A simple condition for monoHölderianity 00000 Application to some "historical functions"

Pointwise regularity of some "historical non-differentiable functions"

S. Nicolay

Department of Mathematics, University of Liège.

Techniques Fractales (Orléans)

A simple condition for monoHölderianity

Application to some "historical functions"

Hölder spaces

Hölder-regularity

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be a locally bounded function, $x \in \mathbb{R}$ and $\alpha > 0$; $f \in C^{\alpha}(x)$ if there exist R, C > 0 and a polynomial P_x of degree less than α such that

$$|h| < R \Rightarrow |f(x+h) - P_x(h)| \le C|h|^lpha.$$
 (*)

A function f belongs to C^{α} if there exists C > 0 such that (*) holds for all x with $R = \infty$.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Hölder spaces

Hölder-regularity

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be a locally bounded function, $x \in \mathbb{R}$ and $\alpha > 0$; $f \in C^{\alpha}(x)$ if there exist R, C > 0 and a polynomial P_x of degree less than α such that

$$|h| < R \Rightarrow |f(x+h) - P_x(h)| \le C |h|^lpha.$$
 (*

A function f belongs to C^{α} if there exists C > 0 such that (*) holds for all x with $R = \infty$.

Definition

The Hölder exponent of f at x is $h(x) = \sup\{\alpha : f \in C^{\alpha}(x)\}$

Some	definitions
000	

A simple condition for monoHölderianity

Application to some "historical functions"

Hölder spaces

Hölder-regularity

Definition

 $f \in C^{\alpha}(x)$ iff

$$|h| < R \Rightarrow |f(x+h) - P_x(h)| \le C|h|^{\alpha}.$$

Definition

The Hölder exponent of
$$f$$
 at x is $h(x) = \sup\{lpha : f \in C^{lpha}(x)\}$

Definition

If the Hölder exponent is unique $\forall x$, then f is called a monoHölder function.

If the Hölder exponent takes only one finite value, f is called a monofractal function.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Hölder spaces

The *p*-adic distance

Notation

Let $p \in \mathbb{N}$, p > 1. For a sequence of integers satisfying $0 \le x_j < p$, we will use the following notation

$$(0; x_1, ..., x_j, ...)_p$$

to denote one of the expansions of the real number

$$x = \sum_{k=1}^{\infty} \frac{x_k}{p^k}.$$
 (*)

If there is no j such that $x_i = p - 1 \quad \forall i \ge j$, (*) is the proper expansion of x in basis p.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Hölder spaces

The *p*-adic distance

Notation

$$x = (0; x_1, \ldots, x_j, \ldots)_p$$

denotes one of the expansions in basis p of the real number x.

Definition

Let $s = (0; s_1, ...)_p$, $t = (0; t_1, ...)_p$ be the proper expansions of the real numbers s and t respectively and $\delta_p(s, t) = \inf\{k : s_k \neq t_k\} - 1$. The *p*-adic distance between s and t is

$$d_p(s,t) = p^{-\delta_p(s,t)}$$

This distance is an ultrametric distance.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Hölder spaces

p-adic Hölder spaces

Definition

Let $\alpha > 0$. A locally bounded function $f : [0,1] \to \mathbb{R}$ belongs to $C_{\rho}^{\alpha}(x)$ if there exists C > 0 and a polynomial P_x of degree less than α such that

$$|f(x+h) - P_x(h)| \le Cd_p(x, x+h)^{\alpha}. \qquad (*)$$

A function belongs to C_{ρ}^{α} if there exists C > 0 such that (*) holds for any x.

The *p*-adic Hölder exponent of f at x is

$$h_p(x) = \sup\{\alpha : f \in C_p^{\alpha}(x)\}.$$

A simple condition for monoHölderianity ••••• Application to some "historical functions"

A simple condition for a function to belong to C_n^{α}

A sufficient condition to belong to $C_p^{\alpha}(x)$

Proposition

Let f be a bounded function explicitly defined on $D \subset [0,1]$ by

$$f: D \rightarrow \mathbb{R}^+ x = (0; x_1, \ldots)_{\rho} \mapsto f(x) = (\ldots, y_0; y_1, \ldots)_{\rho'}$$

and such that there exist ϵ and a function g such that

$$d_p(s,t) < \epsilon \Rightarrow \left\{ egin{array}{l} d_{p'}(f(s),f(t)) < 1 \ \delta_{p'}(f(s),f(t)) = g(s,\delta_p(s,t)) \end{array}
ight.$$

lf

$$\alpha = \liminf_{u \to \infty} \frac{g(x_0, u)}{u} \frac{\log p'}{\log p} \le 1, \qquad (*)$$

 $f \in C_p^{\alpha}(x_0)$. In particular, if (*) does not depend on x_0 , $f \in C_p^{\alpha}$.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A simple condition for a function to belong to C_{n}^{α}

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$F: [0,1] \rightarrow [0,1]^2 \quad x \mapsto \left(egin{array}{c} f_1(x) \ f_2(x) \end{array}
ight)$$

where F(1) = (1,1) and, if $(0; x_1, \ldots)_2$ is the proper expansion of x,

$$f_1(x) = (0; x_1, x_3, \dots, x_{2j-1}, \dots)_2$$

and

$$f_2(x) = (0; x_2, x_4, \ldots, x_{2j}, \ldots)_2.$$

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A simple condition for a function to belong to C_{p}^{α}

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$F: [0,1] \rightarrow [0,1]^2 \quad x \mapsto \left(egin{array}{c} f_1(x) \ f_2(x) \end{array}
ight)$$

where F(1) = (1, 1) and, if $(0; x_1, ...)_2$ is the proper expansion of x,

$$f_1(x) = (0; x_1, x_3, \dots, x_{2j-1}, \dots)_2$$

and

$$f_2(x) = (0; x_2, x_4, \ldots, x_{2j}, \ldots)_2.$$

A direct application of the previous proposition shows that $f_1, f_2 \in C_2^{1/2}$. Moreover, it is easy to check that F is a 2-adic monoHölder function with 2-adic Hölder exponent 1/2.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A simple condition for a function to belong to C_{p}^{α}

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$F: [0,1] \rightarrow [0,1]^2 \quad x \mapsto \left(egin{array}{c} f_1(x) \ f_2(x) \end{array}
ight)$$

where F(1) = (1, 1) and, if $(0; x_1, ...)_2$ is the proper expansion of x,

$$f_1(x) = (0; x_1, x_3, \dots, x_{2j-1}, \dots)_2$$

and

$$f_2(x) = (0; x_2, x_4, \ldots, x_{2j}, \ldots)_2.$$

A direct application of the previous proposition shows that $f_1, f_2 \in C_2^{1/2}$. Moreover, it is easy to check that F is a 2-adic monoHölder function with 2-adic Hölder exponent 1/2. However, F is not continuous.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A similar result for C^{α} ?

Let us drop the *p*-adic distance

Notations

If
$$(0; s_1, \ldots)_p$$
 is the proper expansion of s in base p , let $\theta_p(s) = \inf\{k : s_k \neq 0\} - 1$ and, if $t = (0; t_1, \ldots)_p$,

$$\gamma_p(s,t) = \theta_p(|s-t|).$$

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A similar result for C^{α} ?

Let us drop the *p*-adic distance

Notations

If
$$(0; s_1, \ldots)_p$$
 is the proper expansion of s in base p , let $\theta_p(s) = \inf\{k : s_k \neq 0\} - 1$ and, if $t = (0; t_1, \ldots)_p$,

$$\gamma_p(s,t)=\theta_p(|s-t|).$$

However, $p^{-\gamma_p(s,t)}$ does not define a distance.

A simple condition for monoHölderianity

Application to some "historical functions"

A similar result for C^{α} ?

Let us drop the *p*-adic distance

Notations

If
$$(0; s_1, \ldots)_p$$
 is the proper expansion of s in base p , let $\theta_p(s) = \inf\{k : s_k \neq 0\} - 1$ and, if $t = (0; t_1, \ldots)_p$,

$$\gamma_p(s,t)=\theta_p(|s-t|).$$

However, $p^{-\gamma_p(s,t)}$ does not define a distance. To compute $\gamma_p(s,t)$, we have to compute $\delta_p(s,t)$ and to check that s and t are not of the form

$$s = (0; s_1, \ldots, s_{n-1}, s_n, 0, \ldots, s_m, \ldots)_p,$$

$$t = (0; s_1, \ldots, s_{n-1}, s_n - 1, p - 1, \ldots, t_m, \ldots)_p.$$

If it is the case, $\gamma_p(s, t) > \delta_p(s, t)$; otherwise we can suppose that $\gamma_p(s, t) = \delta_p(s, t)$.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

A similar result for C^{α} ?

Strongly MonoHölder functions

Definition

Let $\alpha \in (0,1)$. A function f belongs to $I^{\alpha}(x_0)$ if

$$\exists C, R > 0, \forall r \leq R, \sup_{x,y \in B(x_0,r)} |f(x) - f(y)| \geq Cr^{\alpha};$$

f belongs to I^{α} if

$$\exists C, R > 0, \forall r \leq R, \forall x, \sup_{x,y \in B(x,r)} |f(x) - f(y)| \geq Cr^{\alpha};$$

A simple condition for monoHölderianity 00000 A similar result for C^{α} ?

Strongly MonoHölder functions

Definition

Let $\alpha \in (0,1)$. A function f belongs to $I^{\alpha}(x_0)$ if

$$\exists C, R > 0, \forall r \leq R, \sup_{x,y \in B(x_0,r)} |f(x) - f(y)| \geq Cr^{\alpha};$$

f belongs to I^{α} if

$$\exists C, R > 0, \forall r \leq R, \forall x, \sup_{x,y \in B(x,r)} |f(x) - f(y)| \geq Cr^{\alpha};$$

Definition

Let $\alpha \in (0, 1)$. A function is strongly monoHölder of exponent α $(f \in SM_{\alpha})$ if $f \in C^{\alpha} \cap I^{\alpha}$.

A simple condition for monoHölderianity 0000

Application to some "historical functions"

A similar result for C^{α} ?

A sufficient condition for monoHölderianity

Let f be a bounded function explicitly defined on $D \subset [0,1]$ by

$$f: D \to \mathbb{R}^+ x = (0; x_1, \ldots)_p \mapsto f(x) = (\ldots, y_0; y_1, \ldots)_{p'}$$

and such that there exist $\eta > {\rm 0}$ and a function g such that

$$\gamma_{p}(s,t) > \eta \Rightarrow \begin{cases} \gamma_{p'}(f(s),f(t)) > 0\\ \gamma_{p'}(f(s),f(t)) = g(s,\gamma_{p}(s,t)) \end{cases}$$

lf

$$\alpha = \liminf_{u \to \infty} \frac{g(x_0, u)}{u} \frac{\log p'}{\log p} < 1, \qquad (*)$$

 $h(x_0) = \alpha$ and $f \in I^{\alpha}(x_0)$. If $\alpha = 1$, $f \in C^{\alpha}(x_0)$. In particular, if (*) does not depend on x_0 , $f \in SM_{\alpha}$. If $\alpha = 1$, $f \in C^{\alpha}$.

A simple condition for monoHölderianity 00000 Remarks and notations

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x = (0; x_1, ...)_3$, with $x_j \in \{0, 2\} \forall j$.

A simple condition for monoHölderianity 00000

Remarks and notations

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x = (0; x_1, ...)_3$, with $x_j \in \{0, 2\} \forall j$.

We will denote by $\lfloor x \rfloor$ the integer part of $x \ge 0$ and by $\{x\}$ the fractional part of x ($\{x\} = x - \lfloor x \rfloor$).

A simple condition for monoHölderianity 00000

Remarks and notations

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x = (0; x_1, ...)_3$, with $x_j \in \{0, 2\} \forall j$.

We will denote by $\lfloor x \rfloor$ the integer part of $x \ge 0$ and by $\{x\}$ the fractional part of x ($\{x\} = x - \lfloor x \rfloor$).

Let f be a continuous function defined on a closed bounded subset $A \subset \mathbb{R}$. The linear extension of f is the continuous function g defined on [inf A, sup A] by

- g(x) = f(x) if $x \in A$,
- g is linear otherwise.

A simple condition for monoHölderianity 00000

Remarks and notations

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x = (0; x_1, ...)_3$, with $x_j \in \{0, 2\} \forall j$.

We will denote by $\lfloor x \rfloor$ the integer part of $x \ge 0$ and by $\{x\}$ the fractional part of x ($\{x\} = x - \lfloor x \rfloor$).

Let f be a continuous function defined on a closed bounded subset $A \subset \mathbb{R}$. The linear extension of f is the continuous function g defined on [inf A, sup A] by

- g(x) = f(x) if $x \in A$,
- g is linear otherwise.

if $f \in C^{\alpha}$, with $\alpha \in (0, 1)$, its linear extension also belong to C^{α} .

A simple condition for monoHölderianity 00000 Application to some "historical functions"

The Devil's staircase

The Devil's staircase

The Devil's staircase is defined on K as follows,

$$D: K \to [0,1]$$
 (0; x_1, \ldots, x_j, \ldots)₃ \mapsto (0; $\frac{x_1}{2}, \ldots, \frac{x_j}{2}, \ldots$)₂

and can be linearly extended on [0,1]

A simple condition for monoHölderianity 00000

The Devil's staircase

The Devil's staircase

The Devil's staircase is defined on K as follows,

$$D: \mathcal{K}
ightarrow [0,1] \qquad (0; x_1, \ldots, x_j, \ldots)_3 \mapsto (0; rac{x_1}{2}, \ldots, rac{x_j}{2}, \ldots)_2$$

and can be linearly extended on [0,1]

The Devil's staircase is a monofractal function with (finite) Hölder exponent $\log 2/\log 3.$

A simple condition for monoHölderianity

Application to some "historical functions"

The Devil's staircase

Representation of the Devil's staircase

A simple condition for monoHölderianity 00000 Application to some "historical functions"

The Takagi functions (1903)

The Takagi functions

The Takagi functions are defined as follows,

$$f: x \mapsto \sum_{k=0}^{\infty} \frac{(2^{mk}x)}{2^{nk}},$$

with $m, n \in \mathbb{N}$, $m \ge n$ and where $(x) = \text{dist}(x, \mathbb{Z})$.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

The Takagi functions (1903)

The Takagi functions

The Takagi functions are defined as follows,

$$f: x \mapsto \sum_{k=0}^{\infty} \frac{(2^{mk}x)}{2^{nk}},$$

with $m, n \in \mathbb{N}$, $m \ge n$ and where $(x) = \text{dist}(x, \mathbb{Z})$.

The Takagi functions are monoHölder functions with Hölder exponent n/m.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Takagi functions (1903)

The Hölder exponent of the Takagi functions

With the notation

$$ilde{x}_{j} = \left\{ egin{array}{cc} x_{j} & \mbox{if } x_{mk+1} = 0 \ 1 - x_{j} & \mbox{if } x_{mk+1} = 1 \end{array}
ight. ,$$

we have

$$f:(0;x_1,\ldots)_2\mapsto\sum_{k=0}^{\infty}(0;0,\ldots,\widetilde{\tilde{x}_{mk+1}},\tilde{x}_{mk+2},\ldots)_2.$$

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Takagi functions (1903)

The Hölder exponent of the Takagi functions

With the notation

$$ilde{x}_{j} = \left\{ egin{array}{cc} x_{j} & \mbox{if } x_{mk+1} = 0 \ 1 - x_{j} & \mbox{if } x_{mk+1} = 1 \end{array}
ight. ,$$

we have

$$f: (0; x_1, \ldots)_2 \mapsto \sum_{k=0}^{\infty} (0; 0, \ldots, \widetilde{\widetilde{x}_{mk+1}}, \widetilde{x}_{mk+2}, \ldots)_2.$$

This implies that, if n > m, f is a monoHölder function with Hölder exponent n/m.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Takagi functions (1903)

The Hölder exponent of the Takagi functions

With the notation

$$ilde{x}_{j} = \left\{ egin{array}{cc} x_{j} & \mbox{if } x_{mk+1} = 0 \ 1 - x_{j} & \mbox{if } x_{mk+1} = 1 \end{array}
ight. ,$$

we have

$$f: (0; x_1, \ldots)_2 \mapsto \sum_{k=0}^{\infty} (0; 0, \ldots, \overbrace{\widetilde{x}_{mk+1}}^{nk+1}, \widetilde{x}_{mk+2}, \ldots)_2.$$

This implies that, if n > m, f is a monoHölder function with Hölder exponent n/m.

If n = m, one has to show that f is not differentiable.

A simple condition for monoHölderianity

Application to some "historical functions"

The Takagi functions (1903)

A simple condition for monoHölderianity

Application to some "historical functions"

The Takagi functions (1903)

A simple condition for monoHölderianity

Application to some "historical functions"

The Takagi functions (1903)

A simple condition for monoHölderianity

Application to some "historical functions"

The Takagi functions (1903)

A simple condition for monoHölderianity

Application to some "historical functions"

The Takagi functions (1903)

The Wunderlich function (1952)

The Wunderlich function

If $x = (0; x_1, ...)_3$, let us set $x_0 = y_0 = 0$ and define the sequence $(y_j)_{j \in \mathbb{N}}$ recursively,

$$y_j = \begin{cases} y_{j-1} & \text{if } x_j = x_{j-1} \\ 1 - y_{j-1} & \text{else} \end{cases}$$

.

The Wunderlich function is defined as follows,

$$f:[0,1] \to [0,1]$$
 $(0; x_1, \ldots)_3 \mapsto (0; y_1, \ldots)_2.$

The Wunderlich function

If $x = (0; x_1, ...)_3$, let us set $x_0 = y_0 = 0$ and define the sequence $(y_j)_{j \in \mathbb{N}}$ recursively,

$$y_j = \begin{cases} y_{j-1} & \text{if } x_j = x_{j-1} \\ 1 - y_{j-1} & \text{else} \end{cases}$$

The Wunderlich function is defined as follows,

$$f:[0,1]\rightarrow [0,1] \qquad (0;x_1,\ldots)_3\mapsto (0;y_1,\ldots)_2.$$

It is easy to check that this function is a monoHölder function with Hölder exponent $\log 2/\log 3$.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Wunderlich function (1952)

Representation of the Wunderlich function

The Petr function

If $x = (0; x_1, ...)_{10}$, let $(b_j)_j$ denote the following sequence: $b_1 = 1$ and

$$b_j = \begin{cases} b_{j-1} & \text{if } x_{j-1} \text{ is even or equal to 9} \\ -b_{j-1} & \text{else} \end{cases}$$

The sequences $(y_j)_j$ and $(z_j)_j$ are then defined as follows,

$$y_j = \left\{ egin{array}{ccc} x_j \mbox{ mod } 2 & \mbox{if } b_j > 0 \\ 0 & \mbox{ otherwise } \end{array}, z_j = \left\{ egin{array}{ccc} 0 & \mbox{if } b_j > 0 \\ x_j \mbox{ mod } 2 & \mbox{ otherwise } \end{array}
ight. ,$$

and lead to the definition of the Petr function

 $f: [0,1] \to [0,1]$ $x \mapsto (0; y_1, \ldots)_2 - (0; z_1, \ldots)_2.$

The Petr function

If $x = (0; x_1, ...)_{10}$, let $(b_j)_j$ denote the following sequence: $b_1 = 1$ and

$$b_j = \begin{cases} b_{j-1} & \text{if } x_{j-1} \text{ is even or equal to 9} \\ -b_{j-1} & \text{else} \end{cases}$$

The sequences $(y_j)_j$ and $(z_j)_j$ are then defined as follows,

$$y_j = \left\{ egin{array}{ccc} x_j \mbox{ mod } 2 & \mbox{if } b_j > 0 \ 0 & \mbox{otherwise} \end{array}, z_j = \left\{ egin{array}{ccc} 0 & \mbox{if } b_j > 0 \ x_j \mbox{ mod } 2 & \mbox{otherwise} \end{array}
ight. ,$$

and lead to the definition of the Petr function

 $f:[0,1] \to [0,1]$ $x \mapsto (0; y_1,\ldots)_2 - (0; z_1,\ldots)_2.$

This function is a monoHölder function with Hölder exponent $\log 2/\log 10$.

A simple condition for monoHölderianity

Application to some "historical functions"

The Petr function (1920)

Representation of the Petr function

Some definitions A simple condition for monoHölderianity OCOCO

The Peano function

Let K the application defined by Kj = 2 - j and set $K^0j = j$. The Peano function is defined as follows,

$$P: [0,1] \rightarrow [0,1] \qquad x \mapsto \left(egin{array}{c} p_1(x) \ p_2(x) \end{array}
ight),$$

where

$$p_1((0; x_1, \ldots)_3) = (0; x_1, K^{x_2}x_3, \ldots, K^{\sum_{k=1}^{j-1} x_{2k}}x_{2j-1}, \ldots)_3$$

and

$$p_2((0; x_1, \ldots)_3) = (0; K^{x_1}x_2, \ldots, K^{\sum_{k=0}^{j-1} x_{2k+1}}x_{2j}, \ldots)_3,$$

The Peano function

Let K the application defined by Kj = 2 - j and set $K^0j = j$. The Peano function is defined as follows,

$$P: [0,1] \rightarrow [0,1] \qquad x \mapsto \left(egin{array}{c} p_1(x) \ p_2(x) \end{array}
ight),$$

where

$$p_1((0; x_1, \ldots)_3) = (0; x_1, K^{x_2}x_3, \ldots, K^{\sum_{k=1}^{j-1} x_{2k}}x_{2j-1}, \ldots)_3$$

and

$$p_2((0; x_1, \ldots)_3) = (0; K^{x_1}x_2, \ldots, K^{\sum_{k=0}^{j-1} x_{2k+1}}x_{2j}, \ldots)_3,$$

The Peano function is a monoHölder function with Hölder exponent 1/2.

A simple condition for monoHölderianity

Application to some "historical functions"

The Peano function (1890)

Representation of the Peano function

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Peano function (1890)

Representation of the Peano function

A simple condition for monoHölderianity

Application to some "historical functions"

The Peano function (1890)

Representation of the Peano function

The Lebesgue function (1904)

The Lebesgue function

The Lebesgue function is defined on K as follows

$$\begin{array}{ccc} L: & \mathcal{K} \to [0,1]^2 \\ & (0; x_1, x_2, \dots, x_{2j-1}, x_{2j}, \dots)_3 \mapsto \left(\begin{array}{c} (0; \frac{x_1}{2}, \frac{x_3}{2}, \dots, \frac{x_{2j-1}}{2}, \dots)_2 \\ & (0; \frac{x_2}{2}, \frac{x_4}{2}, \dots, \frac{x_{2j}}{2}, \dots)_2 \end{array} \right) \end{array}$$

and can be linearly extended to $\left[0,1\right]$

Some definitions A simple condition for monoHölde

The Lebesgue function (1904)

The Lebesgue function

The Lebesgue function is defined on K as follows

$$\begin{array}{ccc} L: & \mathcal{K} \to [0,1]^2 \\ & (0; x_1, x_2, \dots, x_{2j-1}, x_{2j}, \dots)_3 \mapsto \left(\begin{array}{c} (0; \frac{x_1}{2}, \frac{x_3}{2}, \dots, \frac{x_{2j-1}}{2}, \dots)_2 \\ & (0; \frac{x_2}{2}, \frac{x_4}{2}, \dots, \frac{x_{2j}}{2}, \dots)_2 \end{array} \right) \end{array}$$

and can be linearly extended to [0,1]

The Lebesgue function is a monofractal function with (finite) Hölder exponent $\log 2/(2 \log 3)$.

A simple condition for monoHölderianity

Application to some "historical functions"

The Lebesgue function (1904)

Representation of the Lebesgue function

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Lebesgue function (1904)

Representation of the Lebesgue function

A simple condition for monoHölderianity

Application to some "historical functions"

The Lebesgue function (1904)

Representation of the Lebesgue function

Some definitions 000 The Sierpiński function (1912)	A simple condition for monoHölderianity 00000	Application to some "historical functions"
The Sierpiński function		

Let Θ and τ be 1-periodic functions defined on [0, 1] as follows

$$\Theta(x) = \left\{ egin{array}{cc} -1 & ext{if } x \in [rac{1}{4}, rac{3}{4}) \ 1 & ext{otherwise} \end{array}
ight.,$$

and

$$\tau(x) = \begin{cases} \frac{1}{8} + 4x & \text{if } x \in [0, \frac{1}{4}) \cup [\frac{1}{2}, \frac{3}{4}) \\ \frac{1}{8} - 4x & \text{otherwise} \end{cases}$$

The Sierpiński function is explicitly defined by

$$f(x) = rac{1}{2} \sum_{k=0}^{\infty} rac{(-1)^k}{2^k} \prod_{j=0}^k \Theta(\tau^j(x)),$$

where we have set $\tau^0(x) = x$.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Sierpiński function (1912)

The Hölder exponent of the Sierpiński function

ndeed, if
$$x = (0; x_1, ...)_2$$
,

$$\Theta(x) = \begin{cases}
-1 & \text{if } \begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases} \text{ or } \begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases}, \\
1 & \text{if } \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \text{ or } \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases},
\end{cases}$$

and

If we

$$\tau(x) = \begin{cases} \frac{1}{2^3} + (0; x_3, \ldots)_2 & \text{if } x_2 = 0\\ \frac{1}{2^3} - (0; x_3, \ldots)_2 & \text{if } x_2 = 1 \end{cases}$$

set $p(x, k) = \prod_{j=0}^k \Theta(\tau^j(x))$,

$$f(x) = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{p(x,k)}{2^k}$$

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Sierpiński function (1912)

The Hölder exponent of the Sierpiński function

ndeed, if
$$x = (0; x_1, ...)_2$$
,

$$\Theta(x) = \begin{cases}
-1 & \text{if } \begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases} \text{ or } \begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases}, \\
1 & \text{if } \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \text{ or } \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases},
\end{cases}$$

and

$$\tau(x) = \begin{cases} \frac{1}{2^3} + (0; x_3, \ldots)_2 & \text{if } x_2 = 0\\ \frac{1}{2^3} - (0; x_3, \ldots)_2 & \text{if } x_2 = 1 \end{cases}$$

If we set $p(x, k) = \prod_{j=0}^k \Theta(\tau^j(x))$,

$$f(x) = \frac{1}{2} \sum_{k=0}^{\infty} (-1)^k \frac{p(x,k)}{2^k}$$

Finally, one can show that f is a monoHölder function with Hölder exponent 1/2.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

The Sierpiński function (1912)

Representation of the Sierpiński function

A simple condition for monoHölderianity

Application to some "historical functions"

•

The Schoenberg function (1938)

The Schoenberg function

Let g be the 2-periodic even function which satisfies

$$g(t) = \left\{egin{array}{ccc} 0 & ext{if} \ t\in [0,rac{1}{3}]\ 3t-1 & ext{if} \ t\in [rac{1}{3},rac{2}{3}]\ 1 & ext{if} \ t\in [rac{2}{3},1] \end{array}
ight.$$

The Schoenberg function is defined by

$$S: [0,1] \rightarrow [0,1]^2 \qquad x \mapsto \left(egin{array}{c} s_1(x) \ s_2(x) \end{array}
ight),$$

where

$$s_1(x) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{g(3^{2k}x)}{2^k}$$

and

$$s_2(x) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{g(3^{2k+1}x)}{2^k}.$$

A simple condition for monoHölderianity

Application to some "historical functions"

The Schoenberg function (1938)

The Hölder exponent of the Schoenberg function

If
$$x = (0; x_1, ...)_3$$
, we have

$$g(3^{2k}x) = \begin{cases} g_1((0; x_{2k+1}, ...)_3) & \text{if } (x_1, ..., x_{2k})_3 \text{ is even} \\ g_2((0; x_{2k+1}, ...)_3) & \text{if } (x_1, ..., x_{2k})_3 \text{ is odd} \end{cases}$$

where

$$g_1((0; x_{2k+1}, \ldots)_3) = \begin{cases} 0 & \text{if } x_{2k+1} = 0\\ 1 & \text{if } x_{2k+1} = 2\\ (0; x_{2k+2}, \ldots) & \text{if } x_{2k+1} = 1 \end{cases}$$

and

$$g_2((0; x_{2k+1}, \ldots)_3) = \begin{cases} 0 & \text{if } x_{2k+1} = 2\\ 1 & \text{if } x_{2k+1} = 0\\ 1 - (0; x_{2k+2}, \ldots) & \text{if } x_{2k+1} = 1 \end{cases},$$

A simple condition for monoHölderianity 00000

The Schoenberg function (1938)

The Hölder exponent of the Schoenberg function

f
$$x = (0; x_1, ...)_3$$
, we have

$$g(3^{2k}x) = \begin{cases} g_1((0; x_{2k+1}, ...)_3) & \text{if } (x_1, ..., x_{2k})_3 \text{ is even} \\ g_2((0; x_{2k+1}, ...)_3) & \text{if } (x_1, ..., x_{2k})_3 \text{ is odd} \end{cases}$$

where

$$g_1((0; x_{2k+1}, \ldots)_3) = \begin{cases} 0 & \text{if } x_{2k+1} = 0\\ 1 & \text{if } x_{2k+1} = 2\\ (0; x_{2k+2}, \ldots) & \text{if } x_{2k+1} = 1 \end{cases}$$

and

$$g_2((0; x_{2k+1}, \ldots)_3) = \begin{cases} 0 & \text{if } x_{2k+1} = 2\\ 1 & \text{if } x_{2k+1} = 0\\ 1 - (0; x_{2k+2}, \ldots) & \text{if } x_{2k+1} = 1 \end{cases},$$

This allows to show that the Schoenberg function is monoHölder with Hölder exponent $\log 2/(2 \log 3)$.

A simple condition for monoHölderianity

Application to some "historical functions"

The Schoenberg function (1938)

Representation of the Schoenberg function

A simple condition for monoHölderianity

Application to some "historical functions"

The Schoenberg function (1938)

Representation of the Schoenberg function

A simple condition for monoHölderianity 00000 Application to some "historical functions"

The Schoenberg function (1938)

Representation of the Schoenberg function

A simple condition for monoHölderianity

Some generic functions

The generic Lebesgue functions

Let E_p is the set of real numbers whose one of the expansions in base 2p - 1 is $x = (0; x_1, ...)_{2p-1}$ with x_j even $\forall j$. In these settings, let

$$L_p: E_p \to [0,1]^2 \qquad x \mapsto \left(\begin{array}{c} h_1(x) \\ h_2(x) \end{array} \right),$$

where

$$h_1((0; x_1, \ldots)_{2p-1}) = (0; \frac{x_1}{2}, \frac{x_3}{2}, \ldots, \frac{x_{2j-1}}{2}, \ldots)_p,$$

and

$$l_2((0; x_1, \ldots)_{2p-1}) = (0; \frac{x_2}{2}, \frac{x_4}{2}, \ldots, \frac{x_{2j}}{2}, \ldots)_p.$$

This function can be linearly extended to [0, 1].

A simple condition for monoHölderianity $_{\rm OOOOO}$

Application to some "historical functions"

Some generic functions

The Hölder exponent of the generic Lebesgue function

Proposition

The restriction of L_p to E_p is an onto function.

A simple condition for monoHölderianity $_{\rm OOOOO}$

Application to some "historical functions"

Some generic functions

The Hölder exponent of the generic Lebesgue function

Proposition

The restriction of L_p to E_p is an onto function.

The function L_p is a monofractal function with (finite) Hölder exponent log $p/(2 \log 2p - 1)$.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function L₃

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function L₃

A simple condition for monoHölderianity

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function L₃

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Some generic functions

The generic Schoenberg function

Let g_p be the 2 periodic even function which satisfies

$$g_{p}(x) = \begin{cases} k & \text{if } x \in \left[\frac{2k}{2p-1}, \frac{2k+1}{2p-1}\right] & (0 \le k \le p-1) \\ (2p-1)x - k - 1 & \text{if } x \in \left]\frac{2k+1}{2p-1}, \frac{2k+2}{2p-1}\right[& (0 \le k < p-1) \end{cases}$$

and set

$$S_{p}: [0,1]
ightarrow [0,1]^{2} \qquad x \mapsto \left(egin{array}{c} s_{1}(x) \ s_{2}(x) \end{array}
ight),$$

where

$$s_1(x) = rac{1}{p} \sum_{k=0}^{\infty} rac{g_p((2p-1)^{2k}x)}{p^k}$$

and

$$s_2(x) = \frac{1}{p} \sum_{k=0}^{\infty} \frac{g_p((2p-1)^{2k+1}x)}{p^k}.$$

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of S_p to E_p is L_p . In particular, S_p is an onto function.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of S_p to E_p is L_p . In particular, S_p is an onto function.

The function S_p is a monoHölder function with Hölder exponent $\log p/(2\log 2p - 1)$.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function S_3

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function S_3

A simple condition for monoHölderianity

Application to some "historical functions"

Some generic functions

Representation of the generic Schoenberg function S₃

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Some generic functions

Definition of D_p and F_p

Let E_p^* be the set of the real numbers whose proper expansion in basis 2p - 1 is $(0; x_1, \ldots)_{2p-1}$ with x_j even $\forall j$.

A simple condition for monoHölderianity

Application to some "historical functions"

Some generic functions

Definition of D_p and F_p

Let E_p^* be the set of the real numbers whose proper expansion in basis 2p - 1 is $(0; x_1, \ldots)_{2p-1}$ with x_j even $\forall j$. It is known that

$$L(x) = F \circ D(x) \qquad \forall x \in K^* = E_2^*.$$

Let

$$D_{p}: E_{p} \to [0,1]$$
 $(0; x_{1}, \ldots)_{2p-1} \mapsto (0; \frac{x_{1}}{2}, \ldots)_{p}$

A simple condition for monoHölderianity

Application to some "historical functions"

Some generic functions

Definition of D_p and F_p

Let E_p^* be the set of the real numbers whose proper expansion in basis 2p - 1 is $(0; x_1, \ldots)_{2p-1}$ with x_j even $\forall j$. It is known that

$$L(x) = F \circ D(x) \qquad \forall x \in K^* = E_2^*.$$

Let

$$D_p: E_p \to [0,1] \qquad (0; x_1, \ldots)_{2p-1} \mapsto (0; \frac{x_1}{2}, \ldots)_p$$

and

$$F_p: [0,1] o [0,1]^2 \qquad x \mapsto \left(egin{array}{c} f_1(x) \ f_2(x) \end{array}
ight),$$

where $F_p(1) = (1,1)$ and, if $x = (0; x_1, ...)_p$ is the proper expansion of x $f_1(x) = (0; x_1, x_3, ..., x_{2j-1}, ...)_p$

and

$$f_2(x) = (0; x_2, x_4, \dots, x_{2j}, \dots)_p$$

A simple condition for monoHölderianity

Application to some "historical functions"

Some generic functions

Definition of D_p and F_p

Let E_p^* be the set of the real numbers whose proper expansion in basis 2p - 1 is $(0; x_1, \ldots)_{2p-1}$ with x_j even $\forall j$. It is known that

$$L(x) = F \circ D(x) \qquad \forall x \in K^* = E_2^*.$$

Let

$$D_p: E_p \to [0,1] \qquad (0; x_1, \ldots)_{2p-1} \mapsto (0; \frac{x_1}{2}, \ldots)_p$$

and

$$F_p: [0,1] o [0,1]^2 \qquad x \mapsto \left(egin{array}{c} f_1(x) \ f_2(x) \end{array}
ight),$$

where $F_p(1) = (1, 1)$ and, if $x = (0; x_1, ...)_p$ is the proper expansion of x $f_1(x) = (0; x_1, x_3, ..., x_{2i-1}, ...)_p$

and

$$f_2(x) = (0; x_2, x_4, \ldots, x_{2j}, \ldots)_p$$

One has

$$L_p(x) = F_p \circ D_p(x) \qquad \forall x \in E_p^*$$

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

Definition of the spectrum of singularities

Definition

Let f be a locally bounded function; its isoHölder sets are the sets

$$E_H = \{x : h(x) = H\}.$$

The spectrum of singularities of f is the function

$$d: \mathbb{R}^+ \cup \{\infty\} \to \mathbb{R}^+ \cup \{-\infty\} \qquad H \mapsto \dim_H(E_H),$$

where dim_H denotes the Hausdorff dimension, using the standard convention dim_H(\emptyset) = $-\infty$.

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Some generic functions

About the regularity of F_p

Proposition

The function F_p has the following expansion

$$f_1(x) = \sum_{\substack{n=0\\m=1}}^{\infty} a_n \{p^n x\}, \text{ where } a_{2n} = p^{-l} \text{ and } a_{2n+1} = -p^{-l-1}$$

$$f_2(x) = \sum_{n=1}^{\infty} a_n \{p^n x\}, \text{ where } a_{2n} = -p^{-l} \text{ and } a_{2n+1} = p^{-l-1}$$

A simple condition for monoHölderianity 00000 Application to some "historical functions"

Some generic functions

About the regularity of F_p

Proposition

The function F_p has the following expansion

$$\begin{cases} f_1(x) = \sum_{n=0}^{\infty} a_n \{p^n x\}, & \text{where } a_{2n} = p^{-l} \text{ and } a_{2n+1} = -p^{-l-1} \\ f_2(x) = \sum_{n=1}^{\infty} a_n \{p^n x\}, & \text{where } a_{2n} = -p^{-l} \text{ and } a_{2n+1} = p^{-l-1} \end{cases}$$

Corollary

The spectrum of singularities of the function F_p is given by

$$d(H) = \left\{ egin{array}{cc} 2H & ext{if } 0 \leq H \leq 1/2 \ -\infty & ext{else} \end{array}
ight.$$

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

About the regularity of F_p

Proposition

The function F_p can be written as a *p*-adic Davenport series.

Corollary

The spectrum of singularities of the function F_p is given by

$$d(H) = \left\{ egin{array}{cc} 2H & ext{if } 0 \leq H \leq 1/2 \ -\infty & ext{else} \end{array}
ight.$$

However, the restriction of F_p to E_p^* is a monofractal function with Hölder exponent 1/2.

A simple condition for monoHölderianity 00000

Application to some "historical functions"

Some generic functions

About the regularity of F_p

Proposition

The function F_p can be written as a *p*-adic Davenport series.

Corollary

The spectrum of singularities of the function F_p is given by

$$d(H) = \left\{ egin{array}{cc} 2H & ext{if } 0 \leq H \leq 1/2 \ -\infty & ext{else} \end{array}
ight.$$

However, the restriction of F_{ρ} to E_{ρ}^{*} is a monofractal function with Hölder exponent 1/2. It is easy to check that F_{ρ} is a *p*-adic monoHölder function with Hölder exponent 1/2.