Pointwise regularity of some "historical non-differentiable functions"

S. Nicolay

Department of Mathematics, University of Liège.

Techniques Fractales (Orléans)

Hölder-regularity

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a locally bounded function, $x \in \mathbb{R}$ and $\alpha>0$; $f \in C^{\alpha}(x)$ if there exist $R, C>0$ and a polynomial P_{x} of degree less than α such that

$$
\begin{equation*}
|h|<R \Rightarrow\left|f(x+h)-P_{x}(h)\right| \leq C|h|^{\alpha} . \tag{*}
\end{equation*}
$$

A function f belongs to C^{α} if there exists $C>0$ such that (*) holds for all x with $R=\infty$.

Hölder-regularity

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a locally bounded function, $x \in \mathbb{R}$ and $\alpha>0$; $f \in C^{\alpha}(x)$ if there exist $R, C>0$ and a polynomial P_{x} of degree less than α such that

$$
\begin{equation*}
|h|<R \Rightarrow\left|f(x+h)-P_{x}(h)\right| \leq C|h|^{\alpha} . \tag{*}
\end{equation*}
$$

A function f belongs to C^{α} if there exists $C>0$ such that (*) holds for all x with $R=\infty$.

Definition

The Hölder exponent of f at x is $h(x)=\sup \left\{\alpha: f \in C^{\alpha}(x)\right\}$

Hölder-regularity

Definition

$f \in C^{\alpha}(x)$ iff

$$
|h|<R \Rightarrow\left|f(x+h)-P_{x}(h)\right| \leq C|h|^{\alpha} .
$$

Definition

The Hölder exponent of f at x is $h(x)=\sup \left\{\alpha: f \in C^{\alpha}(x)\right\}$

Definition

If the Hölder exponent is unique $\forall x$, then f is called a monoHölder function.
If the Hölder exponent takes only one finite value, f is called a monofractal function.

The p-adic distance

Notation

Let $p \in \mathbb{N}, p>1$. For a sequence of integers satisfying $0 \leq x_{j}<p$, we will use the following notation

$$
\left(0 ; x_{1}, \ldots, x_{j}, \ldots\right)_{p}
$$

to denote one of the expansions of the real number

$$
\begin{equation*}
x=\sum_{k=1}^{\infty} \frac{x_{k}}{p^{k}} . \tag{*}
\end{equation*}
$$

If there is no j such that $x_{i}=p-1 \forall i \geq j,(*)$ is the proper expansion of x in basis p.

The p-adic distance

Notation

$$
x=\left(0 ; x_{1}, \ldots, x_{j}, \ldots\right)_{p}
$$

denotes one of the expansions in basis p of the real number x.

Definition

Let $s=\left(0 ; s_{1}, \ldots\right)_{p}, t=\left(0 ; t_{1}, \ldots\right)_{p}$ be the proper expansions of the real numbers s and t respectively and $\delta_{p}(s, t)=\inf \left\{k: s_{k} \neq t_{k}\right\}-1$. The p-adic distance between s and t is

$$
d_{p}(s, t)=p^{-\delta_{p}(s, t)}
$$

This distance is an ultrametric distance.

p-adic Hölder spaces

Definition

Let $\alpha>0$. A locally bounded function $f:[0,1] \rightarrow \mathbb{R}$ belongs to $C_{p}^{\alpha}(x)$ if there exists $C>0$ and a polynomial P_{x} of degree less than α such that

$$
\begin{equation*}
\left|f(x+h)-P_{x}(h)\right| \leq C d_{p}(x, x+h)^{\alpha} . \tag{*}
\end{equation*}
$$

A function belongs to C_{p}^{α} if there exists $C>0$ such that $(*)$ holds for any x.
The p-adic Hölder exponent of f at x is

$$
h_{p}(x)=\sup \left\{\alpha: f \in C_{p}^{\alpha}(x)\right\} .
$$

A sufficient condition to belong to $C_{p}^{\alpha}(x)$

Proposition

Let f be a bounded function explicitly defined on $D \subset[0,1]$ by

$$
f: D \rightarrow \mathbb{R}^{+} x=\left(0 ; x_{1}, \ldots\right)_{p} \mapsto f(x)=\left(\ldots, y_{0} ; y_{1}, \ldots\right)_{p^{\prime}}
$$

and such that there exist ϵ and a function g such that

$$
d_{p}(s, t)<\epsilon \Rightarrow\left\{\begin{array}{l}
d_{p^{\prime}}(f(s), f(t))<1 \\
\delta_{p^{\prime}}(f(s), f(t))=g\left(s, \delta_{p}(s, t)\right)
\end{array}\right.
$$

If

$$
\begin{equation*}
\alpha=\liminf _{u \rightarrow \infty} \frac{g\left(x_{0}, u\right)}{u} \frac{\log p^{\prime}}{\log p} \leq 1, \tag{*}
\end{equation*}
$$

$f \in C_{p}^{\alpha}\left(x_{0}\right)$.
In particular, if $(*)$ does not depend on $x_{0}, f \in C_{p}^{\alpha}$.

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$
F:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{f_{1}(x)}{f_{2}(x)}
$$

where $F(1)=(1,1)$ and, if $\left(0 ; x_{1}, \ldots\right)_{2}$ is the proper expansion of x,

$$
f_{1}(x)=\left(0 ; x_{1}, x_{3}, \ldots, x_{2 j-1}, \ldots\right)_{2}
$$

and

$$
f_{2}(x)=\left(0 ; x_{2}, x_{4}, \ldots, x_{2 j}, \ldots\right)_{2} .
$$

A simple condition for a function to belong to C_{p}^{α}

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$
F:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{f_{1}(x)}{f_{2}(x)}
$$

where $F(1)=(1,1)$ and, if $\left(0 ; x_{1}, \ldots\right)_{2}$ is the proper expansion of x,

$$
f_{1}(x)=\left(0 ; x_{1}, x_{3}, \ldots, x_{2 j-1}, \ldots\right)_{2}
$$

and

$$
f_{2}(x)=\left(0 ; x_{2}, x_{4}, \ldots, x_{2 j}, \ldots\right)_{2}
$$

A direct application of the previous proposition shows that $f_{1}, f_{2} \in C_{2}^{1 / 2}$. Moreover, it is easy to check that F is a 2 -adic monoHölder function with 2 -adic Hölder exponent $1 / 2$.

A simple condition for a function to belong to C_{p}^{α}

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

$$
F:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{f_{1}(x)}{f_{2}(x)}
$$

where $F(1)=(1,1)$ and, if $\left(0 ; x_{1}, \ldots\right)_{2}$ is the proper expansion of x,

$$
f_{1}(x)=\left(0 ; x_{1}, x_{3}, \ldots, x_{2 j-1}, \ldots\right)_{2}
$$

and

$$
f_{2}(x)=\left(0 ; x_{2}, x_{4}, \ldots, x_{2 j}, \ldots\right)_{2}
$$

A direct application of the previous proposition shows that $f_{1}, f_{2} \in C_{2}^{1 / 2}$. Moreover, it is easy to check that F is a 2 -adic monoHölder function with 2-adic Hölder exponent $1 / 2$.
However, F is not continuous.

A similar result for C^{α} ?

Let us drop the p-adic distance

Notations

If $\left(0 ; s_{1}, \ldots\right)_{p}$ is the proper expansion of s in base p, let
$\theta_{p}(s)=\inf \left\{k: s_{k} \neq 0\right\}-1$ and, if $t=\left(0 ; t_{1}, \ldots\right)_{p}$,

$$
\gamma_{p}(s, t)=\theta_{p}(|s-t|)
$$

A similar result for C^{α} ?

Let us drop the p-adic distance

Notations

If $\left(0 ; s_{1}, \ldots\right)_{p}$ is the proper expansion of s in base p, let
$\theta_{p}(s)=\inf \left\{k: s_{k} \neq 0\right\}-1$ and, if $t=\left(0 ; t_{1}, \ldots\right)_{p}$,

$$
\gamma_{p}(s, t)=\theta_{p}(|s-t|)
$$

However, $p^{-\gamma_{p}(s, t)}$ does not define a distance.

Let us drop the p-adic distance

Notations

If $\left(0 ; s_{1}, \ldots\right)_{p}$ is the proper expansion of s in base p, let $\theta_{p}(s)=\inf \left\{k: s_{k} \neq 0\right\}-1$ and, if $t=\left(0 ; t_{1}, \ldots\right)_{p}$,

$$
\gamma_{p}(s, t)=\theta_{p}(|s-t|)
$$

However, $p^{-\gamma_{p}(s, t)}$ does not define a distance.
To compute $\gamma_{p}(s, t)$, we have to compute $\delta_{p}(s, t)$ and to check that s and t are not of the form

$$
\begin{gathered}
s=\left(0 ; s_{1}, \ldots, s_{n-1}, s_{n}, 0, \ldots, s_{m}, \ldots\right)_{p} \\
t=\left(0 ; s_{1}, \ldots, s_{n-1}, s_{n}-1, p-1, \ldots, t_{m}, \ldots\right)_{p}
\end{gathered}
$$

If it is the case, $\gamma_{p}(s, t)>\delta_{p}(s, t)$; otherwise we can suppose that $\gamma_{p}(s, t)=\delta_{p}(s, t)$.

Strongly MonoHölder functions

Definition

Let $\alpha \in(0,1)$. A function f belongs to $I^{\alpha}\left(x_{0}\right)$ if

$$
\exists C, R>0, \forall r \leq R, \sup _{x, y \in B\left(x_{0}, r\right)}|f(x)-f(y)| \geq C r^{\alpha}
$$

f belongs to l^{α} if

$$
\exists C, R>0, \forall r \leq R, \forall x, \sup |f(x)-f(y)| \geq C r^{\alpha} ;
$$

Strongly MonoHölder functions

Definition

Let $\alpha \in(0,1)$. A function f belongs to $I^{\alpha}\left(x_{0}\right)$ if

$$
\exists C, R>0, \forall r \leq R, \sup _{x, y \in B\left(x_{0}, r\right)}|f(x)-f(y)| \geq C r^{\alpha}
$$

f belongs to I^{α} if

$$
\exists C, R>0, \forall r \leq R, \forall x, \sup _{x, y \in B(x, r)}|f(x)-f(y)| \geq C r^{\alpha} ;
$$

Definition

Let $\alpha \in(0,1)$. A function is strongly monoHölder of exponent α $\left(f \in S M_{\alpha}\right)$ if $f \in C^{\alpha} \cap I^{\alpha}$.

A similar result for C^{α} ?

A sufficient condition for monoHölderianity

Let f be a bounded function explicitly defined on $D \subset[0,1]$ by

$$
f: D \rightarrow \mathbb{R}^{+} x=\left(0 ; x_{1}, \ldots\right)_{p} \mapsto f(x)=\left(\ldots, y_{0} ; y_{1}, \ldots\right)_{p^{\prime}}
$$

and such that there exist $\eta>0$ and a function g such that

$$
\gamma_{p}(s, t)>\eta \Rightarrow\left\{\begin{array}{l}
\gamma_{p^{\prime}}(f(s), f(t))>0 \\
\gamma_{p^{\prime}}(f(s), f(t))=g\left(s, \gamma_{p}(s, t)\right)
\end{array}\right.
$$

If

$$
\begin{equation*}
\alpha=\liminf _{u \rightarrow \infty} \frac{g\left(x_{0}, u\right)}{u} \frac{\log p^{\prime}}{\log p}<1, \tag{*}
\end{equation*}
$$

$h\left(x_{0}\right)=\alpha$ and $f \in I^{\alpha}\left(x_{0}\right)$. If $\alpha=1, f \in C^{\alpha}\left(x_{0}\right)$.
In particular, if $(*)$ does not depend on $x_{0}, f \in S M_{\alpha}$. If $\alpha=1$, $f \in C^{\alpha}$.

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x=\left(0 ; x_{1}, \ldots\right)_{3}$, with $x_{j} \in\{0,2\} \forall j$.

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x=\left(0 ; x_{1}, \ldots\right)_{3}$, with $x_{j} \in\{0,2\} \forall j$.

We will denote by $\lfloor x\rfloor$ the integer part of $x \geq 0$ and by $\{x\}$ the fractional part of $x(\{x\}=x-\lfloor x\rfloor)$.

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x=\left(0 ; x_{1}, \ldots\right)_{3}$, with $x_{j} \in\{0,2\} \forall j$.

We will denote by $\lfloor x\rfloor$ the integer part of $x \geq 0$ and by $\{x\}$ the fractional part of $x(\{x\}=x-\lfloor x\rfloor)$.

Let f be a continuous function defined on a closed bounded subset $A \subset \mathbb{R}$. The linear extension of f is the continuous function g defined on $[\inf A, \sup A]$ by

- $g(x)=f(x)$ if $x \in A$,
- g is linear otherwise.

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be written $x=\left(0 ; x_{1}, \ldots\right)_{3}$, with $x_{j} \in\{0,2\} \forall j$.

We will denote by $\lfloor x\rfloor$ the integer part of $x \geq 0$ and by $\{x\}$ the fractional part of $x(\{x\}=x-\lfloor x\rfloor)$.

Let f be a continuous function defined on a closed bounded subset $A \subset \mathbb{R}$. The linear extension of f is the continuous function g defined on $[\inf A, \sup A]$ by

- $g(x)=f(x)$ if $x \in A$,
- g is linear otherwise.
if $f \in C^{\alpha}$, with $\alpha \in(0,1)$, its linear extension also belong to C^{α}.

The Devil's staircase

The Devil's staircase is defined on K as follows,

$$
D: K \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots, x_{j}, \ldots\right)_{3} \mapsto\left(0 ; \frac{x_{1}}{2}, \ldots, \frac{x_{j}}{2}, \ldots\right)_{2}
$$

and can be linearly extended on $[0,1]$

The Devil's staircase

The Devil's staircase is defined on K as follows,

$$
D: K \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots, x_{j}, \ldots\right)_{3} \mapsto\left(0 ; \frac{x_{1}}{2}, \ldots, \frac{x_{j}}{2}, \ldots\right)_{2}
$$

and can be linearly extended on $[0,1]$
The Devil's staircase is a monofractal function with (finite) Hölder exponent $\log 2 / \log 3$.

The Devil's staircase

Representation of the Devil's staircase

The Takagi functions (1903)

The Takagi functions

The Takagi functions are defined as follows,

$$
f: x \mapsto \sum_{k=0}^{\infty} \frac{\left(2^{m k} x\right)}{2^{n k}}
$$

with $m, n \in \mathbb{N}, m \geq n$ and where $(x)=\operatorname{dist}(x, \mathbb{Z})$.

The Takagi functions

The Takagi functions are defined as follows,

$$
f: x \mapsto \sum_{k=0}^{\infty} \frac{\left(2^{m k} x\right)}{2^{n k}}
$$

with $m, n \in \mathbb{N}, m \geq n$ and where $(x)=\operatorname{dist}(x, \mathbb{Z})$.
The Takagi functions are monoHölder functions with Hölder exponent n / m.

The Takagi functions (1903)

The Hölder exponent of the Takagi functions

With the notation

$$
\tilde{x}_{j}=\left\{\begin{array}{ll}
x_{j} & \text { if } x_{m k+1}=0 \\
1-x_{j} & \text { if } x_{m k+1}=1
\end{array},\right.
$$

we have

$$
f:\left(0 ; x_{1}, \ldots\right)_{2} \mapsto \sum_{k=0}^{\infty}(0 ; 0, \ldots, \overbrace{\tilde{x}_{m k+1}}^{n k+1}, \tilde{x}_{m k+2}, \ldots)_{2} .
$$

The Hölder exponent of the Takagi functions

With the notation

$$
\tilde{x}_{j}=\left\{\begin{array}{ll}
x_{j} & \text { if } x_{m k+1}=0 \\
1-x_{j} & \text { if } x_{m k+1}=1
\end{array},\right.
$$

we have

$$
f:\left(0 ; x_{1}, \ldots\right)_{2} \mapsto \sum_{k=0}^{\infty}(0 ; 0, \ldots, \overbrace{\tilde{x}_{m k+1}}^{n k+1}, \tilde{x}_{m k+2}, \ldots)_{2} .
$$

This implies that, if $n>m, f$ is a monoHölder function with Hölder exponent n / m.

The Hölder exponent of the Takagi functions

With the notation

$$
\tilde{x}_{j}= \begin{cases}x_{j} & \text { if } x_{m k+1}=0 \\ 1-x_{j} & \text { if } x_{m k+1}=1\end{cases}
$$

we have

$$
f:\left(0 ; x_{1}, \ldots\right)_{2} \mapsto \sum_{k=0}^{\infty}(0 ; 0, \ldots, \overbrace{\tilde{x}_{m k+1}}^{n k+1}, \tilde{x}_{m k+2}, \ldots)_{2} .
$$

This implies that, if $n>m, f$ is a monoHölder function with Hölder exponent n / m.

If $n=m$, one has to show that f is not differentiable.

The Takagi functions (1903)

Examples of Takagi functions

The Takagi functions (1903)

Examples of Takagi functions

The Takagi functions (1903)

Examples of Takagi functions

The Takagi functions (1903)

Examples of Takagi functions

The Takagi functions (1903)

Examples of Takagi functions

The Wunderlich function

If $x=\left(0 ; x_{1}, \ldots\right)_{3}$, let us set $x_{0}=y_{0}=0$ and define the sequence $\left(y_{j}\right)_{j \in \mathbb{N}}$ recursively,

$$
y_{j}= \begin{cases}y_{j-1} & \text { if } x_{j}=x_{j-1} \\ 1-y_{j-1} & \text { else }\end{cases}
$$

The Wunderlich function is defined as follows,

$$
f:[0,1] \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots\right)_{3} \mapsto\left(0 ; y_{1}, \ldots\right)_{2} .
$$

The Wunderlich function

If $x=\left(0 ; x_{1}, \ldots\right)_{3}$, let us set $x_{0}=y_{0}=0$ and define the sequence $\left(y_{j}\right)_{j \in \mathbb{N}}$ recursively,

$$
y_{j}= \begin{cases}y_{j-1} & \text { if } x_{j}=x_{j-1} \\ 1-y_{j-1} & \text { else }\end{cases}
$$

The Wunderlich function is defined as follows,

$$
f:[0,1] \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots\right)_{3} \mapsto\left(0 ; y_{1}, \ldots\right)_{2}
$$

It is easy to check that this function is a monoHölder function with Hölder exponent $\log 2 / \log 3$.

The Wunderlich function (1952)

Representation of the Wunderlich function

The Petr function

If $x=\left(0 ; x_{1}, \ldots\right)_{10}$, let $\left(b_{j}\right)_{j}$ denote the following sequence: $b_{1}=1$ and

$$
b_{j}=\left\{\begin{aligned}
b_{j-1} & \text { if } x_{j-1} \text { is even or equal to } 9 \\
-b_{j-1} & \text { else }
\end{aligned}\right.
$$

The sequences $\left(y_{j}\right)_{j}$ and $\left(z_{j}\right)_{j}$ are then defined as follows,

$$
y_{j}=\left\{\begin{array}{ll}
x_{j} \bmod 2 & \text { if } b_{j}>0 \\
0 & \text { otherwise }
\end{array}, z_{j}= \begin{cases}0 & \text { if } b_{j}>0 \\
x_{j} \bmod 2 & \text { otherwise }\end{cases}\right.
$$

and lead to the definition of the Petr function

$$
f:[0,1] \rightarrow[0,1] \quad x \mapsto\left(0 ; y_{1}, \ldots\right)_{2}-\left(0 ; z_{1}, \ldots\right)_{2}
$$

The Petr function

If $x=\left(0 ; x_{1}, \ldots\right)_{10}$, let $\left(b_{j}\right)_{j}$ denote the following sequence: $b_{1}=1$ and

$$
b_{j}=\left\{\begin{aligned}
b_{j-1} & \text { if } x_{j-1} \text { is even or equal to } 9 \\
-b_{j-1} & \text { else }
\end{aligned}\right.
$$

The sequences $\left(y_{j}\right)_{j}$ and $\left(z_{j}\right)_{j}$ are then defined as follows,

$$
y_{j}=\left\{\begin{array}{ll}
x_{j} \bmod 2 & \text { if } b_{j}>0 \\
0 & \text { otherwise }
\end{array}, z_{j}= \begin{cases}0 & \text { if } b_{j}>0 \\
x_{j} \bmod 2 & \text { otherwise }\end{cases}\right.
$$

and lead to the definition of the Petr function

$$
f:[0,1] \rightarrow[0,1] \quad x \mapsto\left(0 ; y_{1}, \ldots\right)_{2}-\left(0 ; z_{1}, \ldots\right)_{2}
$$

This function is a monoHölder function with Hölder exponent $\log 2 / \log 10$.

The Petr function (1920)

Representation of the Petr function

The Peano function

Let K the application defined by $K j=2-j$ and set $K^{0} j=j$. The Peano function is defined as follows,

$$
P:[0,1] \rightarrow[0,1] \quad x \mapsto\binom{p_{1}(x)}{p_{2}(x)},
$$

where

$$
p_{1}\left(\left(0 ; x_{1}, \ldots\right)_{3}\right)=\left(0 ; x_{1}, K^{x_{2}} x_{3}, \ldots, K^{\sum_{k=1}^{j-1} x_{2 k}} x_{2 j-1}, \ldots\right)_{3}
$$

and

$$
p_{2}\left(\left(0 ; x_{1}, \ldots\right)_{3}\right)=\left(0 ; K^{x_{1}} x_{2}, \ldots, K^{\sum_{k=0}^{j-1} x_{2 k+1}} x_{2 j}, \ldots\right)_{3}
$$

The Peano function

Let K the application defined by $K j=2-j$ and set $K^{0} j=j$. The Peano function is defined as follows,

$$
P:[0,1] \rightarrow[0,1] \quad x \mapsto\binom{p_{1}(x)}{p_{2}(x)},
$$

where

$$
p_{1}\left(\left(0 ; x_{1}, \ldots\right)_{3}\right)=\left(0 ; x_{1}, K^{x_{2}} x_{3}, \ldots, K^{\sum_{k=1}^{j-1} x_{2 k}} x_{2 j-1}, \ldots\right)_{3}
$$

and

$$
p_{2}\left(\left(0 ; x_{1}, \ldots\right)_{3}\right)=\left(0 ; K^{x_{1}} x_{2}, \ldots, K^{\sum_{k=0}^{j-1} x_{2 k+1}} x_{2 j}, \ldots\right)_{3}
$$

The Peano function is a monoHölder function with Hölder exponent $1 / 2$.

The Peano function (1890)

Representation of the Peano function

The Peano function (1890)

Representation of the Peano function

The Peano function (1890)

Representation of the Peano function

The Lebesgue function

The Lebesgue function is defined on K as follows
$L: K \rightarrow[0,1]^{2}$

$$
\left(0 ; x_{1}, x_{2}, \ldots, x_{2 j-1}, x_{2 j}, \ldots\right)_{3} \mapsto\binom{\left(0 ; \frac{x_{1}}{2}, \frac{x_{3}}{2}, \ldots, \frac{x_{2 j-1}}{2}, \ldots\right)_{2}}{\left(0 ; \frac{x_{2}}{2}, \frac{x_{4}}{2}, \ldots, \frac{x_{2 j}^{2}}{2}, \ldots\right)_{2}}
$$

and can be linearly extended to $[0,1]$

The Lebesgue function

The Lebesgue function is defined on K as follows
$L: K \rightarrow[0,1]^{2}$

$$
\left(0 ; x_{1}, x_{2}, \ldots, x_{2 j-1}, x_{2 j}, \ldots\right)_{3} \mapsto\binom{\left(0 ; \frac{x_{1}}{2}, \frac{x_{3}}{2}, \ldots, \frac{x_{2 j-1}}{2}, \ldots\right)_{2}}{\left(0 ; \frac{x_{2}}{2}, \frac{x_{4}}{2}, \ldots, \frac{x_{2 j}^{2}}{2}, \ldots\right)_{2}}
$$

and can be linearly extended to $[0,1]$
The Lebesgue function is a monofractal function with (finite) Hölder exponent $\log 2 /(2 \log 3)$.

The Lebesgue function (1904)

Representation of the Lebesgue function

The Lebesgue function (1904)

Representation of the Lebesgue function

The Lebesgue function (1904)

Representation of the Lebesgue function

The Sierpiński function

Let Θ and τ be 1-periodic functions defined on $[0,1]$ as follows

$$
\Theta(x)=\left\{\begin{aligned}
-1 & \text { if } x \in\left[\frac{1}{4}, \frac{3}{4}\right) \\
1 & \text { otherwise }
\end{aligned}\right.
$$

and

$$
\tau(x)= \begin{cases}\frac{1}{8}+4 x & \text { if } x \in\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{2}, \frac{3}{4}\right) \\ \frac{1}{8}-4 x & \text { otherwise }\end{cases}
$$

The Sierpiński function is explicitly defined by

$$
f(x)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}} \prod_{j=0}^{k} \Theta\left(\tau^{j}(x)\right)
$$

where we have set $\tau^{0}(x)=x$.

The Sierpiński function (1912)

The Hölder exponent of the Sierpiński function

Indeed, if $x=\left(0 ; x_{1}, \ldots\right)_{2}$,
and

$$
\tau(x)=\left\{\begin{array}{ll}
\frac{1}{2^{3}}+\left(0 ; x_{3}, \ldots\right)_{2} & \text { if } x_{2}=0 \\
\frac{1}{2^{3}}-\left(0 ; x_{3}, \ldots\right)_{2} & \text { if } x_{2}=1
\end{array} .\right.
$$

If we set $p(x, k)=\prod_{j=0}^{k} \Theta\left(\tau^{j}(x)\right)$,

$$
f(x)=\frac{1}{2} \sum_{k=0}^{\infty}(-1)^{k} \frac{p(x, k)}{2^{k}}
$$

The Hölder exponent of the Sierpiński function

Indeed, if $x=\left(0 ; x_{1}, \ldots\right)_{2}$,
and

$$
\tau(x)= \begin{cases}\frac{1}{2^{3}}+\left(0 ; x_{3}, \ldots\right)_{2} & \text { if } x_{2}=0 \\ \frac{1}{2^{3}}-\left(0 ; x_{3}, \ldots\right)_{2} & \text { if } x_{2}=1\end{cases}
$$

If we set $p(x, k)=\prod_{j=0}^{k} \Theta\left(\tau^{j}(x)\right)$,

$$
f(x)=\frac{1}{2} \sum_{k=0}^{\infty}(-1)^{k} \frac{p(x, k)}{2^{k}}
$$

Finally, one can show that f is a monoHölder function with Hölder exponent $1 / 2$.

The Sierpiński function (1912)

Representation of the Sierpiński function

The Schoenberg function

Let g be the 2-periodic even function which satisfies

$$
g(t)=\left\{\begin{array}{ll}
0 & \text { if } t \in\left[0, \frac{1}{3}\right] \\
3 t-1 & \text { if } t \in\left[\frac{1}{3}, \frac{2}{3}\right] \\
1 & \text { if } t \in\left[\frac{2}{3}, 1\right]
\end{array} .\right.
$$

The Schoenberg function is defined by

$$
S:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{s_{1}(x)}{s_{2}(x)}
$$

where

$$
s_{1}(x)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{g\left(3^{2 k} x\right)}{2^{k}}
$$

and

$$
s_{2}(x)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{g\left(3^{2 k+1} x\right)}{2^{k}}
$$

The Hölder exponent of the Schoenberg function

If $x=\left(0 ; x_{1}, \ldots\right)_{3}$, we have

$$
g\left(3^{2 k} x\right)= \begin{cases}g_{1}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right) & \text { if }\left(x_{1}, \ldots, x_{2 k}\right)_{3} \text { is even } \\ g_{2}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right) & \text { if }\left(x_{1}, \ldots, x_{2 k}\right)_{3} \text { is odd }\end{cases}
$$

where

$$
g_{1}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right)= \begin{cases}0 & \text { if } x_{2 k+1}=0 \\ 1 & \text { if } x_{2 k+1}=2 \\ \left(0 ; x_{2 k+2}, \ldots\right) & \text { if } x_{2 k+1}=1\end{cases}
$$

and

$$
g_{2}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right)= \begin{cases}0 & \text { if } x_{2 k+1}=2 \\ 1 & \text { if } x_{2 k+1}=0 \\ 1-\left(0 ; x_{2 k+2}, \ldots\right) & \text { if } x_{2 k+1}=1\end{cases}
$$

The Hölder exponent of the Schoenberg function

If $x=\left(0 ; x_{1}, \ldots\right)_{3}$, we have

$$
g\left(3^{2 k} x\right)= \begin{cases}g_{1}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right) & \text { if }\left(x_{1}, \ldots, x_{2 k}\right)_{3} \text { is even } \\ g_{2}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right) & \text { if }\left(x_{1}, \ldots, x_{2 k}\right)_{3} \text { is odd }\end{cases}
$$

where

$$
g_{1}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right)= \begin{cases}0 & \text { if } x_{2 k+1}=0 \\ 1 & \text { if } x_{2 k+1}=2 \\ \left(0 ; x_{2 k+2}, \ldots\right) & \text { if } x_{2 k+1}=1\end{cases}
$$

and

$$
g_{2}\left(\left(0 ; x_{2 k+1}, \ldots\right)_{3}\right)= \begin{cases}0 & \text { if } x_{2 k+1}=2 \\ 1 & \text { if } x_{2 k+1}=0 \\ 1-\left(0 ; x_{2 k+2}, \ldots\right) & \text { if } x_{2 k+1}=1\end{cases}
$$

This allows to show that the Schoenberg function is monoHölder with Hölder exponent $\log 2 /(2 \log 3)$.

The Schoenberg function (1938)

Representation of the Schoenberg function

The Schoenberg function (1938)

Representation of the Schoenberg function

The Schoenberg function (1938)

Representation of the Schoenberg function

Some generic functions

The generic Lebesgue functions

Let E_{p} is the set of real numbers whose one of the expansions in base $2 p-1$ is $x=\left(0 ; x_{1}, \ldots\right)_{2 p-1}$ with x_{j} even $\forall j$. In these settings, let

$$
L_{p}: E_{p} \rightarrow[0,1]^{2} \quad x \mapsto\binom{l_{1}(x)}{l_{2}(x)}
$$

where

$$
I_{1}\left(\left(0 ; x_{1}, \ldots\right)_{2 p-1}\right)=\left(0 ; \frac{x_{1}}{2}, \frac{x_{3}}{2}, \ldots, \frac{x_{2 j-1}}{2}, \ldots\right)_{p}
$$

and

$$
I_{2}\left(\left(0 ; x_{1}, \ldots\right)_{2 p-1}\right)=\left(0 ; \frac{x_{2}}{2}, \frac{x_{4}}{2}, \ldots, \frac{x_{2 j}}{2}, \ldots\right)_{p} .
$$

This function can be linearly extended to $[0,1]$.

Proposition

The restriction of L_{p} to E_{p} is an onto function.

The Hölder exponent of the generic Lebesgue function

Proposition

The restriction of L_{p} to E_{p} is an onto function.

The function L_{p} is a monofractal function with (finite) Hölder exponent $\log p /(2 \log 2 p-1)$.

Some generic functions

Representation of the generic Schoenberg function L_{3}

Some generic functions

Representation of the generic Schoenberg function L_{3}

Some generic functions

Representation of the generic Schoenberg function L_{3}

Some generic functions

The generic Schoenberg function

Let g_{p} be the 2 periodic even function which satisfies
$g_{p}(x)=\left\{\begin{array}{lll}k & \text { if } x \in\left[\frac{2 k}{2 p-1}, \frac{2 k+1}{2 p-1}\right] & (0 \leq k \leq p-1) \\ (2 p-1) x-k-1 & \text { if } x \in] \frac{2 k+1}{2 p-1}, \frac{2 k+2}{2 p-1}[& (0 \leq k<p-1)\end{array}\right.$
and set

$$
S_{p}:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{s_{1}(x)}{s_{2}(x)},
$$

where

$$
s_{1}(x)=\frac{1}{p} \sum_{k=0}^{\infty} \frac{g_{p}\left((2 p-1)^{2 k} x\right)}{p^{k}}
$$

and

$$
s_{2}(x)=\frac{1}{p} \sum_{k=0}^{\infty} \frac{g_{p}\left((2 p-1)^{2 k+1} x\right)}{p^{k}}
$$

The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of S_{p} to E_{p} is L_{p}. In particular, S_{p} is an onto function.

The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of S_{p} to E_{p} is L_{p}. In particular, S_{p} is an onto function.

The function S_{p} is a monoHölder function with Hölder exponent $\log p /(2 \log 2 p-1)$.

Some generic functions

Representation of the generic Schoenberg function S_{3}

Some generic functions

Representation of the generic Schoenberg function S_{3}

Some generic functions

Representation of the generic Schoenberg function S_{3}

Definition of D_{p} and F_{p}

Let E_{p}^{*} be the set of the real numbers whose proper expansion in basis $2 p-1$ is $\left(0 ; x_{1}, \ldots\right)_{2 p-1}$ with x_{j} even $\forall j$.

Definition of D_{p} and F_{p}

Let E_{p}^{*} be the set of the real numbers whose proper expansion in basis $2 p-1$ is $\left(0 ; x_{1}, \ldots\right)_{2 p-1}$ with x_{j} even $\forall j$.It is known that

$$
L(x)=F \circ D(x) \quad \forall x \in K^{*}=E_{2}^{*}
$$

Let

$$
D_{p}: E_{p} \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots\right)_{2 p-1} \mapsto\left(0 ; \frac{x_{1}}{2}, \ldots\right)_{p}
$$

Some generic functions

Definition of D_{p} and F_{p}

Let E_{p}^{*} be the set of the real numbers whose proper expansion in basis $2 p-1$ is $\left(0 ; x_{1}, \ldots\right)_{2 p-1}$ with x_{j} even $\forall j$.lt is known that

$$
L(x)=F \circ D(x) \quad \forall x \in K^{*}=E_{2}^{*}
$$

Let

$$
D_{p}: E_{p} \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots\right)_{2 p-1} \mapsto\left(0 ; \frac{x_{1}}{2}, \ldots\right)_{p}
$$

and

$$
F_{p}:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{f_{1}(x)}{f_{2}(x)}
$$

where $F_{p}(1)=(1,1)$ and, if $x=\left(0 ; x_{1}, \ldots\right)_{p}$ is the proper expansion of x

$$
f_{1}(x)=\left(0 ; x_{1}, x_{3}, \ldots, x_{2 j-1}, \ldots\right)_{p}
$$

and

$$
f_{2}(x)=\left(0 ; x_{2}, x_{4}, \ldots, x_{2 j}, \ldots\right)_{p}
$$

Some generic functions

Definition of D_{p} and F_{p}

Let E_{p}^{*} be the set of the real numbers whose proper expansion in basis $2 p-1$ is $\left(0 ; x_{1}, \ldots\right)_{2 p-1}$ with x_{j} even $\forall j$.It is known that

$$
L(x)=F \circ D(x) \quad \forall x \in K^{*}=E_{2}^{*}
$$

Let

$$
D_{p}: E_{p} \rightarrow[0,1] \quad\left(0 ; x_{1}, \ldots\right)_{2 p-1} \mapsto\left(0 ; \frac{x_{1}}{2}, \ldots\right)_{p}
$$

and

$$
F_{p}:[0,1] \rightarrow[0,1]^{2} \quad x \mapsto\binom{f_{1}(x)}{f_{2}(x)}
$$

where $F_{p}(1)=(1,1)$ and, if $x=\left(0 ; x_{1}, \ldots\right)_{p}$ is the proper expansion of x

$$
f_{1}(x)=\left(0 ; x_{1}, x_{3}, \ldots, x_{2 j-1}, \ldots\right)_{p}
$$

and

$$
f_{2}(x)=\left(0 ; x_{2}, x_{4}, \ldots, x_{2 j}, \ldots\right)_{p}
$$

One has

$$
L_{p}(x)=F_{p} \circ D_{p}(x) \quad \forall x \in E_{p}^{*}
$$

Definition of the spectrum of singularities

Definition

Let f be a locally bounded function; its isoHölder sets are the sets

$$
E_{H}=\{x: h(x)=H\}
$$

The spectrum of singularities of f is the function

$$
d: \mathbb{R}^{+} \cup\{\infty\} \rightarrow \mathbb{R}^{+} \cup\{-\infty\} \quad H \mapsto \operatorname{dim}_{H}\left(E_{H}\right)
$$

where dim_{H} denotes the Hausdorff dimension, using the standard convention $\operatorname{dim}_{H}(\emptyset)=-\infty$.

About the regularity of F_{p}

Proposition

The function F_{p} has the following expansion

$$
\begin{cases}f_{1}(x)=\sum_{n=0}^{\infty} a_{n}\left\{p^{n} x\right\}, & \text { where } a_{2 n}=p^{-l} \text { and } a_{2 n+1}=-p^{-l-1} \\ f_{2}(x)=\sum_{n=1}^{\infty} a_{n}\left\{p^{n} x\right\}, & \text { where } a_{2 n}=-p^{-l} \text { and } a_{2 n+1}=p^{-l-1}\end{cases}
$$

About the regularity of F_{p}

Proposition

The function F_{p} has the following expansion

$$
\begin{cases}f_{1}(x)=\sum_{n=0}^{\infty} a_{n}\left\{p^{n} x\right\}, & \text { where } a_{2 n}=p^{-l} \text { and } a_{2 n+1}=-p^{-l-1} \\ f_{2}(x)=\sum_{n=1}^{\infty} a_{n}\left\{p^{n} x\right\}, & \text { where } a_{2 n}=-p^{-l} \text { and } a_{2 n+1}=p^{-l-1}\end{cases}
$$

Corollary

The spectrum of singularities of the function F_{p} is given by

$$
d(H)=\left\{\begin{array}{ll}
2 H & \text { if } 0 \leq H \leq 1 / 2 \\
-\infty & \text { else }
\end{array} .\right.
$$

About the regularity of F_{p}

Proposition

The function F_{p} can be written as a p-adic Davenport series.

Corollary

The spectrum of singularities of the function F_{p} is given by

$$
d(H)=\left\{\begin{array}{ll}
2 H & \text { if } 0 \leq H \leq 1 / 2 \\
-\infty & \text { else }
\end{array} .\right.
$$

However, the restriction of F_{p} to E_{p}^{*} is a monofractal function with Hölder exponent 1/2.

About the regularity of F_{p}

Proposition

The function F_{p} can be written as a p-adic Davenport series.

Corollary

The spectrum of singularities of the function F_{p} is given by

$$
d(H)=\left\{\begin{array}{ll}
2 H & \text { if } 0 \leq H \leq 1 / 2 \\
-\infty & \text { else }
\end{array} .\right.
$$

However, the restriction of F_{p} to E_{p}^{*} is a monofractal function with Hölder exponent $1 / 2$.
It is easy to check that F_{p} is a p-adic monoHölder function with Hölder exponent 1/2.

