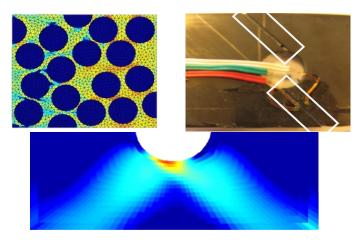
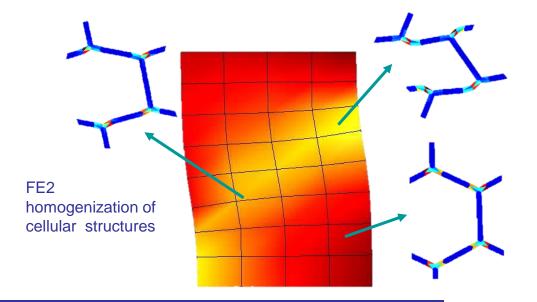
Muti-scale methods with strain-softening: damage-enhanced MFH for composite materials and computational homogenization for cellular materials with micro-buckling

L. Noels, G. Becker, V.-D. Nguyen,

L. Wu, L. Adam (x-Stream), I. Doghri (UCL)



Non-local damage mean-field-homogenization



One-scale modelling

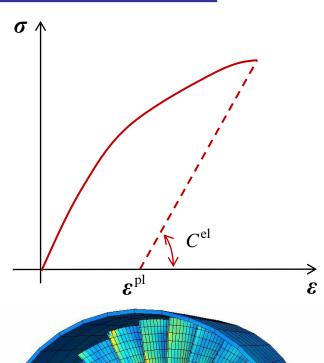
Numerical model

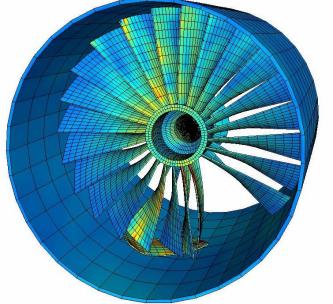
 Resolution of the model equations using a numerical approximation

Finite element model

- One of the most popular numerical method
- Continuum mechanics equations integrated in an average way on a tessellation
- The material law is known
 - Metal at large scale
 - Composites in the linear regime
 - •

and the model can be solved solely at the macroscale



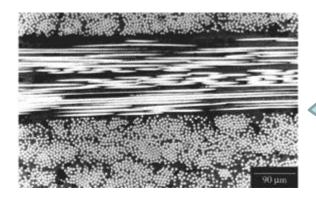


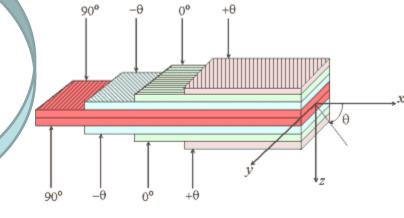
Multi-scale modelling: Why?

Materials in aeronautics

- More and more engineered
- Multi-scale in nature

A350 wing lower cover

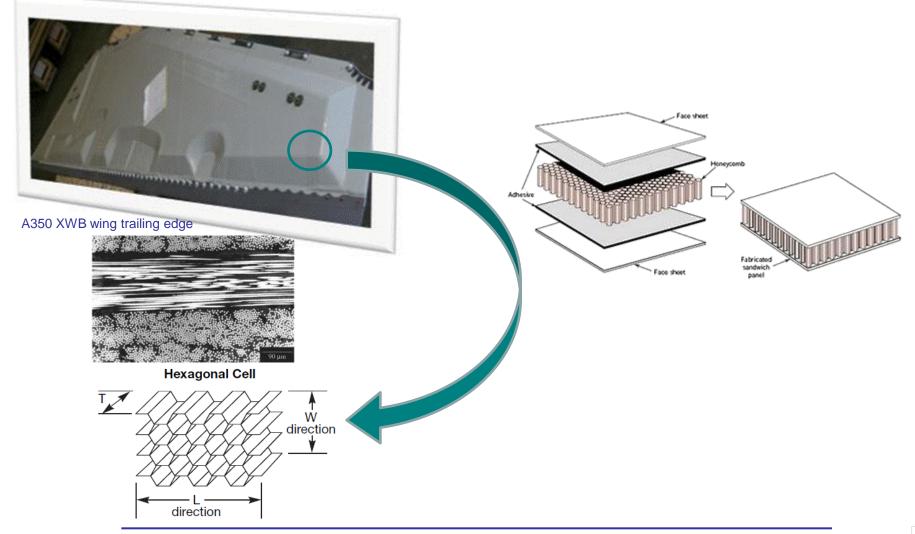




Multi-scale modelling: Why?

Materials in aeronautics (2)

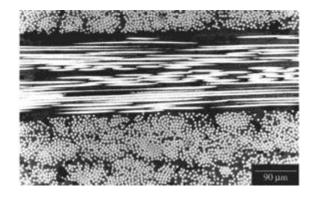
- More and more engineered
- Multi-scale in nature

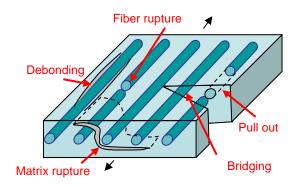


Multi-scale modelling: Why?

Limitations of one-scale models

- Physics at the micro-scale is too complex to be modelled by a simple material law at the macro-scale
 - Engineered materials
 - Multi-physics/scale problems
 -
 - See next slides
- Lack of information of the micro-scale state during macro-scale deformations
 - Required to predict failure
 -
- Effect of the micro-structure on the macrostructure response
 - Fibres distribution ...
 - ...
- Solution: multi-scale models





Content

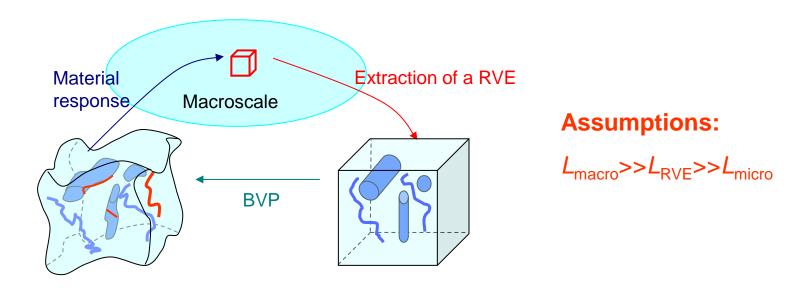
- Introduction
 - Multi-scale modelling: How?
 - Strain softening issues
- Non-local damage-enhanced mean-field-homogenization

Computational homogenization for cellular materials

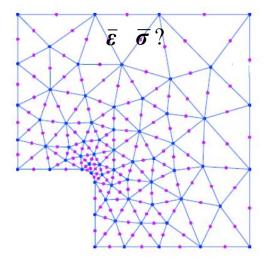
- Other researches
 - DG-based fracture mechanics: blast, fragmentation, ...
- Conclusions

Principle

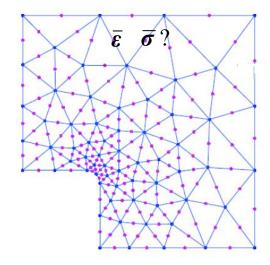
- 2 problems are solved concurrently
 - The macro-scale problem
 - The micro-scale problem (Representative Volume Element)
- Scale transitions coupling the two scales
 - Downscaling: transfer of macro-scale quantities (e.g. strain) to the micro-scale to determine the equilibrium state of the Boundary Value Problem
 - Upscaling: constitutive law (e.g. stress) for the macro-scale problem is determined from the micro-scale problem resolution



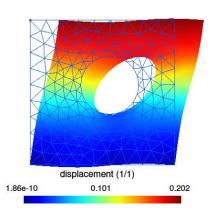
- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought



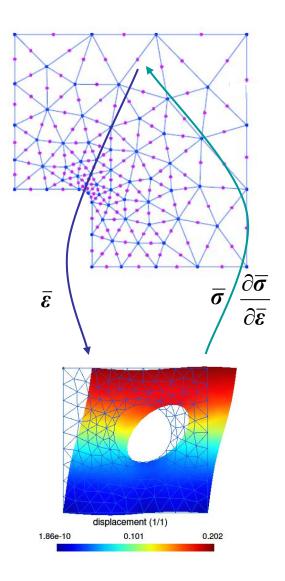
- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought



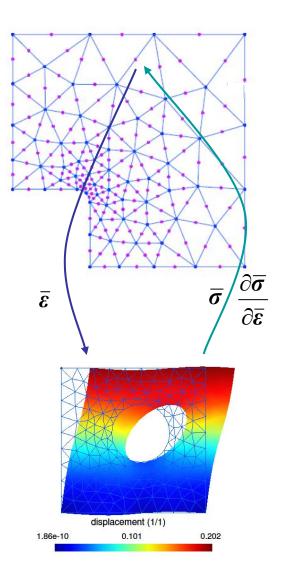
- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions



- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions

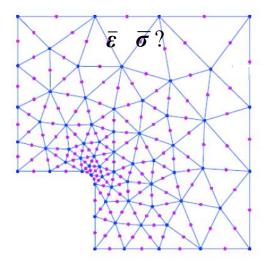


- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions
 - Advantages
 - Accuracy
 - Generality
 - Drawback
 - Computational time



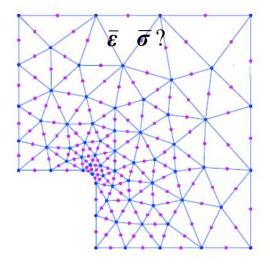
Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, ...

- Mean-Field Homogenization
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

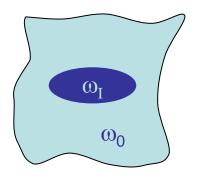


Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

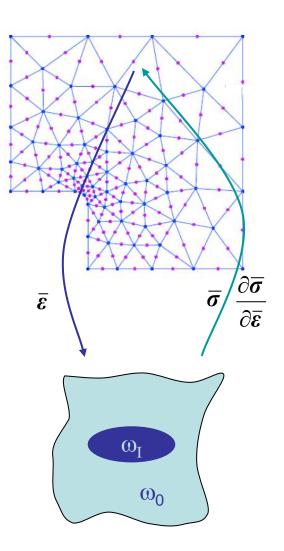


- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models



Mean-Field Homogenization

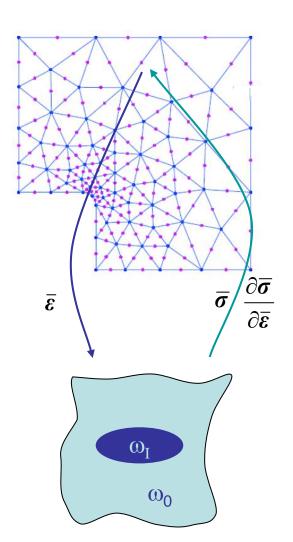
- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: ε is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models



Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: ε is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models
- Advantages
 - Computationally efficient
 - Easy to integrate in a FE code (material model)
- Drawbacks
 - Difficult to formulate in an accurate way
 - Geometry complexity
 - Material behaviours complexity



Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

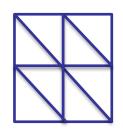
Strain softening of the microscopic response

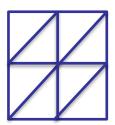
- Finite element solutions for strain softening problems suffer from:
 - The loss the uniqueness and strain localization
 - Mesh dependence

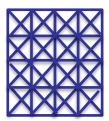
Lose of uniqueness

Strain localized

The numerical results change with the size of mesh and direction of mesh







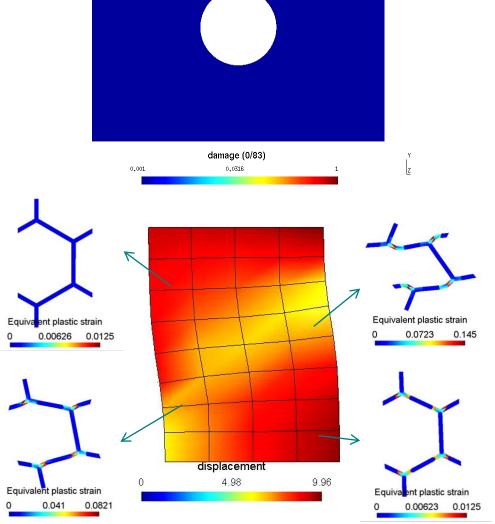
The numerical results change without convergence

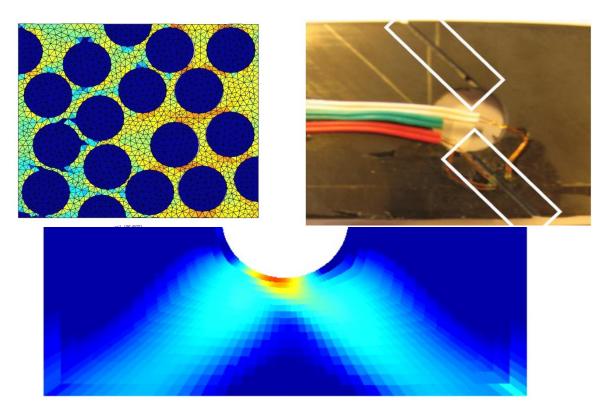
Requires a non-local formulation of the macro-scale problem

Multi-scale simulations with strain softening

- Two cases considered
 - Composite materials
 - Mean-field homogenization
 - Non-local damage formulation

- Honeycomb structures
 - Computational homogenization
 - Second-order FE2
 - Micro-buckling





L. Wu (ULg), L. Noels (ULg), L. Adam (e-Xstream), I. Doghri (UCL)

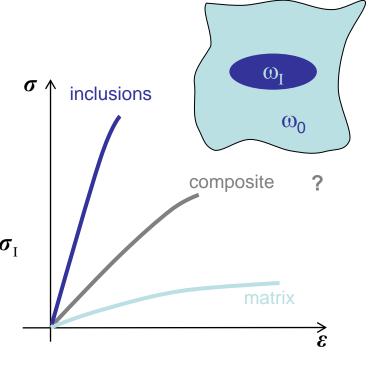
SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.

- Semi analytical Mean-Field Homogenization
 - Based on the averaging of the fields

$$\langle a \rangle = \frac{1}{V} \int_{V} a(X) dV$$

- Meso-response
 - From the volume ratios ($v_0 + v_1 = 1$)

$$\begin{cases}
\overline{\boldsymbol{\sigma}} = \langle \boldsymbol{\sigma} \rangle = v_0 \langle \boldsymbol{\sigma} \rangle_{\omega_0} + v_I \langle \boldsymbol{\sigma} \rangle_{\omega_I} = v_0 \boldsymbol{\sigma}_0 + v_I \boldsymbol{\sigma}_I \\
\overline{\boldsymbol{\varepsilon}} = \langle \boldsymbol{\varepsilon} \rangle = v_0 \langle \boldsymbol{\varepsilon} \rangle_{\omega_0} + v_I \langle \boldsymbol{\varepsilon} \rangle_{\omega_I} = v_0 \boldsymbol{\varepsilon}_0 + v_I \boldsymbol{\varepsilon}_I
\end{cases}$$



One more equation required

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

Difficulty: find the adequate relations

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{I}} = f(\boldsymbol{\varepsilon}_{\mathrm{I}}) \\ \boldsymbol{\sigma}_{0} = f(\boldsymbol{\varepsilon}_{0}) \\ \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0} \end{cases}$$

$$\boldsymbol{B}^{\varepsilon} ?$$

- Mean-Field Homogenization for different materials
 - Linear materials
 - Materials behaviours

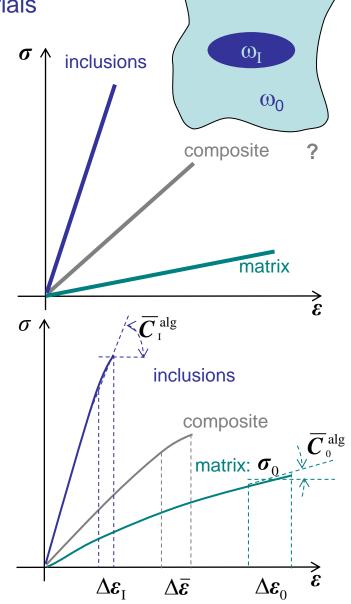
$$\left\{egin{array}{l} oldsymbol{\sigma}_{ ext{I}} = oldsymbol{\overline{C}}_{ ext{I}} : oldsymbol{arepsilon}_{0} = oldsymbol{\overline{C}}_{0} : oldsymbol{arepsilon}_{0} \end{array}
ight.$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathbf{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}} \right) : \boldsymbol{\varepsilon}_{0}$$
with $\boldsymbol{B}^{\varepsilon} = \left[\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_{0}^{-1} : (\overline{\boldsymbol{C}}_{1} - \overline{\boldsymbol{C}}_{0}) \right]^{-1}$

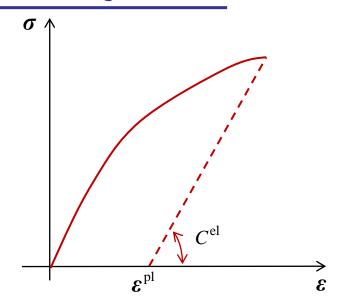
- Non-linear materials
 - Define a Linear Comparison Composite
 - Common approach: incremental tangent

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{1}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$$



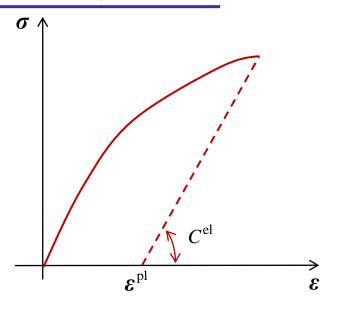
Material models

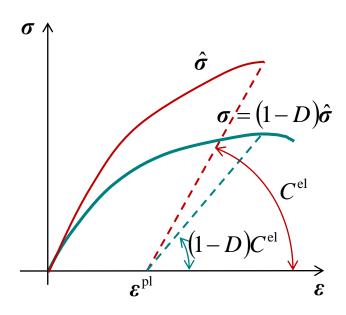
- Elasto-plastic material
 - Stress tensor $\sigma = C^{\text{el}} : (\varepsilon \varepsilon^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta oldsymbol{arepsilon}^{
 m pl} = \Delta p oldsymbol{N}$ & $oldsymbol{N} = rac{\partial f}{\partial oldsymbol{\sigma}}$
 - Linearization $\delta \sigma = C^{\operatorname{alg}} : \delta \varepsilon$



Material models

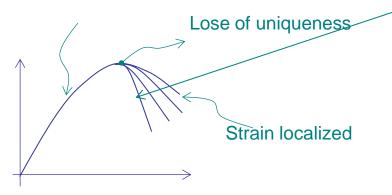
- Elasto-plastic material
 - Stress tensor $\sigma = C^{\text{el}} : (\varepsilon \varepsilon^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \boldsymbol{\varepsilon}^{\rm pl} = \Delta p \boldsymbol{N}$ & $\boldsymbol{N} = \frac{\partial f}{\partial \boldsymbol{\sigma}}$
 - Linearization $\delta \boldsymbol{\sigma} = \boldsymbol{C}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1-D)\hat{\boldsymbol{\sigma}}$
 - · Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$



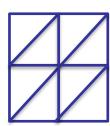


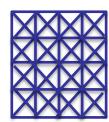
- Finite element solutions for strain softening problems suffer from:
 - The loss the uniqueness and strain localization
 - Mesh dependence

Homogenous unique solution



The numerical results change with the size of mesh and direction of mesh





The numerical results change without convergence

- Implicit non-local approach [Peerlings et al 96, Geers et al 97, ...]
 - A state variable is replaced by a non-local value reflecting the interaction between neighboring material points

$$\widetilde{a}(\mathbf{x}) = \frac{1}{V_C} \int_{V_C} a(\mathbf{y}) w(\mathbf{y}; \mathbf{x}) dV$$

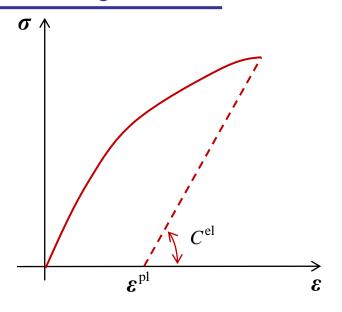
Use Green functions as weight w(y; x)

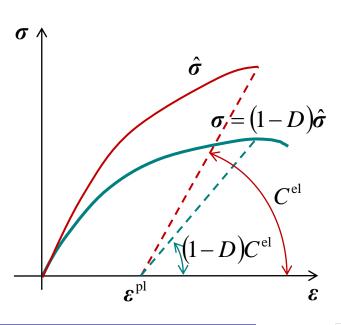
$$\widetilde{a} - c\nabla^2 \widetilde{a} = a$$
 New degrees of freedom

Material models

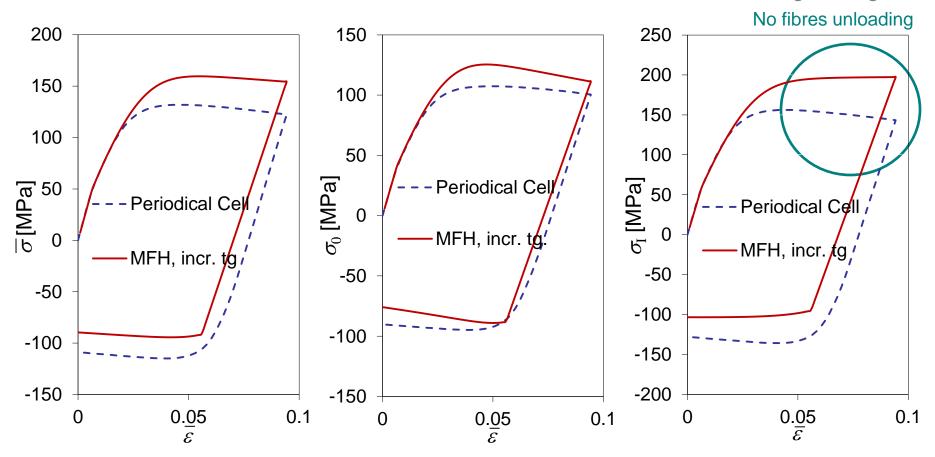
- Elasto-plastic material
 - Stress tensor $\sigma = C^{\mathrm{el}} : (\varepsilon \varepsilon^{\mathrm{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{r} R(p) \le 0$
 - Plastic flow $\Delta {m arepsilon}^{
 m pl} = \Delta p {m N}$ & ${m N} = \frac{\partial f}{\partial {m \sigma}}$
 - Linearization $\delta \boldsymbol{\sigma} = \boldsymbol{C}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1-D)\hat{\boldsymbol{\sigma}}$
 - · Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$
- Non-Local damage model
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta \widetilde{p})$
 - Anisotropic governing equation $\widetilde{p} \nabla \cdot (c_{\mathrm{g}} \cdot \nabla \widetilde{p}) = p$
 - Linearization

$$\delta \boldsymbol{\sigma} = \left[(1 - D) \boldsymbol{C}^{\text{alg}} - \hat{\boldsymbol{\sigma}} \otimes \frac{\partial F_D}{\partial \boldsymbol{\varepsilon}} \right] : \delta \boldsymbol{\varepsilon} - \hat{\boldsymbol{\sigma}} \frac{\partial F_D}{\partial \tilde{\boldsymbol{p}}} \delta \tilde{\boldsymbol{p}}$$





- Limitation of the incremental tangent method
 - Fictitious composite
 - 50%-UD fibres
 - Elasto-plastic matrix with damage
 - Due to the incremental formalism, stress in fibres cannot decrease during loading

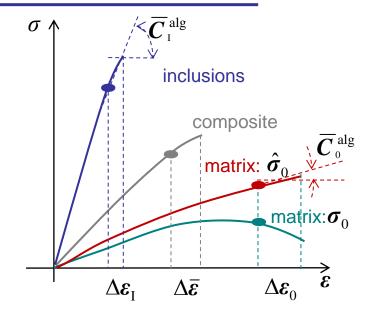


Problem

- We want the fibres to get unloaded during the matrix damaging process
 - For the incremental-tangent approach

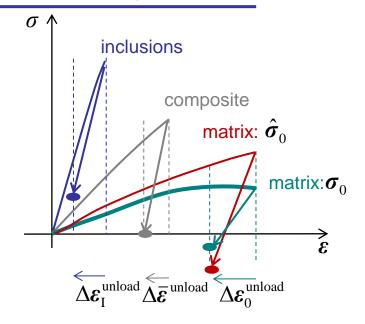
$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \Big(\mathrm{I}, (1 - D) \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \Big) : \Delta \boldsymbol{\varepsilon}_{0}$$

- To unload the fibres ($m{\varepsilon}_{\rm I} < 0$) with such approach would require $\, \overline{m{C}}_{\scriptscriptstyle \rm I}^{\rm \, alg} < 0$
- We cannot use the incremental tangent MFH
- We need to define the LCC from another stress state



Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components



Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components
 - Apply MFH from unloaded state
 - New strain increments (>0)

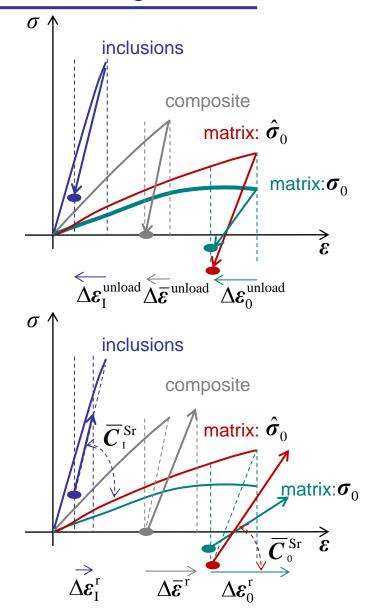
$$\Delta \boldsymbol{\varepsilon}_{\text{I/0}}^{\text{r}} = \Delta \boldsymbol{\varepsilon}_{\text{I/0}} + \Delta \boldsymbol{\varepsilon}_{\text{I/0}}^{\text{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

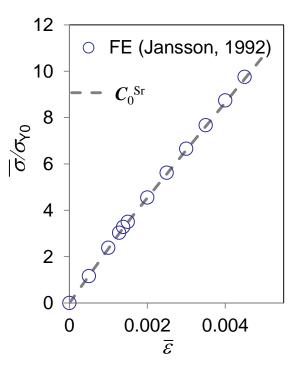
Possibility of have unloading

$$\begin{cases} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} > 0 \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} < 0 \end{cases}$$

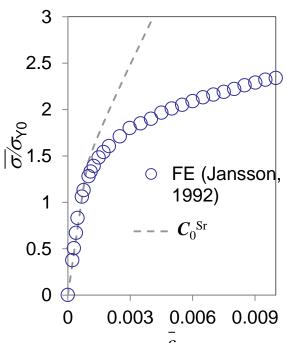


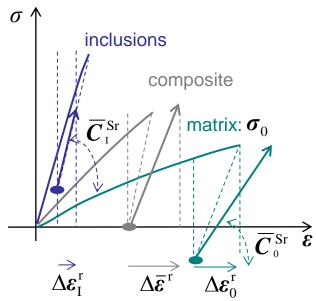
- Zero-incremental-secant method
 - Continuous fibres
 - 55 % volume fraction
 - Elastic
 - Elasto-plastic matrix (no damage)
 - For inclusions with high hardening (elastic)
 - Model is too stiff

Longitudinal tension



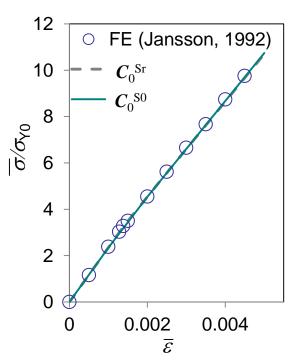
Transverse loading

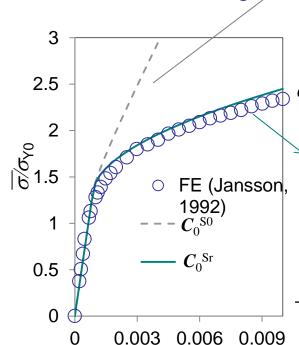




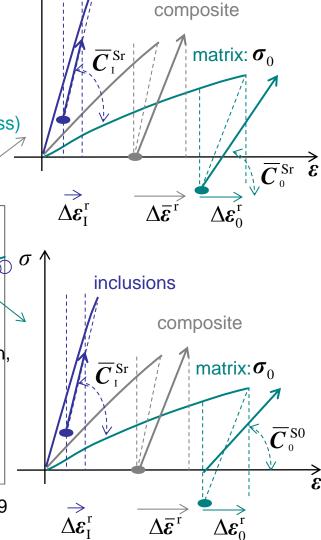
- Zero-incremental-secant method (2)
 - Continuous fibres
 - 55 % volume fraction
 - Elastic
 - Elasto-plastic matrix (no damage)
 - Secant model in the matrix
 - Modified if stiffer inclusions (negative residual stress)

Longitudinal tension

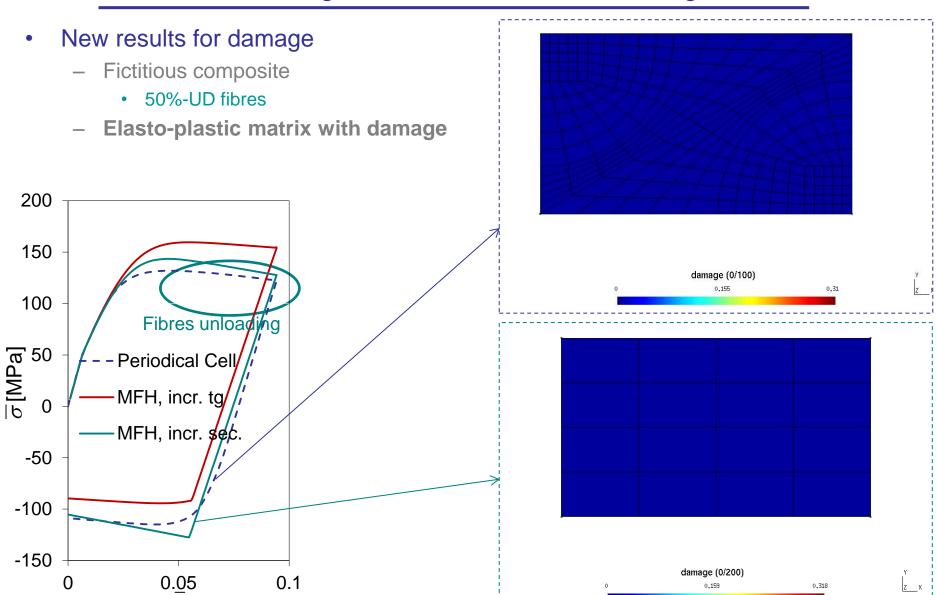




Transverse loading



inclusions



Weak formulation

Strong form

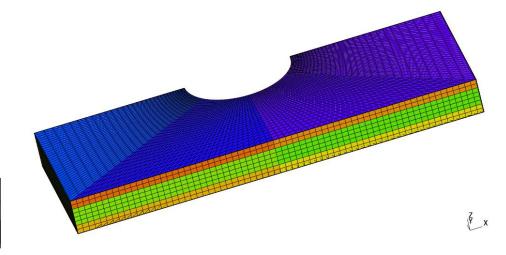
$$\left\{ \begin{array}{ll} \nabla \cdot \overline{\pmb{\sigma}}^T + \pmb{f} = \pmb{0} & \text{for the homogenized composite material} \\ \\ \widetilde{p} - \nabla \cdot \left(\pmb{c}_{\mathrm{g}} \cdot \nabla \widetilde{p} \right) = p & \text{for the matrix phase} \end{array} \right.$$

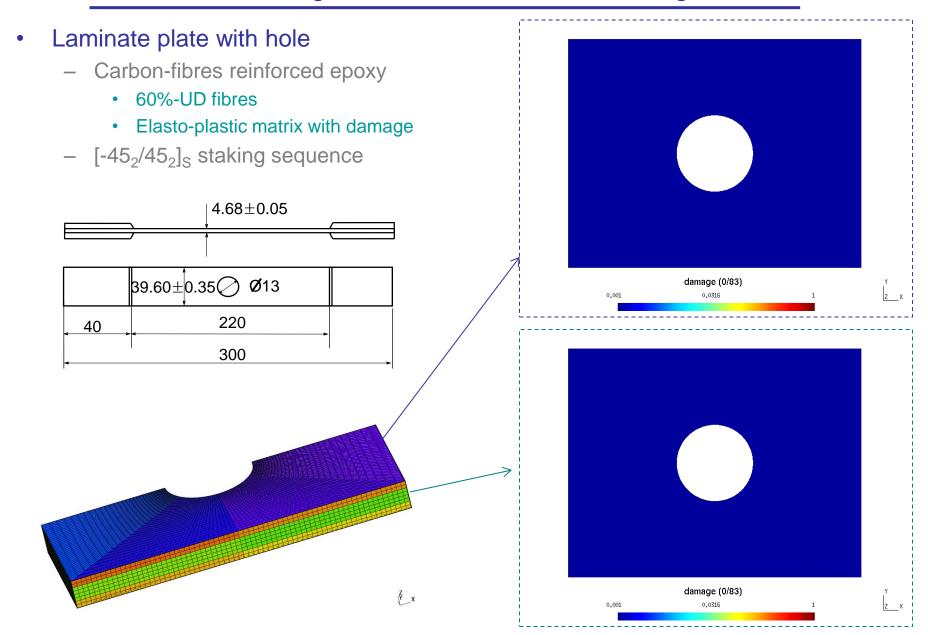
Boundary conditions

$$\begin{cases}
\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{T} \\
\boldsymbol{n} \cdot (\boldsymbol{c}_{g} \cdot \nabla \widetilde{\boldsymbol{p}}) = 0
\end{cases}$$

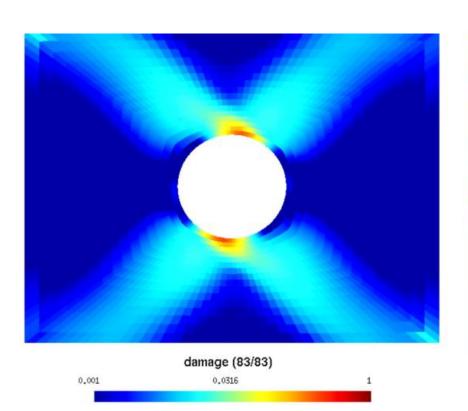
Finite-element discretization

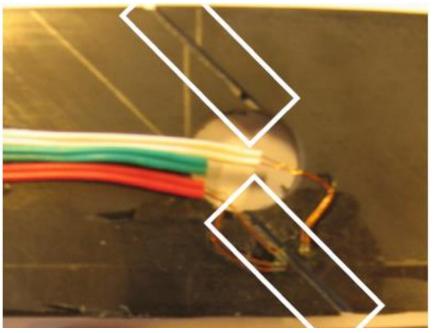
$$\begin{cases} \widetilde{p} = N_{\widetilde{p}}^{a} \widetilde{\boldsymbol{p}}^{a} \\ \boldsymbol{u} = N_{u}^{a} \boldsymbol{u}^{a} \end{cases}$$

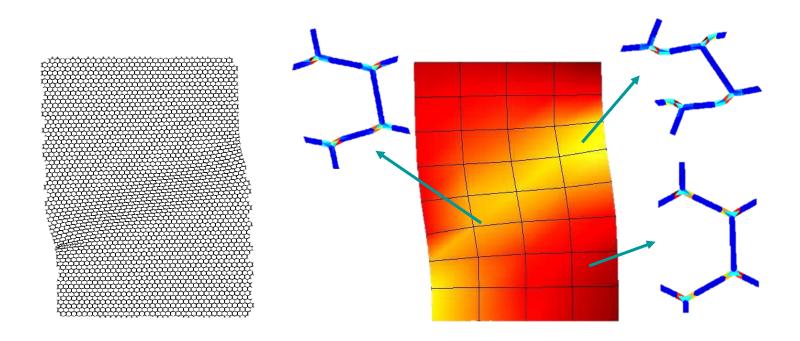




- Laminate plate with hole (2)
 - Carbon-fibres reinforced epoxy
 - 60%-UD fibres
 - Elasto-plastic matrix with damage
 - [-45₂/45₂]_S staking sequence





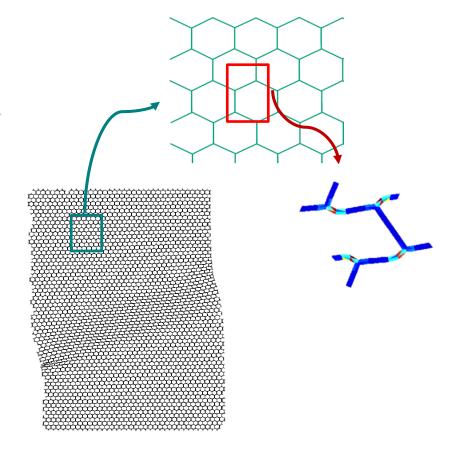


Computational homogenization for cellular materials

Computational homogenization for foamed materials

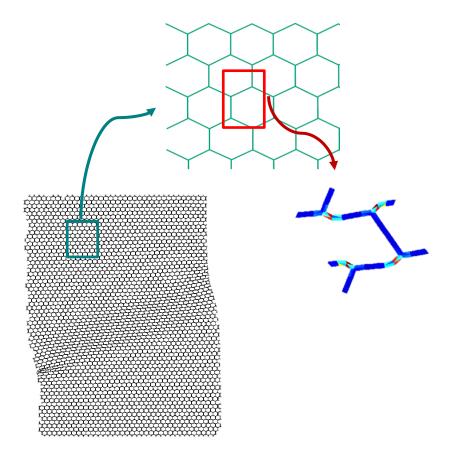
Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?



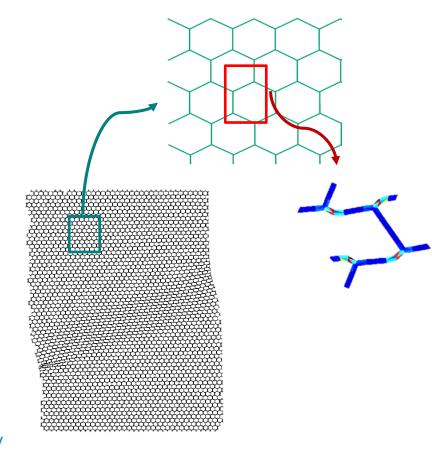
Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 - How to capture the instability?



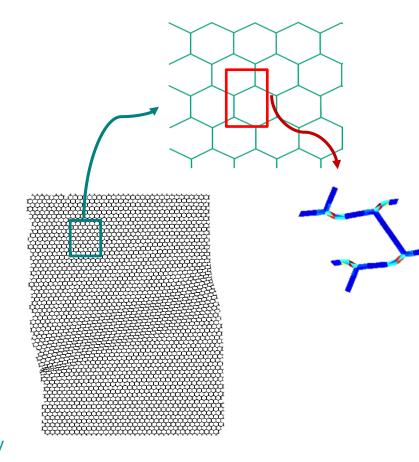
Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - · Experiences micro-buckling
 - How to capture the instability?
- Transition
 - Homogenized tangent not always elliptic
 - Localization bands
 - How can we recover the solution unicity at the macro-scale?



Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 - How to capture the instability?
- Transition
 - Homogenized tangent not always elliptic
 - Localization bands
 - How can we recover the solution unicity at the macro-scale?
- Macro-scale
 - Localization bands
 - How to remain computationally efficient
 - How to capture the instability?



- Recover solution unicity: second-order FE²
 - Macro-scale
 - High-order Strain-Gradient formulation

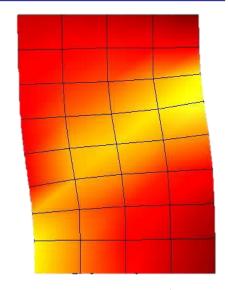
$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

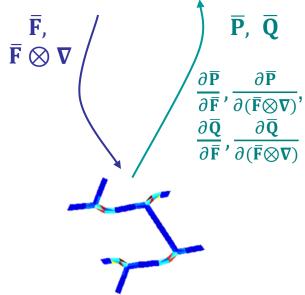
Partitioned mesh (//)

- Gauss points on different processors
- Each Gauss point is associated to one mesh and one solver

Usual continuum

$$\mathbf{P}(\mathbf{X}) \cdot \nabla_0 = 0$$





Micro-scale periodic boundary conditions

Defined from the fluctuation field

$$w = u - (\overline{F} - I) \cdot X + \frac{1}{2} (\overline{F} \otimes \nabla_0) : (X \otimes X)$$

Stated on opposite RVE sizes

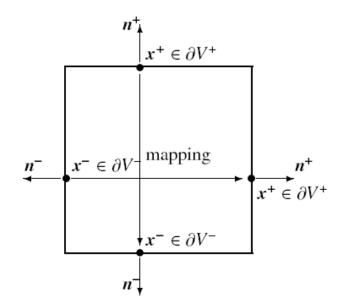
$$\begin{cases} w(X^+) = w(X^-) \\ \int_{\partial V^-} w(X) d\partial V = 0 \end{cases}$$

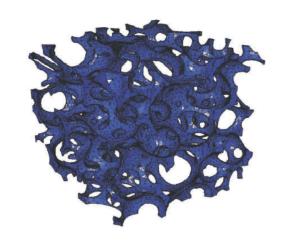
Can be achieved by constraining opposite nodes

- Usually random meshes
- Important voids on the boundaries

Honeycomb structures

Not periodic due to the imperfections





- Micro-scale periodic boundary conditions (2)
 - New interpolant method

$$w(X^{-}) = \sum_{k} N(X)w^{k}$$

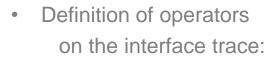
$$w(X^{+}) = \sum_{k} N(X)w^{k}$$

$$\int_{\partial V^{-}} \left(\sum_{k} N(X)w^{k}\right) d\partial V = 0$$
• Boundary node
• Control node

- Use of Lagrange, cubic spline .. interpolations
- Fits for
 - Arbitrary meshes
 - Important voids on the RVE sides
- Results in new constraints in terms of the boundary and control nodes displacements

$$\widetilde{\boldsymbol{c}} \ \widetilde{\boldsymbol{u}}_b - \boldsymbol{g}(\overline{\boldsymbol{\mathsf{F}}}, \overline{\boldsymbol{\mathsf{F}}} \otimes \boldsymbol{\nabla_0}) = 0$$

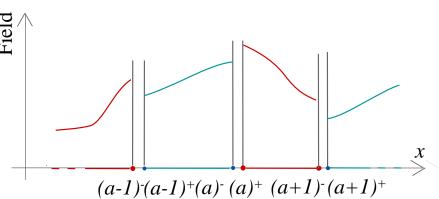
- Discontinuous Galerkin (DG) implementation of the second order continuum
 - Finite-element discretization
 - · Same discontinuous polynomial approximations for the
 - **Test** functions φ_h and
 - Trial functions $\delta \varphi$



Jump operator:

• **Mean** operator:

$$\langle \cdot \rangle = \frac{\cdot^+ + \cdot^-}{2}$$



- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{\mathbf{X}}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{\mathbf{X}}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

Usual volume terms

$$a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\overline{V}} [\overline{\mathbf{P}}(\overline{\boldsymbol{u}}): (\delta \overline{\boldsymbol{u}} \otimes \nabla_{\mathbf{0}}) + \overline{\mathbf{Q}}(\overline{\boldsymbol{X}}) : (\delta \overline{\boldsymbol{u}} \otimes \nabla_{\mathbf{0}} \otimes \nabla_{\mathbf{0}})] dV$$

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

- Weak enforcement of the C⁰
 - Continuity
 - Consistency
 - Stability

between the finite elements

$$a^{\mathrm{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\partial_{I} \overline{V}} \left[\begin{bmatrix} \llbracket \delta \overline{\boldsymbol{u}} \rrbracket \cdot \langle \overline{\mathbf{P}} - \overline{\mathbf{Q}} \cdot \nabla_{0} \rangle \cdot \overline{\boldsymbol{N}} + \llbracket \overline{\boldsymbol{u}} \rrbracket \cdot \langle \overline{\mathbf{P}} (\delta \overline{\boldsymbol{u}}) - \overline{\mathbf{Q}} (\delta \overline{\boldsymbol{u}}) \cdot \nabla_{0} \rangle \cdot \overline{\boldsymbol{N}} + \right] dV$$

Allows efficient parallelization as elements are disjoint

Second-order FE2 method

Macro-scale second order continuum

$$\overline{\mathbf{P}}(\overline{X}) \cdot \nabla_0 - \overline{\mathbf{Q}}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0$$

- Requires C¹ shape functions on the mesh
- The C¹ can be weakly enforced using the DG method

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = a^{\text{bulk}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{PI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) + a^{\text{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = b(\delta \overline{\boldsymbol{u}})$$

- Weak enforcement of the C¹
 - Continuity
 - Consistency
 - Stability

between the finite elements

$$a^{\mathrm{QI}}(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \int_{\partial_{I} \overline{V}} \left[\begin{bmatrix} \llbracket \delta \overline{\boldsymbol{u}} \otimes \boldsymbol{\nabla}_{\mathbf{0}} \rrbracket \cdot \langle \overline{\mathbf{Q}} \rangle \cdot \overline{\boldsymbol{N}} + \llbracket \overline{\boldsymbol{u}} \otimes \boldsymbol{\nabla}_{\mathbf{0}} \rrbracket \cdot \langle \overline{\mathbf{Q}} (\delta \overline{\boldsymbol{u}}) \rangle \cdot \overline{\boldsymbol{N}} + \right] dV$$

Allows efficient parallelization as elements are disjoint

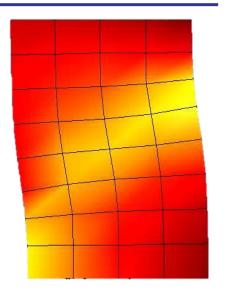
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



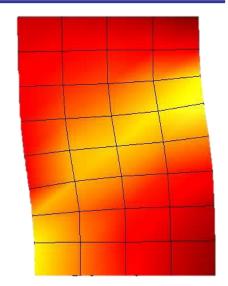
Capturing instabilities

- Macro-scale: localization bands
 - Path following method on the applied loading

$$a(\overline{\boldsymbol{u}}, \delta \overline{\boldsymbol{u}}) = \bar{\mu} b(\delta \overline{\boldsymbol{u}})$$

· Arc-length constraint on the load increment

$$\bar{h}(\Delta \bar{\boldsymbol{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\boldsymbol{u}} \cdot \Delta \bar{\boldsymbol{u}}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0$$



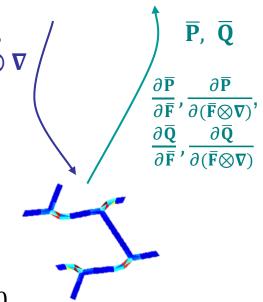
- Micro-scale
 - Path following method on the applied boundary conditions

$$\widetilde{\boldsymbol{C}} \ \widetilde{\boldsymbol{u}}_{b} - \boldsymbol{g}(\overline{\mathbf{F}}, \overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}}) = 0$$

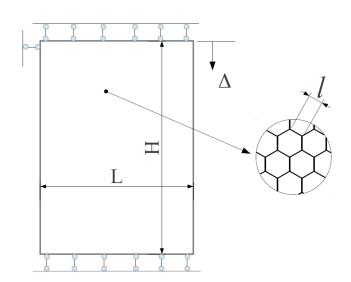
$$\begin{cases}
\overline{\mathbf{F}} = \overline{\mathbf{F}}_{0} + \mu \, \Delta \overline{\mathbf{F}} \\
\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}} = (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})_{0} + \mu \, \Delta (\overline{\mathbf{F}} \otimes \nabla_{\mathbf{0}})
\end{cases}$$

Arc-length constraint on the load increment

$$h(\Delta \boldsymbol{u}, \Delta \mu) = \frac{\Delta \boldsymbol{u} \cdot \Delta \boldsymbol{u}}{X_0^2} + \Delta \mu^2 - \Delta l^2 = 0$$

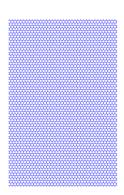


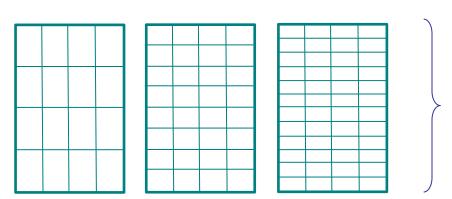
- Compression of an hexagonal honeycomb
 - Elasto-plastic material



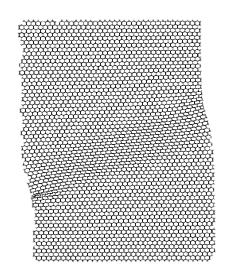
Comparison of different solutions

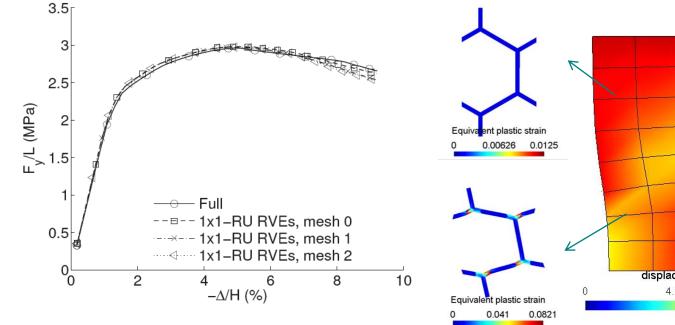
Full direct simulation

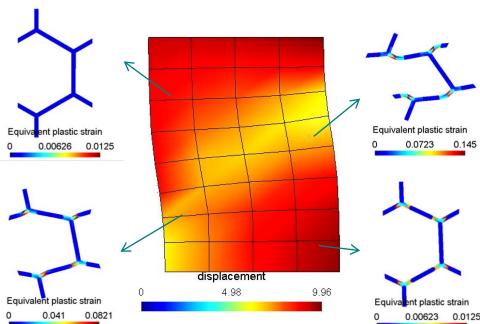




- Compression of an hexagonal honeycomb (2)
 - Captures of the softening onset
 - Captures the softening response
 - No macro-mesh size effect



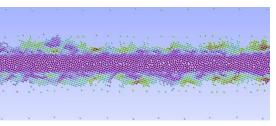




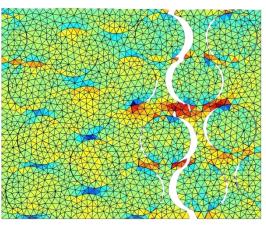
Computational & Multiscale Mechanics of Materials

CM3

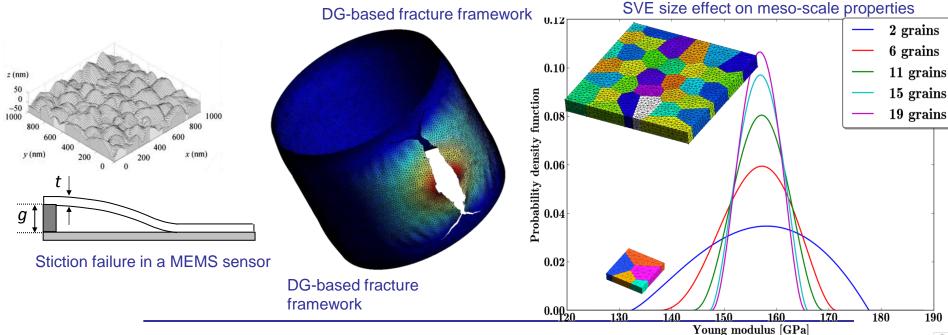
www.ltas-cm3.ulg.ac.be



QC method for grain-boundary sliding

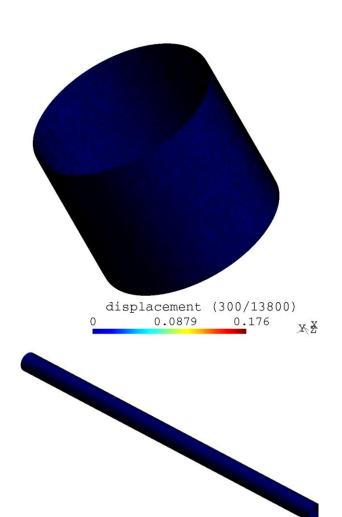


Ludovic Noels, G. Becker, L. Homsi, V. Lucas, S. Mulay, V.-D. Nguyen, V. Péron-Lührs, V.-H. Truong, F. Wan, L. Wu



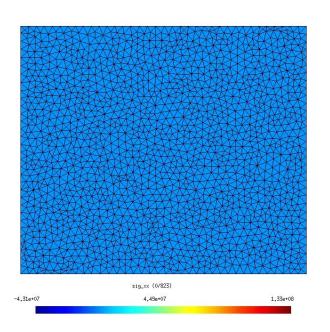
DG-based fracture mechanics: blast, fragmentation, ...

Examples



Von Mises 2.35e+08

4.7e+08



Conclusions

- Non-local damage-enhanced mean-field-homogenization
 - MFH with damage model for the matrix material
 - Non-local implicit formulation
 - Can capture the strain softening
 - More in
 - 10.1016/j.ijsolstr.2013.07.022
 - 10.1016/j.ijplas.2013.06.006
 - 10.1016/j.cma.2012.04.011
 - 10.1007/978-1-4614-4553-1 13
- Computational homogenization for foamed materials
 - Second-order FE² method
 - Micro-buckling propagation
 - General way of enforcing PBC
 - More in

CM3

- 10.1016/j.cma.2013.03.024
- 10.1016/j.commatsci.2011.10.017
- 10.1016/j.ijsolstr.2014.02.029
- Other research fields
- Open-source software
 - Implemented in GMSH
 - http://geuz.org/amsh/

Conclusions

谢谢

