

Perception of melodic accuracy in occasional singers: role of pitch fluctuations?

Pauline Larrouy-Maestri & Peter Q Pfordresher

April, 26th
2014

Perception of pitch accuracy

2

What we know

- **Complexity of the signal**
(e.g. Larrouy-Maestri et al., 2014; Sundberg, 2013)
- **Parameters contributing to the beauty of the voice**
(Ekholm et al., 1998; Garnier et al., 2007; Rothman et al., 1990)
- **Effect of these parameters on pitch perception**
(e.g. Hutchins et al., 2012; Russo & Thompson, 2005; van Besouw et al., 2008; Vurma et al., 2010; Warrier & Zatorre, 2002)
- **Example of Western operatic voices**
(Larrouy-Maestri et al., in press)

What we know

- Not « operatic » but pitch fluctuations
- Evaluation of melodic accuracy

(Larrouy-Maestri et al., 2013)

	Non experts	Experts
Model	$F(3,165) = 104.44;$ $p < .01$	$F(3,165) = 231.51;$ $p < .01$
% variance	66%	81%
Criteria	Interval deviation	Interval deviation Tonality modulations

What we don't know

- Which pitch fluctuations ?
- Depends on the quality of the singer ?
- Effect on the perception of pitch accuracy ?

What we are doing to know

- Which pitch fluctuations ?
Model describing pitch fluctuations
- Depends on the quality of the singer ?
Comparison accurate/inaccurate singers
- Effect on the perception of pitch accuracy ?
Evaluation of manipulated melodic sequences

Description of pitch fluctuations

Descriptive model of pitch fluctuation

7

- Modification of the temporal adaptation model of Large, Fink & Kelso (2002)
- Designed to get relevant summary statistics for pitch fluctuations

Pitch at time t

Comes from “start” fluctuations
and “end” fluctuations
influencing an **asymptote**

$$Pitch_t = Y_{s_t} + Y_{e_t} + asym$$

Descriptive model of pitch fluctuation

8

$$Pitch_t = Y_{s_t} + Y_{e_t} + asym$$
$$Y_{s_t} = [A_s * \exp(-b_s t) * \cos(2\pi f_s t + \theta_s)]$$

Beginning perturbation

Approach to asymptote

Oscillation around target (overshoot)

Approach is down (= 0)
Or up (= pi)

Similar to starting fluctuations, except
-Time values mirror reversed
-New and adjusted parameters

Descriptive model of pitch fluctuation

9

→ **Difference between accurate/inaccurate singers ?**

Comparison of singers

□ Database

- Pfordresher & Mantell (2014)
- 12 “inaccurate” and 17 “accurate” singers
- Imitation of accurate singers
- Melodies of 4 notes
- 1902 tones to analyse

□ VAF not different depending on the quality of the singer ($p = .637$)

- Mean $VAF_{\text{accurate}} = .62$
- Mean $VAF_{\text{inaccurate}} = .61$

Comparison of singers

12

→ Influence of beginning/end on pitch perception ?

Influence of pitch fluctuations

Influence of pitch fluctuations

14

□ Creation of melodies (According to Pfordresher & Mantell, 2014)

□ Conditions

Level	Start perturb.	End perturb.		
		None	Up	Down
Normal	None	Task 1&2	Task 1&2	Task 1&2
	Up	Task 1&2	Task 2	Task 2
	Down	Task 1&2	Task 2	Task 2
	None	Task 1	Task 1	Task 1
	Up	Task 1	N/A	N/A
	Down	Task 1	N/A	N/A
+50 cents	None	Task 1	Task 1	Task 1
	Up	Task 1	N/A	N/A
	Down	Task 1	N/A	N/A
-50 cents	None	Task 1	Task 1	Task 1
	Up	Task 1	N/A	N/A
	Down	Task 1	N/A	N/A

□ Evaluation task by non musicians

Melodies - Task 1

15

+71 Shift +50

+71

-68

+71 Shift -50

PITCH

0

TIME

+115

-86

□ Participants

- 12 (5 women)
- Age from 19 to 22 ($M = 19.58$, $ET = 1.31$)
- No absolute pitch, low formal musical training

□ Pairwise comparison

- All the sequences compared
- No reference

□ Ranking from “most out of tune”

to “most in tune”

Results - Task 1

17

No interaction
*Middle*Start and Middle*End*

Melodies - Task 2

18

PITCH

TIME

Trials varying start and end perturbation

Independent effects of start and end

No apparent effect of direction (- vs +)

Results - Task 2

20

Focus on perturbation types as “features”

Summary - Tasks 1&2

□ Task 1

- Listeners respond to the perturbations of pitch
- Center value yields strongest effect (low score if the middle is up)
- Main effect of start/end perturbation (low score if up)

□ Task 2

- Independent effects of start and end
- No apparent effect of direction
- One perturbation less perceived than two
- Ending perturbations matter more

□ Exp 2

- Variation of the musical context
- Same procedure as for the first experiment (tasks 1 & 2)
- Material created according to Pfordresher & Mantell (2014)

□ Exp 3

Level	Start perturb.	None	End perturb.	
			Up	Down
Normal	None	Exp 1	Exp 1	Exp 1
	Up	Exp 1	Exp 1	Exp 1
	Down	Exp 1	Exp 1	Exp 1
+50 cents	None	Exp 1&3	Exp 1&3	Exp 1&3
	Up	Exp 3	Exp 3	Exp 3
	Down	Exp 3	Exp 3	Exp 3
-50 cents	None	Exp 1&3	Exp 1&3	Exp 1&3
	Up	Exp 3	Exp 3	Exp 3
	Down	Exp 3	Exp 3	Exp 3

□ Exp 4

- Magnitude of the fluctuations on perception

(Current) Conclusions

- **Acoustical description of vocal tones**
 - Modeling voices of occasional singers
 - Fluctuations of pitch at beginning and ends predict singing quality
 - (Note that most analyses of pitch accuracy throw out)
- **Perceivers' judgment of pitch accuracy influenced by these fluctuations**
 - Center value still yields strong effect but does not explain everything
 - Effect of ending perturbation
 - Beginning perturbation sounds probably more “natural”
 - Interpretation of ending fluctuations as a failure of motor planning in the singer

Perception of melodic accuracy in occasional singers

grant BCS-1259694

April, 26th
2014

Perception of melodic accuracy in occasional singers

Thank you!

April, 26th
2014

- Ekholm, E., Papagiannis, G. C., & Chagnon, F. P. (1998). Relating objective measurements to expert evaluation of voice quality in western classical singing: Critical perceptual parameters. *Journal of Voice*, 12, 182–196.
- Garnier, M., Henrich, N., Castellengo, M., Sotiropoulos, D., & Dubois, D. (2007). Characterisation of voice quality in Western lyrical singing: From teachers' judgements to acoustic descriptions. *Journal of Interdisciplinary Music Studies*, 1, 62–91.
- Hutchins, S., Roquet, C., & Peretz, I. (2012). The Vocal Generosity Effect: How Bad Can Your Singing Be? *Music Perception*, 30(2), 147-159.
- Large, E. W., Fink, P., & Kelso, J. A. S. (2002). Tracking simple and complex sequences. *Psychological Research*, 66, 3-17.
- Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013) The evaluation of singing voice accuracy: a comparison between subjective and objective methods. *Journal of Voice*. 27(2), 259.e251-e255.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (in press). The evaluation of vocal accuracy: The case of operatic singing voices. *Music perception*.

- Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: Evidence for an inverse modeling account of poor-pitch singing.
- Rothman, H. B., Rullman, J. F., & Arroyo, A. A. (1990). Inter-and intrasubject changes in vibrato: Perceptual and acoustic aspects. *Journal of Voice*, 4, 309-316.
- Russo, F. A., & Thompson, W. F. (2005). An interval size illusion: The influence of timbre on the perceived size of melodic intervals. *Perception & Psychophysics*, 67(4), 559-568.
- Sundberg, J. (2013). Perception of Singing. In D. Deutsch (Ed.), *The psychology of music* (pp. 69-105). San Diego, CA: Academic Press.
- van Besouw, R. M. V., Brereton, J. S., & Howard, D. M. (2008). Range of tuning for tones with and without vibrato. *Music Perception*, 26(2), 145-155.
- Warrier, C. M., & Zatorre, R. J. (2002). Influence of tonal context and timbral variation on perception of pitch. *Perception & Psychophysics*, 64(2), 198-207.