operation in (5.5.11) reads

Qkdω = E
[
z[k](tk)dp̃

∗
[k](ω)

]
= Ψ[k](tk, tk−1)E

[
z[k](tk−1)dp̃∗[k](ω)

]
+

ˆ
R

Υ[k](tk, tk−1, ω2)E
[
dp̃[k](ω2)dp̃∗[k](ω)

]
.(5.5.12)

In summary, this last equation becomes

Qk = Ψ[k](tk, tk−1)
(
Ŵ

[k]
[k−1]

)
Qk−1

(
V̂

[k]
[k−1]

)∗
+ Υ[k](tk, tk−1, ω)Sp,[k](ω), (5.5.13)

as a result from the orthogonality property of the increments of p(t), in any modal basis.
As the structure starts vibrating from rest, the initial term k = 1 in the recurrence relation
(5.5.13) is

Q1dω = E
[
z[1](t1)dp̃∗[1](ω)

]
= Υ[1](t1, t0, ω)Sp,[1](ω)dω. (5.5.14)

In these developments, the modal basis is supposed to be different between the k-th and
(k+ 1)-th intervals. However, modal basis must not be necessarily modified on each interval,

quite the opposite actually. In this case, the transformation matrices V̂
[k+1]
[k] and Ŵ

[k+1]
[k] are

equal to the identity matrix I.

Application

Inspired by the illustration in stationary equivalent linearization in which the matrix K̃ is
updated, we study two neighbor shear-type buildings subject to earthquake. In some circum-
stances, depending on the separation distance ` and the intensity of the earthquake, these
buildings may collide each other. At the contact point, nonlinear forces occur depending
on the penetration. After statistical linearization, these forces are replaced by an equivalent
spring joining the two building tops, as illustrated in Figure 5.14.
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Figure 5.14: Sketch of the pounding problem between two adjacent buildings. In stochastic
linearization, the nonlinear contact forces are replaced by a linear equivalent spring at the
contact point.

The nonlinear contact force Fc(t) is naturally equal to zero for negative penetration and
may be modeled by a Kelvin law for positive penetration, such that

Fc(t) = kβδ
3/2H(δ), (5.5.15)

with δ the penetration length, H(.) the Heaviside function and kβ a deformation coefficient.
The penetration is calculated as

δ = xA − xB − ` = xAB − `, (5.5.16)

with xA and xB the top displacements of buildings A and B, respectively. The nonlinear
force only depends on displacements of the structures. Therefore, the equivalent statistical
linearization transforms Fc(t) into a linearized stiffness matrix. Applying the Kazakov formula
(3.5.5), the equivalent stiffness matrix reads

Keq =
3

2
βE
[
δ

1
2H(δ)

]( 1 −1
−1 1

)
(5.5.17)

with

E
[
δ

1
2H(δ)

]
=

ˆ +∞

0

√
xψδ(t, x)dx (5.5.18)

and ψδ(t, x) = N (−`, σxAB (t)) the pdf of the penetration length. Here, we suppose that xA
and xB have negligible mean displacement. We can imagine the shape of the exact pdf of
the relative displacement xAB. The structures have linear behavior except as δ > 0. In this
situation, they are subject to huge nonlinear forces limiting drastically their displacements.
Therefore, for xAB < ` the behavior is linear and for xAB > ` it is not, leading to a a possibly
highly skewed pdf 1. Nonetheless, in a Gaussian equivalent linearization, we approximate the

1An example is treated in Section 8.2.2 - Part II in which such pdf’s are depicted.
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exact pdf by a Gaussian one, i.e. a symmetric distribution. This approximation may lead to
poor results independently of our implementation.

In this example, we consider two 10-storey shear-type buildings A and B as described
in Section 3.5.2 with the following characteristics : mA = 1000tons, mB = 1500tons, kA =
109N/m, kB = 2 ·109N/m. The parameter kβ is fixed at 109N/m3/2. A damping ratio of 1% is
chosen in the first two modes of each structure. The excitation is a Kanai-Tajimi process with
S0 = 2 · 10−3m²/s³ (other parameters in Section 3.5.2) modulated by a Shinozuka window
b1 = 0.0045π and b2 = 0.0050π.

(a) (b)

Figure 5.15: Update of the equivalent modal basis and pounding problem. (a) Time evolution
of the standard deviation of the relative displacement between the two building tops. (b)
Time evolution of the convergence criterion ρJ for different values of ρJ,max (value at which
the basis is updated).

Figure 5.15 shows the main results of this example. Figure 5.15-a depicts the time evo-
lution of the standard deviation of the relative displacement between the two building tops.
We compare our results obtained with N = 1 with Monte Carlo simulation (3200 samples,
∆t=2ms) and with the response of the linear structure kβ = 0 (in order to quantify the non-
linear forces). In Figure 5.15-a, we see the good agreement between our method and Monte
Carlo simulation. Figure 5.15-b shows the time evolution of the index ρJ for different values of
ρJ,max. Once the index overcrosses the chosen maximum value, the basis is updated. We notice
that without this limitation ρJ,max, the index ρJ would exceed one. However, no difference has
been noticed on the standard deviation between the three thresholds. This is in accordance
with the results highlighted throughout this Chapter about the index of convergence.

5.6 Conclusions

Due to the difference between the fast structural and the slow statistical timescales, we are
able to highlight in the equations of motion that the equivalent stiffness and damping matrices
evolve according to the slow timescale. This is an important result obtained by a rigorous
multiple scales approach. Indeed, the equivalent statistical linearization transforms an original
nonlinear time-invariant system into a linear time-variant system. However, with the multiple
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scales approach, we demonstrate that this linearized system may be considered to respond as
a piecewise time-invariant system.

The multiple scales approach allows to bridge the gap between the Gaussian equivalent
statistical linearization exposed in Chapter 3 and the evolutionary spectral analysis presented
in Chapter 4.

Therefore, the recurrence relation obtained in Section 4.4 can be applied as such for
the equivalent statistical linearization in a nonstationary setting. The difference between
the linear and linearized problems is found in the computation of the equivalent structural
matrices. Once again, the multiple scales approach justifies that the equivalent properties of
the structure can be computed at the beginning of a time interval and kept constant over this
interval. The length of these intervals must principally take into account the shape of the
time window, while possibly including several periods of the structural response. Indeed, the
envelope is the main factor influencing the statistical timescale.

The evolutionary spectral analysis in equivalent statistical linearization, is applied to two
examples in wind and earthquake engineering, in presence of coherent random loadings. In-
deed, for these loadings, the evolutionary spectral analysis finds a great interest. In these
examples, the nonlinear forces result from nonlinear damping devices. The modal basis is
thus calculated with the linear subsystem. In both cases, we highlight the good agreement
between our method and Monte Carlo simulation, refuting definitely the quasi-stationary as-
sumption. The computational time required for our method is much less than for Monte Carlo
simulation, especially in the wind application.

The last problem addressed in this Chapter concerns the possibility of adaptation of a
modal basis during the solution. The objective is to avoid that the convergence criterion ρJ
exceeds one. This problem is studied piecewisely, as previously, but a generalized (or modal)
basis update takes place time to time. We derive a recurrence relation allowing a smooth
and simple basis update, while preserving the statistical continuity and the consistency in
the asymptotic expansion-based method. We can also notice the difficulty with equivalent
linearization to deal with problems involving nonlinear stiffness forces. Indeed, oscillations
may occur because of time modifications of the natural frequencies of the decoupled sys-
tem. These oscillations may create instability in the procedure of linearization. Though this
problem has been only encountered for strongly nonlinear structures, it remains a source of
possible improvements, not of our proposed solutions, but rather of the statistical linearization
concept.
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Conclusion

To conclude this first part of the dissertation, we would like to summarize the original objec-
tives, our methodology, our main results and some tracks for further improvements.

The first motivation of this part was to refute the common idea that a transient problem,
in linear or nonlinear probabilistic analysis, can only be solved with Monte Carlo simulation.
This idea is fallacious, especially for large structures subject to coherent random loads, where
our approach proves really efficient. Secondly, we were concerned by the common opinion that
spectral analysis is devoted to stationary problems. In this part, we have shown that these
opinions can be denied by the development of an efficient evolutionary spectral analysis, for
linear structures and for equivalent statistical linearization.

The main difficulties in the application of evolutionary methods are the computation of
the impulse response matrix of a structure and the convolution between this matrix and a
time envelope. We propose a methodology to circumvent them. First, the equation of motion
is projected in a modal basis, which may take into account the intensity and the spatial
distribution of the nonlinear forces. Actually, the equivalent structural matrices may be not
diagonal in this basis, such that a mechanical coupling occurs between the modes. For slightly
to moderately coupled modes, the out-of-diagonal elements can be seen as perturbations of
a main diagonal matrix. Based on this assumption, we asymptotically expand the modal
transfer matrix of the system around the one of a virtual decoupled system.

The asymptotic expansion-based method circumvents the two main difficulties, by returning
to linear algebra. As the modal transfer matrix of a structure and its impulse response matrix
form a Fourier transform pair, we can find an asymptotic expansion of this matrix in a
closed form. Afterward, the aforementioned convolution is analytically computed for some
well-known time envelopes.

The asymptotic expansion of the modal transfer matrix of a structure is the key point of our
methodology and an original contribution of this part. It is grounded on a solid mathematical
statement and on a trustworthy, although quite strict, convergence criterion.

Based on this expansion, we develop an original and relevant formulation to perform linear
evolutionary spectral analysis. Thanks to the semi-group property characterizing linear sys-
tems, we find an efficient recurrence relation allowing to compute, at a low computational cost,
the state evolutionary transfer matrix, key of the evolutionary spectral analysis. Furthermore,
we take advantage of the limited number of correction terms required in the expansion of the
impulse response matrix on short time intervals. This recurrence formulation has shown its
relevance on different realistic applications, in earthquake and wind engineering.

This formulation, initially developed for linear analysis, can also be applied to nonlinear
transient analysis through an equivalent statistical linearization. The gap between linear
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analysis and stochastic linearization in a nonstationary setting, is bridged with a multiple
scales approach of the problem. A nonlinear (time-invariant) system is transformed into an
equivalent, linearized and time-variant system. Then, the multiple scales approach formalizes
the consideration of this equivalent system as piecewise time-invariant, since the equivalent
properties of the structure evolves at slow timescale with the probabilistic characteristics of
the response.

The different perturbation methods applied in this work allow us to take advantage of a
rigorous and efficient semi-analytical approach. The construction of blocks of elementary an-
alytical results, incorporated in a numerical procedure, is a significant source of improvement
in probabilistic analysis.

As tracks of future investigations, we may point out three axes : (i) the developments
of an efficient procedure to perform linear evolutionary spectral analysis in a non-Gaussian
framework, (ii) the improvement of the procedure of modal basis adaptation in transient
stochastic linearization and (iii) the integration of the method to implicit nonlinear behaviors.

(i) The developments of higher-order spectral analysis, based on the Volterra series, is
an old topic in probabilistic analysis. Its statement in a stationary setting is well-known
and its development for evolutionary spectra has been timidly initiated. The main issue in
this approach is the integration of spectral function in large-dimensional frequency domain.
Any improvement of these integration techniques would create an emulation around non-
Gaussian spectral analysis. In this context, the asymptotic expansion-based method used
to compute evolutionary Volterra kernel would find a practical interest. Naturally, these
reflexions also depend on the determination of non-Gaussian properties of wind pressure or
ground acceleration. Although these properties are more available in wind engineering, it
remains an issue in earthquake engineering.

(ii) The concept of generalized basis updating proposed in this work has highlighted some
difficulties to deal with important nonlinear stiffness forces. Indeed, due to realistic excitation
models, it may become intricate to manage the time evolution of the equivalent natural
frequencies. Although we investigate this adaptation procedure and we show its relevance
in some applications, its application to highly nonlinear problems remains an issue. The
problems encountered are not related to the asymptotic expansion based-method, but more
to the modal reduction. Mathematically speaking, other paradigms than the modal basis
could be investigated, as Krylov-Bogoliubov subspaces, while keeping in mind the difficulties
to deal with nonlinear random forces.

(iii) One of the drawbacks of equivalent linearization, as introduced in this work or by many
authors before, is the necessity to deal with explicit nonlinear forces. Indeed, the equivalent
statistical linearization is performed on explicit nonlinear laws. Those laws are not necessarily
established in the initial formulation of the problem. Contrary to nonlinear viscous dampers
or tuned liquid column dampers, the geometric nonlinearities in civil structures are usually
calculated on an incremental basis. Furthermore, the location of material nonlinearities (e.g.
plastic hinges) are not necessarily known at the beginning of a computation. These observa-
tions are beyond the humble scope of this work, but the author thinks that this limitation
should be addressed in order to make the equivalent statistical linearization, and possibly the
developments of this work, more relevant for practitioners.



Part II

A Lagrangian Method for
Fokker-Planck-Kolmogorov

Equation
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Chapter 6

Fokker-Planck Equation : Issues
and Challenges

Le ”déterminisme” est la seule manière de se représenter le monde.
Et l’indéterminisme, la seule manière d’y exister.

Paul Valéry

6.1 The Fokker-Planck-Kolmogorov equation

6.2 Resolution methods : an overview

6.3 Purpose of this part
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6.1 The Fokker-Planck-Kolmogorov equation

The Fokker-Planck-Kolmogorov (FPK) equation, in its transient form, models the time evolu-
tion of the probability density function (pdf) of a random state vector of a random system. In
Section 2.3, we show how to solve some classes of stochastic differential equations (sde) with
this equation. This part of the dissertation focuses on this approach exclusively. According to
Itô’s calculus, this equation establishes a relation between a purely stochastic paradigm using
Brownian motions (or other martingales) and a deterministic one. Indeed, the FPK equa-
tion allows to directly compute the pdf, which is a central deterministic information about a
random process. Actually, the solution of random problems with deterministic representation
is also applied in the spectral analysis, because a psd remains a deterministic model of the
energy-frequency distribution of a random process. For sake of fluidity of this manuscript,
some notions about FPK equation are recalled hereinafter.

Considering an ordinary differential equation with noises as external loading terms is a
meaningless notion, because the Brownian motion is never and nowhere differentiable. How-
ever, a stochastic integral or a stochastic differential equation can be written from the initial
ordinary equation provided the original drift coefficient is corrected by the Wonk-Zakai correc-
tion term [Wong 65]. For deterministic systems driven by random inputs, the time evolution
of the random state vector X(t) ∈ Rn is thus mathematically described by a stochastic differ-
ential equation in Itô’s formalism [Okse 03]

dX(t) = a(t,X)dt+ b(t,X) dB(t), (6.1.1)

where a(t,X(t)) : R × Rn → Rn is a nonlinear drift vector function, b(t,X(t)) : R × Rn →
Rn×m a nonlinear matrix function and B an m-dimensional vector of independent Brownian
motions. The FPK equation expresses the diffusion of probability density of X(t) and the
conservation of the total probability [Risk 96]. It takes the form of a second-order partial
differential equation

∂ψ

∂t
+

n∑
i=1

∂

∂xi
(aiψ) =

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
(Dijψ) (6.1.2)

with D(t,x) the diffusion matrix defined as 2Dij = (bbT )ij , ai the i-th element of a, and
where the conditional probability density function (pdf) ψ(t,x | t0,x0), abbreviated in ψ(t,x) :
R× Rn → R+ is the joint-pdf of components of X(t), with initial state distribution ψ0 (x)(=
ψ(t0,x)), respecting the first two axioms of Kolmogorov

ˆ
Rn
ψdx = 1 and ψ(t,x) > 0,∀x ∈ Rn. (6.1.3)

Obviously, the time evolution of ψ(t,x) is conditioned by the initial condition ψ0 (x). For
a dynamical system, the FPK equation models the transport of the probability density of
the response across the state space of the system. A well-posed problem is obtained by
complementing (6.1.2) with the far-field conditions given in (2.3.3), expressing at least that
ψ(t,x) tends to zero as ‖x‖ → ∞. However, other boundary conditions may be encountered,
depending on the mechanical system modeled by (6.1.1).
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The FPK equation (6.1.1) is not only used in civil or mechanical engineering, quite the
opposite actually. Originally, this equation has been derived by physicians studying the ra-
diation of electric dipoles [Fokk 14], to describe the Brownian motion of particles. A broad
range of scientific disciplines have used hitherto this equation to measure the propagation of
random perturbations, random loadings or random parameters on systems (in a broad sense).
In biological systems, neurosciences or ecosystem modeling, the FPK equation provides an
elegant method to characterize random processes or system driven by random inputs.

In those fields, most of the applications are stationary. Hence, the time, seen as the
(n + 1)-th dimension of the problem, is not considered at all. As for many convection-
diffusion equations encountered in fluid dynamics, heat transfer or solid mechanics, closed-
form solutions are seldom available. For transient problems, closed-form solutions are even
rarer, almost exceptional. In [Preu 94], an explicit solution of (6.1.2) is given for an SDOF
linear system starting from a deterministic initial condition. In the context of approximate
analytical methods, the size of the system may be interestingly reduced by an averaging
procedure [Grig 02] before writing the FPK equation in term of a random amplitude [Cai 04].
Nonetheless, this method is not convenient for general purposes.

It is thus clear that an efficient application of the method should be based on a numerical
solution of the convection-diffusion equation. However, some issues we need to cope with are
encountered as well.

From a mathematical viewpoint, the pdf ψ(t,x) can be interpreted as a scalar field defined
in a n-dimensional state space, possibly unbounded. This first interpretation highlights two
difficulties in the numerical solution of this equation, yet. First of all, the computational
method must be as readily as possible adapted to cope with n dimensional spaces. Then,
the unboundedness of the resolution domain leads to manage the intricate far-field boundary
condition with a limited computational power. Indeed, these two questions raise the issue of
dealing with a sufficiently large domain. For instance, the initial pdf ψ0 may have dispersion
parameters (roughly speaking, the standard deviation) much smaller than the stationary one.
Therefore, a suitable method must be able to deal with a large range of transient distributions
taken by the pdf.

Secondly, the first two Kolmogorov axioms must be fulfilled. Though the conservation of
the total probability may be adapted by normalization, the positivity of the pdf is hard to
be imposed with existing methods, especially as the probability is extremely small. However,
the distribution in the tails is of major importance, in reliability problems notably. Thence,
the accuracy of a method must not only be judged by a norm of the error with respect
to a reference solution, because a negative pdf is inconceivable from the point of view of
mathematical rigor, even if it is small.

6.2 Resolution methods : an overview

The exact explicit solution for stationary FPK equation may be obtained in few cases only.
One of them is ground on the assumption of isotropy in the diffusion matrix, i.e. the diffusion
matrix D(x) is diagonal such that (D(x))ij = D(x)δij . In this case, the stationary solution
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of (6.1.2) reads

ψ(x) =
C

D(x)
exp

(∑
i

ˆ
2ai(x)

D(x)
dxi

)
(6.2.1)

under some additional integrability assumptions, with C a normalization constant. Concern-
ing the transient FPK equation, exact explicit solutions may be obtained for some nonlinear
Hamiltonian systems [Risk 96]. The technique of detailed balance allows to deal with a family
of random processes having the property that each transition from one state to another is
balanced statistically by a reversed transition as explained in [Risk 96, Lin 04b]. Some non-
linear systems can thus be solved with this method, but it is quite cumbersome in realistic
applications. Hence, for most of the linear or nonlinear systems driven by colored noises, such
exact solutions cannot be calculated explicitly and the use of numerical methods is inevitable
[Soiz 88].

The first numerical technique used to solve the FPK equation was the finite difference
method [Chan 70, Pich 11]. In further attempts, the finite element (FE) method has also
been used [Spen 93, Lang 85]; it has been extended up to a four-dimensional state space
[Wojt 00]. This method allows to solve the unsteady equation through a step-by-step analysis
or, immediately, the stationary equation through an eigenvalue problem. Because it has
been implemented by the present author, the method is exposed in Appendix C.1 in a two-
dimensional setting. Some comments are also formulated with respect to [Spen 93], especially
in the formulation of the weak form.

a) b)

Figure 6.1: Illustration of instability inspired from [Spen 93] on a Duffing oscillator. (a)
Instability in the far-field in a transient resolution with FE. (b) Stationary pdf obtained by
an eigenvalue problem with FE. Details of implementation in Appendix C.1.

Nevertheless, the finite element method encounters difficulties in modeling the far-field
boundary conditions. To overcome this problem, Spencer [Spen 93] proposes to mesh a suffi-
ciently large domain to eliminate the diffusion of probability. Langtangen [Lang 91] proposes
to impose a zero flux condition at the boundaries of the integration domain. In any case,
the positivity of the pdf is not properly ensured: if elements are too large or the domain
too small some spurious waves can propagate through the state space and spoil the quality
of the solution. This FE method may thus fail in creating artificially and numerically the
vanishing condition ψ (t,x)→ 0 for ‖x‖ → +∞ at any time t. Figure 6.1-a shows an example
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of instability at the boundary of the truncated domain. In this example, the FPK equation is
related to a classic Duffing oscillator (see Appendix A.1) subject to a stationary white noise.
Figure 6.1-b shows the stationary response of the Duffing oscillator computed with the FE
method, by an eigenvalue problem. Some values of the pdf are negative, although very small.

Furthermore, the finite element method is laboriously extended to high multidimensional
systems, because of some difficulties inherent to discretization of high-dimensional state
spaces. Another argument out of favor with mesh-based methods is the need to mesh useless
subspaces: at a certain time step, probability density in some subspaces is so low that its rep-
resentation is useless. For a given computing capacity, it is more efficient to refine appropriate
zones of the state space. Adaptive meshing and remeshing methods exist, but they have not
been applied to our problem, yet.

To circumvent the issues encountered with mesh-based methods, recent developments pro-
pose to apply meshless methods to the resolution of FPK equation. Kumar et al. [Kuma 06]
propose the use of a multi-resolution meshless method based on Meshless Petrov-Galerkin
method. Unfortunately, this method requires an important time of execution and the conver-
gence is an issue, as pointed in [Kuma 09]. Then, Kumar et al. propose the use of PUFEM
(partition of unity finite element method) and apply it to the stationary [Kuma 09] and the
transient [Kuma 10] FPK equation up to a four-dimensional state space. The examples illus-
trating the method are classic nonlinear mechanical systems as Duffing oscillator or Lorenz
attractor.

In the field of kinetic theory, the FPK equation presents a great interest for model-
ing complex fluid dynamics. Chauvière and Lozinski [Lozi 03, Chau 04] present a spectral
discretization approach to solve FPK equation, another mesh-based method. In this ap-
proach, some drawbacks similar to the FE method may be encountered as the dependence
of the positivity with the refinement of the mesh and instability for high gradients in the
pdf [Chau 04]. With the objective of solving multidimensional partial differential equations,
Ammar et al. [Chin 03, Amma 06, Amma 07] develop a method based on a separate repre-
sentation of variables, which allows to decouple the numerical integration in each dimension
of the system. This method shows encouraging results for high-dimensional time-invariant
systems on a bounded domain. In complex fluid theory, the definition of FPK equation differs
from (6.1.1) in the domain of the state vector X(t) which is bounded [Chup 10]. However,
the occurrence of rare events is not a major issue in this field as it is the case in mechanical
or civil engineering [Lin 04b] and so the question of the tail distribution is not addressed.
Furthermore, in a bounded domain, the stability and the efficiency of the method is not the
same issue as it is in an unbounded state space.

The time dependence of systems modeled with (6.1.1) is explicitly considered in the time
dependence of drift and diffusion coefficients. Some of these methods may also reveal some
numerical drawbacks in the resolution of FPK equation related to time-variant systems. In the
classic FE method or in the PUFEM approach, the matrices of the system must be computed
at each time step and the modal reduction for time-variant problem is not possible. Yet, the
management of the explicit time dependence of drift and diffusion coefficients is an issue in
transient dynamics. For instance, in earthquake engineering [Kiur 96], the seismic excitation
is usually modeled as a diffusive process modulated by a time window, as amply exposed in
the previous Part. Therefore, the FPK equation has explicit time-dependent coefficients.
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6.3 Purpose of this part

In this part of the work, a particle strategy is explored to deal with the FPK equation related to
dynamical diffusive systems. The FPK equation is viewed as a convection-diffusion equation
in a Lagrangian paradigm. The Smoothed Particle Hydrodynamics (SPH) method, a
meshfree particle method, is applied to the resolution of FPK equation. Indeed, we think that
this method may be efficient for our purpose.

An efficient method for solving the transient FPK equation in an unbounded domain must
be able

i . to adaptively cover all the state space from initial condition to steady-state,

ii . to ensure the vanishing condition in the far field,

iii . to precisely capture important distortions of the pdf,

iv . to ensure the positivity of pdf,

v . to ensure the conservation of the total probability,

vi . to deal with n-dimensional problem (at least in the formalism).

The first five points have been commented in Section 6.1. Concerning the sixth one, we
insist about the formalism and not about the straight applicability for two reasons. The
stricto sensu applicability in n-dimensional state space is dependent on the technological and
computational capacities we dispose. The strategy of implementation (e.g. using rather cpu
than gpu) influences also the final computational burden. Nonetheless, the flexibility of a
formalism can be considered independently of its present applicability.

Furthermore, as explained in the Introduction of this dissertation, the deterministic method-
ology does not aim at solving large scale problems, but is more focused on small size systems
with simple random excitations. Hence, the method developed in this Part will be applied to
different families of problems than those of Part I.

The SPH method, with the implementation details given next, fulfills most of these re-
quirements. The SPH method is a meshless method based on a Lagrangian formulation of the
equations governing a phenomenon and on the integral representation of fields. This method
as other particle methods, has been amply used for the resolution of diffusion equations.

This method was developed by Lucy in 1977 [Lucy 77] (and simultaneously by Gringold
and Monaghan [Ging 77]) and first applied to astrophysical problems. Thus far, the method
has been applied to many problems of continuous and discontinuous dynamics as fluid flow
problems [Feld 07, Morr 00], damage and fracture [Rabc 03, Rabc 07], impact computation
[John 96] or heat conduction [Clea 99, Jeon 03]. The main principles of the SPH method are
amply developed in [Rand 96, Mona 05, Liu 03a, Liu 10]. In the context of kinetic theory,
Chaubal et al. [Chau 97, Chau 99] apply first SPH technique to the dynamics of liquid
crystalline polymers on a closed domain. Particle strategies for solving the Fokker-Planck
equation are commonly used in this theory, as illustrated in [Chin 03, Amma 05, Prul 07].
Inspired by these previous works, the present part of the dissertation proposes an application
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of the SPH formalism to solve the transient FPK equation related to diffusive random systems
independently of their size. In this context, a new formulation of the conservation equation
using the Lagrangian formalism is proposed and some considerations to deal with the vanishing
condition are exposed.

In the following Chapters, the SPH method is briefly exposed, then the FPK equation
is formulated with the SPH formalism. Finally, the developments are applied to dynamical
systems usually encountered in the literature, but also to more original problems. The main
results are extensively discussed and commented.

The content of this Chapter was concisely presented in [Cano 11, Cano 13].
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Chapter 7

SPH Method and Fokker-Planck
Equation

7.1 Smoothed particle hydrodynamics

7.2 SPH formulation of Fokker-Planck-Kolmogorov equation

7.3 Computational aspects

7.4 Description of the algorithm

Purpose of the chapter

In Section 7.1, the statement of SPH method is presented. The concept of integral repre-
sentation of a field and kernel approximation are briefly exposed. Then, we emphasize how
to transform the FPK equation into a Lagrangian formalism in Section 7.2. We show that
the solution of FPK equation with SPH method does not require to solve any algebraic
equation, since the particles move by themselves according to a conservation and a trans-
port equations. A method to compute statistical moments and probability of exceedance
are also provided. Finally, Section 7.3 highlights some computational aspects, as the ini-
tialization of particle masses, the computation of their interaction and the treatement of
boundary conditions.
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7.1 Smoothed particle hydrodynamics

The philosophy of the SPH method is to transform a set of partial differential equations
into integral equations by using an interpolation function that gives an estimation of a field
(density, velocity, energy) at a given point. Vector or scalar fields are only known in a number
of discrete points, so-called particles, free to move in the domain of resolution. Thus, the
evaluation of an integral is transformed into a sum a set of some neighboring particles. In this
method, a grid is unnecessary. Indeed, interactions between neighboring particles are modeled
with interpolation functions, so-called kernel functions, which depend on the distance between
particles.

7.1.1 Integral representation of a field

The concept of integral representation of a continuous field f(x) in SPH method uses the
properties of the Dirac-delta function δ(x),

ˆ
Rn
f(x′)δ

(
x− x′

)
dx′ = f(x) (7.1.1)

with δ(x− x′) = 0 if x 6= x′.
Though Equation (7.1.1) is theoretically rigorous and applicable to any continuous field

f(x), this operation cannot be stricto sensu numerically implemented. The philosophy of the
SPH method is here to estimate (7.1.1) as accurately as possible by some numerical artifacts.
First, the Dirac-delta function is approximated by a suitable function, fulfilling some analytical
properties. Then, the integral operation is transformed in order to be efficiently approximated
numerically. Finally, the field f(x) is estimated (or“particularized”) for each integration point,
i.e. for each particle. We now introduce formally these three steps.

Numerically, the Dirac-delta function is thus replaced by the kernel function W (|x−x′|, h),
such that

lim
h→0

W
(
|x− x′|, h

)
= δ(x− x′) (7.1.2)

with h the smoothing length. The kernel approximation of f(x) with the kernel function,
noted < f(x) >, is

< f(x) >=

ˆ
Rn
f(x′)W (|x− x′|, h)dx′ . (7.1.3)

According to the Dirac-delta function property (7.1.2), < f(x) > tends to f(x) when h tends
to zero. This latter expression is a smoothed approximation of f(x) and the integral is
discretized, for a number Np of particles, as

< f(x) >≈
Np∑
j=1

f(xj)W (|x− xj |, h)∆Vj =

Np∑
j=1

mj

ρj
f(xj)W (|x− xj |, h), (7.1.4)

where mj , ρj and ∆Vj are the mass, the density and the volume of particle j, respectively.
Equation (7.1.4) is the particle approximation of the field f(x). This approximation can be
particularized at a particle i,
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< f(xi) >=

Np∑
j=1

f(xj)Wij∆Vj (7.1.5)

with Wij = W (rij , hi) and rij the distance between particles i and j. Equation (7.1.5)
highlights the difference between the particle value f(xi) and the kernel approximation <
f(xi) >. These values must not be confused [Feld 07], but they can be sufficiently close if h
is small enough according to (7.1.2) and (7.1.3).

Figure 7.1 shows the concept of discretized integral representation of a field f(x) with
SPH and particles.

Figure 7.1: Smoothed particle hydrodynamics. Integral representation of a field.

7.1.2 Kernel function

To be used in SPH method, a kernel function must fulfill several conditions [Liu 03b]:

� Unity : the kernel function must be normalized

ˆ
Rn
W (|x− x′|, h)dx′ = 1 or

N∑
j=1

W (|x− xj |, h)∆Vj = 1, (7.1.6)

� Delta function property as formulated in (7.1.2),

� Compact support : W (r, h) = 0 for r ≥ κh, where κ is a constant depending on the
kernel function,

� Decay : the smoothing function should decrease monotonically with the distance between
a particle and the neighboring ones,

� Symmetry, positivity and smoothness.

The B-spline function, introduced by Monaghan in 1985, is a broadly used smoothing function.
Here, the compact support is divided in three subspaces,

W (R, h) = αd


2
3 −R

2 + 1
2R

3, if 0 ≤ R < κ
2

1
6 (2−R)3 , if κ

2 ≤ R < κ

0, if R > κ

(7.1.7)
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with κ equal to 2 and R = r/h. The parameter αd depends on the dimension n of the
state space. From (7.1.6), the parameter αd equals 5/7πh2 and 3/2πh3 in two- and three-
dimensional space, respectively. This function and its first derivative are both continuous.
Nevertheless, the second derivative is piecewise linear. Because of this discontinuity, the
stability properties of this function are inferior to those of smoother functions.

In this work, the original Lucy kernel function is used. Introduced by Lucy in 1977
[Lucy 77], this kernel is a polynomial function continuously differentiable over its compact
support (κ = 1),

W (R, h) = αd

{
(1 + 3R) (1−R)3, if R ≤ κ

0, if R > κ
, (7.1.8)

where αd equals 5/πh2, 105/16πh3 and 28/π2h4 in a two-, three- or four-dimensional state
space, respectively.

Those two kernel functions are simple and do not present any particularities. For a sake
of completeness, it should be pointed out that it exists different kernel functions and their
use depends on the problem. Indeed, the properties imposed to the kernel function may be
too restrictive in some problems, leading to some instabilities. For instance, the boundedness
of the support is contravened in the Gaussian kernel function, while the monotonic decay is
broken in the Johnson kernel function.

a) b)

Figure 7.2: Kernel functions (-) and their derivatives (· · · ) : B-spline function (a) and Lucy
function (b) - the functions are normalized by their respective α1.

7.2 SPH formulation of Fokker-Planck-Kolmogorov equation

Since we have defined the basics of SPH method, we are now able to apply this method to
the FPK equation. Indeed, the field defined in (7.1.1) can be seen as the probability density
function ψ related to the random vector defined in Section 2.1.2. However, some adaptations
must be first operated on the convection-diffusion equation (6.1.2). Indeed, written in this
way, Equation (6.1.2) is expressed in a Eulerian formalism, while the SPH method requires to
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be transformed into a Lagrangian formalism. Then, the conservation and transport equations
will be explicitly written in the formalism of the method.

7.2.1 Lagrangian formalism

In the context of fluid dynamics, an Eulerian description of motion can be imagined as the
one given by a fixed observer looking at the evolution of fluid properties in a finite, fixed
and non-deformable volume. Contrarily, a Lagrangian description of motion can be viewed
as the motion described by observers sitting on moving particles. These views modify the
formulation and the interpretation of the equations of motion: in a Lagrangian formalism, the
integration points are moving according to trajectories depending on the modeled system.

The Eulerian formulation of a convection-diffusion phenomenon of a scalar field φ is trans-
formed into a Lagrangian formulation by introducing the concept of material derivative D/Dt,

Dφ

Dt
=
∂φ

∂t
+ v · (∇φ) , (7.2.1)

where v is the medium velocity.

The FPK equation (6.1.2), as a convection-diffusion equation, can be recast into such a
Lagrangian formalism. Indeed, Equation (6.1.2) can be written as

∂ψ

∂t
= −

n∑
i=1

∂

∂xi

ψ
ãi − n∑

j=1

∂Dij

∂xj
− 1

ψ

n∑
j=1

Dij
∂ψ

∂xj

 = −
n∑
i=1

∂

∂xi
(viψ) , (7.2.2)

where it is readily seen that the i-th component of v(t,X), defined as

vi = ãi −
n∑
j=1

∂Dij

∂xj
− 1

ψ

n∑
j=1

Dij
∂ψ

∂xj
, (7.2.3)

provides a form similar to (7.2.1). The diffusion velocity v [Laco 99, Comb 86] has a term
divided by ψ, but there is no hidden difficulties. Indeed, the field ψ represents a density of
probability, i.e. a quantity of probability divided by a given volume. The factor 1/ψ remains
finite as particles can neither have zero mass (as shown in section 7.3.1), nor occupy an infinite
volume.

The conservation equation (7.2.2) is further developed to introduce the total derivative

∂ψ

∂t
+

n∑
i=1

∂

∂xi
(viψ) =

Dψ

Dt
+

n∑
i=1

ψ
∂vi
∂xi

= 0 . (7.2.4)

and the vectorial equation of transport across the state space simply reads

dX

dt
= v (7.2.5)

with v the velocity field defined in (7.2.3).

In this method, the steady-state regime must be interpreted from a Lagrangian perspective:
the particle velocity is not null, but the particles keep on moving along (n − 1)-dimensional
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isoprobability manifolds. This is shown as follows. In steady-state regime, the material deriva-
tive of ψ and the partial derivative with respect to time of ψ are equal to zero. Therefore,
Equation (7.2.1) leads to v · (∇ψ) = 0, which shows that the steady-state velocity field is
always normal to the gradient of the pdf, like the tangent vector to isoprobability manifolds.

7.2.2 Conservation equation

The quantity of probability µj (equivalent to mass in hydrodynamics) carried by a particle j
is defined as the product of the particle volume ∆Vj and the particle density ψj . By analogy
with fluid dynamics, this quantity of probability is referred to as mass in the following. Taking
into account (3.3.3), the particle approximation of the density of probability ψ at a particle i
is

< ψ(xi) >=

Np∑
j=1

ψjWij∆Vj =

Np∑
j=1

µjWij , (7.2.6)

where µj = ψj∆Vj . This particle approximation of the probability density function is equiv-
alent to what is usually done in hydrodynamics [Rand 96]. In dedicated literature, Equation
(7.2.6) is often mentioned as the summation density approach. In the sequel, as the mass
of each particle is invariant, the total unit probability is conserved. From a computational
point of view, there is no need to solve the conservation equation as a differential equation.
Furthermore, the positivity of the pdf is ensured, because each particle approximation is a
sum of positive terms (µj ,Wij > 0).

7.2.3 Estimation of statistical moments

The SPH method and the integral representation of pdf also allow an approximation of statisti-
cal moments of the random state vector X = [X1..., Xn]T. Indeed, the particle approximation
of statistical moments reads

< E[Xα1
1 ...Xαn

n ] >=

ˆ
Rn
xα1

1 ...xαnn < ψ(x) > dx, (7.2.7)

where E[·] is the expectation operator and αi ∈ N for i = 1..., n. Therefore, if the masses are
reasonably well calculated by the previous relations, Equation (7.2.7) in an SPH formalism
yields

< E[Xα1
1 ...Xαn

n ] >≈
Np∑
i=1

(
n∏
k=1

(Xi)
αk
k

)
< ψi > ∆Vi. (7.2.8)

In this approximation technique, particles are seen as integration points. The volume ∆Vi
occupied by the i-th particle is also considered as the integration volume. This approximation
means that the kernel approximation < ψi > of the pdf is constant in the volume of the
particle. This integration technique is similar to the rectangle integration method. The
computation of statistical moments is subsequent to the solution of the FPK equation.

The choice of ∆Vi as integration volumes is justified, if the reciprocity in the interaction
between particles is imposed. The reciprocity exists, if the matrix W gathering the elements
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Wij , is symmetric. Actually, the unity principle is expressed as

∆Vj =

Np∑
k=1

(
W−1

)
jk
. (7.2.9)

So, if one assumes that the volumes ∆Vj are integration volumes for the kernel approximation
< ψ(xj) >, the conservation of total probability leads to

Np∑
j=1

< ψ(xj) > ∆Vj =

Np∑
i=1

µi

 Np∑
j=1

Np∑
k=1

(W)ji
(
W−1

)
jk

 . (7.2.10)

The summation (7.2.10) is constant if and only if W is symmetric, which is not ipso facto the
case. Among available ways to ensure that W is built symmetric, the method adopted here
consists in averaging the reciprocal kernel functions between two particles as

Wij = Wji =
1

2
(W (rij , hi) +W (rij , hj)) . (7.2.11)

An important remark must be formulated at this stage. Other expressions have been
proposed in order to compute (7.2.7) as in [Chau 97]. Indeed, the explicit analytical expression
of the kernel function could be used to perform (7.2.7), avoiding the numerical approximation
of the integration volumes (7.2.8). Nonetheless, disadvantages associated with this approach
must be pointed out, especially in the density field. The SPH method is used in solid and fluid
dynamics. In the last one, even if a fluid is compressible, the spatial gradient of the density
field remains tractable. In the FPK problem, there can be huge differences in the probability
density field between two zones of the domain. Therefore, using the analytical formulation of
the kernel function, while all the quantities in the problem are discretized and particularized,
is intricate and leads to poor results, as experienced by the author. We will keep on discussing
this assumption in the following Sections; additional arguments will be given next.

7.2.4 Probability of exceedance

The proposed SPH method also allows the computation of probability function depending
on the pdf of the state vector X(t). The mathematical formulation of a structural reliabil-
ity problem [Kiur 96], as illustrated in Figure 7.3, consists in calculating the probability of
exceedance Pf defined as the probability integral

Pf (t) =

ˆ
Ωf

ψ(t,x)dx, (7.2.12)

where Ωf denotes the subspace where exceedance (or failure) occurs, obviously conditioned
by an initial distribution. In the presented SPH method, the calculation of such a probability
may be estimated directly : at a given time, only the mass of particles contained in the domain
Ωf contributes to the probability of failure. Therefore, an estimation of the probability of
failure < Pf (t) > at a given time t is

< Pf (t) >=

Np∑
j=1

µjI(Xj(t) ∈ Ωf ), (7.2.13)
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where I(A) is a set function equal to one if the condition A is fulfilled, and zero otherwise.
Obviously, the discussion initiated in the previous Section applies also in (7.2.12).

Figure 7.3: Reliability problems. Illustration of the probability of exceedance.

7.2.5 Transport equation

According to (7.2.6), the probability density of a particle i depends on Wij and therefore on
the relative positions of particles at time t. To calculate the position of a particle i, Equation
(7.2.5) is integrated with a first-order forward Euler integration scheme

Xt+∆t
i = Xt

i + vti∆t. (7.2.14)

An adaptive time step is implemented to ensure the stability and the accuracy of the
method as presented in [Cano 11],

∆t = Cr min
i=1,..Np

(
minj=1,...Np,j 6=i(rij)

‖vi‖

)
(7.2.15)

with Cr(< 1) the Courant number. An adaptive time step is necessary in the resolution of
FPK equation, at least when particles are initially slightly dispersed, since particles are very
close and an inappropriate time step can spoil the distribution of particles or cause collisions
between them. This proposed Courant condition may be severe compared with some usual
Courant conditions proposed in the literature usually based on the smoothing length and not
on the distance between particles [Liu 03a]. Nevertheless, the Courant criterion as formulated
in (7.2.15) conserves the particle meaning of this condition. Hence, according to this criterion,
a particle in a time step cannot cross a distance greater than a fraction of its distance to the
closest neighbor particle. Furthermore, according to (7.2.15), the time step depends only on
geometrical considerations and not on the probability density (as it would be if the smoothing
length was considered). From the author’s experience, this option increases the stability
performances of the algorithm.

In the numerical implementation, the velocity field is established, according to the concept
of integral approximation of a vector field and Equation (7.2.3) becomes

v(X) = f(X)− 1

ψ(X)
D∇ψ(X), (7.2.16)
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so that the particle approximation at time t of (7.2.16) is

vti = f(Xt
i)−

1

< ψ(Xt
i) >

D < ∇ψ(Xt
i) >, (7.2.17)

where < ψ(Xt
i) > is calculated with (7.2.6) and < ∇ψ(Xt

i) > calculated as

< ∇ψ(Xt
i) >=

Np∑
j=1

µj∇iWij . (7.2.18)

The Lagrangian formalism makes the method relatively robust with respect to the dis-
semblance between initial and steady-state distributions. With this particle approximation
method, particles move from the initial to the stationary distribution by themselves. This
is a noticeable difference with mesh-based methods where the mesh must cover a sufficiently
large space in order to represent every step of the transient solution.

In SPH method, leapfrog integration scheme is usually preferred, because it is simply
implemented and second-order accurate in both time and space [Pres 07]. With the leapfrog
algorithm, Equation (7.2.5) is integrated as [Liu 03a]

Xt+∆t
i = Xt

i + v
t+ ∆t

2
i ∆t (7.2.19)

with the midpoint velocity field estimated as

v
t+ ∆t

2
i = f(X

t+ ∆t
2

i )− 1

< ψ(X
t+ ∆t

2
i ) >

D < ∇ψ(X
t+ ∆t

2
i ) > (7.2.20)

and

X
t+ ∆t

2
i = Xt

i + vti
∆t

2
. (7.2.21)

The choice between an Euler explicit scheme and a leapfrog scheme is typically driven by
accuracy and computational efficiency. On the one hand, if accuracy is leading, the leapfrog
algorithm is more efficient for the same adaptive time step procedure. On the other hand,
if the choice is motivated by efficiency, Euler’s scheme is more advantageous, because the
estimation of the velocity field, i.e. the more consuming operation, is performed just once per
time step. In any case, the selection of a small time step reduces the error due to the time
discretization but barely influences the residual error due to particle interpolation, as shown
in the following illustrations.

7.3 Computational aspects

7.3.1 Initialization of particle masses

The initialization of masses is a key issue in the method. From the arbitrary initial distribution
of particles in the state space, the reconstructed field is calculated where particles are initially
located < ψ(xj) >. Then, the solution of (7.2.6) should in principle give the particle masses.
Nevertheless, for computational efficiency reasons and also because the system (7.2.6) may
be ill-conditioned, an alternative approach is followed by the author. The masses µj and the
initial particle values ψ0,j are related by µj = ψ0,j∆V0,j , where ∆V0,j is the initial volume
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associated with the jth particle, which corresponds to a hypercubic subspace if the initial
arrangement of particles is regular, as illustrated in Figure 7.4.

Figure 7.4: Initialization of the particle masses.

Although conceptually different, the initial condition ψ0 may be understood as the kernel
approximation of the probability density function. Indeed, a reasonable approximation for ψ0,j

is the initial reconstructed field < ψ0(xj) > provided the smoothing length is small enough
according to (7.1.3). With this approach, the sum of particle masses is not strictly equal to
unity, because of the limited integration domain and the approximation on the integration
volumes. However, this error may be reduced by increasing the number of particles and so
reducing the smoothing length as presented hereafter. After initialization, the particle masses
are kept constant in time. Consequently, with this initialization technique, there is no equation
to solve, neither for the initialization of masses, nor during the transient resolution.

7.3.2 Particle interaction and smoothing length

The determination of the smoothing length h is an important issue in the SPH method. If the
smoothing length is too small, a particle does not interact with its neighboring particles. On
the other hand, if the smoothing length is too large, local properties of the studied field could
be excessively smoothed. It is commonly assumed that the accuracy depends on h2 [Liu 03a].

The smoothing length also influences the computation time. For these reasons, the smooth-
ing length associated to each particle is adapted at each time step. Liu [Liu 03a] suggests to
maintain an appropriate number of particles in the neighborhood of each particle: 5, 21 and
57 in one-, two- and three-dimensions, respectively.

To adapt the smoothing length with particle positions, different authors suggest relations
to maintain the number of neighboring particles constant [Liu 03a]. The simplest relation
consists in keeping the initial product (h0

n
√
ψ0)i constant in time for each particle, where n is

the dimension of the considered space. The smoothing length is updated with the evolution
of ψi, as

hi = h0,i

(
n

√
ψ0

ψ

)
i

. (7.3.1)

Equation (7.3.1) expresses also the limited risk that a particle gets isolated. Indeed, if par-
ticles are too close, their densities increase and their smoothing lengths decrease. Conversely,
if a particle is too distant from the others, its density decreases and its smoothing length
increases. Therefore, a particle cannot be isolated without any interaction with its neighbors.
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Smoothing length and particle interaction are closely related in SPH method. Indeed,
a particle i interacts only with particles contained in its compact support. Therefore, it is
useless to check possible interaction if two particles are too far from each other. Specific
literature amply covers this topic [Mona 05, Liu 03a].

The discussion about particle interaction and smoothing length is relevant only in the
standard version of the method based on Eulerian kernels. In this approach, the compact
support has a constant shape (though the size is updated) in time. Only the particles present
in this support change. Besides, the particle interaction may also be interpreted in a La-
grangian paradigm. A major difficulty in SPH method with Eulerian kernel concerns the
tensile instability [Sweg 95] which occurs in elasticity problems when particles tend to clump
in pairs under tension. This instability is mathematically due to the calculation of the sec-
ond derivative of the kernel [Bely 00]. A fully Lagrangian kernel [Rabc 04] or an updated
Lagrangian kernel [Vida 07] can be used to discard occurrence of this instability. The La-
grangian kernel is a robust and stable method to deal with solid mechanics. Nevertheless,
this method is not suitable for fluid flow problems [Rabc 04], because the deformation can be
much larger in fluids than in solids. In our particular case, the transient FPK equation, as a
convection-diffusion equation, is closer to the modeling of an artificial fluid without viscosity
or constitutive law than an elastic solid, a reason why we have opted for Eulerian kernels. In
spite of some drawbacks, Eulerian kernels also offer a simple management of the mixing of
particles or the large distortions as illustrated hereinafter.

7.3.3 Boundary conditions

In civil engineering, the encountered problems are usually defined on an unbounded state
space. Nonetheless, for a sake of completeness of this manuscript, we want to consider other
classes of boundary conditions sometimes encountered in stochastic dynamics in other fields
of science.

Unbounded domain

In the standard SPH method, the treatment of boundary conditions is sometimes neglected,
as in astrophysical problems [Lucy 77] which deal with theoretically infinite domains. In
the treatment of free surface boundary conditions, the standard SPH method behaves quite
well, because the deficiency of particles near the boundary acts as a zero pressure condition.
Nevertheless, the term “free surface” is not suitable for this application, because there is no
clear separation between two media as in fluid or solid and the probability density function
is defined everywhere in the state space, with a continuously decreasing pdf in the far field.

In the normalized SPH method, Randles and Libersky [Rand 96] suggest to define the den-
sity of a boundary particle with the kernel summation corrected with regard to the boundary
deficiency. In this method, the definition of boundary particles remains an issue, especially
for large modification of particle distribution compared with the initial one. Furthermore, the
estimation of the gradient is not relevant.

In our context, with only far-field conditions, it is proposed to define an initial continuous
probability distribution on a sufficiently large domain to have surrounding particles with a very
low mass. These peripheral particles introduce implicitly a condition similar to ψ(t,x) → 0
when ‖x‖ → ∞. Their interactions with inner particles of higher masses are limited. So, the
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absence of boundary treatment in the far field may be justified in this manner.

In Section 7.2.3, a discussion has been initiated about the pertinence of dealing with
analytical form of kernel functions to compute statistical moments or exceedance probability.
From (7.3.1), we can understand how fast the smoothing length related to the particle i
evolves in time. Indeed, the ratio between the density of a particle at two time instants
might change by one or several orders of magnitude. The smoothing length is therefore not
necessarily a smoothed field, because huge gradients are encountered, especially in the tails.
Actually, the lack of particles in the tails, playing the role of a pseudo-free surface, is a source
of inaccuracy. Thence, the unity principle is consciously contravened, but it is not involved in
the whole equilibrium of the particles [Lucy 77]. We cannot put up with this approximation,
than coming back to the analytical formulation.

Periodic boundary conditions

In [Lin 04b], the problem of periodic boundary condition is at once introduced with the case
of a one-dimensional diffusion process defined on a circle. In this case, both the probability
density and the flow of probability must be periodic. More generally, the periodic boundary
conditions are often used to simulate large systems (even infinite) by modeling a small piece
of them.

In the context of Fokker-Planck equation, if the periodicity is assumed on the j-th dimen-
sion of the state space, the periodic conditions on the probability field in this case are such
that

ψ(t, x̄ | t0,x0)|x̄j = ψ(t, x̄ | t0,x0)|x̄j+L , (7.3.2)

∂

∂xk
ψ(t, x̄ | t0,x0)

∣∣∣∣
x̄j

=
∂

∂xk
ψ(t, x̄ | t0,x0)

∣∣∣∣
x̄j+L

(7.3.3)

with L the period of the domain, provided x̄ belongs to the boundary and x̄j its j-th com-
ponent. Equations (7.3.2) and (7.3.3) express that the probability density field is equal in x̄j
and x̄j +L and that the flow of probability penetrating the domain at x̄j is equal to the flow
leaving it at the same time.

These conditions are readily transposed into the Lagrangian formalism. Indeed, referring
to the SPH method, it consists in transferring a particle leaving the domain from the border
x̄j + L to x̄j , and vice versa. Therefore, the mass is preserved, as well as the probability
flow, and the probability at the boundary is unchanged. The periodic boundary condition is
introduced thus by connecting physically those boundaries and by maintaining the continuity
of the particle trajectories. However, in the SPH formalism, the interaction between the
particles must also take the periodicity of the domain into account: the distance between two
particles is thus computed knowing the fact that they may interact across boundaries.

Absorbing boundary conditions

The concept of absorbing boundary condition is naturally understood. If a sample function is
bounded by an absorbing condition, a realization of this process is stopped once it reaches this
boundary, also called exit condition. According to [Lin 04b], this realization is “removed” from
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the population of samples, but this interpretation may be fallacious, because this realization
has a role in the population, the role of having reached the boundary or of having left the
resolution domain forever.

Therefore, the probability density on an absorbing boundary is always equal to zero,

ψ(t, x̄ | t0,x0) = 0 (7.3.4)

with x̄ ∈ Rn \ i and i the domain of resolution.

When a particle leaves the domain, its carrying mass is lost, but the interaction with the
other particle is also perturbed. In this case, the use of ghost particles is a way to smooth the
field ψ at the boundary and to maintain the unity principle, as far as possible. We propose to
use the so-called ghost particles of Type II [Liu 03a] constructed with the method illustrated
in Figure 7.5 : for a particle i located within the distance of κhi from the boundary, a ghost
particle is placed symmetrically out of the domain. These ghost particles have the same density
as the corresponding effective particles. The parameters of these particles do not change in
time, because they are just reproduced symmetrically to the boundary at each time step. More
details about the treatment of boundary conditions can be found in [Rand 96, Mona 05].

Figure 7.5: Ghost particles constructed symmetrically with the boundary.

7.4 Description of the algorithm

Initially, the particles are regularly spread out and the pdf is calculated at the position of
each particle. A regular distribution allows to choose a smoothing length h for each particle
that ensures an adequate number of neighboring particles in the compact support. Masses µj
are initialized as in Section 7.3.1 and are kept constant throughout the resolution.

In a time loop, the computation of the conservation equation (7.2.6) and the gradient of
the pdf (3.3.27) requires to identify (as fast as possible) the particles contained in the compact
support of a given particle. This operation becomes time consuming if the number of particles
is too important. The implemented algorithm, presented hereafter, is based on a cell mapping
[Liu 03a], which is commonly used in SPH applications. Our aim has not been to improve
or optimize existing method, but to use a readily implemented method readily extendable to
higher-dimensional space.
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Figure 7.6: Cell mapping in a 2-dimensional state space.

To compute interactions, particles are first sorted in cells, as illustrated in Figure 7.6. This
mapping consists in dividing the state space in a number of cells or n-dimensional hypercubes.
In some applications, the edge-size of hypercubes is chosen as the maximum smoothing length
h over all particles. This choice is adequate only if the density in the system is sensibly
homogeneous. In the case of probability density evolution, there are large differences between
zones of the state space. Therefore, the mapping is constructed with a given number of cells
and the size of edges, identical for each cell, are modified at each time step. The method
consists in exploiting the regularity of the cell map to find the smaller set of cells including
completely the hypercube centered on the particle and with an edge equal to the diameter of
the compact support.

Finally, when the kernel approximations of the fields ψ(x) and ∇ψ(x) are calculated at
each particle position, the velocity field (3.3.26) is evaluated for each particle and the particle
positions are immediately modified according to (3.3.13). At this step, the smoothing length
and the time step are updated according to Equations (3.3.28) and (3.3.22), respectively.



Chapter 8

Applications

8.1 Verification and validation

8.2 Nonlinear single DOF systems

8.3 Probability of exceedance of a hysteretic oscillator

8.4 Examples from other scientific disciplines

Purpose of the chapter

In order to illustrate extensively the applicability of our method, we start by a validation
of our algorithm on a 2-DOF linear system. Then, we deal with three examples more
related to civil engineering problems: a nonlinear viscous damper set up on a structure,
the pounding between two adjacent buildings and an elasto-plastic oscillator. Finally, to
give other perspectives to this work, we deal with three other problems related to other
scientific disciplines: a randomly excited pendulum, the Lorenz attractor and a random
ecosystem model.

159
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8.1 Verification and validation

First, to illustrate and validate the method, a dimensionless SDOF linear oscillator is consid-
ered,

ẍ+ 2ξẋ+ x = W (8.1.1)

where W (t) is a normalized Gaussian δ-correlated process with zero mean and E[W (t)W (t+
τ)] = δ(τ) and ξ is the damping ratio equal to 0.1 in this example. The exact solution of
this problem, aiming at determining the time evolution of first and second-order moments
is obtained for instance with Gaussian closure method [Lin 04b]. The initial uncorrelated
Gaussian distribution has mean position and mean velocity equal to 1 and standard deviations
of position and velocity equal to 0.1, in order to demonstrate that the developed method is
able to cope with initial conditions with few dispersion.

(a) (b)

Figure 8.1: Reconstructed probability density function ψ and position of particles at (a)
t = 1.3 and (b) t = 10 for Np = 1681.

Figure 8.1 presents two snapshots at different times of the pdf reconstructed from the
particle positions. The particles automatically move from the initially meshed zone to the
subspace of interest at any time step and they finally reach the steady-state distribution.

In order to study the accuracy of the method, the FPK equation is solved for different
numbers of particles Np and a Courant number Cr fixed to 0.2. The relative error on the pdf
is calculated for each time step as

Eψ =
‖< ψ > −ψana‖2
‖ψana‖2

=

√∑Np
j=1 |< ψ > −ψana|2j√∑Np

j=1 |ψana|
2
j

(8.1.2)

with ψana(t,x(t)) : R × R2 → R+
0 the analytical solution of the FPK equation related to

(8.1.1). In Figure 8.2-a the time evolution of the error Eψ for three numbers of particles Np is
shown. For a small number of particles, the error Eψ is rather significant in the early transient
phase, but it decreases when Np increases, because the smoothing length decreases.

The second-order moment of x calculated with (3.3.16) is illustrated in Figure 8.2-b. In
the early transient phase, it is well estimated, even with a small number of particles. In the
steady-state distribution, there are less particles in the bulk of the pdf and a larger amount
of particles is necessary for an accurate estimation of the second moment. Nevertheless,
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instead of using (3.3.16), translating the rectangle approximation, a better approach consists
in interpolating pdf values between the values calculated at particle positions and then to
calculate moments with (3.3.14). This operation reduces the difference between the exact
moment and the approximation (calculated with Np equal to 1681), as illustrated in Figure
8.2-b.

(a) (b)

Figure 8.2: Two-dimensional linear system: (a) relative error on the pdf Eψ with respect to
time as defined in (8.1.2), (b) the time evolution of the second-order moment of x.

The reduction of the errors while increasing Np also implies an increase of the computation
time for two different reasons: (i) the evaluation of the particle interaction increases and (ii)
the particles are closer so the time step is reduced with regard to (3.3.22).

(a) (b)

Figure 8.3: Two-dimensional linear system (Np = 1641): (a) influence of Courant number
Cr on the relative error Eψ with respect to time and a forward Euler scheme, (b) the time
evolution of the relative error Eψ for two different integration schemes and two different time
steps.

Figure 8.3 shows the influence of time integration parameters on the error Eψ : the in-
fluence of the Courant number and the integration scheme are illustrated in this example.
Figure 8.3-a compares the error Eψ committed with an Euler explicit scheme and different
Courant numbers. The error is not significantly influenced by this parameter, even if the
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error is less for Courant numbers lower than 0.5. Figure 8.3-b compares the two integration
schemes previously presented. For the comparison, the time step is chosen constant and small
enough to keep the Courant number lower than 1 for the whole computation. As announced
previously, the reduction of the error between an Euler explicit integration scheme and a
leapfrog algorithm is not significant. The residual error on ψ preponderantly depends on the
particle discretization and not on the time integration.

The accuracy and the convergence of the method have been also illustrated with two-
dimensional nonlinear systems, as a Duffing-Van der Pol oscillator in [Cano 11].

8.2 Nonlinear single DOF systems

8.2.1 Probability of exceedance of a nonlinear SDOF oscillator

The transient FPK equation finds a potential interest in seismic design. In this topic, reliability
and probability of failure are usual questions. The estimation of a probability of exceedance
is therefore required. The resolution of FPK equation with SPH method is applied to a
structure damped by nonlinear fluid viscous devices and subjected to seismic loading. Fluid
dampers installed on civil structures are commonly used as energy sinks for seismic protection.
The nonlinear behavior of the damping device deeply influences the response of the structure
[DiPa 07].

The structure is supposed to mainly respond in its first mode and a nonlinear viscous
damper is considered to mitigate the vibrations due to an earthquake. The equation of
motion for the modal coordinate q is

q̈ + 2ξω0q̇ + ηsign(q̇)|q̇|α + ω2
0q = aW (8.2.1)

where ω0 and ξ are the natural circular frequency and the damping ratio of the system,
respectively. The nonlinear viscous force is characterized by the damper exponent α typically
ranging from 0.2 to 1 [Pekc 99] and η the damping coefficient (related to the generalized mass
of the system). The excitation is modeled by a white noise W (t) modulated by a time window
a(t) defined as

a(t) =


(t/t1)

n1 , t ≤ t1
1, t1 < t < t2

exp (n2 (t2 − t)) t2 ≤ t
. (8.2.2)

Thus, the only non-zero element of the diffusion matrix is D22(t) = S0a
2 with E[W (t)W (t+

τ)] = 2S0δ(τ). The approximation of the probability of exceedance Pf developed in Section
7.2.4 is illustrated in this example with an outcome space defined as ΩT = {q ∈ R : |q| > T >
0} with x = [q q̇]T the state vector of the system with T a threshold related to the ductility
of the system.

The parameters have the numerical values: ω0 = π, ξ = 1%, η = 0.25, α = 0.35 and
S0 = 0.2. The time window is characterized by n1 = 1, t1 = 2, n2 = 2 and t2 = 6. The initial
uncorrelated Gaussian distribution has standard deviations equal to 0.15 for q and 0.10 for q̇
and mean values equal to zero. The number of particles is 1650 and the Courant number is
0.8. Initially, particles are regularly arranged in a rectangle with edge sizes of 1.2 and 0.8 in
q and q̇ directions, respectively.
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(a) (b)

Figure 8.4: SDOF system with nonlinear viscous damper (Np = 1650). The probability
of exceedance Pf (a) for the system (8.2.1) is estimated for different thresholds T . The
results obtained by solving FPK with SPH are compared with Monte Carlo (MC) simulations
(105samples). The estimated second-order moments of q and q̇ are compared with simulations
(b) .

Figure 8.4-a shows < Pf > for different thresholds T calculated with FPK equation and
Equation (7.2.13). These results are compared with Monte Carlo simulations (105 samples
and 216 time steps chosen after a convergence study). For the Monte Carlo method, Equation
(8.2.1) is integrated by means of a forward Euler scheme [Kroe 11]. This figure emphasizes the
good agreement between results obtained with both methods, especially for high probabilities
of exceedance. As expected, the convergence of stochastic simulations for low probabilities
(in the order of 10−4) is not achieved. Because the response is not ergodic, a larger number of
simulations is required to obtain accurate results. However, the computation of FPK equation
has required about 11,000 adaptive time steps and a single simulation has covered six orders
of magnitude. Figure 8.4-b shows the estimation of the second-order moments of q and q̇
estimated with (3.3.14) and highlights the ability of the method to capture the structural
and statistical timescales, besides the oscillations of the moments. Some small differences
with simulation results are observed, but the second-order moments of q and q̇ are properly
estimated, despite an order of magnitude of difference between them, because the pdf is more
stretched in the q̇ direction than in the q direction.

8.2.2 Reduced pounding problem

As a second SDOF nonlinear system, we propose to illustrate the method with an example of
pounding risk assessment. Pounding refers to the contact taking place between close buildings
when they are shaken by an intense earthquake. The pounding risk assessment consists in
computing the probability of contact assuming a certain scenario [Barb 10, Barb 13]. In the
literature, this probability measure is limited to transient dynamics of linear systems subject
to a fully coherent excitation and the contact is not taken into account.

Contact can be integrated in the model, but the problem becomes therefore nonlinear.
Different models may be used to integrate the contact between the structures. According
to [Jank 05], the pounding forces may be linear viscoelastic, nonlinear elastic or nonlinear
viscoelastic. In this application, we will consider only nonlinear elastic forces based on a
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Kelvin contact model evolving with a power 3/2 of the penetration. Secondly, we assume that
one of the two buildings is much stiffer than the other one, such that it may be considered as
not deformable. The dimensionless equation of motion, for relative displacement with respect
to the ground, is given by

q̈ + 2ξq̇ + q + β(q − 1)
3/2H(q − 1) = a(t)W (t) (8.2.3)

with H(·) the Heaviside function in order to take into account the unilateral behavior in the
Kelvin nonlinear forces, though the problem remains continuous. The dimensionless formula-
tion is readily obtained by scaling the time with the natural pulsation of the linear oscillator
(β = 0) and the displacements and positions are scaled with respect to the initial gap. The
coefficient β is a dimensionless parameter quantifying the intensity of the nonlinear stiffness.
Obviously, this coefficient is much greater than one.

We propose to study this example inspired from [Jank 05] in order to illustrate a problem
solved with a penalty method. Actually, a particle entering in the domain q > 1 is subject to
large nonlinear forces, inducing an important deceleration and preventing a deep penetration
in the domain. The nonlinear domain can thus be seen as a penalty layer. The damping ratio
ξ is fixed at 0.05 and the white noise intensity at 0.25. The coefficient β is equal to 200 and
1000 in order to illustrate the influence of the nonlinear stiffness on the penetration domain.
We consider the time window (8.2.2) with n1 = 1, t1 = 10, n2 = 2 and t2 = 25.

We are also interested in computing the probability of contact and penetration and its time
evolution. The approximation of the probability of exceedance Pf developed in Section 7.2.4
is illustrated in this example with an outcome space defined as ΩT = {q ∈ R, T ≥ 1 : q > T }
with T a threshold related to the penetration distance.

(a) (b)

Figure 8.5: Pounding problem with Kelvin contact with β = 200 and Np = 2600 (x1 = q,
x2 = q̇). (a) Sketch of the probability density function of q and q̇ at t = 25, final time of
the plateau of the envelope. (b) The probability of exceedance Pf for the system (8.2.3) is
estimated for different thresholds T . The results obtained with SPH are compared with Monte
Carlo (MC) simulations (106 samples) with two different time steps ∆t = 4 ·10−3 (MC-1) and
∆t = 10−3 (MC-2).

The mains results are depicted in Figures 8.5 and 8.6. In Figures 8.5-a and 8.6-a, we show
clearly that some particles penetrate into the domain {q > 1}, but they are stopped by the
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intensity of the nonlinear forces. The Kelvin force and the high values of β explain the shape
of the pdf. Actually, the coefficient β could be chosen significantly greater, but in that case,
there would be almost no chance to overcome the threshold T .

More interesting are the Figures 8.5-b and 8.6-b in which we compute the probability of
exceedance Pf (t) defined in (7.2.12). They are compared with Monte Carlo simulations. We
see the good agreement between the two approaches, but we emphasize also here the problem
of the time step in Monte Carlo simulation and the importance to check the convergence,
especially for contact problems and also because the excitation is a white noise. The SPH
method with 2500 particles is able to cover at least four orders of magnitude in terms of
the total probability which is remarkable. In Figure 8.6-b, the curves obtained with our
method are more erratic; this is explained by the values of the probability mass µj and the
logarithmic axis. Actually, with (7.2.13) we cannot compute a probability lower than the
particles masses. The curves are thus erratic because particles are entering and leaving the
domain ΩT , modifying the probability Pf by their amount of probability. The calculation of
Pf only based on the particle probability masses can be seen as a limitation in the computation
of very low probability, as we cannot compute probability lower than the lowest mass.

(a) (b)

Figure 8.6: Pounding problem with Kelvin contact with β = 1000 and Np = 2600 (x1 = q,
x2 = q̇). (a) Sketch of the probability density function of q and q̇ at t = 25, final time of
plateau of a(t). (b) The probability of exceedance Pf for the system (8.2.3) is estimated for
different thresholds T . The results obtained by solving FPK with SPH are compared with
Monte Carlo (MC) simulations (106samples) with ∆t = 5 · 10−4.



166 CHAPTER 8. APPLICATIONS

8.3 Probability of exceedance of a hysteretic oscillator

As another application in earthquake engineering, the resolution of FPK equation with SPH
method is applied to an SDOF system presenting a nonlinear elastoplastic behavior and
subjected to a transient seismic loading. This example aims at showing that the proposed
method gives accurate information about the tail distribution through a reliability problem,
even in a three dimensional state space.

The equations of motion for a second-order structural system with hysteretic behavior
[Isma 09] are 

q̈ + 2ξω0q̇ + Φ = aW
Φ = ω2

0 (αq + (1− α)z)
ż = q̇ (A− (βsign(q̇z) + γ) |z|n)

(8.3.1)

with q the dimensionless coordinate of the SDOF system, ξ the structural damping ratio and
ω0 the natural circular frequency. The excitation is a white noise W (t) (E[W (t)W (t+ τ)] =
2S0δ(τ)) modulated by a time window a(t) and Φ(q, z) is the elastoplastic restoring force.
This force is a convex combination of a linear stiffness component and a hysteretic component
depending on the hardening parameter α. The hysteretic behavior is controlled by the Bouc-
Wen model [Wen 76] characterized by the dimensionless variable z gathering the loading
history and by the four parameters A, γ, β and n [Isma 09]. The outcome space is defined as
ΩT = {q ∈ R : |q| > T > 0} for different values for the threshold T .

In this example inspired by [Lin 04b, Ikho 05], the parameters of the system are chosen as
ω0 = π, ξ = 5%, α = 0.5 and S0 = 1.0 and those of the Bouc-Wen model are A = 1, γ = 0.5,
β = 0.5, n = 1. This set of data provides a significantly nonlinear response. The time window
is chosen as

a(t) = fmax
t

tmax
exp

(
1− t

tmax

)
(8.3.2)

with tmax = 2 and fmax = 1. The initial uncorrelated Gaussian distribution is slightly
dispersed with standard deviations equal to 0.05 and means equal to zero for q, q̇ and z. The
number of particles is 9261 (=213) and the Courant number is 0.8. Initially, particles are
regularly arranged in a cube with an edge size of 0.4, and thus with 21 particles along each
dimension.

This example shows in a three-dimensional state space that information about the tail
distribution is accurately obtained with a reasonable number of particles during the whole
duration of the earthquake, with a number of time steps limited to 35000. With only one
run, the proposed method covers six orders of magnitude in the probability of exceedance,
see Figure 8.7-d, whilst the Monte Carlo simulation, presented here with 5 · 105 runs, poorly
estimates probabilities lower than 10−5. It would require approximately 108 runs to capture
probabilities less than 10−6.

In the SPH simulation, the number of particles can be increased to smooth the mass
distribution and consequently further ameliorate the estimation of low probabilities of ex-
ceedance. Also these results must be analyzed under the light of the significant dispersion
from the slightly spread initial Gaussian distribution and the probability function illustrated
in Figure 8.7; as an indication the second-order moments of q and q̇ are multiplied by 80
and 500, respectively, for original problems. The main results are extensively discussed and
commented.
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(a) (b)

(c) (d)

Figure 8.7: Probability density function ψ of the elastoplastic oscillator calculated with 9261
particles at time (a) t = 0.2 (b) t = 1.2 (c) t = 3.6 corresponding to the maximum variance.
The darker the larger pdf, the lighter the lower pdf. Side and bottom views are projections on
lateral faces; they illustrate the saturation effect on z ∈ [−1; 1] although the solution space is
R3. (d) Probability of exceedance Pf for system (8.3.1) estimated for different thresholds T .
Results obtained with SPH are compared with Monte Carlo (MC) simulations (5·105samples).

Figures 8.7-a, -b and -c show the time evolution and the dispersion of the three-dimensional
pdf, from initial condition to their maximum dispersion (t=3.6s). The more the probability
is stretched compared with the initial distribution, the greater the number of particles is
required. However, as illustrated in Figure 8.7-d, very good accuracy on the probability of
exceedance for ΩT is achieved with few particles.

Besides this apparent robustness regarding the adaptation of the particle field from initial
to transient states, the SPH algorithm proves to be efficient in containing the particles in the
authorized subspace of the response domain. Indeed, the history variable z in this model is
known to be limited to z ∈ [−A;A]. Although no specific boundary condition is imposed, i.e.
particles are thus free to move in the state space according to the governing equations, the
SPH algorithm contains particles in the subspace limited by planes z = ±A, as shown by the
S-shaped projection of the pdf in the (q, z) plane.

These examples illustrating well-known mechanical and civil engineering applications show
that the resolution of the FPK equation with SPH may be seen as an interesting alternative
to simulation methods.
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8.4 Examples from other scientific disciplines

In this Section, some complementary examples are given in order to demonstrate the appli-
cability of the method in other fields of science. We propose to deal with three examples.
A nonlinear pendulum randomly excited by a white noise is first studied in three different
configurations. The second example is the random Lorenz oscillator, chosen to show the
adaptability of the method to effectively cope with initial three-dimensional pdf degenerating
into a surface pdf. Finally, the Lotka-Volterra prey-predator system is used to highlight the
crucial interpretation of the stochastic integral before solving the FPK equation.

8.4.1 Randomly excited pendulum

In this Section, a pendulum randomly excited is studied in three different configurations in
order to illustrate problems with periodic and reflective boundaries. The equation of motion of
a nonlinear random pendulum subject to additive excitation (by opposition to multiplicative)
is given by

θ̈ + 2ξω0θ̇ + ω2
0 sin θ = W (t) (8.4.1)

where θ(t) is the angle between the pendulum and the gravity reference (vertical line θ = 0)
as illustrated in Figures 8.8-a and -b, ω0 denotes here the natural pulsation of the oscillator
and ξ is a damping ratio. Figure 8.8-a shows the pendulum excited at its support, free to
move from −π to π, while Figure 8.8-b shows the same pendulum but the rotation are limited
to vary in [−θc, θc] by two walls. The role of these walls is adapted in the following in order
to illustrate the way to manage different boundary conditions. First, they are considered as
absorbing boundaries, i.e. a trajectory reaching a wall is directly stopped. Secondly, inelastic
contact is considered together with a restitution coefficient e.

(a)

W(t)

q

(b)

q

q

c
qc

W(t)

(c)

q

q

-p p

0

Figure 8.8: (a) Pendulum under additive random excitation. (b) Pendulum with walls limiting
the rotations. (c) Concept of periodic boundary condition applied to the pendulum and
continuity of the trajectories.

Periodic boundary condition

First, we focus on the unbounded periodic pendulum depicted in Figure 8.8-a. With regard
to FPK equation, the difficulty to deal with this system starts when complete loops occur,
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meaning that the pendulum oscillates out of the homoclinic orbit of nonlinear deterministic
dynamics. In this case, the angle θ(t) : R+ 7→] − π, π] crosses the boundary between −π
and π (in one way or another) introducing a discontinuity in the mathematical representation
of the response. This discontinuity is not physical and pertains only to an inappropriate
representation of the rotation angle in ]− π, π]. In fact, a periodic boundary condition must
be imposed between θ = π and θ = −π, to ensure that the pdf is equal for these two angles
at any time. This periodicity condition may be easily explained by use of the geometrical
considerations shown in Figure 8.8-c : a trajectory of this oscillator is described by a “point”
moving on the surface of a cylinder. From this view, there is actually no discontinuity, because
the particle does not “feel “ the crossing of the boundary.

With respect to SPH method, the FPK equation obviously cannot be solved in an infinite
domain like in the previous examples. Indeed, a probability associated with an angle θ is
actually related to mod(θ, 2π). However, the Lagrangian formalism allows to avoid the dis-
continuity in π, while other artifact are employed in a Eulerian formalism (like a penalisation).
Hence, a particle crossing “numerically” the boundary at a time t? from θ(t?) = −π + ε1 to
θ(t? + ∆t) = −π − ε2 (ε1, ε2 > 0) is readily transposed from θ(t?) to θ(t? + ∆t) = π − ε2,
with the same velocity. The same explanation applies around π. The interaction between the
particles must take the following fact into account: the distance between two particles is thus
computed with the smaller arch of circle over the cylinder. Furthermore, a particle i at a posi-
tion θi may have an influence domain crossing the periodic boundary, as illustrated in Figure
8.9. With this short explanation, we understand the advantage of a Lagrangian description
of the FPK equation. The periodic boundary condition is readily introduced by connecting
physically those boundaries and by maintining the continuity of the particle trajectories.

p p

Figure 8.9: Sketch of the particle interaction in a periodic domain. The compact support is
continuous through the boundary.

The main results are shown in Figure 8.10. The pdf of (θ, θ̇), obtained with the SPH
method (Np = 1876 particles, Cr = 0.8, 20000 adaptive time steps) and Monte Carlo simula-
tion (106 samples, ∆t = 10−3s), at three different times are depicted. The natural pulsation
ω0 is equal to 1rad/s, while the damping ratio ξ is set equal to 0.1. The initial uncorrelated
Gaussian distribution is centered on the vertical position and the standard deviations of angle
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and angular velocity equal to 0.1 rad and 0.1 rad/s, respectively. The intensity of the white
noise DW is fixed to 5.0m2s−2.

(a) (b)
-p p

(c) (d)

(e) (f)
-p p

Figure 8.10: Pendulum with large amplitudes. SPH resolution (left column) with Np = 1876.
Monte Carlo simulation with 106 samples and ∆t = 10−3s (right column). Probability density
function ψ(θ, θ̇) at the time t = 1s (a,b), t = 2s (c,d) and t = 4s (e,f).

In Figure 8.10, the SPH results agree the trend obtained with Monte Carlo simulations,
though 106 samples are not sufficient to converge to the exact pdf. Looking more attentively
in Figures 8.10-c and -d, we notice the continuity of isoprobability lines through the limits of
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the domain. Noticing the maximum of the initial pdf is about 2.0, the method is thus able to
continuously cope with two orders of magnitude for the pdf.

Absorbing boundary condition

The pendulum is now modified according Figure 8.8-b and the rotation is now bounded, i.e.
a trajectory reaching a wall is stopped. In this configuration, the problem is constrained by
two walls for |θ| = θc such that θ(t) : R+ 7→ [−θc, θc]. The walls play the role of absorbing
boundaries. Hence, this example aims to illustrate our method in presence of such boundary
conditions. The characteristics of the pendulum are similar to those of the previous appli-
cation. However, the number of particles is increased to Np = 2436 in order to reduce the
average mass carried by each particle. For the comparison with step-by-step simulations, the
number of samples is equal to 106. The intensity of the withe noise DW is fixed to 0.05 and
0.1m2s−2, in order to show two cases with different probability to hit a wall. The white noise
is also modulated by the time window (8.2.2) with the parameters n1 = 2, n1 = 1/2 and
t1 = 2 and t2 = 8. The modulation of the excitation is motivated by a probabilistic reason:
in a stationary setting, after a time depending on the parameters of the system and of the
excitation, the probability to have hit the wall is equal to one. In a SPH method, this means
that there is no more particle in the domain.

Figure 8.11 emphasizes results allowing to validate our approach for this problem. Indeed,
this figure shows the time evolution of the total probability for the pendulum to oscillate
between the walls. In other words, this is the probability not to have impacted a wall at this
time. In the SPH formalism, this quantity is calculated by readily summing the quantity of
probability (µj) of all the remaining particles, similarly to (7.2.13). Indubitably, the agree-
ment between Monte Carlo simulations and the SPH approach is patent for both white noise
intensities, for small or more important loss of probability. We shall also notice in Figure
8.11-a that the results obtained by the FPK approach does not exactly start at one, which is
due to the discretization of the initial pdf as explained in Section 7.3.1.

(a) (b)

Figure 8.11: Time evolution of the total probability for the pendulum to oscillate between the
walls for DW = 0.05m2s−2 (a) and DW = 0.10m2s−2(b). Comparison between the proposed
SPH method (Np = 2436) and Monte Carlo simulations (106samples).

The computation of this probability is based on the particle positions and the quantities
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of probability and not on the density. The density field influences the diffusion velocity but
not directly the calculated probability. In other words, the computation of the correct amount
of probability still in the domain does not imply that this amount is correctly distributed or
spread out in the domain. In Figure 8.12, we can see the pdf at two different times with the
two approaches. We notice that there is no particle in the low density zone, the reconstructed
pdf is thus equal to zero. In Figure 8.12-c, a sharp discontinuity can be identified, which is
not the case with Monte Carlo simulations. We must point out this drawback of our method
in its current implementation. Some ideas to circumvent this limitation would be to split
particles in order to generate new trajectories.

(a) c

c

(b) c

c

(c) c

c

(d) c

c

Figure 8.12: Pendulum with absorbing boundary with θc = π/4 and DW = 0.05m2s−2. SPH
resolution (left column) with Np = 2436. Monte Carlo simulation with 106 samples and
∆t = 10−3s (right column). Probability density function ψ(θ, θ̇) at the time t = 4s (a-b) and
t = 8s (c-d).
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Reflective pendulum

In this third configuration, the pendulum is still constrained as previously explained, but it
is now reflected. When the pendulum impacts one of the walls at a time t?, the angle is
unchanged (the wall is not deformed), but the velocity becomes θ̇(t? + ε) = −eθ̇(t?) (ε > 0)
with e a restitution coefficient. This mechanical boundary condition expresses that a pendulum
trajectory reaching the border is reflected from it, back into the simulation domain. In the
SPH formalism, the reflection condition is implemented with the same philosophy than in the
periodic domain. Indeed, a particle i impacting the wall θc is transported in the state space
from the position (θc, θ̇(t

?))i to (θc,−eθ̇(t?))i, thanks to the Lagrangian formalism.
Other adaptations must be now formulated, because the problem is here discontinuous.

The Fokker-Planck equation can be written as usual, even if the drift vector or the diffu-
sion matrix are discontinuous (discontinuity of the first kind) [Stra 65]. In this case, another
adaptation is required : the domain of interaction between particles is also discontinuous. A
particle impacting a wall and transported in the state space still interacts with some of its
previous neighbors, because the compact support also becomes discontinuous. The implemen-
tation of this discontinuity in the interaction is illustrated in Figure 8.13.

This is our interpretation of the conservation of the probability flow given in [Stra 65].
Nonetheless, some drawbacks have been encountered as shown in Figure 8.14. The comparison
with Monte Carlo simulation highlights the lack of accuracy at the limits of the domain. This
is surely a source of further improvements and developments. In our opinion, this case is really
particular and the difficulties encountered here do not ruin the proposed method. Contrary,
it is a source of future investigations.

c

c
-

j

i j
-e

i
-e

i

j

Figure 8.13: Sketch of the particle interaction in discontinuous domain. The compact support
is discontinuous through the reflection line with the restitution coefficient e.
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(a) (b)

(c) (d)

Figure 8.14: Reflective pendulum with θc = π/4 and DW = 0.05m2s−2. SPH resolution (left
column) with Np = 2436. Monte Carlo simulation with 106 samples and ∆t = 10−3s (right
column). Probability density function ψ(θ, θ̇) at the time t = 1s (a-b) and t = 2s (c-d).
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8.4.2 Lorenz attractor

In this second example, the Lorenz attractor [Khal 02], a three-dimensional nonlinear oscilla-
tor, is studied. Governing equations are

ẋ = σ(y − x) +W1

ẏ = ρx− y − xz +W2

ż = xy − βz +W3 (8.4.2)

with σ = 10, ρ = 28, β = 8/3 and W1,W2,W3 three independent unit Gaussian δ-correlated
noises with E[Wi(t)Wj(t + τ)] = δijδ(τ). This example allows to present the method on
a more complex system. Figure 8.15 illustrates the positions of the 9261 particles in the
three-dimensional state space at four time steps. The use of different colors is a didactic
way to represent the density associated with each particle. This example shows how the
particles initially regularly spread out can produce complex distributions. Starting from a
Gaussian initial distribution, particles move in the three-dimensional space to finally produce
the steady-state distribution, i.e. the butterfly wings of the Lorenz attractor.

Figure 8.15: Probability density function ψ of Lorenz oscillator calculated with 9261 particles
at four different time steps: (a) t = 0.01, (b) t = 0.2, (c) t = 0.5 and (d) t = 3.0. The darker
the larger pdf, the lighter the lower pdf.
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This example shows the adaptability of the method to follow a pdf with large distortions
compared with the initial distribution and to manage the interaction between particles when
their relative distance is reduced. The Eulerian kernel also shows its interest in the present
application. The particles are initially distributed in a cube, then they are chaotically divided
into two groups. This fact highlights the capability of the method to deal with very low
density zones and with distribution becoming discontinuous. In the steady state, the particles
are moving on a surface and the interaction pattern has been significantly changed compared
to the regular initial state.

It is now clear that moving particles provide an interesting way to represent the zones of
the state space with higher density using a limited number of degrees of freedom whereas mesh-
based methods would require to mesh a substantially larger volume. About the computation
time, the CPU time for one iteration with 9261 particles is about one second (single processor
2.3GHz Intel i5); about 30000 steps have been performed in total for this simulation.

(a) (b)

Figure 8.16: Time evolutions of the (a) second-order and (b) sixth-order moments of z with
SPH method. Comparison with Monte Carlo simulation : (a) 5000 samples, (b) 30000 and
50000 samples.

Figure 8.16 shows the time evolution of the second-order and sixth-order moments of
the state variable z calculated with (3.3.16). The comparison with Monte Carlo simulations
highlights the validity of the rectangle approximation of moments for a reasonable number of
particles. Of course, the calculation of the whole pdf provides a wider panel of information
about the response of the random system, in particular about cross-moments.

The accurate representation of a high-order moment suggests an acceptable representation
of the tails of the distribution with a limited number of particles. Also 30,000 samples are
not sufficient for the Monte Carlo simulation to converge in the estimation of the sixth-order
moment.
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8.4.3 Stochastic Lotka-Volterra system

This last example comes back to the discussion initiated in Chapter 2 as it is concerned
with the difference between the Stratonovitch and Itô formalisms to derive the FPK equation
related to a dynamical random system. This is a reason for studying carefully the Lotka-
Volterra system. Moreover, the definition of the diffusion velocity (7.2.3) requires here all the
terms, because the diffusion matrix is not constant in this application.

This dynamical system is famous in biology and ecosystems, because it models the intrinsic
interaction between preys and predators evolving in a shared environment. A self-competition
term in the prey equilibrium is usually introduced to avoid an unbounded growth of those
species. Then, a source of randomness within the milieu may be integrated in the model
by considering stochastic variations in the birth rate of the prey and the death rate of the
predators. All the scientific, historical and mathematical details about this model may be
found in [Cai 04, Cai 07].

The governing equation of the model can be written as{
ẋ1 = x1(a− sx1 − bx2) + ”x1W1”

ẋ2 = x2(−c+ fx1) + ”x2W2”
(8.4.3)

with x1 and x2 the number of preys and predators in the environment, W1(t) and W2(t) two
white noises, such that E[Wi(t)Wj(t + τ)] = Diδijδ(τ) with i = 1, 2 and with a, b, c, f , s
some parameters. According [Okse 03] and the comments in Section 2.1.2, Equation (8.4.3)
is meaningless because a white noise (seen as continuous δ-correlated) is not differentiable
anywhere and the formalism of ordinary differential equation does not apply anymore. The
stochastic integral related to (8.4.3) should be written.

Due to the parametric terms “x1W1” and “x2W2” in (8.4.3), the equivalence between Itô’s
and Stratonovitch’s forms is broken. Applying the Itô differential rule, or the Stratonovitch
definition of the stochastic integral modified by the Wonk-Zakai correction term, the stochastic
differential equation (sde) related to (8.4.3) reads

dX =

[
dX1

dX2

]
=

(
X1 (a− sX1 − bX2) + 1

2D1X1

X2

(
−c+ fX1 + 1

2D2

)
+ 1

2D2X2

)
dt+

( √
D1X1 0

0
√
D2X2

)
dB

(8.4.4)
with X(t, θ) : R+ × Θ 7→ R+

0 × R+
0 and B(t) gathering the Brownian motions related to two

δ-correlated processes with unit variance. The capital letters indicate symbolically here that
X(t) is a random vector coming from a rigorous definition of sde. In the previous applications,
this distinction was not required.

In Section 7.2, the Lagrangian formalism for the FPK equation is derived from an sde
similar to (8.4.4). The velocity field can thus be written according to (7.2.3), taking into
account that the diffusion matrix depends on X (so the term ∂xiDij 6= 0) and that the
Wonk-Zakai correction terms are added in the drift vector. The velocity field reads

v(X1, X2) =

(
X1 (a− sX1 − bX2) + 1

2D1X1

X2

(
−c+ fX1 + 1

2D2

)
+ 1

2D2X2

)
−
(
D1X1 0

0 D2X2

)
−
(
D1X

2
1 0

0 D2X
2
2

)
∇ψ
2ψ

.

(8.4.5)
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Figure 8.17 shows the pdf obtained with the proposed SPH method and Monte Carlo
simulations. The parameters chosen for the computation are s = 0.1, a = b = 1, c = f = 0.5
and D1 = D2 = 0.1. The initial condition of X is an uncorrelated Gaussian distribution
with the mean position vector [0.5, 0.5] and the standard deviations [0.1, 0.1]. For the SPH
computation, the number Np is equal to 1500 particles and the Courant number Cr is equal
to 0.75. For the digital simulations, 106 samples are considered and a time step of 10−3. In
Figure 8.17, the agreement between the pdf obtained with the two methods is noteworthy. No
essential boundary condition is imposed, because the trajectory must remain in the domain
{X1 > 0, X2 > 0} according to (8.4.3). Therefore, the random internal perturbation should
not be too important at the risk of having negative amount of species. This example highlights
one more time the capability of the method to cope with highly dispersed pdf and to cover a
large zone of the domain of resolution, compared with the initial distribution and the initial
particle location.

(a) (b)

(c) (d)

Figure 8.17: Lotka-Volterra system with the aforementioned parameters. SPH resolution (left
column) with Np = 1500. Monte Carlo simulation with 2 · 106 samples and ∆t = 10−3 (right
column). Probability density function ψ(x1, x2) at the time t = 3 (a-b) and t = 5 (c-d).

Figure 8.18 shows the time evolutions of the second and fourth statistical moments of
both variables x1 and x2. Comparing the moments is also a manner to compare numerically
the results given by both methods. For the second-order moment, the agreement with the
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simulations and the SPH approach with the approximation (7.2.8) is noteworthy. However,
the accuracy is lesser on the fourth-order moment, in spite of a good approximation. This can
be explained by the low concentration of particles in the bulk of the pdf. Furthermore, the
volume ∆Vi attributed to a particle i is assumed to be the ratio between the mass (µi, invariant
in time) and the calculated density (< ψi >). This is obviously a rough approximation that
could be refined. As rough as it is, this approximation gives good results, even for highly
stretched distributions.

(a) (b)

Figure 8.18: Lotka-Volterra system with the aforementioned parameters. Time evolutions of
the (a) second- and (b) fourth-order moments.
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Conclusion

In this part of the dissertation, we explore the solution of the FPK equation with the SPH
method. Some results in two and three dimensions are shown to illustrate the relevance of
the proposed developments and assumptions. To conclude, some advantages, limitations and
possible improvements are summarized.

The Lagrangian formalism makes the method robust to deal with a large range of initial
conditions even very different from the steady-state distribution. With the SPH method,
particles move from the initial to the stationary distribution by themselves. Therefore, only
an accurate representation of the initial condition (even slightly dispersed) must be worried
about. Furthermore, the implemented SPH method ensures the positivity of the pdf. No
equation must be solved in the implementation: the particles are propagated according the
dynamics of the physical system and the FPK formalism.

From the point of view of reliability problems, the method is able to cope with very
low probabilities of exceedance as illustrated in different applications. The estimation of
the moments is also possible; illustrations have shown that high-order moments could be
reasonably well estimated. Moreover, thanks to the Lagrangian formalism, far-field conditions,
periodic conditions or absorbing boundaries are easily implemented. As the interaction among
the particles is not governed by interaction forces, the implementation of ghost particles is
simplified.

Nevertheless, the method has also some limitations. For instance, the stationary distribu-
tion cannot be directly computed (contrarily to finite element methods). For problems with
variable total probability, the SPH method may have some drawbacks, since particles are not
necessary located in low probability zones, even if the total probability is preserved or well
estimated. This observation pertains essentially to the distribution of the total probability is
between the high- and low-probability zones.

For a large amount of particles, the computation of the interaction can turn out to be time
consuming and the recourse to advanced cell mapping or sorting algorithm could be manda-
tory. Finally, we see that some improvements are possible in order to deal with discontinuous
systems and discontinuous interaction domain. In the future, examples in higher-dimensional
state space should be studied, as well. In the field of reliability theory, the SPH implementa-
tion of the backward-Kolmogorov equation, central in first passage problems, is a challenge,
since the Lagrangian form is not readily derived.

Although being mainly exploratory, this part throws light on a new possible use of the
SPH method. As presented throughout this part, the method offers already the possibility to
rapidly and easily extend the formalism to multidimensional spaces and to have an accurate
representation of the transient regime of the FPK equation.
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Finally, to our knowledge, application of the SPH technique to the FPK equation is the
first opportunity to develop this method in a n-dimensional space, with no limitation on n
other than the capacity of the processors.



Part III

Closure
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aaaa

Throughout this work, we have been concerned about the developments and the improve-
ments of both analytical and numerical methods to perform nonstationary probabilistic anal-
ysis. We have successively explored two different perspectives, at two different scales, to
compete against Monte Carlo simulation.

First, we have focused on the evolutionary spectral analysis, together with Gaussian equiv-
alent linearization, of large dimensional structures subject to coherent random loads. Then, we
have applied the smoothed particle hydrodynamics method, a numerical Lagrangian method,
to solve the famous, but no less dreaded, Fokker-Planck equation. Since these two subjects
are clearly separated in the field of probabilistic analysis, we have endeavored in this work to
explore them independently of each other in order to improve them in accordance with their
own limitations and own fields of applications.

The first part of the work is more related to usual structural dynamics problems encoun-
tered in civil engineering. We have aimed at developing a method that could be applied
by practitioners and concerned engineers to efficiently perform nonstationary probabilistic
analysis. At different steps of our developments, we have used relevant results obtained by
means of perturbation methods, like asymptotic expansion or multiple scales approach. We
have emphasized that these methods can be used first to justify some assumptions concern-
ing structural dynamics, and then to build up a semi-analytical procedure that now makes
evolutionary spectral analysis affordable for large civil engineering structures.

The second part of the work, more exploratory, is focused on small size systems. We
have been concerned not to limit our investigations at the computation of the probability
function, but also to apply our method to academic reliability problems. We have highlighted
that the Lagrangian formalism presents many advantages to deal with vanishing far-field
boundary conditions, to maintain the positivity of the probability density field and to ensure
the conservation of the total probability. As shown in this work, the SPH method also offers
a formalism readily applied to high-dimensional problems.

While having no claim of having exhaustively covered the topic of nonstationary random
analysis, this work is an exploratory examination of some well-known concepts with the final
objective to enhance their applicability in engineering and science.
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Appendix A

Addendum to background in
probabilistic analysis

A.1 Approximate Methods - Closure methods

The equivalent linearization is parametric method, since a pdf shape must be defined be-
fore calculating the equivalent terms. The closure methods are non-parametric approximate
methods allowing to estimate higher-order moments of a random process X(t). According to
(3.3.2), recalled here

∂

∂t
E[g(X)] =

n∑
i=1

E

[
ai(t,X)

∂g(X)

∂xi

]
+

n∑
i,j=1

E

[
Dij(t,X)

∂2g(X)

∂xi∂xj

]
, (A.1.1)

the function g(x) is a twice-differentiable deterministic function. Here, we consider it as a
monomial of degree α, such that g(x) =

∏n
i=1 xλii with λi ∈ N for i = 1, . . . n and

∑n
i=1 λi = α.

The expectation operator allows thus to transform this partial differential equation into a lin-
ear ordinary differential equation in terms of the statistical moments of the process X. An
issue in this method is that the statistical moments of order α may depend on higher-order
moments (than α), especially for nonlinear systems. In this case, the set of equations consti-
tutes an infinite hierarchy of linear ordinary differential equations. A mathematical artifact
is therefore required to solve these equations. Nevertheless, for linear systems, moments of
order α only depend on lower order moments. The main discussion concerns thus the method
to close this infinite hierarchy.

Moment equations and closure techniques are well-known methods in probabilistic analysis
(see [Mano 95, DiPa 08]). The first studies on closure techniques are due to Bellman and
Richardson [Bell 68]. They were also the first to state the limitations of closure methods.
Indeed, the effective preservation of moments properties in closure techniques as positivity
of even marginal moments or the verification of the Schwartz inequality in terms of even
cumulants, is not ensured

A famous closure procedure was independently developed and formalized by Wu and Lin
[Wu 84] and by Ibrahim et al. [Ibra 85]. This procedure, so-called cumulant neglect-
closure, consists in assuming that cumulants beyond a given order α (so-called the closure
level) are negligible. Thus, the α-closure gives approximations on cumulants of order less
or equal than α. The relation between cumulants κ[X] and moments E[X] for a Rn-valued
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random vector X(t) is obtained by expressing them in terms of the characteristic function of
X, such that ϕX (u) : Rn 7→ C,

κ[X1, X2, ...Xn] =
1

ιn

[
∂n

∂u1∂u2...∂un
ln (ϕX (u))

]
u=0

(A.1.2)

and

E[X1, X2, ...Xn] =
1

ιn

[
∂n

∂u1∂u2...∂un
ϕX (u)

]
u=0

(A.1.3)

with ι =
√
−1. Furthermore, the characteristic function of X is defined as the Fourier trans-

form of ψX , the probability density function of X, such that

ϕX (u) =

ˆ
Rn
ψX(x) exp

(
ιuTx

)
dx. (A.1.4)

The characteristic function ϕX (u) is therefore expressed in terms of moments and cumulants,
such that

ϕX (u) = exp

 n∑
i1=1

ιui1κ[Xi1 ] +
(ι)2

2!

n∑
i1,i2=1

ui1ui2κ[Xi1Xi2 ] + ...

 (A.1.5)

and

ϕX (u) = 1 +
n∑

i1=1

ιui1E[Xi1 ] +
(ι)2

2!

n∑
i1,i2=1

ui1ui2E[Xi1Xi2 ] + ... (A.1.6)

Although the cumulant neglect closure remains the most famous, its mathematical back-
ground is not really established. This method may origin in the intuitive extension of the
Gaussian properties. Indeed, all the cumulants of order higher than two of a Gaussian vari-
able are equal to zero. However, this method has a major drawback, since it transforms
an infinite set of linear differential equations into a finite set of nonlinear equations. This
mathematical artifact therefore introduces multiple solutions, sensitivity to initial conditions
and possible instabilities. This could be illustrated on a simple Duffing oscillator subject to a
white noise excitation.

Application
To illustrate the cumulant-neglect closure, a SDOF nonlinear oscillator with cubic stiffness

is considered, such that

ẍ+ 2ξω0ẋ+ ω2
0(ε1x+ ε2x

3) = W (t), (A.1.7)

where X(t) = [x1 x2]T the state space vector and W (t) a δ-correlated process such that
E[w(t)w(t+ τ)] = 2Dwδ(τ). The moment equation yields

d

dt
E
[
xλ1

1 xλ2
2

]
= E

[
λ1x

λ1−1
1 xλ2+1

2 − ω2
0λ2

(
ε1x

λ1+1
1 + ε2x

λ1+3
1

)
xλ2−1

2

−2ξω0λ2x
λ1
1 xλ2

2 +Dwλ2(λ2 − 1)xλ1
1 xλ2−2

2

]
.(A.1.8)
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Due to the term xλ1+3
1 in (A.1.8), the set of moment equations constitutes an infinite hierarchy.

In this illustration, both the intensity of the white noise Dw (equal to 0.1) and the natural
pulsation ω0 are set equal to 1 and the damping ratio ξ is equal to 0.1. Figure A.1 shows the
stationary second-order moment of x, for different closure levels. We notice that the methods
is more accurate for ε1 > 0. Actually, for ε1 < 0, the exact pdf is the classical double-well
pdf, as shown in Figure 6.1-b, which explains this huge difference.
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Figure A.1: Cumulant neglect-closure and Duffing oscillator.

The cumulant-neglect closure presents also some drawbacks. The computation of the
cumulant is cumbersome for large-dimensional systems. Furthermore, the resolution of the
nonlinear set of algebraic equations (in a stationary setting) is difficult due to the existence
of several solutions [Wojt 96]. The algebraic solution may be avoided by solving the set of
differential equations (A.1.8). Nevertheless, the convergence to a stable solution is not ensured,
as shown in Figure A.2. Slightly modifying the initial conditions may induce instability for
higher-order closure levels (e.g.6th-order).
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Figure A.2: Stability vs instability in cumulant neglect-closure for three different closure levels
and two different uncorrelated and centered Gaussian initial conditions (a) (σx, σẋ) = (1.1, 1.1)
and (b) (σx, σẋ) = (1.2, 1.2) .
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Appendix B

Addendum to Part I

B.1 Extension of the background-resonant approximation

First, the integral Iiii,0 is considered. The background component is readily introduced by
adding and subtracting simultaneously a term |(Hd(0))i|

3, such that

ˆ
R

(Hd)i (Hd)i (Sp)ii (H∗d)i dω =
1

ω6
i

ˆ
R

(Sp)ii dω +

ˆ
R

(
(Hd)i (Hd)i (H∗d)i −

1

ω6
i

)
(Sp)ii dω

=
1

ω6
i

(Σp)ii +

ˆ
R
φ(ω) (Sp)ii dω, (B.1.1)

where Σp is the covariance matrix of the generalized forces. The first term is the background
contribution, while the second integral is the resonant one. Two identical and symmetric
contributions to the resonant component are concentrated around the natural frequency ±ωi,
so just one of those is computed for ω > 0. A coordinate η is used to stretch the frequency
content around ωi, such as ω = ωi(1 + ξη). The integral (B.1.1) now reads

ˆ
R
φ(ω) (Sp(ω))ii dω ≈ 2ξiωi

ˆ
R+

φ(η) (Sp(ω))ii dη. (B.1.2)

However, the function φ(η) remains non-integrable on +∞. Since this integral is real-
valued, so the real part of φ(η) is replaced by a local Padé approximation φ̃(η). Everywhere
else, the Padé approximation φ̃(η) is continuous and tends to zero for η tending to 0, +∞ and
−∞.

The resonant contribution is now approximated by

ˆ
R
φ(ω) (Sp(ω))ii dω ≈ 2

ˆ
R
φ̃(η) (Sp(ω))ii ξiωidη. (B.1.3)

Locally, the spectrum Sp,ii is approximated by its first-order Taylor expansion and the integral
(B.1.3) becomes

ˆ
R
φ(ω) (Sp(ω))ii dω ≈ 2

ˆ
R
φ̃(η)

(
(Sp(ωi))ii + ηξiωi

(
S′p(ωi)

)
ii

)
ξiωidη. (B.1.4)

193



194 APPENDIX B. ADDENDUM TO PART I

The remaining integrals can be performed with the residue theorem. The integral Iiii,α with
α > 0 has no background contribution. The same methodology is also applied in order to
obtain simplified expression. Some pertinent results are

Iiii,1 =
π

8ξ2
i ω

4
i

(Sp(ωi))ii , Iiii,2 =
π

8ξiω2
i

(
S′p(ωi)

)
ii
, Iiii,3 =

−π
8ξ2
i ω

2
i

(Sp(ωi))ii . (B.1.5)

B.2 Linear evolutionary spectral analysis - Usefull constants

Constants related to the second correction term of the asymptotic expansion of the impulse
response matrix of a linear structure presented in Section 4.3. The constants for i 6= j 6= k
are given by

(
V′1,1

)
ijk

=
− (V1,1)ij

(Ω+
i − Ω−k )(Ω+

i − Ω+
k )

,
(
V′2,1

)
ijk

= −
(
V′1,1

)
ijk

Ω+
i ,

(
V′3,1

)
ijk

= −
(
V′2,1

)
ijk

Ω+
i

(
V′1,2

)
ijk

=
− (V1,2)ij

(Ω−i − Ω−k )(Ω−i − Ω+
k )

,
(
V′2,2

)
ijk

= −
(
V′1,2

)
ijk

Ω−i ,
(
V′3,2

)
ijk

= −
(
V′2,2

)
ijk

Ω−i

(
V′1,3

)
ijk

=
− (V1,1)ji

(Ω+
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,
(
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ijk
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(
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)
ijk
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(
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(
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)
ijk

=
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,
(
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B.3 Illustration of the convergence of hN

In Section 4.3.2, we highlight that the convergence of the series hN (t) is time dependent. The
criterion ρJ < 1 ensures that the series HN (ω) converges. Therefore, the series hN (t) is also
convergent. We also notice that for short time intervals [0, t], the number of correction terms
N required for a certain accuracy is thus smaller, than for the stationary solution. We provide
now a simple example to illustrate this property.

We study the system described in Section 4.7 with the same characteristics. The parameter
ζ is taken equal to 0.05 and 0.10 in order to create a moderate and strong modal coupling,
with ρJ equal to 0.60 and 0.80, respectively.

Figure B.1 shows the convergence of the elements of HN (ω) for different values of N . For
ρJ equal to 0.6 (ζ = 0.05), two correction terms are sufficient to correctly represent the target
H∞(ω). In the case of ζ = 0.10, more terms are required. These remarks are relevant to the
diagonal (HN )11 and the out-of-diagonal term (HN )12 as well. In Figures B.1-c and -d, just
one term is required, since N = 0 gives the decoupled approximation and N = 2 is identical
to N = 1.
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(a) (b)

(c) (d)

Figure B.1: Convergence of HN (t) for different values of N compared with H∞(ω)

We now investigate how these approximations of HN (ω) influence the impulse response
matrix hN (t). The elements of the matrix h∞(t), supposed to be our reference, are depicted
in Figures B.2-a and -b. Then, the differences between these references and the different
approximations are shown in Figures B.2-c to -d, for the two same values of ζ.

Our purpose is here perfectly highlighted. We clearly see that the differences between the
approximations and the references are smaller at the beginning than at the end. Besides, the
differences increase as time goes by. Therefore, we emphasize the rate of convergence is not
mainly influenced by N on a short time interval.
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(a) (b)

(c) (d)

(e) (f)

Figure B.2: Convergence of hN (t) for different values of N compared with h∞(ω)



Appendix C

Addendum to Part II

C.1 Finite-Element method for FPK equation

In this Section, we highlight the basic notions required to solve FPK equation with FEM
(Finite Element Method). This summary is widely inspired from [Spen 93].

Weak Form of the FPK equation

First, we recall the usual Eulerian form of the FPK equation,

∂ψ

∂t
+

n∑
i=1

∂

∂xi
(ai(x)ψ) =

n∑
i=1

n∑
j=1

∂

∂xi∂xj
(Dij(x)ψ), (C.1.1)

We multiply this equation by a virtual pdf δψ having the same properties of ψ, i.e.

ˆ
Ω
δψdx = 1, and δψ > 0 (C.1.2)

and

δψ → 0 as |x| →+∞. (C.1.3)

Then, left- and right- terms of (C.1.1) are integrated over the entire state space Ω = Rn, such
that

ˆ
Ω

∂ψ

∂t
δψdω +

ˆ
Ω

N∑
i=1

∂

∂xi
(ai(x)ψ)δψdω =

ˆ
Ω

N∑
i=1

∂2

∂x2
i

(Diψ)δψdω. (C.1.4)

After an integration by parts, we have

ˆ
Ω

∂ψ

∂t
δψdω+[

N∑
i=1

ai(x)ψδψ]δΩ−
ˆ

Ω

N∑
i=1

ai(x)ψ
∂δψ

∂xi
dω = [

N∑
i=1

Di
∂ψ

∂xi
δψ]δΩ−

ˆ
Ω

N∑
i=1

Di
∂ψ

∂xi

∂δψ

∂xi
dω.

(C.1.5)
The boundary δΩ has no physical meaning in this context, as we assume an infinite state space.
Therefore, δΩ might represent the infinity in each direction of the state space, i.e. |x| → +∞.
The aforementioned conditions on ψ and δψ allow to cancel some terms in (C.1.5), such that,
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ˆ
Ω

∂ψ

∂t
δψdω +

ˆ
Ω

N∑
i=1

Di
∂ψ

∂xi

∂δψ

∂xi
dω −

ˆ
Ω

N∑
i=1

ai(x)ψ
∂δψ

∂xi
dω = 0. (C.1.6)

Discretization of FPK equation

The residue equation (C.1.6) is discretized over each finite element using the shape function
Nr(x), such as

ψ =

Ne∑
r=1

ψer(t)Nr(x) and δψ =

Ne∑
s=1

δψes(t)Ns(x) .

Therefore, the weak form of FPK equation becomes

Ne∑
r,s=1

{
Rrs

∂ψer
∂t

δψes +Grsψ
e
rδψ

e
s

}
= 0

with the two elementary matrices calculated as

Rrs =

(ˆ
Ωel

Nr(x)(t)Ns(x)dωx

)

Grs =

ˆ
Ωel

(
N∑
i=1

Di
∂Nr(x)

∂xi

∂Ns(x)

∂xi
−

N∑
i=1

ai(x)Nr(x)
∂Ns(x)

∂xi

)
dωx .

For a Q-4 finite element, the shape functions Nr are

Nr =
1

4L2
(L+ (ξ1)r (x− a)) (L+ (ξ2)r (y − b)) ,

where a and b are the center of a considered finite element, L the length of the square (we
suppose square elements) and the vectors ξ1 and ξ2 are

ξ1 = [ −1 −1 +1 +1 ]

ξ2 = [ −1 +1 +1 −1 ].

The global system can be rewritten in a matrix formalism, as

RΨ̇ + GΨ = 0

with Ψ the vector gathering the unknown values of the pdf at the different nodes of the mesh.
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Canor T. and Denoël V., SEMC 2013, 2-4 September, Cape Town, South-Africa
Vibrations of cables with bending stiffness by an asymptotic approach

Canor T., Blaise N. and Denoël V., EACWE 2013, 2-4 July, Cambridge, Great-Britain
Uncoupled Spectral Analysis with non-proportional damping
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Mesures des vibrations de la passerelle de Dohlain-Limbourg, Canor T., Denoël V.
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Les Editions de l’Ecole Polytechnique, 1st Ed., 2011.



208 BIBLIOGRAPHY

[Grig 00] M. Grigoriu. “Equivalent linearization for systems driven by Lévy white noise”.
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