UTILISATION DES RADIOLANTHANIDES DANS LA DÉTERMINATION DU TRANSIT GASTRO-INTESTINAL CHEZ LES PETITS RUMINANTS

COMPARAISON DES TECHNIQUES DIRECTE (ABATTAGE) ET INDIRECTE

A. THEWIS, E. FRANÇOIS*, C. DEBOUCHE**
et Marie-France THIELEMAN***
avec la collaboration technique de F. BURNT ET J. DUPONT *

Chaire de Physiologie animale et de Zootechnie,
** Chaire de Statistiques,
Faculté des Sciences agronomiques de l'État,
Gembloux (Belgique)
* Station de Chimie et de Physique agricoles,
*** Station de Zootechnie,
Centre de Recherches agronomiques de l'État,
Gembloux (Belgique)

RÉSUMÉ

Les temps de rétention moyens des résidus alimentaires dans l'ensemble du tractus digestif du Monton, dans le rétilculo-rumen et dans le reste du tube digestif sont estimés soit à partir des courbes de concentration fécale d'un radiotraceur non résorbé (146Ce) soit à partir des courbes d'excrétion cumulée de même traceur.

Deux régimes ont été utilisés : farines de manioc et de maïs et paille avec ou sans complément d'urée, d'une part, et foin haché, d'autre part.

Les valeurs ainsi obtenues sont vérifiées par une autre technique sur quelques sujets sacrifiés à l'équilibre de marquage du contenu du tube digestif.

On montre que les résultats fournis par l'une ou l'autre méthode sont très comparables pourvu que la concentration fécale en traceur soit constante et que le rythme d'excrétion de la matière sèche et du traceur soit régulier.

I. — INTRODUCTION

L'une des premières utilisations des traceurs non résorbés fut l'étude de la vitesse de passage des résidus alimentaires dans le tube digestif des animaux. En effet, outre l'intérêt qu'il présente du point de vue physiologique, le transit gastro-
intestinal constitue, dans le domaine de l'alimentation du ruminant, un facteur important puisqu'il influence l'utilisation de la ration (Balch et Campling, 1965; Blaxter, Graham et Wainman, 1956; François et Compère, 1972). De plus, il est lié à divers facteurs parmi lesquels la quantité de matière sèche ingérée (Balch, 1950; Blaxter, Graham et Wainman, 1956; Coombe et Kay, 1965; François et Compère, 1972), la nature de la ration et le traitement physique ou chimique que l'aliment a subi (Balch et Campling, 1965; Blaxter, Graham et Wainman, 1956; Deforche, 1975; Faichney, 1975).

La motricité des réservoirs et des sphincters du tractus gastro-intestinal constitue également un facteur déterminant la vitesse de transit chez les ruminants (Bueno, 1972).

Il n'est donc pas étonnant que plusieurs méthodes ou modèles mathématiques soient proposés pour déterminer, à partir des courbes d'excrétion d'un tracéur non résorbé, les temps de rétention moyens globaux ou partiels des particules alimentaires dans le tube digestif des ruminants (Balch, 1950; Castle, 1956; Debouche, 1974; François et Compère, 1971; Grovum et Phillips, 1973; Grovum et Williams, 1973-1974; Hungate, 1966; Pfaul et Abadir, 1973; Thewis, François et Thill, 1975).

A côté de ces techniques indirectes, de nombreuses études requérant soit l'abattage des animaux, soit le placement de fistules, ont été publiées (Coombe et Kay, 1965; Faichney, 1975; François, 1974; Grovum et Hecker, 1973; Grovum et Williams, 1973, 1-3-4; Hyden, 1961; Miller et Spalding, 1975).

Le but du présent travail est de comparer deux techniques, basées sur l'emploi d'un radiotraceur non résorbable, visant à estimer le temps de séjour des particules alimentaires dans l'ensemble du tube digestif et dans ses différents réservoirs ou sections.

Nous y utilisons des données acquises à l'occasion d'études portant sur l'utilisation de l'azote non protéique et sur l'emploi de marquesurs en vue de la détermination indirecte de la quantité d'aliment consommée (f). L'emploi de régimes différents donne une portée plus générale à nos observations.

II. — MATÉRIEL, EXPÉRIMENTAL ET TECHNIQUES UTILISÉES

Animaux et alimentation

Les animaux utilisés sont des béliers de race Texel, adultes, régulièrement traités contre les parasites gastro-intestinaux et broncho-pulmonaires. Ils sont accouplés à l'aliment d'abord en bergerie puis en cage à métabolisme pendant, au minimum, un mois avant la phase expérimentale. Les sujets disposent d'eau à volonté.

Transit gastro-intestinal

Au cours des expériences, la vitesse de transit est mesurée suivant la méthode décrite par François et Compère (1971).

(f) Données non publiées.
Dans la première expérience, la dose unique de radiocérum (de l’ordre de 5 microcuries) est administrée par gélules (gélule contenant un mélange de farines de manioc et de mais ayant absorbé 50 microcuries de solution radioactive). Dans la seconde expérience, 50 g de foin marqués par nébulisation de la solution radioactive sont présentés à l’animal.

Dans les deux cas, l’administration du tracéur a lieu avant le repas de 9 heures. Les récoltes de matières fécales sont effectuées toutes les 2 heures à partir de ce moment pendant 1 à 2 jours, pour s’espacer ensuite progressivement jusqu’au 10e jour.

Les échantillons de fèces sont séchés à 100°C jusqu’à poids constant. Ils sont ensuite finement moulinés (tamis de 0,25 mm) et soumis à l’analyse radiochimique.

Marquage uniforme de l’aliment et du contenu gastro-intestinal

Afin de vérifier les temps de séjour du chyme dans les divers réservoirs ou secteurs du tube digestif par une technique indépendante, les animaux reçoivent, au cours de la deuxième partie de la seconde expérience, du foin de prairie marqué à l’aide de radiocérum. Le marquage uniforme de la masse de foin nécessaire pour nourrir un animal pendant la durée de la phase expérimentale est réalisé suivant la technique décrite par François et Thewis (1975).

Les animaux reçoivent le foin marqué pendant 15 à 16 jours maximum. Le plateau de concentration fécale en traceur est atteint après 5 à 6 jours et dès ce moment, commencent les récoltes bi-horaire et journalière de fèces afin de vérifier la qualité du marquage (François et Thewis, 1973). Elles se poursuivent pendant 10 jours maximum. Les échantillons de matières fécales sont traités comme décrit ci-dessus. Les animaux sont alors abattus.

Abattage des animaux et traitement des contenus gastro-intestinaux

Les animaux sont abattus à des temps variables après la présentation du dernier repas (tabl. V). L’abattage se fait au revolver ; une saignée complète de l’animal est ensuite pratiquée.

La paroi abdominale est incisée. Des ligatures sont pratiquées à l’entrée et à la sortie des estomacs et du cæcum et tous les 50 cm environ le long des intestins, afin d’éviter les déplacements du contenu. Les 4 estomacs sont dissociés. L’intestin grêle est divisé en 4 ou 5 parties d’égal longueur. Le cæcum est isolé du reste du gros intestin qui est également divisé en 4 segments.

Le vidage des intestins se fait le plus tôt possible après l’abattage : l’ensemble des opérations dure une heure environ. La matière est recueillie dans des récipients recouverts de Téflon et préalablement tarés. Elle fait l’objet d’une détermination de la matière sèche et subit ensuite une mouture fine (tamis de 0,25 mm).

Déterminations radiochimiques

Matières fécales.

Le couple de radionucléides enfilé 141Ce-141Pr peut être dosé par l’émission gamma. La matière fécale séchée et moulinée est directement comptée au moyen d’un cristal de NaI de 7,5 centimètres muni d’un puits de 2,5 centimètres. Le mouvement propre est voisin de 500 CPM.

L’activité des fèces peut également être dosée par l’émission bêta du couple de radionucléides comme décrit par Thewis, Francois et Thill (1975) à l’aide d’un détecteur à gaz, à fenêtre mince et à faible mouvement propre (1 CPM).

Aliments et contenus.

Étant donné les différences de poids spécifique entre les échantillons, une minéralisation à l’acide nitrophosphorique (3 : 1 V/V) est effectuée. Le marqueur est ensuite dosé par son émission bêta après évaporation à sec d’un poids connu de solution radioactive sur coupelles.

Traitement des données

A partir des courbes de concentration caractérisant l’excrétion fécale du radiocérum (François et Comperre, 1971), il est possible de déterminer :

1. le temps de rétention moyen (m) des particules alimentaires dans le tractus digestif du Mouton grâce au modèle mathématique proposé par Desboeuf (1974) ;
2. le temps de séjour moyen (T) des particules dans le réticulum-rumen (Thewis, François et Thill, 1975) ; il correspond au turnover time défini par Hungate (1966) ;
3. les valeurs de \((m_T - T)\): nous montrerons que l'on peut estimer de la sorte le temps moyen de séjour des particules dans le tube digestif au-delà du réticulo-rumen. Notons que si le feuillet impose un délai dans le transit, il ne concerne qu'une faible partie du contenu ruminal.

4. Le temps \(T_s\) déterminé par la méthode de Debouche (1974).

Par ailleurs, à partir des courbes d'excrétion cumulée du traceur, on peut calculer :

1. le temps de rétention moyen \(R\) des particules alimentaires suivant Castle (1956);
2. le temps nécessaire à l'excrétion de 5 p. 100 du radiolithane, paramètre correspondant à celui de Bala (1950) défini pour des particules colorées ; pour cet auteur, il représente les particules qui ont traversé l'orifice réticulo-omasal et le pylore sans délai ; en fait, il s'agit, selon lui, du transit iléo-colique.

Pour les animaux alimentés au foin uniformément марqué et abattus dans la phase d'équilibre de l'excrétion fécale du traceur non résorbable, les temps de séjour du chyme dans les différents secteurs du tube digestif s'obtiennent à partir de la formule suivante :

\[
T_s = 24 \frac{A_3}{A_2}
\]

où \(T_s\) est le temps de séjour du chyme dans le segment considéré.

\(A_3\) est la quantité de traceur (activité en CPM dans notre cas) présente dans le segment au moment de l'abattage.

\(A_2\) est la quantité journalière de traceur ingérée avec l'aliment en CPM.

On montre (François, 1974) que le temps de rétention dans le réticulo-rumen, calculé par cette formule, correspond au turnover time défini par Hungate (1966).

Pour la raison invoquée ci-dessus, nous n'avons pas calculé de temps de séjour dans le feuillet.

Expériences individuelles

Expériences Ia et Ib.

Exp. Ia.

Seize sujets sont répartis en 4 lots de 4. Ils reçoivent 400 g d'un mélange, rapidement consommé, de farines de manioc et de maïs dans les proportions 3 : 1 ainsi que 25 g d'un complément minéral (1) et 0,3 g d'un mélange apportant les oligo-éléments, ensuite de la paille à volonté, en 1, 2 ou 3 fois au cours de la journée (9, 13 et 17 heures).

Les lots II, III et IV reçoivent en outre un complément journalier d'urée alimentaire de 0, 12 et 18 g en 1, 2 ou 3 fois.

La consommation moyenne de paille déterminée au cours de la semaine précédant la phase expérimentale proprement dite est augmentée de 200 g de façon à permettre des refus.

Exp. Ib.

La répartition des sujets est conservée, les quantités de farineux distribuées et les doses d'urée sont identiques. La paille, par contre, est rationnée à partir d'une semaine avant la période expérimentale de manière à obtenir un indice d'ingestion (2) \(I \approx 16\).

Le tableau I donne la consommation journalière de matière sèche, le poids des animaux et l'indice d'ingestion.

Dans les deux cas, et pendant une période de 10 jours, tous les animaux sont l'objet d'une mesure de la vitesse de transit suivant François et Compère (1971).

Expériences IIa et IIb.

Exp. IIa.

Douze sujets reçoivent une alimentation de foin de prairie haché à un indice d'ingestion : 1 = 18 de manière à limiter les refus. L'aliment est distribué en deux fois au cours de la journée, à 9 h et 16 h 30 et consommé librement.

(1) Phosphate bicalcique : 53 p. 100 ; sulfate de magnésium : 20 p. 100 ; soufre en fleur : 12 p. 100 ; chlorure de sodium : 15 p. 100.

(2) Indice d'ingestion : \[
I = \frac{\text{quantité de MS ingérée en g} \times 1,000}{\text{poids de l'animal en g}}
\]
TABLEAU 1

Consommation journalière (C en g de matière sèche), poids (P en kg) et indice d'ingestion (I = C/P) au cours des expériences Ia et Ib

<table>
<thead>
<tr>
<th>Lot n°</th>
<th>Sujet n°</th>
<th>Exp. n°</th>
<th>Ia</th>
<th>C</th>
<th>P</th>
<th>I</th>
<th>Ib</th>
<th>C</th>
<th>P</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>2</td>
<td>38,3</td>
<td>14,2</td>
<td>687</td>
<td>54,4</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>1</td>
<td>39,2</td>
<td>15,5</td>
<td>764</td>
<td>47,2</td>
<td>16,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>533</td>
<td>2</td>
<td>38,3</td>
<td>17,8</td>
<td>583</td>
<td>36,1</td>
<td>16,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>579</td>
<td>3</td>
<td>52,0</td>
<td>16,7</td>
<td>716</td>
<td>50,6</td>
<td>13,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>498</td>
<td>4</td>
<td>58,5</td>
<td>19,2</td>
<td>865</td>
<td>54,1</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>5</td>
<td>56,3</td>
<td>19,8</td>
<td>864</td>
<td>54,2</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>778</td>
<td>6</td>
<td>59,4</td>
<td>17,0</td>
<td>923</td>
<td>57,8</td>
<td>16,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>792</td>
<td>7</td>
<td>59,2</td>
<td>16,0</td>
<td>878</td>
<td>55,8</td>
<td>15,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>477</td>
<td>8</td>
<td>54,2</td>
<td>17,9</td>
<td>800</td>
<td>51,0</td>
<td>15,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>488 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>480</td>
<td>9</td>
<td>53,8</td>
<td>19,5</td>
<td>850</td>
<td>53,4</td>
<td>15,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>481</td>
<td>10</td>
<td>54,0</td>
<td>22,5</td>
<td>850</td>
<td>52,4</td>
<td>16,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>498</td>
<td>11</td>
<td>52,0</td>
<td>19,7</td>
<td>848</td>
<td>54,2</td>
<td>16,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>12</td>
<td>51,8</td>
<td>23,5</td>
<td>829</td>
<td>51,0</td>
<td>16,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>487</td>
<td>13</td>
<td>51,8</td>
<td>23,5</td>
<td>829</td>
<td>51,0</td>
<td>16,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>486</td>
<td>14</td>
<td>50,9</td>
<td>20,8</td>
<td>824</td>
<td>50,8</td>
<td>16,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>15</td>
<td>50,9</td>
<td>20,9</td>
<td>761</td>
<td>51,9</td>
<td>16,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) Les données relatives au sujet 488 n'ont pas été prises en considération au cours de l'expérience Ia : en effet, cet animal a été introduit plus tard dans l'essai en remplacement d'un sujet malade.

TABLEAU 2

Consommation journalière (C en g de matière sèche), poids (P en kg) et indice d'ingestion (I = C/P), au cours des expériences IIa et IIb

<table>
<thead>
<tr>
<th>Sujet n°</th>
<th>Exp. n°</th>
<th>IIa</th>
<th>C</th>
<th>P</th>
<th>I</th>
<th>IIb</th>
<th>C</th>
<th>P</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>477</td>
<td>1</td>
<td>4112</td>
<td>61,8</td>
<td>18,0</td>
<td>1019</td>
<td>59,7</td>
<td>17,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>1</td>
<td>1003</td>
<td>55,7</td>
<td>18,0</td>
<td>967</td>
<td>53,9</td>
<td>17,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>1</td>
<td>1017</td>
<td>56,5</td>
<td>18,0</td>
<td>997</td>
<td>58,3</td>
<td>16,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>1</td>
<td>1003</td>
<td>63,0</td>
<td>18,0</td>
<td>1013</td>
<td>56,3</td>
<td>17,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>1</td>
<td>916</td>
<td>50,9</td>
<td>18,0</td>
<td>1053</td>
<td>59,9</td>
<td>17,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td>1</td>
<td>1103</td>
<td>61,3</td>
<td>18,0</td>
<td>1053</td>
<td>59,9</td>
<td>17,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>1</td>
<td>1063</td>
<td>61,3</td>
<td>18,0</td>
<td>1053</td>
<td>59,9</td>
<td>17,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>979</td>
<td>54,1</td>
<td>18,0</td>
<td>1011</td>
<td>55,6</td>
<td>18,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>1</td>
<td>979</td>
<td>54,1</td>
<td>18,0</td>
<td>1011</td>
<td>55,6</td>
<td>18,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>1</td>
<td>1039</td>
<td>63,3</td>
<td>18,0</td>
<td>1011</td>
<td>55,6</td>
<td>18,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>1060</td>
<td>58,9</td>
<td>18,0</td>
<td>1011</td>
<td>55,6</td>
<td>18,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>1</td>
<td>1053</td>
<td>58,5</td>
<td>18,0</td>
<td>1011</td>
<td>55,6</td>
<td>18,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exp. II.b.

Cinq jours après le début de la mesure du transit gastro-intestinal, cinq des douze animaux précédemment reçoivent une alimentation de foin de prairie haché, uniformément marqué au radiocéridum.

L'indice d'ingestion, dans la mesure du possible, est maintenu aux environs de 18.

Une semaine maximum après le début de l'alimentation uniformément marquée, commencent les récoltes de matières fécales qui se prolongent jusqu'au moment des abattages, onze ou quinze jours plus tard.

Le tableau 2 reprend la consommation de matière sèche, le poids et l'indice d'ingestion des animaux.

III. — RÉSULTATS

Les tableaux 3, 3 bis et 4 donnent, pour les expériences Ia, Ib et IIa, les temps de rétention moyens (mₜ et R) des particules alimentaires dans l'ensemble du tractus digestif, calculés respectivement à l'aide de la fonction gamma proposée par Debouche (1974) et par la méthode graphique de Castle (1956). Le test t par paires effectué sur ces données confirme l'égalité de ces deux valeurs.

On y donne également les temps de séjour moyen des particules dans le réticulo-ramen (T) ainsi que dans le reste du tube digestif (mₜ — T), comme nous le verrons.

Remarquons que les tₘ s'observent dans presque tous les cas beaucoup plus élevés que les tₒ.

Tableau 3

Temps (1) de séjour moyen des résidus alimentaires dans le tube digestif du Mouton (mₜ et R), durée du cycle du rumen (T) (2) et temps de séjour moyen (mₜ — T) et minimum (tₒ) du chyme dans le reste du tube digestif. Régime : concentré plus paille hachée.

Expérience Ia

<table>
<thead>
<tr>
<th>Sujet nᵒ</th>
<th>mₜ</th>
<th>R</th>
<th>T</th>
<th>mₜ — T</th>
<th>tₒ p. 100 (³)</th>
<th>tₒ</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>38.37</td>
<td>36.39</td>
<td>24.58</td>
<td>13.39</td>
<td>12.30</td>
<td>10.27</td>
</tr>
<tr>
<td>91</td>
<td>40.99</td>
<td>40.29</td>
<td>21.13</td>
<td>19.27</td>
<td>17.00</td>
<td>10.17</td>
</tr>
<tr>
<td>193</td>
<td>42.07</td>
<td>41.14</td>
<td>27.16</td>
<td>15.51</td>
<td>16.60</td>
<td>9.20</td>
</tr>
<tr>
<td>179</td>
<td>5.02</td>
<td>42.59</td>
<td>27.51</td>
<td>17.11</td>
<td>18.00</td>
<td>11.24</td>
</tr>
<tr>
<td>198</td>
<td>12.58</td>
<td>4.87</td>
<td>31.53</td>
<td>11.00</td>
<td>15.30</td>
<td>10.23</td>
</tr>
<tr>
<td>13</td>
<td>13.16</td>
<td>43.54</td>
<td>27.08</td>
<td>16.08</td>
<td>18.00</td>
<td>12.01</td>
</tr>
<tr>
<td>178</td>
<td>56.27</td>
<td>55.21</td>
<td>37.37</td>
<td>18.30</td>
<td>21.00</td>
<td>15.56</td>
</tr>
<tr>
<td>192</td>
<td>56.38</td>
<td>43.26</td>
<td>41.61</td>
<td>15.22</td>
<td>17.50</td>
<td>14.00</td>
</tr>
<tr>
<td>177</td>
<td>45.27</td>
<td>45.38</td>
<td>28.34</td>
<td>16.53</td>
<td>17.00</td>
<td>10.11</td>
</tr>
<tr>
<td>180</td>
<td>41.26</td>
<td>43.50</td>
<td>29.35</td>
<td>14.51</td>
<td>16.00</td>
<td>12.02</td>
</tr>
<tr>
<td>184</td>
<td>34.11</td>
<td>35.33</td>
<td>23.31</td>
<td>11.10</td>
<td>14.30</td>
<td>9.23</td>
</tr>
<tr>
<td>90</td>
<td>53.17</td>
<td>42.00</td>
<td>28.08</td>
<td>15.09</td>
<td>18.30</td>
<td>10.28</td>
</tr>
<tr>
<td>85</td>
<td>34.55</td>
<td>33.42</td>
<td>22.05</td>
<td>12.40</td>
<td>14.00</td>
<td>10.39</td>
</tr>
<tr>
<td>187</td>
<td>40.25</td>
<td>52.02</td>
<td>32.37</td>
<td>7.88</td>
<td>12.30</td>
<td>8.41</td>
</tr>
<tr>
<td>586</td>
<td>39.05</td>
<td>38.41</td>
<td>24.14</td>
<td>14.50</td>
<td>12.55</td>
<td>9.58</td>
</tr>
</tbody>
</table>

(1) Les temps sont exprimés en heures et minutes.
(2) Turnover time (Hungate, 1966).
(³) Temps nécessaire à l'élimination des premiers 5 p. 100 du radiocéridum (Balch, 1950).
TABLEAU 3 bis

Temps (1) de séjour moyen des résidus alimentaires dans le tube digestif du Mouton (m₁ et R), durée du cycle du rumen (2) (T) et temps de séjour moyen (m₂ - T) et minimum (tᵢ) du chyme dans le reste du tube digestif. Régime : concentré plus paille hachée.

Expérience I₀

<table>
<thead>
<tr>
<th>Sujet n°</th>
<th>m₁</th>
<th>R</th>
<th>T</th>
<th>m₂ - T</th>
<th>tᵢ p. 100 (2)</th>
<th>tᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>43.07</td>
<td>15.58</td>
<td>25.49</td>
<td>17.18</td>
<td>20.00</td>
<td>11.58</td>
</tr>
<tr>
<td>91</td>
<td>61.10</td>
<td>60.00</td>
<td>33.02</td>
<td>28.14</td>
<td>25.00</td>
<td>19.36</td>
</tr>
<tr>
<td>493</td>
<td>53.52</td>
<td>54.08</td>
<td>26.14</td>
<td>29.38</td>
<td>28.30</td>
<td>17.50</td>
</tr>
<tr>
<td>479</td>
<td>61.19</td>
<td>61.02</td>
<td>37.57</td>
<td>23.22</td>
<td>25.00</td>
<td>18.22</td>
</tr>
<tr>
<td>498</td>
<td>43.52</td>
<td>43.56</td>
<td>29.32</td>
<td>11.00</td>
<td>20.00</td>
<td>13.20</td>
</tr>
<tr>
<td>85</td>
<td>53.07</td>
<td>51.06</td>
<td>32.19</td>
<td>20.48</td>
<td>21.30</td>
<td>16.24</td>
</tr>
<tr>
<td>478</td>
<td>61.27</td>
<td>59.54</td>
<td>36.20</td>
<td>26.58</td>
<td>26.30</td>
<td>21.18</td>
</tr>
<tr>
<td>492</td>
<td>51.13</td>
<td>54.08</td>
<td>39.58</td>
<td>11.55</td>
<td>21.30</td>
<td>16.15</td>
</tr>
<tr>
<td>477</td>
<td>52.09</td>
<td>32.19</td>
<td></td>
<td>19.50</td>
<td></td>
<td>15.15</td>
</tr>
<tr>
<td>488</td>
<td>49.46</td>
<td>28.26</td>
<td></td>
<td>21.20</td>
<td></td>
<td>17.51</td>
</tr>
<tr>
<td>489</td>
<td>64.49</td>
<td>64.57</td>
<td>40.50</td>
<td>23.50</td>
<td>25.00</td>
<td>18.49</td>
</tr>
<tr>
<td>484</td>
<td>49.35</td>
<td>49.24</td>
<td>28.08</td>
<td>21.26</td>
<td>20.00</td>
<td>16.56</td>
</tr>
<tr>
<td>49</td>
<td>55.56</td>
<td>57.56</td>
<td>36.18</td>
<td>19.52</td>
<td>23.00</td>
<td>15.22</td>
</tr>
<tr>
<td>84</td>
<td>51.02</td>
<td>51.45</td>
<td>27.35</td>
<td>23.28</td>
<td>23.30</td>
<td>17.56</td>
</tr>
<tr>
<td>487</td>
<td>57.37</td>
<td>63.41</td>
<td>33.53</td>
<td>13.54</td>
<td>21.00</td>
<td>16.23</td>
</tr>
<tr>
<td>486</td>
<td>60.00</td>
<td>55.39</td>
<td>33.38</td>
<td>25.22</td>
<td>20.45</td>
<td>22.32</td>
</tr>
</tbody>
</table>

(1) Les temps sont exprimés en heures et minutes.
(2) Turnover time (HUNGE, 1956).
(3) Temps nécessaire à l'élimination des premiers 5 p. 100 du radioécrit (BALCH, 1950).

TABLEAU 4

Temps (1) moyen de transit des résidus alimentaires dans le tube digestif du Mouton (m₁ et R), durée du cycle du rumen (T) (2) et temps de séjour moyen (m₂ - T) et minimum (tᵢ) du chyme dans le reste du tube digestif. Régime de foin de prairie haché.

Expérience II₀

<table>
<thead>
<tr>
<th>Sujet n°</th>
<th>m₁</th>
<th>R</th>
<th>T</th>
<th>m₂ - T</th>
<th>tᵢ p. 100 (2)</th>
<th>tᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>46.55</td>
<td>44.59</td>
<td>26.25</td>
<td>20.20</td>
<td>17.45</td>
<td>19.23</td>
</tr>
<tr>
<td>498</td>
<td>48.25</td>
<td>47.12</td>
<td>32.28</td>
<td>15.57</td>
<td>17.30</td>
<td>19.16</td>
</tr>
<tr>
<td>478</td>
<td>43.20</td>
<td>43.12</td>
<td>29.44</td>
<td>29.34</td>
<td>19.30</td>
<td>19.07</td>
</tr>
<tr>
<td>192</td>
<td>45.58</td>
<td>56.21</td>
<td>31.29</td>
<td>19.29</td>
<td>19.00</td>
<td>7.45</td>
</tr>
<tr>
<td>477</td>
<td>47.47</td>
<td>47.32</td>
<td>28.52</td>
<td>18.55</td>
<td>17.30</td>
<td>9.56</td>
</tr>
<tr>
<td>480</td>
<td>45.12</td>
<td>43.44</td>
<td>27.59</td>
<td>17.15</td>
<td>15.00</td>
<td>8.05</td>
</tr>
<tr>
<td>484</td>
<td>39.14</td>
<td>41.07</td>
<td>23.14</td>
<td>16.00</td>
<td>14.00</td>
<td>5.46</td>
</tr>
<tr>
<td>90</td>
<td>49.46</td>
<td>58.05</td>
<td>26.42</td>
<td>23.04</td>
<td>18.00</td>
<td>8.32</td>
</tr>
<tr>
<td>485</td>
<td>55.31</td>
<td>44.18</td>
<td>23.31</td>
<td>22.00</td>
<td>17.30</td>
<td>9.59</td>
</tr>
<tr>
<td>487</td>
<td>56.31</td>
<td>55.30</td>
<td>38.60</td>
<td>17.51</td>
<td>18.55</td>
<td>13.55</td>
</tr>
<tr>
<td>486</td>
<td>16.32</td>
<td>47.00</td>
<td>29.26</td>
<td>17.06</td>
<td>16.00</td>
<td>10.05</td>
</tr>
</tbody>
</table>

(1) Les temps sont exprimés en heures et minutes.
(2) Turnover time (HUNGE, 1956).
(3) Temps nécessaire à l'élimination des premiers 5 p. 100 du radioécrit (BALCH, 1950).
Afin de contrôler les valeurs des temps obtenues à partir des courbes de concentration, nous avons déterminé, pour 5 sujets dont le contenu était uniformément marqué au radiocérum, les temps de séjour dans différentes parties du tube digestif. Les résultats sont présentés au tableau 5. Nous constatons une forte variabilité entre les animaux.

Les béliers 484 et 90 se caractérisent par des temps de séjour dans le réticulorumen étonnamment faibles. Les temps de séjour dans l'intestin grêle sont très courts comparativement à ceux observés dans le gros intestin pour lequel on remarque dans le cæcum et le rectum des temps de rétention relativement longs.

TABLEAU 5

Durée du cycle du rumen (1) et temps de séjour (2) du chyme dans les diverses parties du tube digestif du Mouton alimenté au foin de prairie haché uniformément marqué au moyen d'un radiotraceur non résorbé.

Expérience II°

<table>
<thead>
<tr>
<th>Sujet no</th>
<th>579</th>
<th>492</th>
<th>477</th>
<th>484</th>
<th>90</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>21.31</th>
<th>30.26</th>
<th>26.52</th>
<th>10.37</th>
<th>13.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estomac</td>
<td>1.26</td>
<td>1.11</td>
<td>1.34</td>
<td>(1.30) (2)</td>
<td>1.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.01</th>
<th>0.15</th>
<th>1.05</th>
<th>0.92</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestin grêle</td>
<td>0.08</td>
<td>0.22</td>
<td>0.37</td>
<td>0.26</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.31</td>
<td>0.33</td>
<td>0.33</td>
<td>1.02</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.16</th>
<th>0.05</th>
<th>0.05</th>
<th>0.19</th>
<th>0.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastron + rectum</td>
<td>0.17</td>
<td>0.52</td>
<td>0.47</td>
<td>0.50</td>
<td>0.49</td>
</tr>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.36</td>
<td>0.43</td>
<td>0.45</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>7.07</th>
<th>7.44</th>
<th>8.47</th>
<th>7.56</th>
<th>11.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cæcum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3.42</th>
<th>4.53</th>
<th>5.05</th>
<th>6.13</th>
<th>7.03</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heure du repas</th>
<th>9 h-16 h 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heure d'abattage</td>
<td>9 h</td>
<td>13 h 30</td>
<td>12 h</td>
<td>9 h</td>
<td>9 h</td>
</tr>
<tr>
<td>Cons. journ. (g de MS)</td>
<td>987</td>
<td>987</td>
<td>1,059</td>
<td>1,053</td>
<td>1,001</td>
</tr>
<tr>
<td>Poids du sujet (kg)</td>
<td>53,9</td>
<td>59,3</td>
<td>59,7</td>
<td>59,0</td>
<td>55,6</td>
</tr>
<tr>
<td>Indice d'ingestion</td>
<td>17,9</td>
<td>16,6</td>
<td>17,6</td>
<td>17,9</td>
<td>18,0</td>
</tr>
</tbody>
</table>

(1) Pour le réticulorumen, ce temps correspond au turnover time ou cycle time (HUNGATE, 1966).
(2) Les temps sont exprimés en heures et minutes.
(3) Valeur estimée.
Nous reprenons, au tableau 6, les temps de transit moyen des résidus alimentaires dans tout le tube digestif, dans le réticulo-rumen et dans le reste du tractus pour les 5 sujets alimentés au foin de prairie haché et recevant une dose unique de 141Ce (m_t, T et $m_t - T$ respectivement) puis une alimentation uniformément marquée à l'aide du même traceur (T_{TD}, T_{RR} et T_1 respectivement).

Au tableau 7, nous reproduisons, pour les 5 animaux précédents, les valeurs des coefficients de variation de l'excrétion de la matière sèche (M), du radiocérum (A) ainsi que des concentrations fécales en radiocérum (C) pour des récoltes bi-horaires et journalières (François et Thewis, 1975).

TABLEAU 6

Temps ($) de séjour moyen des résidus alimentaires dans le tube digestif (m_t et T_{TD}), dans le réticulo-rumen (T et T_{RR}) et le reste du tube digestif ($m_t - T$ et T_1) du mouton alimenté au foin de prairie haché, évalués par les techniques directe (abattage) et indirecte.

Expériences II_a et II_b

<table>
<thead>
<tr>
<th>Sujet n°</th>
<th>m_t (kg)</th>
<th>T_{TD} ($)</th>
<th>T</th>
<th>T_{RR} ($)</th>
<th>$m_t - T$</th>
<th>T_1 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>46,45</td>
<td>36,34</td>
<td>26,25</td>
<td>21,31</td>
<td>20,20</td>
<td>15,43</td>
</tr>
<tr>
<td>492</td>
<td>53,33</td>
<td>47,19</td>
<td>34,29</td>
<td>30,26</td>
<td>19,19</td>
<td>16,53</td>
</tr>
<tr>
<td>477</td>
<td>47,47</td>
<td>44,51</td>
<td>28,52</td>
<td>26,52</td>
<td>18,55</td>
<td>17,39</td>
</tr>
<tr>
<td>484</td>
<td>39,14</td>
<td>28,45 ($)</td>
<td>23,14</td>
<td>10,37</td>
<td>16,90</td>
<td>18,08 ($)</td>
</tr>
<tr>
<td>90</td>
<td>49,56</td>
<td>35,47</td>
<td>26,12</td>
<td>13,42</td>
<td>23,00</td>
<td>22,65</td>
</tr>
</tbody>
</table>

($) Les temps sont exprimés en heures et minutes.

($) Valeur estimée.

($) Somme des temps partiels obtenus au tableau 5.

TABLEAU 7

Coefficients de variation (en p. 100) de l'excrétion de la matière sèche (M), du radiocérum (A), ainsi que de la concentration fécale en radiocérum ($C = \frac{A}{M}$), pour les périodes de récoltes bi-horaire et journalière.

Expérience II_b

(François et Thewis, 1975)

<table>
<thead>
<tr>
<th>Sujet n°</th>
<th>Période de récolte</th>
<th>M</th>
<th>A</th>
<th>C</th>
<th>M</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>479</td>
<td>Bi-horaire</td>
<td>57,30</td>
<td>58,01</td>
<td>3,24</td>
<td>5,33</td>
<td>5,29</td>
</tr>
<tr>
<td>492</td>
<td>Bi-horaire</td>
<td>35,48</td>
<td>35,15</td>
<td>2,91</td>
<td>4,79</td>
<td>6,00</td>
</tr>
<tr>
<td>477</td>
<td>Bi-horaire</td>
<td>35,85</td>
<td>36,81</td>
<td>2,46</td>
<td>5,11</td>
<td>6,37</td>
</tr>
<tr>
<td>484</td>
<td>Bi-horaire</td>
<td>41,14</td>
<td>43,86</td>
<td>6,12</td>
<td>6,13</td>
<td>7,42</td>
</tr>
<tr>
<td>90</td>
<td>Journalière</td>
<td>51,96</td>
<td>52,99</td>
<td>5,74</td>
<td>7,79</td>
<td>8,40</td>
</tr>
</tbody>
</table>

Nous constatons d’une part que, pour les sujets 479, 492 et 477, les coefficients de variation de la concentration fécale en uniCe sont relativement faibles et d’autre part, que les temps de séjour dans le réticulo-rumen obtenus par les deux techniques concordent assez bien pour ces animaux. Nous remarquons également que l’animal n° 479 se caractérise par une excrétion de la matière sèche nettement plus irrégulière que les sujets n° 492 et 477. Cela se traduit par une discordance marquée entre les temps de séjour moyen des aliments dans la partie du tube digestif au-delà du réticulo-rumen, estimés par les deux techniques.

Nous constatons que des valeurs élevées des coefficients de variation de concentration du radiotracer dans la matière sèche (C), associées à des valeurs faibles des coefficients de variation d’excitation de la matière sèche (M) et du traceur (A), donnent des temps de séjour très courts pour le réticulo-rumen, mais très vraisemblables pour le reste du tube digestif (sujets n° 484 et 90).

IV. — DISCUSSION ET CONCLUSION

La technique proposée par DEBOUCHE (1974) pour estimer le temps de rétention moyen des particules alimentaires dans le tube digestif des ruminants, donne des valeurs très comparables à celles obtenues par la méthode de CASTLE (1956) qui est la plus couramment utilisée.

La concordance des valeurs de m_t et de R respectivement fournies par la fonction gamma et par la méthode de CASTLE (1956) n’est cependant pas surprenante ; ces deux estimations concernent, en effet, le même phénomène.

Le temps de passage dans le tractus gastro-intestinal peut être considéré comme une variable aléatoire caractérisée par sa fonction de densité de probabilité ou par sa fonction de répartition.

La première des deux techniques comparées approche la fonction de densité de probabilité du temps de passage au moyen des mesures de concentration en traceur radioactif faites dans les fèces à différents moments t_i. L’activité mesurée peut, en effet, être assimilée à une quantité de particules marquées qui ont mis un temps t_i pour passer au travers du tractus gastro-intestinal. Afin d’éliminer les erreurs dues aux fluctuations de l’émission fécale, on utilise la concentration fécale en traceur. Cette dernière, au temps t_i, peut donc être assimilée à une fréquence observée du nombre de particules qui ont traversé le tube digestif en un temps t_i. Une fonction gamma peut s’ajuster (moindres carrés) sur ces fréquences observées et permet alors de calculer facilement l’espérance mathématique de la variable, c’est-à-dire le temps moyen de passage.

La seconde technique passe par la fonction de répartition de la variable aléatoire qui est estimée à partir de la courbe d’excitation cumulée du traceur. Aucune forme analytique n’étant proposée pour cette fonction de répartition, c’est un tracé strictement visuel qui en tient lieu, nécessitant un nombre important de mesures (nombreuses recoltes quantitatives de fèces). Comme on ne dispose pas de la fonction de répartition, il n’est pas possible de calculer l’espérance mathématique de la variable aléatoire par intégration. Il est alors proposé d’approcher l’intégration
par un processus numérique en divisant le domaine d'intégration en dix parties d'importance égale au moyen des déciles et en considérant la valeur médiane de chacune de ces classes. C'est ainsi que CASTLE (1956) propose le calcul du temps moyen de passage par la moyenne arithmétique des valeurs du temps au bout duquel 5 p. 100, 15 p. 100, 25 p. 100 ... 95 p. 100 de la quantité totale de tracé est excrétée.

Si la première méthode est plus objective et facilite la collecte des données expérimentales, elle requiert l'emploi de moyens de calcul assez puissants. Elle donne également la valeur du temps nécessaire à l'apparition des premières traces de marqueur dans les fèces ainsi que celle correspondant à la concentration maximale en tracé ; la seconde, moins objective et plus exigeante quant aux mesures est cependant beaucoup plus facile à utiliser si on ne dispose pas de moyen de calcul suffisant.

Dans une publication précédente (THEWIS, FRANÇOIS et THILL, 1975), nous avons estimé le temps de séjour des résidus alimentaires dans le réticulo-rumen du Mouton à partir de la période caractérisant l'exponentielle ajustée à la partie décroissante de la courbe de concentration fécale.

Disposant d'une mesure digne de confiance du temps de séjour dans l'ensemble du tube digestif (m.) (DEBOUCHE, 1974) et dans le réticulo-rumen (T) (THEWIS, FRANÇOIS et THILL, 1975), nous pensons que leur différence (m. — T) constitue une estimation intéressante du temps de séjour moyen des particules alimentaires dans le tubedigestif au-delà du réticulo-rumen.

Remarquons que la notion de t₂₅% appliquée à l'excrétion d'un radiolanthanide fournit des valeurs beaucoup trop élevées pour représenter le temps de transit minimum (iléo-colaire). Cette constatation était prévisible étant donné l'extrême sensibilité des techniques de détection des radiations.

Par contre, la valeur de t₀, obtenue à partir de l'ajustement d'une fonction gamma à la courbe de concentration fécale en radiocérium semble être une estimation acceptable du temps de transit iléo-colaire.

L'étude de très nombreuses courbes d'excrétion nous a montré que les valeurs ainsi obtenues par calcul étaient dans la plupart des cas assez proches de celles relevées graphiquement sur les courbes.

La technique de marquage uniforme du contenu gastro-intestinal au radiocérium permet, quant à elle, d'obtenir plus de détails.

Après examen des résultats obtenus, il semble que, pour autant que nous ayons des coefficients de variation faibles pour la concentration en tracé, l'excrétion de matière sèche et de cérium, nous obtenions une bonne concordance entre les deux techniques (tabl. 7). Il serait toutefois utile de confirmer cette observation par d'autres expériences.

La discordance obtenue pour deux animaux, notamment pour le réticulo-rumen, peut encore s'expliquer par le fait que la méthode de marquage uniforme suivie d'abattage donne uniquement la situation qui règne dans le tube digestif au moment du sacrifice de l'animal, et qu'il s'agit précisément de sujets caractérisés par une forte variation de la concentration fécale bi-horaire en radiocérium. Elle serait due vraisemblablement à un fonctionnement très irrégulier du réticulo-rumen (entraînant des fluctuations dans le rendement de la dégradation des constituants fermentescibles de la ration : cellulose) (FRANÇOIS et THEWIS, 1973).

Une hypothèse similaire pourrait être avancée pour expliquer la discordance entre les deux techniques observée pour le sujet 479 pour les temps de séjour moyen dans la partie du tube digestif postérieure au réticuloo-rumen.

En ce qui concerne les valeurs propresmment dites des temps, force est de constater une assez grande dispersion due vraisemblablement à l'hétérogénéité du cheptel et à des facteurs individuels.

La comparaison des valeurs obtenues au cours de ces essais avec celles rapportées dans la bibliographie est délicate. En effet, la forme de présentation de l’aliment, sa nature, la quantité de matière sèche ingérée ainsi que le traceur utilisé constituent autant de facteurs influençant les temps de séjour et leur mesure. Les valeurs obtenues sont toutefois du même ordre de grandeur que celles obtenues sur moutons par Hyden (1961) pour l’intestin grêle et le cæcum, par Grovum et Hecker (1973) pour le cæcum et le côlon.

En conclusion, la technique permettant de mesurer le temps de séjour moyen des particules alimentaires dans l’ensemble du tube digestif, dans le réticuloo-rumen et dans le reste du tube digestif, à partir d’une courbe de concentration caractérisant l’excrétion fécale d’un traceur non résorbé, s’avère être d’un emploi aisé et rigoureux. Elle donne des valeurs dignes de confiance sans perturber l’animal et son transit, fait que l’on appréhende souvent chez les animaux munis de fistules. Elle offre également l’avantage d’être applicable sans difficultés aux bovins pour lesquels le marquage uniforme de la ration suivie de l’abattage est pratiquement irréalisable.

Reçu pour publication en février 1976.

REMERCIEMENTS

SUMMARY

USE OF RADIOACTIVE LANTHANIDES TO DETERMINE THE GASTRO-INTESTINAL TRANSIT IN SMALL RUMINANTS. COMPARISON OF DIRECT (SLAUGHTER) AND INDIRECT TECHNIQUES

Mean retention times of digesta in the gastro-intestinal tract taken as a whole, in the reticuloo-rumen and in the remainder of the gut were estimated in sheep by two methods : from the faecal concentration curves and from the cumulative excretion curves of an unabsorbable marker (111In). These data were compared to those obtained by a slaughter method using subjects whose gut contents had reached marking equilibrium.

Both techniques agree satisfactorily provided that the faecal marker concentration is stable and that dry matter and marker are excreted regularly.
Références bibliographiques

