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Hölder spaces

Hölder-regularity

Definition

Let f : R→ R be a locally bounded function, x ∈ R and α > 0;
f ∈ Cα(x) if there exist R,C > 0 and a polynomial Px of degree
less than α such that

|h| < R ⇒ |f (x + h)− Px(h)| ≤ C |h|α. (∗)

A function f belongs to Cα if there exists C > 0 such that (∗)
holds for all x with R =∞.

Definition

The Hölder exponent of f at x is h(x) = sup{α : f ∈ Cα(x)}

Definition

If the Hölder exponent is unique ∀x , then f is called a monoHölder
function.
If the Hölder exponent takes only one finite value, f is called a
monofractal function.
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Some definitions A simple condition for monoHölderianity Application to some “historical functions”
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Hölder spaces

The p-adic distance

Notation

Let p ∈ N, p > 1. For a sequence of integers satisfying 0 ≤ xj < p,
we will use the following notation

(0; x1, . . . , xj , . . .)p

to denote one of the expansions of the real number

x =
∞∑

k=1

xk

pk
. (∗)

If there is no j such that xi = p − 1 ∀i ≥ j , (∗) is the proper
expansion of x in basis p.

Notation

x = (0; x1, . . . , xj , . . .)p

denotes one of the expansions in basis p of the real number x .

Definition

Let s = (0; s1, . . .)p, t = (0; t1, . . .)p be the proper expansions of
the real numbers s and t respectively and
δp(s, t) = inf{k : sk 6= tk} − 1. The p-adic distance between s and
t is

dp(s, t) = p−δp(s,t)

This distance is an ultrametric distance.
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Hölder spaces

p-adic Hölder spaces

Definition

Let α > 0. A locally bounded function f : [0, 1]→ R belongs to
Cα

p (x) if there exists C > 0 and a polynomial Px of degree less
than α such that

|f (x + h)− Px(h)| ≤ Cdp(x , x + h)α. (∗)

A function belongs to Cα
p if there exists C > 0 such that (∗) holds

for any x .
The p-adic Hölder exponent of f at x is

hp(x) = sup{α : f ∈ Cα
p (x)}.
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A simple condition for a function to belong to Cα
p

A sufficient condition to belong to Cα
p (x)

Proposition

Let f be a bounded function explicitly defined on D ⊂ [0, 1] by

f : D → R+x = (0; x1, . . .)p 7→ f (x) = (. . . , y0; y1, . . .)p′

and such that there exist ε and a function g such that

dp(s, t) < ε⇒
{

dp′(f (s), f (t)) < 1
δp′(f (s), f (t)) = g(s, δp(s, t))

.

If

α = lim inf
u→∞

g(x0, u)

u

log p′

log p
≤ 1, (∗)

f ∈ Cα
p (x0).

In particular, if (∗) does not depend on x0, f ∈ Cα
p .
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A simple condition for a function to belong to Cα
p

p-adic monoHölderianity and monoHölderianity

Let F be defined as follows

F : [0, 1]→ [0, 1]2 x 7→
(

f1(x)
f2(x)

)
where F (1) = (1, 1) and, if (0; x1, . . .)2 is the proper expansion of x ,

f1(x) = (0; x1, x3, . . . , x2j−1, . . .)2

and
f2(x) = (0; x2, x4, . . . , x2j , . . .)2.

A direct application of the previous proposition shows that

f1, f2 ∈ C
1/2
2 . Moreover, it is easy to check that F is a 2-adic

monoHölder function with 2-adic Hölder exponent 1/2.
However, F is not continuous.
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monoHölder function with 2-adic Hölder exponent 1/2.
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Some definitions A simple condition for monoHölderianity Application to some “historical functions”

A similar result for Cα?

Let us drop the p-adic distance

Notations

If (0; s1, . . .)p is the proper expansion of s in base p, let
θp(s) = inf{k : sk 6= 0} − 1 and, if t = (0; t1, . . .)p,

γp(s, t) = θp(|s − t|).

However, p−γp(s,t) does not define a distance.
To compute γp(s, t), we have to compute δp(s, t) and to check
that s and t are not of the form

s = (0; s1, . . . , sn−1, sn, 0, . . . , sm, . . .)p,

t = (0; s1, . . . , sn−1, sn − 1, p − 1, . . . , tm, . . .)p.

If it is the case, γp(s, t) > δp(s, t); otherwise we can suppose that
γp(s, t) = δp(s, t).
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A similar result for Cα?

Strongly MonoHölder functions

Definition

Let α ∈ (0, 1). A function f belongs to Iα(x0) if

∃C , R > 0, ∀r ≤ R, sup
x ,y∈B(x0,r)

|f (x)− f (y)| ≥ Crα;

f belongs to Iα if

∃C , R > 0, ∀r ≤ R, ∀x , sup
x ,y∈B(x ,r)

|f (x)− f (y)| ≥ Crα;

Definition

Let α ∈ (0, 1). A function is strongly monoHölder of exponent α
(f ∈ SMα) if f ∈ Cα ∩ Iα.
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A similar result for Cα?

A sufficient condition for monoHölderianity

Let f be a bounded function explicitly defined on D ⊂ [0, 1] by

f : D → R+x = (0; x1, . . .)p 7→ f (x) = (. . . , y0; y1, . . .)p′

and such that there exist η > 0 and a function g such that

γp(s, t) > η ⇒
{
γp′(f (s), f (t)) > 0
γp′(f (s), f (t)) = g(s, γp(s, t))

.

If

α = lim inf
u→∞

g(x0, u)

u

log p′

log p
< 1, (∗)

h(x0) = α and f ∈ Iα(x0). If α = 1, f ∈ Cα(x0).
In particular, if (*) does not depend on x0, f ∈ SMα. If α = 1,
f ∈ Cα.
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Remarks and notations

Preliminary remarks and notations

The triadic Cantor set K is the set of real numbers x that can be
written x = (0; x1, . . .)3, with xj ∈ {0, 2} ∀j .

We will denote by bxc the integer part of x ≥ 0 and by {x} the
fractional part of x ({x} = x − bxc).

Let f be a continuous function defined on a closed bounded subset
A ⊂ R. The linear extension of f is the continuous function g
defined on [inf A, sup A] by

g(x) = f (x) if x ∈ A,

g is linear otherwise.

if f ∈ Cα, with α ∈ (0, 1), its linear extension also belong to Cα.
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The Devil’s staircase

The Devil’s staircase

The Devil’s staircase is defined on K as follows,

D : K → [0, 1] (0; x1, . . . , xj , . . .)3 7→ (0;
x1

2
, . . . ,

xj

2
, . . .)2

and can be linearly extended on [0, 1]

The Devil’s staircase is a monofractal function with (finite) Hölder
exponent log 2/ log 3.
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The Devil’s staircase

Representation of the Devil’s staircase
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The Takagi functions (1903)

The Takagi functions

The Takagi functions are defined as follows,

f : x 7→
∞∑

k=0

(2mkx)

2nk
,

with m, n ∈ N, m ≥ n and where (x) = dist(x ,Z).

The Takagi functions are monoHölder functions with Hölder
exponent n/m.
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The Takagi functions (1903)

The Hölder exponent of the Takagi functions

With the notation

x̃j =

{
xj if xmk+1 = 0
1− xj if xmk+1 = 1

,

we have

f : (0; x1, . . .)2 7→
∞∑

k=0

(0; 0, . . . ,

nk+1︷ ︸︸ ︷
x̃mk+1, x̃mk+2, . . .)2.

This implies that, if n > m, f is a monoHölder function with
Hölder exponent n/m.

If n = m, one has to show that f is not differentiable.
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The Takagi functions (1903)

Examples of Takagi functions

m = n = 1
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The Takagi functions (1903)

Examples of Takagi functions

m = 2, n = 1
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Examples of Takagi functions

m = n = 2
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The Takagi functions (1903)

Examples of Takagi functions

m = 3, n = 2
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The Takagi functions (1903)

Examples of Takagi functions
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The Wunderlich function (1952)

The Wunderlich function

If x = (0; x1, . . .)3, let us set x0 = y0 = 0 and define the sequence
(yj)j∈N recursively,

yj =

{
yj−1 if xj = xj−1

1− yj−1 else
.

The Wunderlich function is defined as follows,

f : [0, 1]→ [0, 1] (0; x1, . . .)3 7→ (0; y1, . . .)2.

It is easy to check that this function is a monoHölder function with
Hölder exponent log 2/ log 3.
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The Wunderlich function (1952)

Representation of the Wunderlich function
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The Petr function (1920)

The Petr function

If x = (0; x1, . . .)10, let (bj)j denote the following sequence: b1 = 1
and

bj =

{
bj−1 if xj−1 is even or equal to 9
−bj−1 else

.

The sequences (yj)j and (zj)j are then defined as follows,

yj =

{
xj mod 2 if bj > 0
0 otherwise

, zj =

{
0 if bj > 0
xj mod 2 otherwise

,

and lead to the definition of the Petr function

f : [0, 1]→ [0, 1] x 7→ (0; y1, . . .)2 − (0; z1, . . .)2.

This function is a monoHölder function with Hölder exponent
log 2/ log 10.
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The Petr function (1920)

Representation of the Petr function
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The Peano function (1890)

The Peano function

Let K the application defined by Kj = 2− j and set K 0j = j . The
Peano function is defined as follows,

P : [0, 1]→ [0, 1] x 7→
(

p1(x)
p2(x)

)
,

where

p1((0; x1, . . .)3) = (0; x1,K
x2x3, . . . ,K

Pj−1
k=1 x2k x2j−1, . . .)3

and

p2((0; x1, . . .)3) = (0; K x1x2, . . . ,K
Pj−1

k=0 x2k+1x2j , . . .)3,

The Peano function is a monoHölder function with Hölder
exponent 1/2.
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The Peano function (1890)

Representation of the Peano function

first component
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The Peano function (1890)

Representation of the Peano function

second component
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The Peano function (1890)

Representation of the Peano function
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The Lebesgue function (1904)

The Lebesgue function

The Lebesgue function is defined on K as follows

L : K → [0, 1]2

(0; x1, x2, . . . , x2j−1, x2j , . . .)3 7→
(

(0; x1
2 ,

x3
2 , . . . ,

x2j−1

2 , . . .)2

(0; x2
2 ,

x4
2 , . . . ,

x2j

2 , . . .)2

)
and can be linearly extended to [0, 1]

The Lebesgue function is a monofractal function with (finite)
Hölder exponent log 2/(2 log 3).
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Some definitions A simple condition for monoHölderianity Application to some “historical functions”

The Lebesgue function (1904)

Representation of the Lebesgue function
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Representation of the Lebesgue function
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Representation of the Lebesgue function



Some definitions A simple condition for monoHölderianity Application to some “historical functions”

The Sierpiński function (1912)

The Sierpiński function

Let Θ and τ be 1-periodic functions defined on [0, 1] as follows

Θ(x) =

{
−1 if x ∈ [ 1

4 ,
3
4 )

1 otherwise
,

and

τ(x) =

{
1
8 + 4x if x ∈ [0, 1

4 ) ∪ [ 1
2 ,

3
4 )

1
8 − 4x otherwise

.

The Sierpiński function is explicitly defined by

f (x) =
1

2

∞∑
k=0

(−1)k

2k

k∏
j=0

Θ(τ j(x)),

where we have set τ0(x) = x .
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The Sierpiński function (1912)

The Hölder exponent of the Sierpiński function

Indeed, if x = (0; x1, . . .)2,

Θ(x) =


−1 if

{
x1 = 0
x2 = 1

or

{
x1 = 1
x2 = 0

1 if

{
x1 = 0
x2 = 0

or

{
x1 = 1
x2 = 1

,

and

τ(x) =

{
1
23 + (0; x3, . . .)2 if x2 = 0
1
23 − (0; x3, . . .)2 if x2 = 1

.

If we set p(x , k) =
∏k

j=0 Θ(τ j(x)),

f (x) =
1

2

∞∑
k=0

(−1)k p(x , k)

2k

Finally, one can show that f is a monoHölder function with Hölder
exponent 1/2.
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The Sierpiński function (1912)

Representation of the Sierpiński function
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The Schoenberg function (1938)

The Schoenberg function

Let g be the 2-periodic even function which satisfies

g(t) =


0 if t ∈ [0, 1

3 ]
3t − 1 if t ∈ [ 1

3 ,
2
3 ]

1 if t ∈ [ 2
3 , 1]

.

The Schoenberg function is defined by

S : [0, 1]→ [0, 1]2 x 7→
(

s1(x)
s2(x)

)
,

where

s1(x) =
1

2

∞∑
k=0

g(32kx)

2k

and

s2(x) =
1

2

∞∑
k=0

g(32k+1x)

2k
.
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The Schoenberg function (1938)

The Hölder exponent of the Schoenberg function

If x = (0; x1, . . .)3, we have

g(32kx) =

{
g1((0; x2k+1, . . .)3) if (x1, . . . , x2k)3 is even
g2((0; x2k+1, . . .)3) if (x1, . . . , x2k)3 is odd

where

g1((0; x2k+1, . . .)3) =


0 if x2k+1 = 0
1 if x2k+1 = 2
(0; x2k+2, . . .) if x2k+1 = 1

and

g2((0; x2k+1, . . .)3) =


0 if x2k+1 = 2
1 if x2k+1 = 0
1− (0; x2k+2, . . .) if x2k+1 = 1

,

This allows to show that the Schoenberg function is monoHölder
with Hölder exponent log 2/(2 log 3).
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The Schoenberg function (1938)

Representation of the Schoenberg function

first component
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The Schoenberg function (1938)

Representation of the Schoenberg function

second component
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The Schoenberg function (1938)

Representation of the Schoenberg function
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Some generic functions

The generic Lebesgue functions

Let Ep is the set of real numbers whose one of the expansions in
base 2p − 1 is x = (0; x1, . . .)2p−1 with xj even ∀j . In these
settings, let

Lp : Ep → [0, 1]2 x 7→
(

l1(x)
l2(x)

)
,

where

l1((0; x1, . . .)2p−1) = (0;
x1

2
,
x3

2
, . . . ,

x2j−1

2
, . . .)p,

and
l2((0; x1, . . .)2p−1) = (0;

x2

2
,
x4

2
, . . . ,

x2j

2
, . . .)p.

This function can be linearly extended to [0, 1].
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Some generic functions

The Hölder exponent of the generic Lebesgue function

Proposition

The restriction of Lp to Ep is an onto function.

The function Lp is a monofractal function with (finite) Hölder
exponent log p/(2 log 2p − 1).
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The Hölder exponent of the generic Lebesgue function

Proposition

The restriction of Lp to Ep is an onto function.

The function Lp is a monofractal function with (finite) Hölder
exponent log p/(2 log 2p − 1).
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Some generic functions

Representation of the generic Schoenberg function L3

first component



Some definitions A simple condition for monoHölderianity Application to some “historical functions”

Some generic functions

Representation of the generic Schoenberg function L3

second component
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Some definitions A simple condition for monoHölderianity Application to some “historical functions”

Some generic functions

The generic Schoenberg function

Let gp be the 2 periodic even function which satisfies

gp(x) =

{
k if x ∈ [ 2k

2p−1 ,
2k+1
2p−1 ] (0 ≤ k ≤ p − 1)

(2p − 1)x − k − 1 if x ∈] 2k+1
2p−1 ,

2k+2
2p−1 [ (0 ≤ k < p − 1)

and set

Sp : [0, 1]→ [0, 1]2 x 7→
(

s1(x)
s2(x)

)
,

where

s1(x) =
1

p

∞∑
k=0

gp((2p − 1)2kx)

pk

and

s2(x) =
1

p

∞∑
k=0

gp((2p − 1)2k+1x)

pk
.
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Some generic functions

The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of Sp to Ep is Lp. In particular, Sp is an onto
function.

The function Sp is a monoHölder function with Hölder exponent
log p/(2 log 2p − 1).
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The Hölder exponent of the generic Schoenberg functions

Proposition

The restriction of Sp to Ep is Lp. In particular, Sp is an onto
function.

The function Sp is a monoHölder function with Hölder exponent
log p/(2 log 2p − 1).
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Some generic functions

Definition of Dp and Fp

Let E ∗p be the set of the real numbers whose proper expansion in
basis 2p − 1 is (0; x1, . . .)2p−1 with xj even ∀j .

It is known that

L(x) = F ◦ D(x) ∀x ∈ K ∗ = E ∗2 .

Let
Dp : Ep → [0, 1] (0; x1, . . .)2p−1 7→ (0;

x1

2
, . . .)p

and

Fp : [0, 1]→ [0, 1]2 x 7→
(

f1(x)
f2(x)

)
,

where Fp(1) = (1, 1) and, if x = (0; x1, . . .)p is the proper expansion of x

f1(x) = (0; x1, x3, . . . , x2j−1, . . .)p

and
f2(x) = (0; x2, x4, . . . , x2j , . . .)p

One has
Lp(x) = Fp ◦ Dp(x) ∀x ∈ E ∗p



Some definitions A simple condition for monoHölderianity Application to some “historical functions”

Some generic functions

Definition of Dp and Fp

Let E ∗p be the set of the real numbers whose proper expansion in
basis 2p − 1 is (0; x1, . . .)2p−1 with xj even ∀j .It is known that

L(x) = F ◦ D(x) ∀x ∈ K ∗ = E ∗2 .

Let
Dp : Ep → [0, 1] (0; x1, . . .)2p−1 7→ (0;

x1

2
, . . .)p

and

Fp : [0, 1]→ [0, 1]2 x 7→
(

f1(x)
f2(x)

)
,

where Fp(1) = (1, 1) and, if x = (0; x1, . . .)p is the proper expansion of x

f1(x) = (0; x1, x3, . . . , x2j−1, . . .)p

and
f2(x) = (0; x2, x4, . . . , x2j , . . .)p

One has
Lp(x) = Fp ◦ Dp(x) ∀x ∈ E ∗p
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Some generic functions

Definition of the spectrum of singularities

Definition

Let f be a locally bounded function; its isoHölder sets are the sets

EH = {x : h(x) = H}.

The spectrum of singularities of f is the function

d : R+ ∪ {∞} → R+ ∪ {−∞} H 7→ dimH(EH),

where dimH denotes the Hausdorff dimension, using the standard
convention dimH(∅) = −∞.
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Some generic functions

About the regularity of Fp

Proposition

The function Fp has the following expansion
f1(x) =

∞∑
n=0

an{pnx}, where a2n = p−l and a2n+1 = −p−l−1

f2(x) =
∞∑

n=1

an{pnx}, where a2n = −p−l and a2n+1 = p−l−1

.

Corollary

The spectrum of singularities of the function Fp is given by

d(H) =

{
2H if 0 ≤ H ≤ 1/2
−∞ else

.

However, the restriction of Fp to E ∗p is a monofractal function with
Hölder exponent 1/2.
It is easy to check that Fp is a p-adic monoHölder function with
Hölder exponent 1/2.
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Some definitions A simple condition for monoHölderianity Application to some “historical functions”

Some generic functions

About the regularity of Fp

Proposition

The function Fp can be written as a p-adic Davenport series.

Corollary

The spectrum of singularities of the function Fp is given by

d(H) =

{
2H if 0 ≤ H ≤ 1/2
−∞ else

.

However, the restriction of Fp to E ∗p is a monofractal function with
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