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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

Multi-scale modelling: How? 

ε ?σ
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

 

 

 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

Multi-scale modelling: How? 
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used to define the BCs 

• Upscaling: s is known from the reaction forces 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

Multi-scale modelling: How? 
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used to define the BCs 

• Upscaling: s is known from the reaction forces 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

 

– Advantages 

• Accuracy 

• Generality 

– Drawback 

• Computational time 

Multi-scale modelling: How? 

Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, …  
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• Mean-Field Homogenization 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used as input of the MFH model 

• Upscaling: s is the output of the MFH model 

 

– Micro-scale 

• Semi-analytical model 

• Predict composite meso-scale response  

• From components material models 

– Advantages 

• Computationally efficient 

• Easy to integrate in a FE code (material model) 

– Drawbacks 

• Difficult to formulate in an accurate way  

– Geometry complexity 

– Material behaviours complexity 

Multi-scale modelling: How? 
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Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 

95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, … 



CM3 2014 -   Workshop “Multiscale simulations”      -    10 

Strain softening of the microscopic response 

• Finite element solutions for strain softening problems suffer from:  

– The loss the uniqueness and strain localization 

– Mesh dependence  

 

 

 

 

 

 

 

 

• Requires a non-local formulation of the macro-scale problem 

 

 

 

The numerical results change with the size of 

mesh and direction of mesh 
Homogenous unique solution 

  

Lose of uniqueness 

Strain localized 

The numerical results change without 

convergence 
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Multi-scale simulations with strain softening 

• Two cases considered 

– Composite materials 

• Mean-field homogenization  

• Non-local damage formulation 

 

 

 

 

 

– Honeycomb structures 

• Computational homogenization 

• Second-order FE2  

• Micro-buckling 
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Non-local damage-enhanced mean-field-homogenization 
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• Semi analytical Mean-Field Homogenization 

– Based on the averaging of the fields  

 

 

– Meso-response 

• From the volume ratios (                    ) 

 

 

 

 

 

• One more equation required 

 

– Difficulty: find the adequate relations 

 

 

 

 

 

Non-local damage-enhanced mean-field-homogenization 
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• Mean-Field Homogenization for different materials 

– Linear materials 

• Materials behaviours 

 

 

 

• Mori-Tanaka assumption 

• Use Eshelby tensor 

 

      with 

– Non-linear materials 

• Define a Linear Comparison Composite 

• Common approach: incremental tangent 

 

 

 

 

 

Non-local damage-enhanced mean-field-homogenization 
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Non-local damage-enhanced mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 
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Non-local damage-enhanced mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 

– Local damage model 

• Apparent-effective stress tensors 

• Plastic flow in the effective stress space 

• Damage evolution 
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Non-local damage-enhanced mean-field-homogenization 

• Finite element solutions for strain softening problems suffer from:  

– The loss the uniqueness and strain localization 

– Mesh dependence  

 

 

 

 

 

 

 

 

• Implicit non-local approach [Peerlings et al 96, Geers et al 97, …] 

– A state variable is replaced by a non-local value reflecting the  interaction between 

neighboring material points  

 

 

– Use Green functions as weight w(y; x)   

     New degrees of freedom 

 

The numerical results change with the size of 

mesh and direction of mesh 
Homogenous unique solution 

  

Lose of uniqueness 

Strain localized 

The numerical results change without 

convergence 
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Non-local damage-enhanced mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 

– Local damage model 

• Apparent-effective stress tensors 

• Plastic flow in the effective stress space 

• Damage evolution 

– Non-Local damage model 

• Damage evolution 

• Anisotropic governing equation 

• Linearization 
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• Problem 

– We want the fibres to get unloaded during 

the matrix damaging process 

• For the incremental-tangent approach  

 

 

• To unload the fibres (             ) with such 

approach would require  

• We cannot use the incremental tangent MFH 

– We need to define the LCC from another 

stress state 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Non-local damage-enhanced mean-field-homogenization 

0I ε

0alg
I C

  0

algalg

I :,)1(,I
I0

εCCBε  De

matrix: 

inclusions 

composite 

σ

ε

alg
IC

alg
0C

matrix: 0σ̂

0σ

Iε 0εε



CM3 2014 -   Workshop “Multiscale simulations”      -    20 

• Idea 

– New incremental-secant approach 

• Perform a virtual elastic unloading from 

previous solution 

– Composite material unloaded to reach 

the stress-free state 

– Residual stress in components  

 

Non-local damage-enhanced mean-field-homogenization 
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• Idea 

– New incremental-secant approach 

• Perform a virtual elastic unloading from 

previous solution 

– Composite material unloaded to reach 

the stress-free state 

– Residual stress in components  

 

• Apply MFH from unloaded state 

– New strain increments (>0) 

 

 

– Use of secant operators 

 

 

– Possibility of have unloading 

  

Non-local damage-enhanced mean-field-homogenization 
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• New results for damage 

– Fictitious composite 

• 50%-UD fibres 

• Analyse phases behaviours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Non-local damage-enhanced mean-field-homogenization 
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• Mesh-size effect 

– Fictitious composite 

• 30%-UD fibres 

• Elasto-plastic matrix with damage 

– Notched ply 

   

Non-local damage-enhanced mean-field-homogenization 
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• Laminate plate with hole 

– Carbon-fibres reinforced epoxy 

• 60%-UD fibres 

• Elasto-plastic matrix with damage 

– [-452/452]S staking sequence 

   

Non-local damage-enhanced mean-field-homogenization 

40 220 

300 

4.68±0.05 

39.60±0.35  O13 
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• Laminate plate with hole (2) 

– Carbon-fibres reinforced epoxy 

• 60%-UD fibres 

• Elasto-plastic matrix with damage 

– [-452/452]S staking sequence 

   

Non-local damage-enhanced mean-field-homogenization 
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Computational homogenization for cellular materials 
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• Challenges 

– Micro-structure 

• Not perfect with non periodic mesh 

 

How to constrain the periodic boundary 

conditions? 

 

 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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• Challenges 

– Micro-structure 

• Not perfect with non periodic mesh 

 

How to constrain the periodic boundary 

conditions? 

 

• Thin components 

• Experiences micro-buckling 

 

How to capture the instability? 

 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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• Challenges 

– Micro-structure 

• Not perfect with non periodic mesh 

 

How to constrain the periodic boundary 

conditions? 

 

• Thin components 

• Experiences micro-buckling 

 

How to capture the instability? 

 

– Transition  

• Homogenized tangent not always elliptic 

• Localization bands 

 

How can we recover the solution unicity 

at the macro-scale? 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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• Challenges 

– Micro-structure 

• Not perfect with non periodic mesh 

 

How to constrain the periodic boundary 

conditions? 

 

• Thin components 

• Experiences micro-buckling 

 

How to capture the instability? 

 

– Transition  

• Homogenized tangent not always elliptic 

• Localization bands 

 

How can we recover the solution unicity 

at the macro-scale? 

– Macro-scale  

• Localization bands 

How to remain computationally efficient 

How to capture the instability? 

 

 

 

 

 

 

 

  

 

 

Computational homogenization for foamed materials 
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• Recover solution unicity: second-order FE2 

– Macro-scale 

• High-order Strain-Gradient formulation  

 

 

• Partitioned mesh (//) 

 

 

– Transition 

• Gauss points on different processors 

• Each Gauss point is associated to 

 one mesh and one solver 

 

 

 

– Micro-scale 

• Usual continuum 

 

  

 

 

Computational homogenization for foamed materials 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 

𝐏 ,  𝐐  

𝜕𝐏 

𝜕𝐅 
,

𝜕𝐏 

𝜕(𝐅 ⊗𝛁)
,  

𝜕𝐐 

𝜕𝐅 
,

𝜕𝐐 

𝜕(𝐅 ⊗𝛁)
  

𝐅 ,  
𝐅 ⊗ 𝛁 

𝐏 𝑿 ⋅ 𝛁0=0 
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• Micro-scale periodic boundary conditions 

– Defined from the fluctuation field 

 

 

 

– Stated on opposite RVE sizes 

 

 

 

 

– Can be achieved by constraining opposite nodes 

 

• Foamed materials 

– Usually random meshes 

– Important voids on the boundaries 

 

• Honeycomb structures 

– Not periodic due to the imperfections 

  

 

 

Computational homogenization for foamed materials 

𝒘 = 𝒖 − 𝐅 − 𝐈 ⋅ 𝑿 +
𝟏

𝟐
𝐅 ⊗ 𝛁𝟎 : (𝑿⊗ 𝑿)  

𝒘 𝑿+ = 𝒘 𝑿−  

 𝒘 𝑿 𝒅𝝏𝑽 = 𝟎
𝝏𝑽−
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• Micro-scale periodic boundary conditions (2) 

– New interpolant method 

 

 

 

 

 

 

 

 

– Use of Lagrange, cubic spline .. interpolations 

 

– Fits for 

• Arbitrary meshes 

• Important voids on the RVE sides 

 

– Results in new constraints in terms of the boundary and control nodes displacements 

 

  

 

 

Computational homogenization for foamed materials 

𝒘 𝑿− = N 𝑿 𝒘𝑘

𝑘

  

𝒘 𝑿+ = N 𝑿 𝒘𝑘

𝑘

 

  N 𝑿 𝒘𝑘

𝑘

𝒅𝝏𝑽 = 𝟎
𝝏𝑽−

 

 

𝑪  𝒖 𝑏 − 𝒈 𝐅 , 𝐅 ⊗ 𝛁𝟎 =0 
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• Discontinuous Galerkin (DG) implementation of the second order continuum  

• Finite-element discretization 

• Same discontinuous polynomial approximations for the 

• Test functions h and  

• Trial functions  

 

• Definition of operators  

 on the interface trace: 

• Jump operator: 

• Mean operator: 

 

• Continuity is weakly enforced, such that the method 

• Is consistent 

•  Is stable 

•  Has the optimal convergence rate 

Computational homogenization for foamed materials 

(a-1)+ (a)+ 

x 

(a+1)- 

F
ie

ld
 

(a+1)+ (a)- (a-1)- 
∙ =∙+ − ∙− 

∙ =
·+ + ∙−

2
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Computational homogenization for foamed materials 

𝑎 𝒖 , 𝛿𝒖  = 𝑎bulk 𝒖 , 𝛿𝒖  + 𝑎PI 𝒖 , 𝛿𝒖  + 𝑎QI 𝒖 , 𝛿𝒖  = 𝑏(𝛿𝒖 ) 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 

• Second-order FE2 method 

– Macro-scale second order continuum 

 

 
– Requires C1 shape functions on the mesh 

– The C1 can be weakly enforced using the DG method 
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• Second-order FE2 method 

– Macro-scale second order continuum 

 

 
– Requires C1 shape functions on the mesh 

– The C1 can be weakly enforced using the DG method 

 

 

 

 

• Usual volume terms 

 

 

 

Computational homogenization for foamed materials 

𝑎bulk 𝒖 , 𝛿𝒖  =  𝐏 𝒖 : 𝛿𝒖 ⊗ 𝛁𝟎 +  𝐐 𝑿 ⋮ (𝛿𝒖 ⊗ 𝛁0 ⊗𝛁0) 𝑑𝑉
𝑉 

 

𝑎 𝒖 , 𝛿𝒖  = 𝑎bulk 𝒖 , 𝛿𝒖  + 𝑎PI 𝒖 , 𝛿𝒖  + 𝑎QI 𝒖 , 𝛿𝒖  = 𝑏(𝛿𝒖 ) 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 
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Computational homogenization for foamed materials 

𝑎PI 𝒖 , 𝛿𝒖  =  

𝛿𝒖 ⋅ 𝐏 − 𝐐 ∙ 𝛁0 ⋅ 𝑵 + 𝒖 ⋅ 𝐏 𝛿𝒖 − 𝐐 𝛿𝒖 ∙ 𝛁0 ⋅ 𝑵 +

𝒖 ⊗𝑵 :
𝛽𝑃
ℎ𝑠

𝐂𝟎 : 𝛿𝒖 ⊗𝑵 
𝑑𝑉

𝜕𝐼𝑉 
 

• Second-order FE2 method 

– Macro-scale second order continuum 

 

 
– Requires C1 shape functions on the mesh 

– The C1 can be weakly enforced using the DG method 

 

 

 
• Weak enforcement of the C0  

– Continuity  

– Consistency  

– Stability  

between the finite elements 

 

 

 

 

– Allows efficient parallelization as elements are disjoint 

 

 

𝑎 𝒖 , 𝛿𝒖  = 𝑎bulk 𝒖 , 𝛿𝒖  + 𝑎PI 𝒖 , 𝛿𝒖  + 𝑎QI 𝒖 , 𝛿𝒖  = 𝑏(𝛿𝒖 ) 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 
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• Second-order FE2 method 

– Macro-scale second order continuum 

 

 
– Requires C1 shape functions on the mesh 

– The C1 can be weakly enforced using the DG method 

 

 

 
• Weak enforcement of the C1 

– Continuity  

– Consistency  

– Stability  

between the finite elements 

 

 

 

 

– Allows efficient parallelization as elements are disjoint 

 

 

Computational homogenization for foamed materials 

𝑎QI 𝒖 , 𝛿𝒖  =  

𝛿𝒖 ⊗ 𝛁𝟎 ⋅ 𝐐 ⋅ 𝑵 + 𝒖 ⊗𝛁𝟎 ⋅ 𝐐 𝛿𝒖 ⋅ 𝑵 +

𝒖 ⊗𝛁𝟎 ⊗𝑵 :
𝛽𝑃
ℎ𝑠

𝐉𝟎 : 𝛿𝒖 ⊗ 𝛁𝟎 ⊗𝑵 
𝑑𝑉

𝜕𝐼𝑉 
 

𝑎 𝒖 , 𝛿𝒖  = 𝑎bulk 𝒖 , 𝛿𝒖  + 𝑎PI 𝒖 , 𝛿𝒖  + 𝑎QI 𝒖 , 𝛿𝒖  = 𝑏(𝛿𝒖 ) 

𝐏 𝑿 ⋅ 𝛁0- 𝐐 𝑿 : (𝛁0 ⊗𝛁0)=0 
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• Capturing instabilities 

– Macro-scale: localization bands  

 

• Path following method on the applied loading 

 

 

• Arc-length constraint on the load increment  

 

 

 
 

 

 

 

 

Computational homogenization for foamed materials 

𝑎 𝒖 , 𝛿𝒖  = 𝜇  𝑏(𝛿𝒖 ) 

ℎ Δ𝒖 , Δ𝜇  =
Δ𝒖 ⋅ Δ𝒖 

𝑋 0
2 + Δ𝜇 2 − Δ𝐿2 = 0 
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• Capturing instabilities 

– Macro-scale: localization bands  

 

• Path following method on the applied loading 

 

 

• Arc-length constraint on the load increment  

 

 

 

– Micro-scale 

• Path following method on the applied boundary 
conditions 

 

 

 

 

 

 

• Arc-length constraint on the load increment  

 

 

 

 

 

 

Computational homogenization for foamed materials 

𝑎 𝒖 , 𝛿𝒖  = 𝜇  𝑏(𝛿𝒖 ) 

𝐏 ,  𝐐  

𝜕𝐏 

𝜕𝐅 
,

𝜕𝐏 

𝜕(𝐅 ⊗𝛁)
,  

𝜕𝐐 

𝜕𝐅 
,

𝜕𝐐 

𝜕(𝐅 ⊗𝛁)
  

𝐅 ,  
𝐅 ⊗ 𝛁 

ℎ Δ𝒖 , Δ𝜇  =
Δ𝒖 ⋅ Δ𝒖 

𝑋 0
2 + Δ𝜇 2 − Δ𝐿2 = 0 

𝑪  𝒖 𝑏 − 𝒈 𝐅 , 𝐅 ⊗ 𝛁𝟎 =0 

𝐅 = 𝐅 0 + 𝜇 Δ𝐅  

𝐅 ⊗ 𝛁𝟎 = 𝐅 ⊗ 𝛁𝟎 0 + 𝜇 Δ 𝐅 ⊗ 𝛁𝟎  
 

ℎ Δ𝒖, Δ𝜇 =
Δ𝒖 ⋅ Δ𝒖

𝑋0
2 + Δ𝜇2 − Δ𝑙2 = 0 



CM3 2014 -   Workshop “Multiscale simulations”      -    47 

• Compression of an hexagonal honeycomb 

 

– Elasto-plastic material 

 

 

 

 

 

• Comparison of different solutions 

 

Full direct simulation  Multiscale with different macro-meshes 

 

 

 

 

 

 

Computational homogenization for foamed materials 
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• Compression of an hexagonal honeycomb (2) 

 

– Captures of the softening onset 

– Captures the softening response 

– No macro-mesh size effect 

 

 

 

 

 

Computational homogenization for foamed materials 



CM3 2014 -   Workshop “Multiscale simulations”      -    49 

• Non-local damage-enhanced mean-field-homogenization 

– MFH with damage model for the matrix material 

– Non-local implicit formulation 

– Can capture the strain softening 

– More in 

• 10.1016/j.ijsolstr.2013.07.022 

• 10.1016/j.ijplas.2013.06.006 

• 10.1016/j.cma.2012.04.011  

• 10.1007/978-1-4614-4553-1_13 

• Computational homogenization for foamed materials  

– Second-order FE2 method 

– Micro-buckling propagation 

– General way of enforcing PBC 

– More in 

• 10.1016/j.cma.2013.03.024 

• 10.1016/j.commatsci.2011.10.017  

• Open-source software 

– Implemented in GMSH 

• http://geuz.org/gmsh/  

 

 

Conclusions 

http://dx.doi.org/10.1016/j.cma.2013.03.024
http://dx.doi.org/10.1016/j.commatsci.2011.10.017
http://geuz.org/gmsh/
http://geuz.org/gmsh/
http://geuz.org/gmsh/

