Solar activity in connection with a 2.5 years period cycle in air temperature time series using the Morlet wavelet method

S. Nicolay¹, G. Mabille², X. Fettweis², M. Erpicum²

¹Department of Mathematics, University of Liège,

 $^{2}\mbox{Department}$ of Physical Geography, University of Liège.

Definitions

The Continuous Wavelet transform

The wavelet analysis provides a two-dimensional unfolding of a one-dimensional signal by decomposing it into scale-time coefficients.

The continuous wavelet transform turns a signal s into a function W

$$W[s](t,a) = \int s(x)\overline{\psi}(\frac{x-t}{a})\frac{dx}{a},$$

where $\bar{\psi}$ denotes the complex conjugate of the function $\psi,$ a the scale and t the time.

The function ψ must be integrable, square integrable and satisfy some admissibility condition. Such a function is called a wavelet. The Morlet wavelet is particularly well conditioned for frequency-based study. It satisfies the following equality

$$\hat{\psi}(\omega) = \exp(-rac{(\omega-\Omega)^2}{2}) - \exp(-rac{\omega^2+\Omega^2}{2}),$$

where $\Omega>5$ is called the central frequency.

Definitions

Application to the Temperature Data 00000

Some Properties of the Wavelet Transform

• the wavelet transform is linear: W[c(u+v)] = cW[s] + cW[v],

Application to the Temperature Data 00000

Definitions

Some Properties of the Wavelet Transform

- the wavelet transform is linear: W[c(u+v)] = cW[s] + cW[v],
- the wavelet transform allows to handle noisy data,

Application to the Temperature Data 00000

Definitions

Some Properties of the Wavelet Transform

- the wavelet transform is linear:
 W[c(u+v)] = cW[s] + cW[v],
- the wavelet transform allows to handle noisy data,
- the wavelet transform is blind to polynomial behaviors (up to a degree *n*, depending on ψ): W[s + P] = W[s], where *P* is a polynomial of degree $\leq n$.

Consequently, non-zero mean and linear tendencies do not affect the wavelet transform.

Application to the Temperature Data 00000

Definitions

The Scale Spectrum

For wavelets such as the Morlet wavelet, we have

$$W[\cos(\omega_0 t)](t,a) = \exp(i\omega_0 t)\hat{\psi}(a\omega_0),$$

so that the frequency ω_0 is given by the maximum of $\vec{\psi}(a\omega_0)$: $a_{\omega} = \Omega/\omega_0$. Consequently, the unknown frequency ω_0 can be obtained through the maximum of $|W[\cos(\omega_0 t)]|$.

Application to the Temperature Data 00000

Definitions

The Scale Spectrum

For wavelets such as the Morlet wavelet, we have

$$W[\cos(\omega_0 t)](t,a) = \exp(i\omega_0 t)\hat{\psi}(a\omega_0),$$

so that the frequency ω_0 is given by the maximum of $\bar{\psi}(a\omega_0)$: $a_{\omega} = \Omega/\omega_0$. Consequently, the unknown frequency ω_0 can be obtained through the maximum of $|W[\cos(\omega_0 t)]|$.

Definition

The scale spectrum of a signal s is defined by

$$\Lambda(a) = E|W[s](t,a)|,$$

where E denotes the mean over the time t.

Definitions

The scale spectrum should be useful for signals which are not stationary but whose characteristics do not evolve too quickly: the scale spectrum allows to recover frequencies even if they "kindly depend on the time", i.e. if $\omega_0 = \omega_0(t)$ with $\frac{d}{dt}\omega_0 \ll 1$, one should be able to recover $E\omega_0$.

The Wavelet Spectrum $\circ \circ \circ \circ \circ \bullet$

Example

A Visual Example

Application to the Temperature Data

The Wavelet Spectrum ○○○○●

Example

A Visual Example

The Wavelet Spectrum ○○○○●

Example

A Visual Example

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

1950–2007 hourly-sampled data

1950–2007 monthly-sampled data

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

1950-2007 hourly-sampled data

crutempgl3 1950–2007 monthly-sampled data

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

1950-2007 hourly-sampled data

1950–2007 monthly-sampled data

Two Spectra

Application to the Temperature Data •••••

What About the Temperature Data?

1950-2007 hourly-sampled data

1950–2007 monthly-sampled data

Global Data and Reanalysis

Application to the Temperature Data 00000

30 Months Cycle

Global Data and Reanalysis

Application to the Temperature Data 00000

Global Data and Reanalysis

Application to the Temperature Data 00000

A Relation with the Sun?

Global Data and Reanalysis

Application to the Temperature Data 00000

A Relation with the Sun?

Global Data and Reanalysis

For Further Reading

K. Georgieva et al.,

Log-term variations in the correlation between NAO and solar activity: The importance of North-South solar activity asymmetry for atmospheric circulation, *ASR*, 40, 1152–66 (2007).

K. Labitzke,

On the solar-cycle–QBO Relationship: A summary, *J.A.S.-T.P., special issue*, 67, 45–54 (2005).

S. Nicolay et al.,

Low frequency rhythms in human DNA sequences: A key to the organization of gene location and orientation?,

PRL, 93, 108101 (2004).

M. Paluš and D. Novotná,

Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized,

Nonlin. Processes Geophys., 13, 287–96 (2006).

