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Abstract: 7 

The effect of the shallowness on meandering jets in a shallow rectangular reservoir is investigated. Four 8 

meandering flows were investigated in an experimental shallow rectangular reservoir. Their boundary 9 

conditions were chosen to cover a large range of friction numbers (defined with the sudden expansion 10 

width). Due to the unsteady characteristics of the flows, a Proper Orthogonal Decomposition of the 11 

fluctuating part of the surface velocity fields measured using LSPIV was used for discriminating the flow 12 

structures responsible for the meandering of the jet. Less than 1 % of the calculated POD modes 13 

significantly contribute to the meandering of the jet and two types of instability are in competition in such 14 

a flow configuration. The sinuous mode is the dominant mode in the flow and it induces the meandering of 15 

the flow, while the varicose mode is a source of local mixing and weakly participates to the flow. The 16 

fluctuating velocity fields were then reconstructed using the POD modes corresponding to 80% of the total 17 

mean fluctuating kinetic energy and the coherent structures were identified using the residual vorticity, 18 

their centres being localised using a topology algorithm. The trajectories of the structures centres 19 

emphasize that at high friction number the coherent structures are small and laterally paired in the near, 20 

middle and far fields of the jet, while with decreasing friction number the structures merge into large 21 

horizontal vortices in the far-field of the jet, their trajectories showing more variability in space and time. 22 

The analysis of the stability regime finally reveals that the sinuous mode is convectively unstable and may 23 

become absolutely unstable at the end of the reservoir when the friction number is small. 24 
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1. INTRODUCTION 29 

Shallow rectangular reservoirs are commonly used for water-management in human constructions 30 

and in natural environments. Two types of reservoirs are generally distinguished:  31 

(1) The storage reservoirs, which are used for flood-control or hydro-power generation, and are 32 

designed to contain a great volume of clear water.  33 

(2) The settling reservoirs, which are used for storm-water treatment and protection of irrigation 34 

systems, and are designed to trap pollutants and/or sediments.  35 

As shown by Dufresne et al. (2012), most design methods only take into account the volume of the 36 

reservoir, without considering its shape nor the detailed characteristics of the flow patterns. However, 37 

an optimal sizing and management of these reservoirs, in terms of sediment transport and/or water 38 

storage, can only be reached based on a detailed knowledge of the flow fields developing in the 39 

reservoir (Dufresne et al. 2012; Dufresne et al. 2010b; Peltier et al. 2013). Flows in shallow 40 

rectangular reservoirs are indeed complex, involving large-scale horizontal coherent structures 41 

responsible for momentum transfers, which strongly affect sediment transport by the flow (Aloui and 42 

Souhar 2000; Camnasio et al. 2011; Canbazoglu and Bozkir 2004; Dewals et al. 2008; Dufresne et al. 43 

2010a; Kantoush et al. 2008; Mullin et al. 2003; Oca and Masaló 2007; Peltier et al. 2014). For 44 

instance Dufresne et al. (2012) showed for different shallow rectangular reservoirs that the sediment 45 

trapping efficiency depends on the number of reattachment points present in the flow field (i.e. 46 

presence or not of large recirculation zones). This is an important aspect to be taken into account in the 47 

design of such reservoirs; otherwise, it may lead to high unexpected maintenance costs (additional 48 

operations of sediment removal).  49 

The complete description of the different types of flows occurring in shallow reservoirs, even in 50 

the simplest geometric configuration (rectangular), is still an ongoing challenge as some regimes are 51 

still not well understood. The regime of the flow developing in shallow rectangular reservoirs and 52 

therefore the type of the flow patterns, depends on the Froude number at the reservoir inlet, F, and on 53 

the reservoir geometry, characterized by the shape factor defined as SF = L/B
0.6

b
0.4 

by Dufresne et al. 54 

(2010a) (L the reservoir length, b the width of the inlet channel and B the width of the sudden 55 

expansion). Peltier et al. (2014) showed that the flow can be:  56 
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 Symmetric (F < 0.21 and SF < 6.2): the jet is straight from the inlet to the outlet of the 57 

reservoir and symmetric recirculation zones develop on both sides of the jet  58 

 Asymmetric (SF > 8.1): the jet impacts one or several times the lateral wall despite the 59 

axisymmetric geometry of the reservoir and different sizes of recirculation zones develop 60 

in the flow 61 

 Meandering (F > 0.21 and SF < 6.2): the jet periodically and spatially oscillates from the 62 

inlet to the outlet of the reservoir, these oscillations slightly deforming the recirculation 63 

zones outside of the jet  64 

 Unstable: when F is close to 0.21 and SF < 6.2 or when F > 0.21 and 6.2 < SF < 8.1, the 65 

regime of the jet randomly changes; in the same experiment, the jet can either go straight 66 

(with or without meandering patterns) from the inlet to the outlet or impact one or several 67 

times the lateral wall before going out.  68 

Symmetric, asymmetric and unstable flows in shallow rectangular reservoirs are now well 69 

documented in literature, which enabled the development of accurate numerical models able to 70 

reproduce those flow features (Camnasio et al. 2013; Dewals et al. 2008; Dufresne et al. 2011; Khan 71 

et al. 2013; Peng et al. 2011; Stovin and Saul 2000). In contrast, very few studies deal with 72 

meandering jet in shallow rectangular reservoirs. Aspect ratios, geometries and hydraulic conditions 73 

encountered in literature generally differ from those leading to meandering jet in shallow rectangular 74 

reservoir (flows in cylinders with an expanded part (Guo et al. 1998), submerged nozzle injecting 75 

water into a vertical rectangular cavity (Honeyands and Molloy 1995; Lawson and Davidson 2001), 76 

vertical plume of effluent material (Landel et al. 2012)). The closest configurations to shallow 77 

rectangular reservoirs are those investigating plane turbulent jets entering a bounded fluid layer 78 

(Canestrelli et al. 2014; Chen and Jirka 1998; Dracos et al. 1992; Giger et al. 1991; Rowland et al. 79 

2009). These configurations are encountered in water cooling of equipment or represent a river 80 

entering a water body at rest (e.g. a river mouth). They provide some fundamental insights into the 81 

physics of meandering flows in shallow rectangular reservoirs. Dracos et al. (1992) thus showed that 82 

the water depth, H, is the appropriate length-scale to consider for the normalisation of the results 83 

instead of the width of the inlet channel, b and they found that the instabilities of the jet are affected by 84 
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the lateral wall when B/2/l < 10 (B/2 the half-width of the flow domain and l the characteristic length 85 

of the jet represented by the half-width of the jet b1/2 = 0.881×l). Through a linear stability analysis of 86 

an idealized jet, Chen and Jirka (1998) and Socolofsky and Jirka (2004) brought a first explanation to 87 

the mechanism of the jet meandering. The presence of two inflection points in the velocity profile of 88 

the jet flow is the source of two instability modes (sinuous and varicose). These modes are usually 89 

convectively unstable, the sinuous one being the most unstable. The relative weight of these two 90 

modes governs the occurrence of meandering jets. Moreover Chen and Jirka (1998) observed that “the 91 

role of viscosity is quite small and the stability of the jet is mainly controlled by bed friction”. Finally, 92 

by modelling a river mouth, Rowland et al. (2009) highlighted that the meandering of the jet 93 

significantly affects turbulent intensities, lateral shear stress distributions and momentum transfers, 94 

which induce changes in the local mixing and dispersal of scalars. Consistent with these previous 95 

findings, Peltier et al. (2013) showed with numerical simulations including sediment transport and 96 

morphodynamics, that the additional momentum transfer of the meandering jet induces a larger 97 

spreading of the sediments on both sides of the jet compared to configurations without a meandering 98 

jet: the trapping efficiency of the reservoir increases by a factor 1.7. However, many unanswered 99 

questions remain as far as flows in real-world shallow rectangular reservoirs are concerned and 100 

additional studies are needed. Knowledge gaps include among others, the effect of the instability 101 

modes on the characteristics of the meandering jet, as well as the influence of the shallowness on the 102 

flow patterns. Furthermore, additional data will be needed for better understanding how the 103 

meandering of the jet affects the transport of sediment particles and pollutants, and as a result, improve 104 

the design hydraulic works made for trapping polluted sediments.  105 

In this paper, we analyse the physics of four meandering jets having very different inflow 106 

conditions in terms of Friction number. The main purpose of the study is to understand how the 107 

shallowness of the reservoir affects the coherent structures within the meandering jet. Experiments 108 

were carried out with clear water and the flow velocity was measured by Large Scale Particle Image 109 

Velocity (LSPIV) (Hauet et al. 2008a). The fluctuating velocity fields are first analysed using a Proper 110 

Orthogonal Decomposition (POD). After the identification of the POD modes corresponding to the 111 

coherent structures, the fluctuating velocity fields are reconstructed based on these modes. The 112 
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coherent structures are identified using a criterion based on the residual vorticity (Kolář 2007), while 113 

the centres of the structures are identified using a topology algorithm (Depardon et al. 2006). The 114 

results are correlated with the flow shallowness and the stability of the flows is finally discussed. 115 

2. PROPER ORTHOGONAL DECOMPOSITION (POD) 116 

Meandering jets are characterised by periodical oscillations as depicted in Fig. 1, which are a 117 

combination of several sizes of energetic structures mainly controlled by the particular geometry of the 118 

reservoir (Peltier et al. 2014). In this study, the discrimination of the structures within the flow with 119 

respect to their respective energy was performed using a modal decomposition of the fluctuating 120 

velocity fields: the Proper Orthogonal Decomposition (POD) (Berkooz et al. 1993; Holmes et al. 121 

2012).  122 

The POD can be carried out using two methods: (1) the direct method (Berkooz et al. 1993; 123 

Holmes et al. 2012) or (2) the snapshot method (Sirovich 1987). Both methods give similar results 124 

(Graftieaux et al. 2001). The snapshot method is faster when the number of spatial information in the 125 

measurement fields is greater than the number of measurement fields itself (i.e. so-called snapshots), 126 

and vice versa for the direct method. The size of the LSPIV computation grid in this study (9405 127 

points) being similar to the number of snapshots (9000), both method would applied. Since the 128 

snapshot method was used in previous studies (Peltier et al. 2013; 2014), we decide to also employ 129 

this method for the present study. In the following paragraphs, a short description of the snapshot 130 

method used in this study is presented. It was coded in Matlab
©
.  131 

Let ( , )itu x  be a collection of N (N *
) instantaneous horizontal velocity fields, measured at a 132 

regular time interval, t , in the discrete physical space 2 . These velocity fields are square 133 

integrable functions (  2( , )it L u x ) and they are split into a steady part, ( , )
N

tu x , and a 134 

fluctuating part, ( , )tu' x , with 
N

 denoting the average over the N snapshots.  135 

The snapshot method provides an orthogonal basis of M temporal coefficients, am(ti) 136 

(m   {1, …, M ≤ N} M and N  *
), which combined to an orthonormal basis of M spatial function137 



6 

( )m x  of  2L  , called spatial modes, best fits ( , )tu' x in the least-square sense (Brevis and García-138 

Villalba 2011):  139 

2

2

1 1

1
min ( , ) ( ) ( )

N M N

i m i m

i m L

t a t
N



 

 
 
 
 

 u' x x  (1) 

with || ||L² =√( , )L² the induced norm in  2L   and ( , )L² the inner product for  2L  . According to 140 

Couplet et al. (2003), “the POD basis is optimal by construction, i.e. the first M ≤ N spatial modes 141 

capture more energy over the N snapshots than any other set of orthonormal spatial functions”. 142 

The first step of the snapshot method consists in the computation of the correlation matrix C: 143 

   
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u' x W xC u' , ,N N P P  WC   (2) 

where W is a diagonal weighting matrix, for which the non-zeros elements are the cell volumes of 144 

each of the P grid points of one snapshot.   145 

In the second step of the method, the temporal coefficients am(t) are found using the solutions of 146 

the following eigenvalue problem: 147 

1

1
( ) ( )

N

ij m j m m i

j

t t
N

  


C  (3) 

m are eigenvalues and m(t) are eigenvectors of the correlation matrix. The eigenvalues are all real, 148 

with 1 ≥ 2 ≥ … ≥ N > 0 and the eigenvectors m(t) are orthonormal. The temporal coefficients, am(t), 149 

are a function of the eigenvectors and of the eigenvalues and they must be orthogonal:  150 

( ) ( )m m ma t N t  , with 0i N
a  and l m l lmN

a a   (4) 

In the third step, the spatial modes are computed by projecting the fluctuating velocity 151 

ensemble onto the temporal coefficients, leading therefore to:   152 

1
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t a t
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2

²
1T

m m mL
W     (5) 

The spatial modes are orthonormal with respect to the inner product in L
2
,
 m

T
Wm.  153 

The mean fluctuating kinetic energy per unit mass captured by the m
th
 mode, Em, finally 154 

writes: 155 
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while the mean total fluctuating kinetic energy per unit mass, ET, is: 156 
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3. EXPERIMENTAL SET-UP 157 

3.1. Shallow rectangular reservoir  158 

The experiments were carried out at the laboratory of engineering hydraulics of the University of 159 

Liege (ULg), Belgium. The experimental shallow reservoir is illustrated in Fig. 2; it consists in a 160 

10.40 m long and 0.98 m wide horizontal channel, in which blocks can be rearranged to build different 161 

geometries of rectangular reservoirs.  162 

The required discharge is injected in the upstream part of the flume, which is constituted by a 163 

stilling basin and a porous screen that stabilized the flow injection. After some meters, the flow is 164 

contracted to the width of the inlet channel, b, through a converging section. The inlet channel is 165 

2.00 m long and has straight parallel walls. At the entrance of the reservoir, the flow suddenly expands 166 

to the width of the reservoir, B=b+2×B. At the exit of the reservoir, the flow suddenly contracts to 167 

the outlet channel width, which is the same as in the inlet channel. The outlet channel is 1.50 m long 168 

and it ends with a tailgate and a free flow. All the surfaces are made of glass, except the bottom of the 169 

flume (PVC) and the converging section (metallic sheets).  170 

The reservoir was fed with a constant discharge, Q, regulated through a pressure sensor mounted 171 

on the pump and an overflow system that enabled to keep constant the head at the entrance of the 172 

pump. The water depth, H, was measured using an ultrasonic probe and water variations in the 173 

reservoir did not exceed 2 mm (i.e. maximum 10% of H). The uncertainty on the flow inflow 174 

discharge was Q = 0.025 L/s and the relative uncertainty on the water depth measurement was H/H 175 

= 1%.  176 

In the present paper, we use a Cartesian coordinate system in which x, y and z are the 177 

longitudinal, lateral and vertical directions, respectively; x = 0 immediately downstream from the inlet 178 

channel and y = 0 at the right bank of the reservoir. z = 0 at the bottom of the reservoir.  179 
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3.2. Measurements of velocity fields  180 

Given the experimental set-up and the size of the experiments, only the surface flow was 181 

reasonably accessible. The surface dynamics was therefore estimated using the surface velocity fields 182 

measured by Large-Scale PIV (LSPIV) and we assumed that it provides a reasonable representation of 183 

the large-scale instabilities. This assumption is supported by the results of Rowland et al. (2009), who 184 

showed in a configuration similar to ours (acrylic bed, R = 27000, H/B = 0.2, with H constant in most 185 

part of the reservoir) that when approaching the free surface the characteristics of a jet in a confined 186 

layer almost corresponds to those of a self-similar plane-jet and comparisons between the mid-flow 187 

and surface measurements indicated very similar characteristics. Nevertheless, since the water depth in 188 

our experiments is smaller than the 5 cm of the experiment of Rowland et al. (2009), some bottom 189 

generated-turbulence affects the flow near the bottom (z/H < 0.16, z being the altitude with respect to 190 

the experiment bottom). In addition, Foss and Jones (1968) and Holdeman and Foss (1975) observed 191 

that in the near and middle fields of a bounded jet (x/H < 10), vertical secondary currents are generated 192 

by the inlet and affect the vertical distribution of velocity. In the far-field (x/H > 10), these secondary 193 

currents become dynamically passive. Based on our experimental set-up, it is however not possible to 194 

quantitatively estimate the relative weight of these different effects on the flow. In contrast, using 195 

numerical modelling, Peltier et al. (2013) and Mariotti et al. (2013) showed a remarkable agreement 196 

between the measured characteristics of the jet and those predicted by a depth-averaged flow model 197 

(based on the shallow water equations). This also suggests that the measured surface velocity fields are 198 

fairly representative of the mean flow and of the large-scale instabilities.   199 

For each experiment, sawdust of 2 mm of mean diameter was placed on the surface of the flow 200 

and a region of 1 m², containing the entrance of the reservoir, was video recorded at a rate of 25 Hz 201 

during 6 min using a commercial video-camera (Canon
©
 HD-HG20). After extraction from the video 202 

using ffmpeg (http://ffmpeg.org), correction and orthorectification of the images to be processed using 203 

Imagemagick (http://www.imagemagick.org), one pixel was equal to a square of 1 mm side. Using a 204 

LSPIV code based on the work of Hauet et al. (2008b) and Hauet (2009), the surface velocity fields 205 

were worked out on a square grid of 1 cm × 1 cm.  206 

http://ffmpeg.org/
http://www.imagemagick.org/
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The flow direction and patterns were globally well captured. However, the theoretical uncertainty 207 

on the mean surface velocity is between 6% and 17%, depending on the tilt angle of the video-camera 208 

and on the position within the recorded images (Hauet et al. 2008a). The uncertainty is even higher on 209 

the instantaneous/fluctuating surface velocity fields.  210 

As consequence, spurious vectors in the measurement fields were identified using a median filter 211 

(Westerweel 1994) and they were discarded. In the present experiments (see Tab. 1), the number of 212 

spurious vectors did not exceed 3% of the computed vectors. The resulting velocity fields were then 213 

processed using the Matlab function smoothn, described in Garcia (2010) for interpolating the missing 214 

values and for smoothing the velocity fields. The smoothing parameter was optimized using the 215 

generalized cross-validation method (Garcia 2010; Wahba 1990). The smoothing operated as a low-216 

pass filter and therefore enabled to reduce the influence of high-frequency parasite motion within data. 217 

This procedure is of high importance for discriminating the contributions of the different turbulent 218 

structures present in the flow. Without low pass filtering, the parasite motions are too energetic and 219 

they lowered the contribution of the turbulent structures of interest.   220 

3.3. Data set  221 

According to Peltier et al. (2014), for shape factors, SF, smaller than 6.2 and Froude numbers, 222 

F /inU gH  (Uin the mean velocity at the inlet and g the gravity acceleration) greater than 0.21, the 223 

flows developing in shallow rectangular reservoirs are meandering. Therefore, in the present set of 224 

experiments, the width of the inlet/outlet channels, b, was set to 0.08 m; the sudden expansion width, 225 

B, was set to 0.45 m and the length of the reservoir, L, was equal to 1 m, so that the resulting shape 226 

Factor, SF, equals 4.43. Four couples of discharge/water depth were then chosen, so that the 227 

corresponding Froude numbers were greater than 0.21 and the corresponding friction numbers at the 228 

inlet, S / 8f B H   (f the Darcy-Weisbach coefficient) (Chu et al. 1983), cover a broad range of 229 

values. The main flow characteristics are summarized in Tab. 1 and the Reynolds numbers, 230 

R = UinD/ (D the hydraulic diameter at the inlet and  the kinematic viscosity), are given for 231 

information. They confirm that the flows are turbulent, but they are hydro-dynamically smooth. For 232 
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the slowest case (F), some viscous effects may be present as the depth-dependent Reynolds number is 233 

close to 1000 (minimum Q//b = 1500) (Chen and Jirka 1997).   234 

The friction number is used here as a shallowness parameter (Chu et al. 2004) and quantifies the 235 

effect of the confinement exerted by the water depth on the coherent structures developing in the 236 

reservoir. From a systematic parametric study, Peltier et al. (2014) revealed a strong dependence to S 237 

for the characteristic lengths and frequency of the meandering jet:  238 

1. The wave length of the meandering is mostly proportional to the water depth at low S and at 239 

high S it is proportional to the product of the expansion width (B) and of the friction 240 

coefficient.  241 

2. The depth-normalised lateral spreading of the jet is almost proportional to the square root of 242 

the friction number, which indicates that the lateral spreading is significantly influenced by 243 

the water depth, revealing a vertical confinement occurring at high S (low water depth). 244 

3. A damping of the meandering frequency is observed with increasing friction and/or 245 

decreasing water depth. 246 

This parameter S was chosen to remain consistent with previous studies dealing with symmetric 247 

and asymmetric flows in shallow rectangular reservoirs (Dufresne et al. 2010a; Peltier et al. 2013). 248 

These flows are similar to cavity flows and the confinement exerted by the water depth on the 249 

recirculating patterns is well represented by the friction number (Babarutsi et al. 1989; Babarutsi et al. 250 

1996).  251 

The different types of friction regimes were named referring to the work of Chu et al. (2004). The 252 

flow-case F (S = 0.18) belongs to the frictional regime (the turbulence scale is mainly driven by the 253 

water depth), while the flow-case NF (S = 0.03) belongs to the non-frictional regime (the turbulence 254 

scale is mainly driven by the horizontal length-scale, i.e. the sudden expansion width B). For sudden 255 

expansions, Chu et al. (2004) identified a transition regime for S in-between 0.05 and 0.1. In the case 256 

of meandering flows, Peltier et al. (2014) a confinement effect was observed from S = 0.07. As a 257 

consequence the flow case FT (S = 0.10), was called frictional close to transition and the flow case 258 

NFT (S = 0.06) was called non-frictional close to transition.  259 
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4. POD ANALYSIS 260 

4.1. Energy 261 

The POD analysis was performed for each experimental flow-case on N = 9000 snapshots (video-262 

sequence of 6 min at 25 fps). 9000 eigenvalues m, representing the mean fluctuating kinetic energy in 263 

the m
th
 modes, could then be deduced. The M eigenvalues are ranked in descending order and their 264 

values dramatically decrease as m increases. This suggests that, apart from a reduced number of 265 

energetic modes (corresponding to m ≤ 10), all other modes reflect motions with little contribution to 266 

the overall flow pattern.  267 

The mean total fluctuating kinetic energy (ET, Eq. 7) was calculated for each flow-case and was 268 

displayed in Fig. 3(a). It normalised by the square of the inlet velocity Uin = Q/(Hb) (see Tab. 1), 269 

which represents the total kinetic energy injected in the flume. The ratio ET/Uin² increases between F 270 

and FT cases, as well as between FT and NFT cases. This corresponds to an increasing relative 271 

importance of the fluctuating velocity field, as the discharge gradually increases (see Tab. 1). By 272 

contrast, a decrease in ET/Uin² appears between NFT and NF cases, which suggests that the mean flow 273 

pattern has a greater relative incidence in the energy budget and less intense vortices are developing in 274 

the flow.  275 

The normalised distribution of the mean fluctuating kinetic energy between the modes confirms 276 

the previous hypothesis (Fig. 3(b)). The three first modes of the NF-case and FT-case have similar 277 

levels of relative energy, yet U²in is three times higher for NF. Regarding the shape of the distributions, 278 

similarities can be found between the flow-cases. Most of the energy is contained in the 10 first modes 279 

(60-80% of ET) and between one or two “plateaus” can be distinguished in the distributions (modes 1-280 

2 and modes 4-5). This suggests that at least one or two sizes of coherent structures are convected at a 281 

roughly constant velocity in the flow (Brevis and García-Villalba 2011; Rempfer and Fasel 1994). The 282 

third mode is not paired and represents an ensemble motion of the flow (Shim et al. 2013).  283 

Comparisons between cases highlight that third mode mean fluctuating kinetic energy is between 284 

22% and 30% of the first mode one. On the other hand modes 4 and 5 of F and NF are equal to 18% of 285 

the first mode, while they are only equal to 7% for FT and NFT. This difference indicates that 286 
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structures related to modes 1 and 2 have a greater relative weight for the transition regime than for the 287 

two other regimes.   288 

4.2. Temporal coefficients 289 

In Fig. 4 the temporal coefficients deduced from the eigenvectors (Eq. 4) of the five first modes 290 

are displayed for each flow-case. The temporal coefficients of the first and second modes have similar 291 

patterns, but they are phase-shifted in time; this confirms the pairing of these modes. By contrast, 292 

although oscillations are observed for the other modes (for m > 2), their amplitudes are smaller and 293 

less regular. A phase-shift between two consecutive modes is not obvious.  294 

The power spectrum densities (PSD) of the temporal coefficients were then worked out for 295 

extracting the harmonics of the jet. The PSD were smoothed using the periodogram method to 296 

facilitate the identification of the peaks (Welch 1967), therefore introducing uncertainties in the 297 

frequency of the peaks equal to 0.03-0.05 Hz. An example of PSD is displayed in Fig. 5(a) for the 298 

flow-case FT. The magnitude of the Peak decreases with increasing mode number and for m > 2 their 299 

identification is not easy, because of the flat magnitude of the signal at low frequency.  300 

The estimated dominant frequencies of the hundred first temporal coefficients were plotted 301 

against the number of the mode in Fig. 5(b) for all flow-cases. Excepted for a very limited number of 302 

modes, most of the harmonics of the jet are measured for the twenty first modes, indicating that the 303 

remaining modes are rather random and have little incidence on the periodicity of the jet. Regarding 304 

the frequency values, those of the first two modes distinctively increase with the total discharge, but 305 

no clear tendency is observed between the modes for a given flow-case, i.e. the frequency does not 306 

monotonously decrease nor increase with increasing mode number. Finally, the frequency value for 307 

modes 4 and 5 definitively confirms the pairing of these modes. 308 

4.3. Spatial modes 309 

To distinguish the coherent structures in the spatial modes, we used the definition of a vortex 310 

given by Kolář (2007), i.e. the vortex region is characterized by non-zero residual vorticity when 311 

|s|<|w| (s the 2D principal rate of strain and w the vorticity-tensor component in 2D). The residual 312 

vorticity, wres, is expressed as follows: 313 
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(8) 

where xm (resp. ym) is the longitudinal (resp. lateral) component of the m
th
 spatial mode. 314 

The streamlines and the residual vorticity of the five first spatial modes computed with Eq. 5 are 315 

displayed in Fig. 6 for each flow-case. As a comparison with the work of Giger et al. (1991) and 316 

Dracos et al. (1992), the near field limit (x = 2H) and the middle-field limit (x = 10H) were 317 

represented in Fig. 6 by vertical dashed lines. According to Dracos et al. (1992), the flow behaves like 318 

a 2D plane jet in the near-field, the secondary currents observed by Foss and Jones (1968) then affect 319 

the jet in the middle field and finally the meandering flow pattern, associated to large vortices, appears 320 

in the far-field (x > 10H). 321 

Comparisons between modes emphasize that the first and the second modes are systematically 322 

paired and space-shifted. This confirms that these modes characterize a size of coherent structures. 323 

The third mode for all cases represents a large pattern of very low frequency, which indicates that not 324 

only coherent structures significantly contribute to the flow energy. A pairing is also confirmed 325 

between modes 4 and 5 for the flow-cases close to the transition regime (FT and NFT). Above m = 5, a 326 

pairing may also be observed, but the percentage of the mean fluctuating kinetic energy contained in 327 

these modes (see in Fig. 3(b)), has little influence on the coherent motion of the flow.  328 

Since the patterns of the spatial modes change with the friction number, they give an insight into 329 

the effect of shallowness on the development of the meandering jet. Regarding modes 1 and 2, little 330 

information is available in the near field of the jet (x < 2H). In the middle-field of the jet 331 

(2H < x < 10H), small symmetrical coherent structures relative to the reservoir centreline are 332 

systematically present in the frictional (F) and transition flow-cases (FT and NFT). For the non-333 

frictional case (NF), they are only observed until x > 5H. The rotating direction of these structures 334 

alternates in the streamwise direction. In the far field of the jet, the distance for which the counter-335 

rotating symmetrical structures are still observed, increases with the friction number (Tab. 2). 336 

Downstream from this distance, they merge into larger counter-rotating vortices centred on the 337 

centreline reservoir. The size of these large structures increases with a decreasing friction number for 338 
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0.18 < S < 0.06. For S = 0.03 (NF), the size is smaller than in the NFT flow-case, which is consistent 339 

with the observation on the energy in paragraph 4.1. The loss in energy and size of the structure may 340 

be due to a lateral confinement operated by the reservoir lateral walls, which prevents the structures to 341 

laterally spread and therefore increases the dissipation of the fluctuating energy. The pattern of mode 3 342 

does not reveal the existence of coherent structures. Finally, modes 4 and 5 show antisymmetric 343 

vortices relative to the reservoir centreline for F, FT and NFT in most part of the reservoir. For the 344 

NF-case, distinctive patterns cannot be identified, except in the far-field of mode 5. As for the 345 

symmetric vortices of modes 1 and 2, the antisymmetric vortices are counter-rotating in the 346 

streamwise direction. 347 

5. COHERENT STRUCTURES 348 

The POD analysis enables to characterise the energy distribution between the different modes, but 349 

it gives little information on how the different structures cohabit in the jet. Therefore, a specific 350 

analysis has been undertaken to identify these coherent structures. 351 

5.1. Reconstruction of the velocity fields 352 

As shown in Fig. 7(a) for flow-case FT, the fluctuating velocity fields directly deduced from the 353 

raw data contain high frequency motions, which make it more difficult to identify the coherent 354 

structures present in the meandering jet. These parasite motions can be filtered using the results of the 355 

POD modes and Eq. 1.  356 

For this purpose, the velocity fields were reconstructed using the POD modes, which contribute 357 

the most to the coherent motion in terms of energy, the remaining modes being omitted/filtered. The 358 

choice of the number of modes, M, is a key parameter in such a reconstruction (Perrin et al. 2007). 359 

Taking a too large M number would lead (1) to an overestimation of the contribution of the coherent 360 

motion to the flow and (2) to the reintroduction of high frequency motions. As noticed by Perrin et al. 361 

(2007) in the near wake of a circular cylinder, the choice of M must be related to the fundamental 362 

frequency of the vortex shedding in the flow. Above a certain number of modes m, if the harmonics of 363 

the phenomenon are not clearly observed in the temporal coefficients, or if the energy of the 364 
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considered modes is too low, the remaining modes may be assumed to have low influence on the 365 

coherent motion and therefore, they should not be considered in the reconstruction process.  366 

In this study, in addition to the presence of the harmonics of the jet, the choice of the number of 367 

modes for reconstructing the fluctuating velocity fields was also based on the amount of energy 368 

contained in each mode and we also evaluate the ability of the reconstruction to reproduce the cross-369 

product distribution, u v   , within the jet. The cross-product is indeed an indicator of the presence of 370 

coherent structures in the flow. 371 

In Fig. 7(b), a fluctuating velocity field for flow-case FT was reconstructed using the two first 372 

modes: the matching between the raw data (Fig. 7(a)) and the reconstructed field is not satisfactory. 373 

Most of the structures present in the jet are represented, but the shapes are not consistent. The same 374 

observations are made regarding the cross-product distribution, where the levels are not recovered. For 375 

flow-case FT, although the first two modes contain 50% of the mean total fluctuating kinetic energy, 376 

they do not contain all the harmonics of the jet (Fig. 5(b)). More modes need therefore to be taken into 377 

account in the reconstruction of the velocity field. In Fig. 7(c), the fluctuating velocity field was then 378 

reconstructed using the modes containing the main harmonic of the jet (Fig. 5(b)) plus some additional 379 

modes to reach 80% of the mean total fluctuating kinetic energy. With respectively M = 59 for F, 380 

M = 16 for FT, M = 10 for NFT and M = 33 for NF, the main flow patterns are well described, the 381 

parasite motions being still filtered and the cross-product distributions are matching. 382 

Seven transversal profiles of the cross-product, u v   , for the raw and of the reconstructed 383 

velocity fields are displayed in Fig. 8 for each flow-case. The comparison of both reconstructions 384 

emphasizes that the one using the modes containing 80% of the mean total fluctuating kinetic energy 385 

is the most efficient reconstruction, whether close to the inlet or close to the outlet. The flow patterns 386 

in the jet are indeed well represented and most of the parasite motions outside of the jet are filtered. 387 

5.2. Identification of coherent structures 388 

As shown in section 4.3 for spatial modes, the coherent structures in the reconstructed fields can 389 

be identified by applying Eq. 8 on the reconstructed velocity fields (replace respectively xm and ym by 390 

u’ and v’ in Eq. 8). As a result, as soon as a coherent structure is present in the flow, the residual 391 
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vorticity is non-zero. Nevertheless, the identification of the structures’ extent / shape in each 392 

individual snapshot strongly depends on the method of extraction (circulation calculation, vorticity 393 

threshold) and could lead to erroneous identification. Therefore, the characterisation of the coherent 394 

structures in the flow were based here on a more effective approach that only considers the centres of 395 

the coherent structures and the time-evolution of the positions of these centres in the reservoir. It relies 396 

on the assumption of quasi-circular vortices, which is found reasonable here. Indeed, for each 397 

experiment, the calculation of the residual vorticity highlights that most structures in the flow are 398 

almost circular in shape and are distributed either on the reservoir centreline or on both sides of it (Fig. 399 

9).  400 

The centres of the structures in the meandering jet were detected using a topology algorithm 401 

similar to the method developed by Depardon et al. (2006). This algorithm detects the nodes, the 402 

focuses (i.e. the vortex centre) and the saddles in the flow. As an example of the calculation, the 403 

computed centres are superimposed to the residual vorticity (Eq. 8) in Fig. 9 for each flow-case. The 404 

centres satisfactorily match with the maxima of residual vorticity, even if these maxima are not close 405 

to the centreline of the reservoir: the computed focuses successfully locate the coherent structure 406 

centres.  407 

The topology calculation was performed over 500s to determine the “trajectories” of the coherent 408 

structures in the flow between x = 0 m and x = 0.7 m (after 0.7 m, the computation failed because of 409 

the lack of data in the blank zone, see Fig. 1). The results are presented in Fig. 10 every 0.2s and the x-410 

axis was normalised by the respective mean water depth in the reservoir to identify the near (x/H < 2), 411 

middle (2 < x/H < 10) and far (x/H > 10) fields for bounded jets (Dracos et al. 1992). The positions of 412 

the centres indicate that in the near field of the jet, all the coherent structures are paired and counter-413 

rotating. Moreover, given the sign of the residual vorticity in Fig. 9, these structures are symmetric. In 414 

the middle and far fields, the distance at which the symmetrical counter-rotating structures merge 415 

reduces with a decreasing friction number (F to NF). This reveals a dependence of the coherent 416 

structures on the shallowness. This is consistent with a weakening, with decreasing friction number, of 417 

the bounding effect operated by the vertical secondary flows in the middle field (Foss and Jones 1968; 418 

Holdeman and Foss 1975). The distances of appearance of large structures correspond with the 419 
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distances in Tab. 2, which indicate that in the contrary of what was observed by Dracos et al. (1992) 420 

the middle-far field limit is not always located at x/H = 10. This difference in the structure 421 

development is due to a larger influence of the geometric aspect-ratio in our experiments. The 422 

shallowness is indeed higher in the present experiments (H/b  [0.16 – 0.53], with b = 8 cm) than in 423 

the work of Dracos et al. (1992) for which H/b  [2 – 36] (with b = 1 cm). 424 

The study of the trajectories of the centres finally indicates that the symmetric counter-rotating 425 

structures are relatively stable in time. By contrast, the variability in time of the large coherent 426 

structures clearly depends on the position within the jet. In the middle field, the trajectories of the 427 

coherent structures are quite stable, while a clear dependence in time is observed in the far field. For 428 

the frictional case (F), the trajectories are stable. For the transition-cases (FT and NFT), the motion of 429 

the structures is particularly slow, while for the non-frictional case (NF) the trajectories indicate a 430 

quicker motion of the structures. These results finally emphasize that when the friction number, S, 431 

decreases, the small and stable in time counter-rotating structures developing on both sides of the 432 

centreline of the reservoir degenerate into larger structures, which centres periodically oscillates 433 

around the reservoir centreline. 434 

6. STABILITY CONSIDERATIONS 435 

The coherent structures convectively displaced within the jet towards the reservoir exit appear as 436 

a result of flow instabilities. The shape of the paired modes can be related to the varicose and sinuous 437 

instability modes (Thomas and Prakash 1991). On the one hand, the alternative succession of negative 438 

and positive vortical structures along the reservoir centreline in the modes 1 and 2 is responsible for 439 

the meandering of the jet and are characteristics of the sinuous mode of the jet (Söderberg and 440 

Alfredsson 1998, Lombardi, 2011 #1047; Thomas and Prakash 1991). On the other hand, the 441 

antisymmetric counter-rotating structures on both sides of the centreline for modes 4 and 5 are 442 

characteristics of the varicose mode and are responsible for a local mixing (Shim et al. 2013). 443 

Moreover given the relative weight of modes 1 and 2 compared to the others (Fig. 3), the sinuous 444 

mode is dominant in each flow-case.  445 
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Socolofsky and Jirka (2004) refer to instability modes as absolutely unstable (small perturbations 446 

grow at a fixed point above a certain threshold) or convectively unstable (small perturbations grow at a 447 

moving point above a certain threshold). Among other authors Chen and Jirka (1998) and Socolofsky 448 

and Jirka (2004) characterised the stability of a jet by proceeding to a linear stability analysis of the 449 

shallow water equations considering no lateral confinement and the standard hyperbolic jet profile:  450 
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uc being the centreline velocity, yc the lateral coordinate of the centreline and u∞ the ambient flow 451 

velocity. They also defined a stability number, Sj = fb1/2/4H, for jet flows using the half-width of the 452 

jet, b1/2 as characteristic length. As a result, Chen and Jirka (1998) found that for a pure jet (Ru = 1), 453 

the varicose mode is stable when Sj > 0.11 and the sinuous mode is stable for Sj > 0.685. In the sequel, 454 

Socolofsky and Jirka (2004) proceeded to some correction of the equations used by Chen and Jirka 455 

(1998) and found that the stabilizing effect of the bottom friction was underestimated. The correction 456 

was applied on the sinuous mode, the critical stability number of which becoming equal to 0.6 for Ru = 457 

1; below the critical value, the flow is convectively unstable, above, the flow is stable. They also 458 

found that the critical stability number increases with Ru and from Ru > 1.2, the jet cannot be stable. 459 

They finally indicate that from Ru = 1.6 and Sj = 0, the instability is absolute.   460 

In the present experiments, we followed the recommendations of Socolofsky et al. (2003) for 461 

computing a stability number as a function of the streamwise distance in order to evaluate the 462 

streamwise evolution of the instabilities. b1/2 was calculated for each streamwise position using the 463 

definition of Rowland et al. (2009): b1/2 corresponds to the lateral position, where the velocity is equal 464 

to the half of the centreline velocity. The ambient velocity was estimated by solving Eq. 9 in order to 465 

have the best fit of the lateral velocity profiles of ( , , )
N

x y tu  and Ru was therefore estimated. The 466 

stability number is displayed as a function of Ru in Fig. 11(a), showing that the flow fields considered 467 

here are all unstable. The F and FT cases are convectively unstable everywhere in the reservoir. By 468 

contrast the NFT and NF-case become absolutely unstable close to the exit of the reservoir (see the 469 
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values of Ru in Fig. 11(b)). This could explain the more variable trajectories (in space and time) of the 470 

centres of NFT and FT at the end of the reservoir (Fig. 10(c-d)). 471 

Ghidaoui et al. (2006) revealed the existence of secondary instabilities in the flow, because of the 472 

presence of additional inflection points in the velocity profile due to a lateral bounding effect of the 473 

lateral wall. Nevertheless given the dominance of the two first modes on the meandering jet, these 474 

secondary instabilities have probably limited effects in the present case.  475 

7. CONCLUSION 476 

The present paper investigates four meandering flows in a shallow rectangular reservoir. The 477 

reservoir boundary conditions were set-up so that the flows significantly differed in term of friction 478 

number. The flow dynamics was measured using LSPIV and the resulting velocity fields were 479 

corrected using a median-filter and a smoothing algorithm.  480 

With the objective of characterising the influence of the shallowness of the flow on the coherent 481 

structures developing within the jet, a POD analysis was first performed on the fluctuating velocity 482 

fields to discriminate the structures in terms of their relative contributions to the mean total fluctuating 483 

kinetic energy. It results that amongst the 9000 computed POD modes, only few modes really 484 

contribute to the coherent motions, the remaining modes being only parasite motions or high 485 

frequency motions. The study of the POD modes reveals the presence of three types of coherent 486 

structures. In the two first modes, small symmetric counter-rotating structures first develop in the flow 487 

and then merge into large coherent counter-rotating structures. The meandering of the jet is due to 488 

these structures. The structures in the other modes are antisymmetric and counter-rotating and have 489 

little influence on the meandering.  490 

The characteristics of the coherent structures were obtained using the residual vorticity and a 491 

topology algorithm for extracting the centre of these structures. As parasite and high frequency 492 

motions were present on the raw fluctuating velocity fields, fluctuating velocity fields without these 493 

motions were obtained by velocity reconstruction using the POD modes containing 80% of the mean 494 

total fluctuating kinetic energy. Only two types of structures were identified confirming the dominance 495 

of the two first POD modes. Small symmetric counter-rotating coherent structures first develop on 496 
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both sides of the centreline of the reservoir. Then, they merge into large coherent structures, the 497 

centres of which are located on the centreline. These large structures gradually grow until the end of 498 

the reservoir. The study of the trajectories of the centres indicates that the size of the coherent 499 

structures strongly depends on the friction number. At high friction number, small structures are 500 

mainly observed, therefore indicating that the vertical confinement operated by the water depth 501 

prevents the coherent structures from laterally spreading. By contrast, at low friction number, the large 502 

structures are almost present from the beginning of the reservoir: the separation of the flow into near, 503 

middle and far fields is not appropriate for such flows. The shallowness of the flow indeed affects the 504 

position, where the small paired structures merge into large structures. 505 

Finally, the comparison with the literature on the onset to instability reveal that two instability 506 

modes are involved in the jet (sinuous vs. varicose). The sinuous mode is largely dominant and is 507 

responsible for the meandering of the jet. In each experiment, the sinuous mode is convectively 508 

unstable and tends to become absolutely unstable at the end of the reservoir for low friction number.  509 
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 660 
Fig. 1. Instantaneous velocity field at three instants (0s, 4s, 6s). The black rectangle corresponds to a blank 661 
zone during the measurement.   662 

 663 
Fig. 2. Sketches of the experimental device (Peltier et al. 2014) 664 

  
(a) (b) 

Fig. 3. (a) Mean total fluctuating kinetic energy, ET, normalised for each flow-case by their corresponding 665 
mean kinetic energy at the inlet (U²in). (b) Mean fluctuating kinetic energy contained in the m

th
 mode, Em, 666 

normalised by U²in.  667 
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F FT 

  
NFT NF 

Fig. 4. Temporal coefficients of the five first mode of the POD analysis. The plain lines correspond to odd 668 
modes and the dotted lines to even modes. 669 

  
(a) (b) 

Fig. 5. (a) Power spectrum density (PSD) of four temporal coefficients for flow-case FT. (b) Frequencies of 670 
the temporal coefficients as a function of the number of the POD mode for each flow-case. Uncertainty of 671 
the frequencies: ±0.03-0.05 Hz. 672 
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(a) F (b) FT 

 

  
(c) NFT (d) NF 

Fig. 6. Residual vorticity contours and streamlines of the 5 first spatial modes. The same colour-scale is used for all flow-cases (blue: vorticity < 0, white: vorticity = 673 
0, red: vorticity > 0) and the colour intensity is proportional to the vorticity intensity. The black rectangle corresponds to a blank zone during the measurement. The 674 
vertical dashed lines correspond to x/H = 2 (limit between the near-field and the middle-field of the jet) and x/H = 10 (limit between the middle-field and the far-675 
field of the jet). 676 
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(a) (b) (c) 

Fig. 7. Contour plot of normalised cross-product –u’v’/U²in and fluctuating velocity field for flow-case FT. 677 
(a) Raw data. (b) Reconstructed data with M = 2. (c) Reconstructed data with the M first modes 678 
corresponding to 80% of ET.   679 

  
F FT 

  
NFT NF 

Fig. 8. Transversal profiles of the cross-product, -u'v' , for the raw data (o) and for the reconstructed 680 
velocity fields. (blue line) reconstruction with two modes, (red line) reconstruction with the M modes 681 
corresponding to 80% ET (M = 59 for F, M = 16 for FT, M = 10 for NFT and M = 33 for NF).  682 
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F FT 

  
NFT NF 

Fig. 9. Contour plot of residual vorticity (Eq. 8) and reconstructed fluctuating velocity field at 4 s. The 683 
circles localise the centre of the structures calculated with the topology algorithm. The vertical dashed 684 
lines correspond to x/H = 2 (limit between the near-field and the middle-field of the jet) and x/H = 10 (limit 685 
between the middle-field and the far-field of the jet).  686 

  687 
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F FT 

  
NFT  NF 

Fig. 10. Depth-normalised positions of the centres of the coherent structures in the 4 flow-cases during 688 
500s. The topology algorithm was applied on the reconstructed velocity fields. The gradient of colour 689 
indicates the time evolution, i.e. the darkest circles corresponds to the first seconds and the brightest 690 
circles corresponds to the last seconds. The vertical dashed lines correspond to x/H = 2 (limit between the 691 
near-field and the middle-field of the jet) and x/H = 10 (limit between the middle-field and the far-field of 692 
the jet). 693 

 694 
(a) (b) 

Fig. 11. (a) Stability diagram (Sj, Ru) for the sinuous mode . The red lines correspond to the limit defined 695 
in Socolofsky and Jirka (2004). (b) Evolution of the estimation of Ru as a function of the streamwise 696 
distance. 697 

  698 
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Tab. 1. Main characteristics of the measured flows. 699 

Test ID Q (L/s) H (cm) 
Uin = Q/(Hb) 

(m/s) 
F R S Friction regime 

F 0.125 1.25 0.13 0.36 4766 0.18 Frictional 

FT 0.250 1.80 0.17 0.41 8456 0.10 Frictional close Transition  

NFT 0.500 2.75 0.23 0.44 14878 0.06 Non-Frictional close Transition  

NF 1.000 4.20 0.30 0.46 24267 0.03 Non-Frictional 

 700 
Tab. 2. Maximal distance for which the symmetric vortices are observed in spatial modes 1 and 2. 701 

Test ID S Friction regime Maximal distance 

F 0.18 Frictional 40 < x/H < 45 

FT 0.10 Frictional close Transition  20 < x/H < 25 

NFT 0.06 Non-Frictional close Transition  15 < x/H < 17 

NF 0.03 Non-Frictional 5 < x/H < 7  

 702 
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