Muti-scale methods with strain-softening: damage-enhanced MFH for composite materials and computational homogenization for cellular materials with micro-buckling

L. Noels, G. Becker, V.-D. Nguyen, L. Wu, L. Adam (x-Stream), I. Doghri (UCL)

Non-local damage mean-field-homogenization

FE2 homogenization of cellular structures
Multi-scale modelling: Why?

- **Materials in aeronautics**
 - More and more engineered
 - Multi-scale in nature

A350 wing lower cover
Multi-scale modelling: Why?

- Limitations of one-scale models
 - Physics at the micro-scale is too complex to be modelled by a simple material law at the macro-scale
 - Engineered materials
 - Multi-physics/scale problems
 - ...
 - See next slides
 - Lack of information of the micro-scale state during macro-scale deformations
 - Required to predict failure
 - ...
 - Effect of the micro-structure on the macro-structure response
 - Fibres distribution ...
 - ...
- Solution: multi-scale models
Content

• **Introduction**
 – Multi-scale modelling: How?
 – Strain softening issues

• **Non-local damage-enhanced mean-field-homogenization**

• **Computational homogenization for cellular materials**

• **Other researches**
 – DG-based fracture mechanics: blast, fragmentation, ...

• **Conclusions**
Multi-scale modelling: How?

- **Principle**
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The micro-scale problem (Representative Volume Element)
 - Scale transitions coupling the two scales
 - Downscaling: transfer of macro-scale quantities (e.g. strain) to the micro-scale to determine the equilibrium state of the Boundary Value Problem
 - Upscaling: constitutive law (e.g. stress) for the macro-scale problem is determined from the micro-scale problem resolution

Assumptions:
\[L_{\text{macro}} \gg L_{\text{RVE}} \gg L_{\text{micro}} \]
Multi-scale modelling: How?

- Computational technique: FE\(^2\)
 - Macro-scale
 - FE model
 - At one integration point $\bar{\varepsilon}$ is known, $\bar{\sigma}$ is sought
Multi-scale modelling: How?

- **Computational technique: FE2**
 - Macro-scale
 - FE model
 - At one integration point $\bar{\varepsilon}$ is known, $\bar{\sigma}$ is sought

- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions
Multi-scale modelling: How?

• **Computational technique: FE**

 – **Macro-scale**

 • FE model

 • At one integration point $\bar{\varepsilon}$ is known, $\bar{\sigma}$ is sought

 – **Transition**

 • Downscaling: $\bar{\varepsilon}$ is used to define the BCs

 • Upscaling: $\bar{\sigma}$ is known from the reaction forces

 – **Micro-scale**

 • Usual 3D finite elements

 • Periodic boundary conditions
Multi-scale modelling: How?

• **Computational technique: FE²**

 – **Macro-scale**

 • FE model

 • At one integration point $\bar{\varepsilon}$ is known, $\bar{\sigma}$ is sought

 – **Transition**

 • Downscaling: $\bar{\varepsilon}$ is used to define the BCs

 • Upscaling: $\bar{\sigma}$ is known from the reaction forces

 – **Micro-scale**

 • Usual 3D finite elements

 • Periodic boundary conditions

 – **Advantages**

 • Accuracy

 • Generality

 – **Drawback**

 • Computational time

Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, …
Multi-scale modelling: How?

- **Mean-Field Homogenization**
 - Macro-scale
 - FE model
 - At one integration point $\bar{\varepsilon}$ is known, $\bar{\sigma}$ is sought
Multi-scale modelling: How?

- **Mean-Field Homogenization**
 - **Macro-scale**
 - FE model
 - At one integration point $\bar{\epsilon}$ is known, $\bar{\sigma}$ is sought
 - **Micro-scale**
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models
Multi-scale modelling: How?

- **Mean-Field Homogenization**
 - Macro-scale
 - FE model
 - At one integration point $\bar{\varepsilon}$ is know, $\bar{\sigma}$ is sought
 - Transition
 - Downscaling: $\bar{\varepsilon}$ is used as input of the MFH model
 - Upscaling: $\bar{\sigma}$ is the output of the MFH model
 - Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models

Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, …
Multi-scale modelling: How?

• **Mean-Field Homogenization**
 - Macro-scale
 • FE model
 • At one integration point $\bar{\varepsilon}$ is know, $\bar{\sigma}$ is sought
 - Transition
 • Downscaling: $\bar{\varepsilon}$ is used as input of the MFH model
 • Upscaling: $\bar{\sigma}$ is the output of the MFH model
 - Micro-scale
 • Semi-analytical model
 • Predict composite meso-scale response
 • From components material models
 - Advantages
 • Computationally efficient
 • Easy to integrate in a FE code (material model)
 - Drawbacks
 • Difficult to formulate in an accurate way
 - Geometry complexity
 - Material behaviours complexity

Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, …
Strain softening of the microscopic response

- Finite element solutions for strain softening problems suffer from:
 - The loss of uniqueness and strain localization
 - Mesh dependence

- Requires a non-local formulation of the macro-scale problem

The numerical results change with the size of mesh and direction of mesh

The numerical results change without convergence
Multi-scale simulations with strain softening

- Two cases considered
 - Composite materials
 - Mean-field homogenization
 - Non-local damage formulation
 - Honeycomb structures
 - Computational homogenization
 - Second-order FE2
 - Micro-buckling
Non-local damage-enhanced mean-field-homogenization

L. Wu (ULg), L. Noels (ULg), L. Adam (e-Xstream), I. Doghri (UCL)

SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET+, Matera+ framework.
Non-local damage-enhanced mean-field-homogenization

- Semi analytical Mean-Field Homogenization
 - Based on the averaging of the fields
 \[\langle a \rangle = \frac{1}{V} \int_V a(X) dV \]
 - Meso-response
 - From the volume ratios \(v_0 + v_1 = 1 \)
 \[\bar{\sigma} = \langle \sigma \rangle = v_0 \langle \sigma \rangle_{\omega_0} + v_1 \langle \sigma \rangle_{\omega_1} = v_0 \sigma_0 + v_1 \sigma_1 \]
 \[\bar{\varepsilon} = \langle \varepsilon \rangle = v_0 \langle \varepsilon \rangle_{\omega_0} + v_1 \langle \varepsilon \rangle_{\omega_1} = v_0 \varepsilon_0 + v_1 \varepsilon_1 \]
 - One more equation required
 \[\varepsilon_1 = B^\varepsilon : \varepsilon_0 \]
 - Difficulty: find the adequate relations
 \[\begin{align*}
 \sigma_1 &= f(\varepsilon_1) \\
 \sigma_0 &= f(\varepsilon_0) \\
 \varepsilon_1 &= B_0^\varepsilon : \varepsilon_0
 \end{align*} \]
Non-local damage-enhanced mean-field-homogenization

- Mean-Field Homogenization for different materials
 - Linear materials
 - Materials behaviours
 \[
 \begin{align*}
 \sigma_1 &= \overline{C}_1 : \epsilon_1 \\
 \sigma_0 &= \overline{C}_0 : \epsilon_0
 \end{align*}
 \]
 - Mori-Tanaka assumption \(\epsilon^\infty = \epsilon_0 \)
 - Use Eshelby tensor
 \[
 \epsilon_1 = B^\epsilon \left(\mathbf{I}, \overline{C}_0, \overline{C}_1 \right) : \epsilon_0
 \]
 with \(B^\epsilon = \left[\mathbf{I} + S : \overline{C}_0^{-1} : (\overline{C}_1 - \overline{C}_0) \right]^{-1} \)
 - Non-linear materials
 - Define a Linear Comparison Composite
 - Common approach: incremental tangent
 \[
 \Delta \epsilon_1 = B^\epsilon \left(\mathbf{I}, \overline{C}_0^{\text{alg}}, \overline{C}_1^{\text{alg}} \right) : \Delta \epsilon_0
 \]
Non-local damage-enhanced mean-field-homogenization

- **Material models**
 - Elasto-plastic material
 - Stress tensor: \(\sigma = C^{el} : (\varepsilon - \varepsilon^{pl}) \)
 - Yield surface: \(f(\sigma, p) = \sigma^{eq} - \sigma^Y - R(p) \leq 0 \)
 - Plastic flow: \(\Delta\varepsilon^{pl} = \Delta p N \) \& \(N = \frac{\partial f}{\partial \sigma} \)
 - Linearization: \(\delta\sigma = C^{alg} : \delta\varepsilon \)
Non-local damage-enhanced mean-field-homogenization

- Material models
 - Elasto-plastic material
 - Stress tensor \(\sigma = C^{el} : (\varepsilon - \varepsilon^{pl}) \)
 - Yield surface \(f(\sigma, p) = \sigma^{eq} - \sigma^Y - R(p) \leq 0 \)
 - Plastic flow \(\Delta \varepsilon^{pl} = \Delta p N \quad \& \quad N = \frac{\partial f}{\partial \sigma} \)
 - Linearization \(\delta \sigma = C^{alg} : \delta \varepsilon \)
 - Local damage model
 - Apparent-effective stress tensors \(\sigma = (1 - D)\hat{\sigma} \)
 - Plastic flow in the effective stress space
 - Damage evolution \(\Delta D = F_D(\varepsilon, \Delta p) \)
Non-local damage-enhanced mean-field-homogenization

• Finite element solutions for strain softening problems suffer from:
 – The loss of uniqueness and strain localization
 – Mesh dependence

 Homogenous unique solution
 Lose of uniqueness
 Strain localized

The numerical results change with the size of mesh and direction of mesh

The numerical results change without convergence

• Implicit non-local approach [Peerlings et al 96, Geers et al 97, …]
 – A state variable is replaced by a non-local value reflecting the interaction between neighboring material points
 \[
 \tilde{a}(x) = \frac{1}{V_c} \int_{V_c} a(y)w(y; x)\,dV
 \]
 – Use Green functions as weight \(w(y; x) \)
 \[
 \tilde{a} - c\nabla^2 \tilde{a} = a
 \]
 New degrees of freedom
Non-local damage-enhanced mean-field-homogenization

- **Material models**
 - Elasto-plastic material
 - Stress tensor \(\sigma = C^{el} : (\varepsilon - \varepsilon^{pl}) \)
 - Yield surface \(f(\sigma, p) = \sigma^{eq} - \sigma^Y - R(p) \leq 0 \)
 - Plastic flow \(\Delta\varepsilon^{pl} = \Delta p N \quad & \quad N = \frac{\partial f}{\partial \sigma} \)
 - Linearization \(\delta\sigma = C^{alg} : \delta\varepsilon \)
 - Local damage model
 - Apparent-effective stress tensors \(\sigma = (1 - D)\hat{\sigma} \)
 - Plastic flow in the effective stress space
 - Damage evolution \(\Delta D = F_D(\varepsilon, \Delta p) \)
 - Non-Local damage model
 - Damage evolution \(\Delta D = F_D(\varepsilon, \Delta \tilde{p}) \)
 - Anisotropic governing equation \(\tilde{p} - \nabla \cdot (c_g \cdot \nabla \tilde{p}) = p \)
 - Linearization
 \[
 \delta\sigma = \left[(1 - D)C^{alg} - \hat{\sigma} \otimes \frac{\partial F_D}{\partial \varepsilon} \right] : \delta\varepsilon - \hat{\sigma} \frac{\partial F_D}{\partial \tilde{p}} \delta \tilde{p}
 \]
Non-local damage-enhanced mean-field-homogenization

- Limitation of the incremental tangent method
 - Fictitious composite
 - 50%-UD fibres
 - Elasto-plastic matrix with damage
 - Due to the incremental formalism, stress in fibres cannot decrease during loading

No fibres unloading
Problem

- We want the fibres to get unloaded during the matrix damaging process

 - For the incremental-tangent approach
 \[
 \Delta \epsilon_1 = B^e(I,(1-D)\overline{C}_0^{\text{alg}},\overline{C}_1^{\text{alg}}):\Delta \epsilon_0
 \]

 - To unload the fibres (\(\epsilon_1 < 0 \)) with such approach would require \(\overline{C}_1^{\text{alg}} < 0 \)

 - We cannot use the incremental tangent MFH

- We need to define the LCC from another stress state

Non-local damage-enhanced mean-field-homogenization
Non-local damage-enhanced mean-field-homogenization

- **Idea**
 - New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

\[
\sigma \quad \varepsilon
\]

\[
\Delta \varepsilon_1^{\text{unload}} \quad \Delta \varepsilon \quad \Delta \varepsilon_0^{\text{unload}}
\]

matrix: \(\hat{\sigma}_0 \)

matrix: \(\sigma_0 \)

inclusions

\(\Delta \varepsilon_1 \quad \Delta \varepsilon \quad \Delta \varepsilon_0 \)
Non-local damage-enhanced mean-field-homogenization

• Idea
 – New incremental-secant approach
 • Perform a virtual elastic unloading from previous solution
 – Composite material unloaded to reach the stress-free state
 – Residual stress in components
 • Apply MFH from unloaded state
 – New strain increments (>0)
 – Use of secant operators
 \[\Delta \varepsilon_{I/0} = \Delta \varepsilon_{I/0} + \Delta \varepsilon_{I/0}^{\text{unload}} \]
 – Possibility of have unloading
 \[
 \begin{cases}
 \Delta \varepsilon_{I} > 0 \\
 \Delta \varepsilon_{I} < 0
 \end{cases}
 \]
Non-local damage-enhanced mean-field-homogenization

- **Zero-incremental-secant method**
 - Continuous fibres
 - 55 % volume fraction
 - Elastic
 - **Elasto-plastic matrix (no damage)**
 - For inclusions with high hardening (elastic)
 - Model is too stiff

Longitudinal tension

Transverse loading
Non-local damage-enhanced mean-field-homogenization

- Zero-incremental-secant method (2)
 - Continuous fibres
 - 55% volume fraction
 - Elastic
 - Elasto-plastic matrix (no damage)
 - Secant model in the matrix
 - Modified if stiffer inclusions (negative residual stress)

Longitudinal tension

Transverse loading

\[
\frac{\sigma}{\sigma_0} = \frac{\bar{\varepsilon}}{\varepsilon_0}
\]

\[
\frac{\sigma}{\sigma_0} = \frac{\bar{\varepsilon}}{\varepsilon_0}
\]
Non-local damage-enhanced mean-field-homogenization

- Verification of the method
 - Spherical inclusions
 - 17 % volume fraction
 - Elastic
 - Elastic-perfectly-plastic matrix (no damage)
 - Non-radial loading

\[\epsilon_{13} = \epsilon_{23} \]
\[\epsilon_{33} = 2 \epsilon_{11} = 2 \epsilon_{22} \]

\[\sigma_{13} \text{ [MPa]} \]

\[\sigma_{33} \text{ [MPa]} \]
Non-local damage-enhanced mean-field-homogenization

- New results for damage
 - Fictitious composite
 - 50%-UD fibres
 - Elasto-plastic matrix with damage
Non-local damage-enhanced mean-field-homogenization

- **Weak formulation**
 - **Strong form**
 \[\nabla \cdot \bar{\sigma}^T + f = 0 \quad \text{for the homogenized composite material} \]
 \[\tilde{p} - \nabla \cdot (c_g \cdot \nabla \tilde{p}) = p \quad \text{for the matrix phase} \]
 - **Boundary conditions**
 \[\sigma \cdot n = T \]
 \[n \cdot (c_g \cdot \nabla \tilde{p}) = 0 \]
 - **Finite-element discretization**
 \[\tilde{p} = N_{\tilde{p}}^a \tilde{P}^a \]
 \[u = N_u^a u^a \]
 \[\begin{bmatrix} K_{uu} & K_{u\tilde{p}} \\ K_{\tilde{p}u} & K_{\tilde{p}\tilde{p}} \end{bmatrix} \begin{bmatrix} du \\ d\tilde{p} \end{bmatrix} = \begin{bmatrix} F_{\text{ext}} - F_{\text{int}} \\ F_p - F_{\tilde{p}} \end{bmatrix} \]
Non-local damage-enhanced mean-field-homogenization

- **Mesh-size effect**
 - Fictitious composite
 - 30%-UD fibres
 - Elasto-plastic matrix with damage
 - Notched ply
Non-local damage-enhanced mean-field-homogenization

- Laminate plate with hole
 - Carbon-fibres reinforced epoxy
 - 60%-UD fibres
 - Elasto-plastic matrix with damage
 - $[-45_2/45_2]_S$ stacking sequence

\[
\begin{array}{|c|c|}
\hline
& 4.68 \pm 0.05 \\
\hline
39.60 \pm 0.35 & \varnothing 13 \\
\hline
40 & 220 \\
\hline
220 & 300 \\
\hline
\end{array}
\]
Non-local damage-enhanced mean-field-homogenization

• Laminate plate with hole (2)
 – Carbon-fibres reinforced epoxy
 • 60%-UD fibres
 • Elasto-plastic matrix with damage
 – \([-45_2/45_2]_S\) staking sequence
Computational homogenization for cellular materials

April 2014

University of Oxford
Computational homogenization for foamed materials

- Challenges
 - Micro-structure
 - Not perfect with non periodic mesh

How to constrain the periodic boundary conditions?
Computational homogenization for foamed materials

• Challenges
 – Micro-structure
 • Not perfect with non periodic mesh

 How to constrain the periodic boundary conditions?

 • Thin components
 • Experiences micro-buckling

 How to capture the instability?
Challenges

- Micro-structure
 - Not perfect with non periodic mesh
 How to constrain the periodic boundary conditions?
 - Thin components
 - Experiences micro-buckling
 How to capture the instability?

- Transition
 - Homogenized tangent not always elliptic
 - Localization bands
 How can we recover the solution unicity at the macro-scale?
Computational homogenization for foamed materials

• Challenges
 – Micro-structure
 • Not perfect with non periodic mesh
 - How to constrain the periodic boundary conditions?
 • Thin components
 • Experiences micro-buckling
 - How to capture the instability?
 – Transition
 • Homogenized tangent not always elliptic
 • Localization bands
 - How can we recover the solution unicity at the macro-scale?
 – Macro-scale
 • Localization bands
 - How to remain computationally efficient
 - How to capture the instability?
Computational homogenization for foamed materials

- **Recover solution unicity: second-order FE**
 - **Macro-scale**
 - **High-order Strain-Gradient formulation**
 \[\overline{P}(\overline{X}) \cdot \nabla_0 - \overline{Q}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0 \]
 - **Partitioned mesh (//)**
 - **Transition**
 - **Gauss points on different processors**
 - **Each Gauss point is associated to one mesh and one solver**
 - **Micro-scale**
 - **Usual continuum**
 \[P(X) \cdot \nabla_0 = 0 \]
Micro-scale periodic boundary conditions

- Convergence in terms of RVE size

- Periodic boundary conditions is the optimum choice for periodic structures

- Periodic boundary conditions remain the optimum choice for non-periodic structures
Computational homogenization for foamed materials

- **Micro-scale periodic boundary conditions (2)**
 - Defined from the fluctuation field
 \[
 w = u - (\bar{F} - I) \cdot X + \frac{1}{2} (\bar{F} \otimes \nabla_0) : (X \otimes X)
 \]
 - Stated on opposite RVE sizes
 \[
 \begin{align*}
 w(X^+) &= w(X^-) \\
 \int_{\partial V^-} w(X) d\partial V &= 0
 \end{align*}
 \]
 - Can be achieved by constraining opposite nodes

- **Foamed materials**
 - Usually random meshes
 - Important voids on the boundaries

- **Honeycomb structures**
 - Not periodic due to the imperfections
Computational homogenization for foamed materials

- Micro-scale periodic boundary conditions (2)
 - New interpolant method

 \[
 w(X^-) = \sum_k N(X)w^k \\
 w(X^+) = \sum_k N(X)w^k \\
 \int_{\partial V^-} \left(\sum_k N(X)w^k \right) d\partial V = 0
 \]

 - Use of Lagrange, cubic spline .. interpolations

 - Fits for
 - Arbitrary meshes
 - Important voids on the RVE sides

 - Results in new constraints in terms of the boundary and control nodes displacements

 \[
 \widetilde{C} \tilde{u}_b - g(\bar{F}, \bar{F} \otimes \nabla_0) = 0
 \]
Computational homogenization for foamed materials

- Discontinuous Galerkin (DG) implementation of the second order continuum
 - Finite-element discretization
 - Same **discontinuous** polynomial approximations for the
 - Test functions φ_h and
 - Trial functions $\delta \varphi$

- Definition of operators on the interface trace:
 - **Jump** operator: $[\cdot] = \cdot^+ - \cdot^-$
 - **Mean** operator: $\langle \cdot \rangle = \frac{\cdot^+ + \cdot^-}{2}$

- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

- Can be used to weakly enforce higher discontinuities
Computational homogenization for foamed materials

- Second-order FE2 method
 - Macro-scale second order continuum
 \[
 \overline{P}(\overline{X}) \cdot \nabla_0 - \overline{Q}(\overline{X}) : (\nabla_0 \otimes \nabla_0) = 0
 \]
 - Requires C^1 shape functions on the mesh
 - The C^1 can be weakly enforced using the DG method

\[
a(\overline{u}, \delta \overline{u}) = a^{\text{bulk}}(\overline{u}, \delta \overline{u}) + a^{\text{PI}}(\overline{u}, \delta \overline{u}) + a^{\text{QI}}(\overline{u}, \delta \overline{u}) = b(\delta \overline{u})
\]
Computational homogenization for foamed materials

- **Second-order FE2 method**
 - Macro-scale second order continuum
 \[\overline{P}(\overline{X}) \cdot \mathbf{V}_0 - \overline{Q}(\overline{X}): (\mathbf{V}_0 \otimes \mathbf{V}_0) = 0 \]
 - Requires C^1 shape functions on the mesh
 - The C^1 can be weakly enforced using the DG method

\[a(\mathbf{u}, \delta \mathbf{u}) = a^{\text{bulk}}(\mathbf{u}, \delta \mathbf{u}) + a^{\text{PI}}(\mathbf{u}, \delta \mathbf{u}) + a^{\text{QI}}(\mathbf{u}, \delta \mathbf{u}) = b(\delta \mathbf{u}) \]

- **Usual volume terms**

\[a^{\text{bulk}}(\mathbf{u}, \delta \mathbf{u}) = \int_{V} [\overline{P}(\mathbf{u}): (\delta \mathbf{u} \otimes \mathbf{V}_0) + \overline{Q}(\overline{X}): (\delta \mathbf{u} \otimes \mathbf{V}_0 \otimes \mathbf{V}_0)]dV \]
Computational homogenization for foamed materials

- **Second-order FE2 method**
 - Macro-scale second order continuum
 \[
 \bar{P}(\bar{X}) \cdot \nabla_0 - \bar{Q}(\bar{X}) : (\nabla_0 \otimes \nabla_0) = 0
 \]
 - Requires C^1 shape functions on the mesh
 - The C^1 can be weakly enforced using the DG method

\[
a(\bar{u}, \delta \bar{u}) = a^{bulk}(\bar{u}, \delta \bar{u}) + a^{PI}(\bar{u}, \delta \bar{u}) + a^{QI}(\bar{u}, \delta \bar{u}) = b(\delta \bar{u})
\]

- **Weak enforcement of the C^0**
 - Continuity
 - Consistency
 - Stability
 between the finite elements

\[
a^{PI}(\bar{u}, \delta \bar{u}) = \int_{\partial_1 V} \left[[\delta \bar{u}] \cdot (\bar{P} - \bar{Q} \cdot \nabla_0) \cdot \bar{N} + [\bar{u}] \cdot (\bar{P}(\delta \bar{u}) - \bar{Q}(\delta \bar{u}) \cdot \nabla_0) \cdot \bar{N} + [\bar{u}] \otimes \bar{N} : \left(\frac{\beta_P}{h_s} C^0 \right) : [\delta \bar{u}] \otimes \bar{N} \right] dV
\]
 - Allows efficient parallelization as elements are disjoint
Computational homogenization for foamed materials

• Second-order FE2 method
 – Macro-scale second order continuum

\[\bar{P}(\bar{X}) \cdot \nabla_0 - \bar{Q}(\bar{X}) : (\nabla_0 \otimes \nabla_0) = 0 \]

 – Requires C^1 shape functions on the mesh
 – The C^1 can be weakly enforced using the DG method

\[a(\bar{u}, \delta \bar{u}) = a^{bulk}(\bar{u}, \delta \bar{u}) + a^{PI}(\bar{u}, \delta \bar{u}) + a^{QI}(\bar{u}, \delta \bar{u}) = b(\delta \bar{u}) \]

• Weak enforcement of the C^1
 – Continuity
 – Consistency
 – Stability
 between the finite elements

\[a^{QI}(\bar{u}, \delta \bar{u}) = \int_{\partial_i V} \left[\left[\delta \bar{u} \otimes \nabla_0 \right] \cdot \langle \bar{Q} \rangle \cdot \bar{N} + \left[\bar{u} \otimes \nabla_0 \right] \cdot \langle \bar{Q}(\delta \bar{u}) \rangle \cdot \bar{N} + \right] dV \]

 – Allows efficient parallelization as elements are disjoint
Computational homogenization for foamed materials

- Capturing instabilities
 - Macro-scale: localization bands
 - Path following method on the applied loading
 \[a(\bar{u}, \delta \bar{u}) = \bar{\mu} b(\delta \bar{u}) \]
 - Arc-length constraint on the load increment
 \[\bar{h}(\Delta \bar{u}, \Delta \bar{\mu}) = \frac{\Delta \bar{u} \cdot \Delta \bar{u}}{X_0^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0 \]
Computational homogenization for foamed materials

- Capturing instabilities
 - Macro-scale: localization bands
 - Path following method on the applied loading
 \[a(\bar{u}, \delta \bar{u}) = \bar{\mu} b(\delta \bar{u}) \]
 - Arc-length constraint on the load increment
 \[h(\Delta \bar{u}, \Delta \bar{\mu}) = \frac{\Delta \bar{u} \cdot \Delta \bar{u}}{\bar{X}_0^2} + \Delta \bar{\mu}^2 - \Delta \bar{l}^2 = 0 \]
 - Micro-scale
 - Path following method on the applied boundary conditions
 \[C \bar{u}_b - g(\bar{F}, \bar{F} \otimes \nabla_0) = 0 \]
 \[\begin{cases} \bar{F} = \bar{F}_0 + \mu \Delta \bar{F} \\ \bar{F} \otimes \nabla_0 = (\bar{F} \otimes \nabla_0)_0 + \mu \Delta (\bar{F} \otimes \nabla_0) \end{cases} \]
 - Arc-length constraint on the load increment
 \[h(\Delta u, \Delta \mu) = \frac{\Delta u \cdot \Delta u}{X_0^2} + \Delta \mu^2 - \Delta \bar{l}^2 = 0 \]
Computational homogenization for foamed materials

• Compression of an hexagonal honeycomb
 – Elasto-plastic material

• Comparison of different solutions

Full direct simulation

Multiscale with different macro-meshes
Computational homogenization for foamed materials

- Compression of an hexagonal honeycomb (2)
 - Captures of the softening onset
 - Captures the softening response
 - No macro-mesh size effect
Computational homogenization for foamed materials

- Compression of an hexagonal honeycomb plate with a centered hole
 - Results given by full and multi-scale models are comparable
Conclusions

• Non-local damage-enhanced mean-field-homogenization
 – MFH with damage model for the matrix material
 – Non-local implicit formulation
 – Can capture the strain softening
 – More in
 • 10.1016/j.ijsolstr.2013.07.022
 • 10.1016/j.ijplas.2013.06.006
 • 10.1016/j.cma.2012.04.011
 • 10.1007/978-1-4614-4553-1_13

• Computational homogenization for foamed materials
 – Second-order FE² method
 – Micro-buckling propagation
 – General way of enforcing PBC
 – More in
 • 10.1016/j.cma.2013.03.024
 • 10.1016/j.commatsci.2011.10.017
 • 10.1016/j.ijsolstr.2014.02.029

• Open-source software
 – Implemented in GMSH
 • http://geuz.org/gmsh/
QC method for grain-boundary sliding

DG-based fracture framework

Stiction failure in a MEMS sensor

DG-based fracture framework

SVE size effect on meso-scale properties