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INTRODUCTION

L'hypothése des fluides incompressibles est fréquemment
utilisée dans 1'étude des écoulements. Cependant, une telle
hypothése ne wva pas sans poser des problémes. Notamment, la
pression perd son sens thermodynamigque., Elle disparaftidu
bilan énergétique, base des principes variationnels. Quel
sens faut-il lui attribuer? On verra qu'elle réapparailt
lorsqu'on désire faire rentrer 1l'incompressibilité dans les
conditions naturelles du principe. Les chapitres 2 a 7 étu~
dient ainsi les fluides parfaits et les écoulements de STOKES.

La plupart de ces écoulements sont justifiables d'une
analyse duale, dans le sens bien précis que l'on donne a
cette expression en Statigue. Ce fait a un irtér8t considé-
rable puisqu'il rend possible de mesurer la convergence de
la solution. T -

Au chapitre 7 , on traite lés écoulements plans de flui- |
de parfait. Un exemple d'analyse duale d'un écoulement connu {‘
théorigquement permet une confrontation intéressante. Le cha- -
pitre gqui suit donne les bases d'une analyse duale des pro=-
blémes de la lubrification stationnaire. Enfin,le chapitre 9
étudie une analogie entre les écoulements de STOKES plans et:
la théorie des plaques de KIRCHHOFF, Un exemple est traité,
illustrant 1l'application d'un élément fini de plagues a un
écoulement & frontiére crénelée, )

En appendice, on trouvera une note sur la construction ;
d'un écoulement de fluide parfait, permettant une étude duale;
par le potentiel des vitesses et la fonetion de courant. ‘
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CHAPITRE 1 - DESCRIPTIONS LAGRANGIENNE ET EULERIENNE
1l,1-Définitions
Dans la description de LAGRANGE une particule est
déterminée par le quadruplet (al, 0 3,1:) , noté (a,t).
Les aisont des paramétres fixant la particule,par exemple
ses coordonnées en t=0.

Dans la description A'EULER, on détermine une particule
au temps t par le quadruplet <X19X2’X3’t) , noté (x,t).
Les x; sont les coordonnées de la particule au temps *t.
Nous noterons: :
.-.:-—/Q——F D.:-/—D-—-
17 9% i 22y
D& = dérivée par rapport au temps dans la descrip-
tion de LAGRANGE
‘?tz idem dans la description A'EULER

"l.2-Transformation
On a: xizxi{a,t)

t=t
La matrice jacobienne de la transformation est:
' D:X:ecec DX
D(x,t) _ 1
D(a,t _ :
: DyXpe e D% DXy
O."o.coo-
g D
[

Posant g = %%%% et J =

dtm 3
O
| ' — . _4¢ =7
Si on éerit 9,=2 | D, = D(x t% _
* TR Um0 0 OB By j:l[m]ij‘aj’g‘i‘jaj (2.2)
D, = ‘

D(a,t) TR Y
Transformation inverse
. Dlal. o e O IB al /B_tal ‘
D(a,t) _ 1
D(x,t) : |
/alén""‘?nan atan
0O ¢oe.. O 1
[vﬂ' i =
_ - tﬁka (2.4)
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4. 2~

Le déterminant de la matrice jacobienne in verse est 1/§

On a:|D.= %"Mf% b, T D.‘
N j:l\.’ﬁ(x,t)]ij J 313 J (2.5)
0= jil[%%ghj Dy = Dy 48, Dy (2.6)
Rapprochant (2.3) de(2.6) , on obtient:
u;D; =2, a,D; g o a

- . . ~i D )u-:
4#;9; :JUCJ,;}“ Dj - H"’J i DJ , de

ou Encoregutdﬁaht(ZJ)
-1
g = Y130 48
Dans ce qui suit, noussparlerons de coordonnées matériel-
les pour la description de LAGRANGE, spatiales pour celle

d *BULER.

l.3-Correspondance des intégrales

Soit un ensemblé de particules occupant en t=0 un en-
semble K de points repérés par les coordonnées a;. Au temps
t, elles occupent un volume R, et sont repéréess par leurs
coordonnées X

K (t=0) R (t)

Alors, j; f(x) ar = /% f(x(a)] jIlax

J dK est 1'élément de volume spatial, dK étant 1'é1ément de
volume "matériel", La masse s'écrit: / I>dR -La conservation
de la masse donne:? R

D

t/ PdR =0 f‘ﬁ dT. DﬂUerRJ:c

R tl

[ fafdﬂ] zlz jR(t)de "/kr0C1K= L({fld-ro ) dK=C

pour t=0, on a: F}J}:ro ,d'ol C=0 et K(rlJl -ro)dI{:O

ou.

Ceci est vrai pour tout volume, d'ol ffdzlg



A3~
Par conséquent, J ne peut s'annuler. Si les coordonnées
X sont contintiment différentiables de 2, et t, J ne peut
changekcdessigne sans s'annuler. Donc J est positif, car
il vaut 1 en %=0. |

1. 4-Expressi ons de la conservation de la masse; dérivées

de intégrales,

l.4.1- La masse des particules eeontenuesvdans R se conserve:
D dR= D J dK =0
thr t./Rf

J‘ Dt((rJ) Ak = 0, quel que soit K.
k \

o

Done Dﬂ(rJ) =0 (4.1)
Calculons DtJ : D ’?J JJ
mlnL ;] +DyDyx; = J(71;J Dpx;=
_JJIJDJUI-— e
Done DtJ = J?iui (4.2)

Des lors, Dt(fJ) = J(Dﬂ4ﬂgui)-9 dtous
:th +fbiui =0 ' (4.3)
Notant que Dtrz‘Qtr + ui)if , (4.3) devient: ' '

QtF+’ai(fui) -0 [ (4.4)

l.4.2-Notons encore que 1l'incompressibilité s'exprime de
la facon suivante:

th dR:D_tf Jak =0, ¥ X,
R K

dtol: D.J =0, | (4.5)

ou JD;u; =0, soit 0 u;=0 (4.6)

Les formules ci -dessus sont fréquemment emplomées.

l.4.3-Calculons:

D,Cf fdR = Dy [deK f(JDi"+fDJ) dK =
I - S

ng(Df,,+fau)dK_f(Df+fDu)d_R

=/R(3tf +3i(fui)) dR




.

= R2tde+/aniui dS‘

(4.7)

On a donc aussi @ : .'J%[Q)f+{bﬂu) dR

gy i
/z{f’) gfo[R ’rJ'fmw‘ clSj

y2
(4.8)

T.5-Variations

Soit une fonction f. Considérons une série de paramétres
5 définissant 1'évolution. L'évolution naturelle a lieu
pour e; = 0 . La variation laggangienne At ge f(a,t, )

i

est ) .

£ ::{ 'DMJ gi .

La variation euléfienne f de f(x,t, ) est:
£ - 9f(x,t,€) .

DE . .

or, Al 2poky) | Aot o

0E; "o &; /aotj DE;

Donc: | A f=5F + Y ES

(5.1%

On voit que les variation se calculent de facgon formelle-
ment identifue aux dérivées par rapport au temps. Il va

de soi que les variations lagrangiennes commutent avee

les dérivées lagrangiennes qui en sont indépendantes. Deis
méme pour les variations et dérivées eulériennes. Mais ce-
la cesse d'8tre vrai gntre variabions et dérivées des deux
descriptions.

Notons encore que

Ag = J@iAxi , résultat a mettre en parallé-
le avec (4.2) . |
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CHAPITRE 2 - PRINCIPES VARIATIONNELS POUR IL'ECOULEMENT
ISENTROPIQUE D'UN FLUIDE INCOMPRESSIBILE.
Introduction

Il existe des principes variationnels lagrangiens et
eulériens. Les principes lagrangiens dépendenf en général
du principe de HAMITTION, Mais souvenbj,on préfére une des-
cription eulérienne, qui se place en un point fixe et qui
donne une forme lindaire 3 la conservation de la masse.
Les principes eulériens les plus connus sont ceux de BA-
TEMAN[ 4 | . Ia dérivation d'un principe eulérien plus gé&
néral, englobant ceux de BATEMAN, & partir du principe de
HAMITTON, a été faite par FRAEIJS de»VEUBEKE.[:SJ, Dans
1'un et l'autre cas, la pression est définte a partir de
lt'énergie interne et de la masse volumique.Pdur un flui-
de incompressible, ces deux gmantités sont constantes et
la presgion perd son sens thermodynamigques,

' Dans ce chapitre, on verra ¢ue la pression apparaiﬁ
comme dérivée d'un multiplicateur lagrangien responsable
de l'incompressibilité, Le passage & une formulation eu-
lérienne indroduit, comme pour les fluides compressibles,
un vecteur a circulatioh constante. On obtient alors wn
principe général, d'ou découlent deux principes sembla-
bles a ceux énoncés par BATEMAN,

De 1a, on établit facilement un principe valable pour
un écoulement irrotationnel, exprimé uniquement en termes
du potentiel des vitesses. Dans ce dernier cas, on montre
clairement comment imposer des conditions aux limites.

2,1~ Formulation du principe de HAMILTON
En admettant & priori 1la conservation de la masse:
[’JJ =

et l'incompressibilité:
J= constante,
on a pour l'énergie interne:

av= %, ap =0, a'od U= e

On peut prendre U= g. On ne peut donc plus définir 1la

. 2/20T
Pression par p = <=
(%
plus de sens physique.

)S s, 1! énergie interne n'ayant

L'énergie cinétique est:
Y = |4
jﬁr%pid&.fprh%_ﬂﬁ
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Le travail virtuel des forces de pesanteur s'écrit:

kaij.Acz,- ek ﬁA/k Jpg.xi Ak

vu la conservation de la masse.

Sur la surface, on distingue: S, ou la pression est
imposée, et 82, ou les déplacements sont imposées. Les
valeurs imposées seront surlignées.

On a donc le principe:

‘ ! s by ) » ‘ :
A /20“/(qu‘§" + ij_; ’Ll)dk "‘L o%:!- ,fxm,'[_\ll ds = o,
/4‘4 0 A i

Les déplacements étant 1iés, on ne peut déduire directe-
ment les équations d'Buler.
2, 2=-Elargissement du principe

Libérons-nous des deux conditions essentielles par
les potentiels de dislocation:

/ / 2 (f’J)QIK‘ | ,";qui libéﬁ:‘a&sf (conservation

-~ de la masse)
" j;;qui libere:dé. 11income=-
_ ' pressibilité,
'On peut d'emblée intégrér par parties, ce qui donne, en

supposant & priori A} , A , dp =0 en t. et £,

1

On obtient ainsi unuprincipe lagrangien général:

A/M/J __‘.‘.‘,/oja;, / r\fgt/u)d/\’ /all/ft/»lla,dS..o (2.1)

Les variations vont nous permettre de saisir la signifi-
cation des multiplicateurs:

A/) ¢ J[ i‘ﬁi’“ 1?-¢i __])t,EI:O (2 2)

A%'—:} fﬂu,/ J/),U, Ay, +Ji>3 Ax; fl—r"—"’ Tfjl. l)%)\_;DA_/“]AJ}CM-

/ /‘f mba; 4§ = ©.

Vu (2.2) et puisque AJ = J9; A il vient:

?
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(2.3)
(2.4)

[J/u.a) + #j -J@ (D,,f—/-) o. A R
t/x Aue 5

Les équations (2.3) et (2.4) montrent clairement que

[ De p = v

Aingi donc, la pression apparait comme la dérivée tempo-

relle d'un multlpllcateur de lLagrange lle a l‘lmcompres«
sibilité,

2,3~ Passage 34 un principe eulérien
Par la formule

4 Ay 4
e fone o] e [ pranis
on peut transformer (2.1) en:

S (P oy o B ) as
/o"/%/h.ﬂa:a’_? f/}alij/ L Aoy S | (3.1)

A4 S5t 2
L étawt Sa oclewgl’ e 4itenals oo Asbime .
La variation des vitegnes, en tant que dérivées de dépla-

cements, ne peut: plus exister dans un principe eulérien.
L]

On est donc amené & libérer u; de x; par unsnouveaw
potentiel de dislocation :

% %/f, (i -#i) | (3.2)

Examinons alors les variations:

Ju; 5 /9,u, 9, \+9/u /;70 /}MR . (3.3)
o\ T -j/ +-9,_(/u,,)=. o - R. - (3.4)
fpG Pjuizo  puR (3.5)
S, = Ax, - x Azx/ s ce qui donne:

Jio# W(Aa‘ o2, 05) R = o,
d'ot :%‘(rij fJ% E>mj =0 . (3.6)

Comme l'a fait remarquer FRAEIJS de VEUBEKE [8] s L'équa~
tion (3.6), multipliée par dx;

Dt [FJ‘}/i) D’i{ -+ rJ \})' o‘fi‘.’{ - O

, devient:

ou D»t (rJ+id1;) - © et comme, par (3.4), on a D)é[f;)):cj
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- (3.7)
La circulation du vecteur %’sur un segment quelconque se
conserve quand le segment est emporté par les flots. Cela
signifie que 7?daq ne dépend que des coordonnées matériel-
les. On peut donc écrire:

. ',‘ = . in‘ . & = A da 5

D,t E\}/-d"" ) =0 -

Mettons cette forme de PFaff sous une forme canonigque:
Ayday, = dl’(a) 4 Ala)etBla)
Dans la description eulérienne,cela se traduit:
‘%/i' dﬂ,/‘ = d//'f" D(‘O’:ﬁ o L€
@t,jr:.c‘)/* DA,/ = e .g,/{.:.d).
(3.8)
et fo= P re s (3.9)

' Restituons (3.9) dans le principe. Par (3.8),

PrVie pRilip e pad Ap < poypets - g,
La variable 4, dispardlt ainsirdezllintégrale de volume,
On détruit alors les dernidres variations lagrangiennes
en imposant @¥/xi/2 sur 5., a priori.
Il reste alors:

SJ e (P2 v pms-ped prithp2ed pudig <o
- ﬁa&,‘@,/'é +€t/" + .,u;‘gl/’u )d/? = o,

meﬁ; J ont le méme r6le dans le principe.
On peut donec ne considérer que la somme

g2/

Ce qui donne: 6F=eo , avec

On notera que

(3,11)

/b’ ; i’ . s . ) Nl . .
= U g Py g g p P G v s

(3,12)

Les équations d' Euler de ce principe sont:

J‘f |:': ‘/ﬁf -'rj;ac/ - 2‘70' /Q,‘D;}O . 0(9/(./3 _ o(c,,'a,'/e = o, (E195



i

J}Mf, 9,,4—/»"91'(/0“4‘ =9°
J/i[i oy [fo(/ ~ & gDa(u;/zo
f}kfﬁ O wi = o

fo 04 + i = o

(51)

(E2)
tion
(E3)
(E5)
(E6)
(E4)

donne la conservation de 1l'énergie,

205~
(E2)
(E3)
(E4)
(E5)
(E6)

monptre que clest (/WU-Q]”) qui répond & une descrip-

de CLEBSCH lorsque le fluide est incompressible.
donne la conservation de la masse,

donne l'incompressibilité,

exprime que~2~= 0

et (ES5) donnent o =0

Conditions naturelles de surface

Ici,

On utilise la formule

74

Ry b
l &y /ﬁ Y pdh - [Zy— 4 /M;az,-@m-f% Vs ]/£

cela donne:

Sp B Jphici- ponidi= o gl

f(f g /wa:féq' mf/mra‘-’;: N

(fﬁ B /»L.o//h‘fq_,“ ._./,gn(&if:;f}:@ Jue §,

Nous verrons plus loin, dans un cas simple, ce qu'il faut

fair

e pour obtenir mieux,

(81)
(52)
(53)
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2. 4-5implifications- Les principes de BATEMAN,
2. 4.1- 51 1l'on suppose la condition (El) satisfaite & _

riori, F,devient'
[ [ (9 g+ 4120 ) R
/’4 R
soit sous forme concise:?
v ) 3
by = [ ot paR
*. R
On retrouve le premier principe de BATEMAN [4] . Rappelons

-1 - f(p)

ce qui perd tout son sens pour un fluide incompressible,

gu'il écrivait

2ede2- Lorsque (E2) est vérifide a pflorl il reste:

- /]l'4 DUJR{fglfu ‘f ‘b(f /3 'VHO(D/K ?E)(a’f*ﬁf” i)}df

ce qui, pour le régime stationnaire, peut se mettre sous
la forme concise'

ol?f g a; - u‘;‘ 3:;”(

ol 1lton retrouve le second principe de BATEMAN, compte te-
nu de la nullité de l'énergie interne.

2.5=Cas particulier: écoulement irrotationnel
Partons du second principe de BATEMAN. Admettons &

priori quefﬂ: cte. Alors,

M»’%(%) ; 9‘)040(3,/31‘}*- a;(&f-}%)-}'-o{:)yg

f /&f=‘aii’+‘lgﬁﬁ‘
Cette transformation est permise, car pour =cte, conser-
vation de la masse et incompressibilité se confondent; or
ce sont les responsabilités respectives de ¢ et/w .
On écrit & priori l'absence de rotabiom: o =0

(not & = ?'Lac{ol/l ?wd/ﬂ )
kg
//h"”f N,x fﬁ’ p li’ §}d/{ o .

E n'étant pas varié, le terme de pesanteur devient inutile.

D'olu:

ntégrons par parties la derlvee temporelle:

it <[ | ppen] o O”Jf?‘i"’““*f ] gap 4%




P -
l 82 ou ,/h,"!j" = /er.
Puisque 5@ =0 senm tl et t, le terme aux limites tombm

Vu que est constant, 9p = O.
q f con nt, if

I1 reste: ¥ 53%

2 —_— N A ;= O

‘SJ o{f{f J)};hqid3~jr) 5 dﬁj
ka 5 R

Pour un écoulement stationnaire, l'intégration sur le temps

devient inutile, d'olu la fonctionnelle:

" — SNRCK N
Jo = DAy % CJS - } RSN A olR
1 é,/ wf 2
5J1= 0 ., Le résultat est la conservation de la
masse,

2.6~ De la méme facon, chague fois que l'on impose 4 ~cte

a priori, la conservation de la masse et la condition
e
divu =0 se confondent. Dans ce cas, F se transforme

en écrivantt . :
@:ﬁft#f)

ce qul donne la fonctionnelle:

\)‘ i mi J ) - - AR
o | o T et pof ~pereidif JoR
A4

Les équations d'Eulér sont alors celles de F, sauf (E5)
qui.disparaitiet (E2) qui devient: '

f&;:fDHEAFd%ﬁ

On retrouve la formulation & CLEBSCH pour la viiesse.
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CHAPITRE 3- PRINCIPES VARIATIONNELS POUR IL'ECOULEMENT
IRROTATIONNEL D'UN FLUIDE INCOMPRESSIBLE (Cas stationnaire)

3.1~ Principe en ¥

Considérons le potentiel scalaire des vitesses ‘o
On a obtenu au chapitre 2, paragr. 5 le principe:
’D-Y@'(f G
_ S p AR - [ pa g dS

Y = f sur Sl
L'éguation d' Euler de ce principe est:

ny = e auw R

Avec: ;f’: constante } 4 priori.

Comme condition naturelle de surface, on a:
/pmg,f ~f/1'—;, Aue Sy
, = p.

3,2~ Principe canonigue

Tibérons-nous des cdnditions d'absence de rotation
et de valeur de sur Sl’ par les deux potentiels de disloec
cation:

4
3~ j,ﬂ(PY) els

On peut alors écrire l'énergie cinétique sous la forme

}\‘- (,a,,' .-9,‘)0} el R

)

(‘414‘(
2 ,
La variation de ¢ donne sur S5q: /u=/%ihi ,valeur
que nous restituons. D'ol: J
§Jyz 0
Ty e o J AR T AN (g prey &
R
(Principe canonique)
Variations: ‘
DN B M= aif au R (absence de rotation) (2.1)
=7 § (continuité de  sur Sl) (2.2)
bui & ){:F“4 A R (Equations constitutives) (2.3)
Sfti ?; N=eo K (Conservation de la magse)  (2.4)
mi N oo N aame (2.5)

mi N - ’oun = O M.fp_,[zfmhmué ola 4/&@1 waﬂt?uwa{u«e-"\g) (2. 6)
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3, 3= Principe 3 deux champs ( \,(f)

Restituons fu}:);, résultat de la variation de wu,
On obtient

MM TR - T (o0 )ds - | pimp &S
§13=0 j [N &? Ef 1R &;wk.(w y) § ékfu 3
Les équations d' Euler sont:

R P e \%-= gif (absence de rotation) (3.1

gT B 9\ =o (conservation de la masse)(3.2)
Les conditions naturelles de surface sont:
Shi = \P PERY (cont.superf. de 7")

&f 14 mn\;‘:f"‘“ e dy (cont. superf., de X )

3, 4= Introduction d'un potentiel vecteur

'344.,1~ Dans Jy, imposons a priori la condition sur \

’a}\,.:O
Une maniére de le faire consiste & écrire:
%i=ggk®jAk

ce qui permet de garder la conservation de la masse dans
les éguations d' Buler. On a'

R 5 NNAS
J2 devient alors: : ©

j(f""'—' "’u“'t’))sa Ak dﬁ*J‘f’”lﬁyka Akds*f(f[m:éilk A/I /D‘QM.]“S

Transformons les intégrales superficielles:
fm aol’(«fﬂ)vﬁ - f(wd‘\f) A dS '
h \-—‘/——/ s W lage /{dw})auﬁ@e& J"(:
L FA - BT
é:etant 1'ensemble des contours de Sl’ parcourus selon
la regle du tire- -bouchon pour la normale de Sl

De méme, -
R N s
{;etant l'ensemble des' contours ci-dessus, mais parcourus
en sens inverse,
Sur 6 et é ,0n1 2, si l'on admet la continuité de ¢ &

priori, r:? , dtol




e
b T ] R

Des lors, J, se transforme en:

L pwer aenD- R [ e, 2 A
8{4(/0% ] A:E}jkajAk)clR~/&ﬂk'A off - /fém,a//cajy N’f

-é/)i[,} Vp/j } = (4. 4)
La variation de 70 donne:

fm 8,//,’3/ 5;0 ///edj /f/an f}pdf-
‘f}z”“’ f:“/'é ,/' [/l/_,tfy) i - [/ﬂ:. fya/_( f//h/ﬂ"/k Qj'/ikgy,d_c
_!;/)2 &lp.f’oozr //)M [?,C/_ff//n,gy‘, /},{,Jy)c@

5? = 0 car 90:;; par continuité
f/u: = 87,_;9/ 4

344.2~ Souvent , on préférera imposer d'autres conditions
aux limites sur 82. Imposons sur 82 une distibution ﬁ du
potentiel telle que /p,[j';, = /}/,

Dtotu:

= /k
Alors, _
.[/D’u'”)o 0/5— —_/m,,yka /)éy)df ‘/y’/f @Q f/m,g/éj},;/}ko’f

Surs 45,9) y par contlnulte et 1a cwculatlc_)n est invariante.
I1 reste donc:

‘[fz /hlft'/k ‘?/? [}i:é' /,1,} .0/5

2
Variant A, on trouve sur S2:
M N . . S - ] s ity -
= i/}z"nj'u/ - "/k m,?/y,o . des w4l = m,/iaadf

Restituant cette valeur dans Joy on obtient finalement:

§=0 f ,B-J . nolB)elf //“t 7 - /[m,w) (R-F) ds
4.21)
Equations d' Euler:
du; 3 ]0&7 not A = O, (conservation de~ la
masse) (4.3)

i .
T2 - g o = o
dh T g.’k ) 0 ew adfi’ =0 (absence de rotation)

(4.4)
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Conditions naturelles de surface:
dui B8 s (K- ) surrS, (4.5)
8 e MY /f; ' sur S (4.6)

3.5 Principe de variation du potentiel vecteur
Imposant & priori les relations (4.3) et (4.5) dans
J4, on fait disparaitrejg 3 changeant de signe, on obtient:

i ] /YP Aot l? ' = =
§35= 0| 3g= ) = ofR 4 [ Ap R dS.
5= Uy 2f )

Ce principe est le dual de Jl' Nous verrons plus loin que
ces deux principes ubtilisés simultanément permettent de
mesurer la qualitééd'une théorie approchée.

Les équations d'Buler du principe sont:

—; - '

Aol A a0l F < 6 e R (absence de rotation)
- i bl = £ . . -

Mmoaaek A =y ey (continuité de rot A)

A6~ Principe de variation des vitesses
Imposant dans J, les relations (4.4) et (4.6), il
vient:

- fﬂ,a; Gy Y Ap el = -js ai gy m Apdls +fﬁ Ap o ]S
- 447.}7{)4 If) = Jj(ﬂ?m—f)) K ods

J(L-f A+ | B ) 9. 63g=0

dtou:

On ne peut tirer directement les équations d'Buler ,
vu laz condition.a priori (4.4). Ce principe prend sous
sa responsabilité’ la conservation de la masse.

RESUME

Principe eny pwPcons. masse
H

Y

' n&us? Principe canonique.ugirrdt,

F“’“ 5 cons.masse

% A 2 net ﬁ rel., const.
Jz(u,4) J4(usA) e#{coms. masse

~ o = s labs. rot.
£ A
¢, Jabs. rot. ? Sy
cons., masse Princ.var. A princ. var. u

&p irrot. gp cons.masse
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CHAPTTRE 4 - PRINCIPESIVARIATIONNELS POUR L'ECOULEMENT

LAMINAIRE D'UN FLUIDE VISQUEUX (Forces d'i-
nertie négligées). (Ecoulement de Stokes)

Dans ce chapitre, nous donnons des principes variation-
nels s'appliquant aux fluides visqueux et incompressibles,
lorsque les forces d'inertié sont négligeables.

Les forces sont écrites sous forme tensorielles, Par=-
tant de Navier-Stokes, on obtient alors une formulation
analogue & celle des prificipes variationnels de la Théorie
des Structures. Lorsqu'on veut s'affranchir de la condition
d'incompressibilité, on voit apparaitre la pression, sous
la foxrme d'un multiplicateur.de Lagfange. La pression prend
- donc dans les fluides incompressibles une signification
particuliére:celle n'apparait que pour empécher le fluide
~-de changer de volume. .

Au chapitre 6, nous verrons que la formulation ci-des-
sous permet d'encadrer l'énergie cinétique, ce qul donne
un intérét particulier aux principes & un champ.

On obtient dfautre part un principe R(w , o) s
ltanalogue du principe de REISSNER en Structures, quil
présente un grand intéré&t pour les applications théoriques.

—— -~

4,1~ Ta fonction de dissipation F

~Nous appellerons fonction de dissipation ¥ la fonection
définie comme suit: ' '

= . b
2F= 05 iy

Pour un fluide Newtonien, la fonction de~dissipation
est homogéne d'ordre 2 des dérivées des vitesses. Une ro-
tation d'ensemble ne pouvant donner de dissipation par
frottement, 2F ne peut dépendre que du tenseur b ,
partie gymétrique de(%ﬁ),, /

L'homogénéité entrafine:

F 4.
I F = ianev
ol 1'on distingue %j de Dﬁ o
Donc Gp = %g, , & condition d'ignorer que 06 = @ji’o
|

4,2- Principe’de variation des vitesses
L'équation de Navier-Stokes, ol l'on néglige les accé-
lérations, s'écrit:




4L-
f3;~%ip v5% = °
Pour des variations de vitesses y On a donec:
P 0e = ipdui v 005 dui < 0

et

Jp /@g Tu; R - f o pdueidR v-j a.;u,emu

oun !

jfﬁo Juj R~ {”‘/‘ Juj oS "’g’f"a ) du; elR f‘! idudlS j@*, Ju, R = o

‘o

Si l'on impose & priori que 3,&, = 0, 9,'5“/‘ =0 .
. oo '(f',‘.::
Dtautr part, jl j “da = Gj' é’, (9/ doy + 2, ‘f//
Jé) = dF
7]

Sur S5 , nous distlmguerons:
8, ou Sujz @ i
S, ot ( //;'mi/t): A;

Alors, le principe s'écrit:

s U =0

9

- ) R
U () = /Jt w; d8 fvlé [fﬁl.},u,—F(D, ))

hS

(Principe de variation
des vitesses)

Remargue’ Forme de F,

- Y - - -

Pour un fluide newtonien compressible,

o,

Q.. A
ij= 2/,:.[9,/- é

% !Pé"j) . ,\,%[ 5;/‘ . .

Pour un fluide newtonien incompressible, on a simplement:

G - 8.
i = 2/.‘ 19,/ .
. - : F
Des lors, puisque 2F = C‘,'/' ’ 999‘.

19,'/’

!
N
=
I
1

4,

y o=l



k3 -

4.3~ Principe canonique
Transformons a la Friedrichs: introdaisons les trois
potentiels de dislocation:

'9:/‘: 4%9,-% e R

2, fﬂ)"j['g’/ F oy egu )R

(incompressibilité)

1

(compatibilité en

volume)
( )7 est pris symétrique)
D, - C . -
3 -éd' (wi-mi ) o5 (compatibilité su~
perficielle)
On pose alors C = Q%'féinfégf'éﬁ s o l'on écrit

F(Qy ) et non plus F(Du) dans @ 3

C("U‘ 99 9 A o d ,/B ) = '/vd,‘(ﬁ/ - A ) dS f/};.#"ds—f“ngjl‘w - Ff/}?‘&*’
Si e

-3 Nj (8 uf raju;j'r/i ui R

Examinons les résultats des variations:

Sl [ i pg-Op 4+ G(FNeF i) o (1)
A f,, 6\/, = 2 [/\,/ + I\J';)mj - /h,/3 (2)
| A Jé N A = /”;/ - ‘;f/‘ /r\i/’?‘ /\//‘) (3)

.= . OF e
é&, i 99{/ + k,/ T o (4)
b}*:},“; &ij - %z (9,'u]'+ 0jai )=o. (5)
P B Duiso - (6)
50[,’ l:’, )= G Aue S, (7{)

L'équation (4) montre que XU ntest autre que Cj o
Cependant, nous:ne 1l'écrirons effectivement Gb-que lors=-
que l'équation (4) sera satisfaite a priori.

Les équations (1), (2), (3) permettent d'identifiewr p:
I1lstagit de la pression. La pression apparait ainsi comme
un multiplicateur=-de Lagrange associé & la condition d‘'in-
compressibilité., C'est en quelque sorte une réaction a
toute force tendant & faire varier le volume, Restituons



bl
cette signification dans C. On peut, d'autre part, resti-
tuer a o, sa significaxioﬁ de force de surface t;. Ce
gul donne:

¢*(uy 6,2 ,%,p). = f A (i - ATz ) St 4»7#«’%
<

— g u ,L, c/
rf [pgar—F v XjOj - 4 Mj(Oiaj+ i) . Biei ] AR

Les condltlons naturelles de ce prlnolpe sont:

Odij (¢ «J:* / / +Rip-z O e J;
/? '+/%/._o ey, .

Equilibre
/Dgi fD ,\ ‘Dif o s R 4
; > OF. 4+ Ay o= ) .
§ SU L - é?, *.\7 ® e R Eq. constitu-
tives
Shj m o Bij - (R0 edju)=e amR R ke
SA A o= e o 8 Compat. superf,
51‘ G Pid =o R, Incompress,
44~ Pr1n01pe R(w,9 ,p) oF
Dans C* , imposons que \6 = o a'priori: nous no-

) ~ terons Gﬁ .
~ﬁ‘3:Mij«—m;p.

Ce qui donne: J u:ﬂu)dsff)ku‘dS+J[G. ~F-39y l v+ 9y w)
+ 4,,0 uu-i»ry‘Q.JJR

Posons: H(TF) = )J -F (Transformation de Legendre)
soit ici : H(o U0y

Zp
Cettettransformation est possible car 0. -—?#&v s rela-
tion s'inversant par la Fformule &’ = %?
On obtient: ‘ 7

R(u, 6 ,p)= j(mjoj;-m;r)[uivﬂf) dS + :{‘j’; w e S
A e

v [ D) - Fo(PieeRje) npPii spgiai ] dR

La recherche de l'extremum méne aux équations:
ﬂw J, ~h.r ﬁrq;_ nnr e §;
) T } J" ;i p s S5
%jﬁj, - Bip + ﬁ$ o AuR Equilibre

Su; B



50 mjlki&&ﬁ):io N [ Compatibilité
"51 Brc - 4 (Djuf+O oo AR D
] 2 A
' o - AL = e §
Se B { - i Lt =) ° ‘ { Incompressibili-
re Diui=eo s R %

4, 5~ Principe F(3,0,p) |
Supposons a pridri vérifides les équations dtéquilibre:

Sur 81 i = AN - i

82: /“T: ﬂlj)\ N w’”i)”"

R - /0% "OI[’ + J’ =
Intégrant par partles ,.{2—/ A;/?}u,‘ et //’9’. w' o, il vient:
( . o S hiy 0y ) S
‘/U‘h/’ljhj + m;;u},u; dS '~[¢,(mj ij;-m;/z),u, oS+ :f@(/h oy iy 4 % 1)

A’—./\L/Djul‘f"')\l}&/ 'l‘ar\ u,wugf/»u,']d/?-

La variable p disparait de l'intégrale de volume., Les ter-
mes en p de 1l'intégrale de surface doivent donc tomber:

- i. [ /y.n.. B RPN v A SF=©
F()0)- /ﬁ[,),/p,j.-/:)om | mjdi A& ~

Résultats des variations:

., DF
69JE> 1/-—‘l‘ 579’/

SXT : entravé par des conditions essentielles.

4,6~ Principe de variation des tensions

Dans F, supposons la relation constitutive vérifiée
a priori:

'\.‘": ,%: et ))@,I -F = H(G)
\;; devient dOﬂC)Gﬁ'- D'ol le principe:  §3=9-

S(O”\) = J H (o) dR -J\ 'h ;A Jd8

(principe de variation des tensions de
viscosité]

4 7 ~ Supposons la compatibilité vérifide a priori en volume,

G devients:

K(u,t,p) = J,s i (mi- i) dS +szf,7ﬂ;d3 +jﬁ[m,u;- F (u) -u.'a;u,- 1dR
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Si l'on suppose la compatibilité superficielle elle aussi
vérifiée,on obtient: (ui= N 4 priori)
ok - | wi 1 e
U(a,p) = | haidS g [ [pgei oF (9«) s 420 TR

gui est une amélioration de U.

Ties variations donnent:

F 53 s B .
su D J',&;é‘u;cfs +J[f?;du( 5 %)S(a.w@j i)+ 9 dui JdR

JU‘ ”” r)tSu,def 0.ds j[fy . —J.r]éu,dr’{

sur 82: Moo= ’hj'ﬁ‘ja‘~/h.‘)¢

S'U.I‘R' f)g 190 -95F~

B,yL [:,)) D;u;xo'

L'ahalogie avec la théorie des structures est frappante:

STRUCTURES : ECT de STOKES
Energie interne Fonction de dissipation
Déplacements Vitesses
Tensions ‘ Tensions

Mais dans 1l'écoulement laminaire de fluide incompressible,
la moyenne des tensions normales (pression) ne travaille

pas. Clest pour cela que la pression perd sa signification
thermodynamique.




Une application du principe R(U,6,p) en lubrification:
' BLOCHET de DIMENSION FINTE

Be J{(M,‘Gji ) i - ) dS 1 jjk,u..; d +thnm-§ i (a;wl-ﬁaj-u:) O -rfy;ua 14R.
$ z
- —
On pose g =0 ; uy= uy a priori sur 51
On utilise les hypothéses
= o ' classiques de la lubrifi-
BLOCHET cation: (cf. par ex. LELOUPE%%])
\ -p est supposée constante
peo 49 ' sur toute la hauteur h.
Pev G2 et 9, sont seuls consi-
AN \\\\\\\\\\\\'\\\ dérés.
v FLASSOF -On ne considére que
9“499“3982‘“ 9\43 5
Eym ’ Eﬁ“s s les autres derlvees étant supposées négli-
geables,

42 9
I1 reste: Sj dd ‘%/ = O Fc)Zul" 23 Zu3 +/I‘(a “‘l""‘)a“ﬁ)] dg:GS

principe dont les varlatlons donnent:

OG,, 3 ?&2 -, u = @ | (1)
20,3 22 _Qu =e (2)
5/‘,\ = j’&(o,, w +P) dy = o (3)
Sm, B 0,0, -0, <o (4)

6M3 ﬁ; ’a 623 -'3’\:0

(5)
De (4), on tire:

Tip=yr + AGx,3)
Par (1), cela donne:

%»134’\ ty ACa,3) = Yt 1—8(1,3)

e
Dol A= - pp - 3 I
Dés lors,

-4}/\.—%_‘5——2 D,,,x«rv

Vi A
9, my = 0 )a”r * ]ﬁ:a1



- P2 z bg-
/Q”’@%:[m(%%/*fﬁ%]df
% (f.op)E - a 2/%64/‘/% +f o -

Sy o 0y £ ikt it vas
A "427* ", 9‘*94/194 6’,‘/’1//'/ G
(6)

De méme, par (5), 023= Z 93%— +C(’/j)
et par ( 2) : g%/«f C(z,;)r/az"’}
'\ Z
VOU T p g pay 2 D)
Eny =0, on touve D =0 ; 2
Eny:h,,é'@%/,_fc’ﬁ = 0, dtol C =“:§€"/‘.
Dés lors,

z
SN VIR A
<

9 4y = ngfz/‘:%/'“ z;%’%/‘]

v 4

[ =Mw I

= ’é—-j%[z{;l; 1oV ,Q[e 3/‘/)
/éw Y A2 /gz A £
o 5 G = % 6/ %/ 7z 3);;:; 494 4 5%/4%’1

(7)

Par (6), (7) et (3), on obtient:

?, { Jl; //\)1‘3(/ )‘/): V94A

C'est 1'éqguation de REYNOLDS, bien connue en Lubrification.
Les tensions de v iscosité au flasque sont données par:

2 (
Gy (o) = A(x3)s- pf-2ap ,

A noter que la distribution de h es’c quelconquey aussi
bien dans la direction z que dans la direction x. (Et non

nécessairement linéaire comme pourrait le faire croire la
figure)
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Chapitre 5- Ecoulement laminaire d'un:fluide wvisgueux

(Ecoulement de Stokes)=- Formilation vectorielle.

5.1= L'équation de Navier-Stolkes s'dcrit sous forme vecto-

rielle:

/gj Y /u iy 5%4ﬁ! = 0
/fj&u,- :/u5¢q-/“/ %Qudéu,jcdﬁ-o

4[/);,&0_" " 419/";"1' r/u g"}‘k %32 R %Ja'-]df?«lmm Sa dS—!/AEt))‘ek‘?zadJ‘l,‘dS:a

Posant @w;: 0O a priovi, et distimguant sur S:

: e -

S, ot 8 = & s A /,if’ w:rota?-)
s, ot dg = 0

il vientg
- —

(5{ - ‘f’_._‘g)dk-j,u,,(,/m—fmxow}ds_;
/"l < Sy

.~

oti W =ade & priori

divd - © a priori.

Clest le principe de variation des vitesses.

5.2=-Principe canonique

Libérons-nous de 1l'incompressibilité par le potentiel

de dislocation:

/ /3 Jui AR H
R
g s e o - .
de- 1la condition W =adt par le second votentiel

L - &y dray | el .
J ¥ (w0 <R ,
de la condition = de surface sur 82 :
;A - A ) S
J, ¥ v -ai)
Ony obtient alors le principe:
o W, vt € Do e ) Mot cee. mig A Ve oddeh=o
(S[[‘\;L/’;"u'”/:r )'f;)l“r ﬁ(f'//r"/“k wa/jd’? :lﬁki(fv”nfeajkm}wk)dsf X,[w.-u,)de
Les wvariations vont nous permettre de simplifier:
oo 12 _oa . N
Jo 3 fg,-9p FERIYH s © (1)
- e r.fy::a (2)
Rassemblant (1), (2), (3), on obtient:

[3 Cif = G € P

Le sens de/ﬁ apparalt Honec 0111rement: fS::pa La pression
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apparait &4 nouveau comme Un multiplicateur lagrangien 1ié

a l‘incomprGSSibilité, Variant u, sur S il viemt:

¢Mt %mk
Berivant p é la place de et restituant le sens de s

on obtient: JC- ']
'/Lff iy //w(i‘a“c? + ?(@off'é”}]dk
fu fm« r/ua Aw/cmf/(fth— f/-w 4w ) U"* 2) S

(Principe canonique)

27

5.,3=Principe & trois champs C, ,)

Restituant 1'éqgua Llon.éf /uw obtende par variation detv ,

on obtient le prlnolpe°
R /'[/7 ;L + /“““w 4&0&61; i/»ua.nmhu.]‘dﬁ
f //t'h-« 4—/&&:,4(3)‘,5 'l“/(,/,‘n 'VUMAW) (,u, $)CI.S

Les variations donnent les reoulbats suivants:

G "’9'[" + gk k“’ sur R
{ [gz /4 - - : Eguil.
i g k*’f"”’"'?"&/')%'f/wk sur s,
§u“ /uu) /}Layk / k. sur R (compatibilité interne)
i/u /kﬂv (Mk A%).,c> sur 82(compat° superficielle)
5%J; 9¥M4:=0 sur R (incompressibilité)
s
{(W;(lﬁ>-ﬂi)=— o sur S (coatlnulte des vit

norma;eé)

5.4~ Principe de variation de la vorbticité

Restituons 1'équilibre dans le principe Rs

/7;-' fuu:l,fl o/u ok = o dans R
//L&ZPJ)LLE)AJ: /i’””ffﬁf/ﬂj sur 51

Intégrant alors par parties, on trouves
_/[{[/%‘/(Z'f /‘_,“_’13‘2_5 _ ptu, + £k/'/ % /u.wk),u.‘] R
f»é s (i + G o A w3y ) IS
fjf;ﬁ"( (foii +p i mj-wk,) oS

La pression disparaft de 1l'intégrale de wvolume. On la lais-



sera donc tomber en surface, d'ou le principe:

5p- o p=4/“§:3 L[#:m),f /%

5.5- Analvse des conditions aux limites

e
Quelle est la relation entre le terme/wxﬂu; et le terme
My Gy trouvéd damns le chapitre précédent?

On a:

~ . = o= Oiuy 4 9w
o Oys A O p (O o)

MO s ey B 4 o)
ropLEs noh@ ) o i et = e (8 i3-S
/« .MJ‘ ,'uj wfwjajw.‘ = /!«Lﬂj (9{‘“1:”‘ jw)“gj‘“j(‘)j‘“.

Vi

Donc
— e
f}(é‘?!\wl’/ﬂ?}}: = M]“"Ju - Z/J‘”j‘)u
Le terme /};?Aonjf = tensions de viscosité -~ 2 . gradient

normal de la wvitesse.

Cette formalation est plus simple que la précédente pour
1'emploi de coordommées curvilignes.
"% - .
A noter que si 1l'on veut garder p mals non @ , il suffit

e S N N :
de restituer w =fold’ dans 1le principe R: LJ)”: P2 P gw“w\')

= J[ff = ﬁ.fﬁwui_]dﬁ
,0? Hmm+/““ 223 ) S ,_j (4+ +/m/tw) (F-2)ds

Cl'est une generallsatlon du principe de variation des vitesses.

Cette dermiére forme peut &tre avantageuse dans les applica-

tions théoriques.




5.4-

Une application simple: Ecoulement laminaire dans_ une con-

duite rectiligne

Hypotheses sur les vitesses:

/«‘L'L’o/’u9°‘)JD&“8‘o °
. .%’“. A l_)_.' -
& nég
MI’A:P': % D»L De i | - CO) —D,zuar)O)
[~} o ,M}

—L;ﬁ, .u(o)cl.rz.} -Fi;ﬁu(&) da

. g -3
Varions g , W H

S 3 fjw’“"baf"iDé[,#Zi)“D'E(}*“’B)“O _ (1)
L o (2)
B W= -l (5)
bwy 5 Wy =0 | (i)
5/{‘ L Dﬁu}; 0 (5)
(1),(2),(3) permettent d'écrire:
foeca = Poter ploakty=©
/‘szu}:ggl‘ “/7“"“‘
47 G pepresa)rt s Ao v ®

Le terme Ar introduit une discontinuité de Qu?’ L1 convient

donc d'annuler A. Sur les surfaces latérales, u_ = O . Cn a
donc B= -Cfﬁ]l=ngWd)l%z

Des lors,

que.,

Par (5)9 Dzués 0 . On =2r donc DZZP‘z O : p déocrolt lindéairement.

Notant les conditions d'extrémité sur p, on voit que

w = fIear foqe (RE2%)
/4L

= T

ol 1'on rebtrouve un réswltat bien connu.

cas ot - D gl _pl ]
/ué:-ﬂz~7;T-iﬁE (R ‘R') profil des vitesses paraboli-



CHAPITRE 6 - BCRHNES SUPERIEURE BT INFERIBURE

Introduction

-[31

En Théorie des Structuresjon montre que le principe de
variation des déplacements et le principe de variation des
tensions encadrent l'émergie potentielle. Plus précisément,
si l'on fait une approximation sur les déplacements d'une
part, sur les tensions d'autre part, les énergies poten=
tielles obtenues dans les deux cas sont différentes, mais
on peut affirmer que l'une est plus petite, Ll'autre plus
grande que l'énergie potentielle exacte,

Dans ce chapitre, nous allons rappeler cette théorie,
malis sous une préseﬂtafion élargie, qui nous permettra de
1'appliquer a plusieurs problemes décrits par une formula=
tion simmilaire., Nous examinerons ensuite 1'application de
cette théorie aux principes énoncés dans les chapitres: pré-

cédents.

6.1~ Soit F(ui) une fonction homogéne d'ordre deux des varia-
bles u; e Définissons alors les “"impulsions" p; par
PF
KR a‘u_"
Considérons alors la transformation de Legendre

P

H = —
H(p,) = pyu;~ F(u,)
Du fait de l'homogénéité d'ordre 2, on peut écrire par un

thédoréme d' RBuler

2F = P;u; et = L e

Les P, sont des fonctions homogénes dlordre 1 des u, .
11l va de soi gue pour un volume guelcongue,

.L ’rihi'dja > siu £ O

Dé&s lors, si nous considérons deux champs (1) et (2)

caractérisés par u§1), pgj) :  champ a
i i 1
2 2
u§ ), p§ ) H champ a, ,

La quahtité (‘a,l,az) = j'ftia)/uiu)dﬁ
R

i . . ’ . s N . . . . . .
est bilinéaire, définie positive, commutative. Elle vérifie

donic les axiomes d'un produit scalaire et confdre a l'espace



6.2

“g des champs considérés une topologie préhilbertienne.

6.2~ Supposons gue l'on puisse trouver des sous-espaces vec-

toriels de 'g', soit C et A, tels que les relations cé€C
et a€ A entrainent ﬁ(c,a) = 0 (Sous—espaces orthogonaux)o

oO et ao étant deux Tonctions de‘f , Supposons que les es-

paces translatés ¢ +C et a +4 aiehnt leur intersection réduil-
U v

te & un seul point. Pour touver ce point, cherchons les fonc-

tions ¢ et a gqui rendent minimum la distance;d(oo+6, a0+a)

déduite du produit scalaire.
dz(co+c, a0+a) = (co+q—(ao+a), co+c—(ao+a)):
(cgverogre) + (agsarasa) = 2(c ,a)) - 2(c,a,.)
-Q(ao,c) - 2 (c,a).

Evidemment (co,ao) est invariant
(c,a) est nul.
Séparons la conditionm sur a de celle sur c. On obtient le

systeme:

* (co+c,co+c) - Z(C,ao) min e (Probieme 1)

#* (ao+a,ao+a) - Z(a,co) min. (Probléme: 2)
6.3~ Soient alors dez solutions approchées par restriction
de 1ll'espace a l'enveloppe linéaire d'un nombre fini de

fonctions lindairement indépendantess

a= ';2 Ay ay E 7{@" Sf< ,enveloppe lindaire

de l1'ensemble des ai
T %/M'Cf € >i€43<

Raisonnons sur le probléme 1

(CO+%/4‘-C" ) Co—i-;2 G ) - 2 (? Gy CO) = min.

: Py (G, G s (e - £ « ¢/ o n
ﬁ/&h(h,cj)fz f"—r.(e‘,ec,)ﬂca,ca) z(;/,« ¢, ;)

Le minimum s'obtient en variant fq :

Spi I sz (ﬂf,CJ‘) = (er, Qc,*Cw) (1)

Cl'lest un systeme matriciel définissant leslﬂf, car la matri-
ce (oi,cj) est non~singuliére. Bn effet, sa singularité en-

trafnerait l'existence d'une combinaison linéaire
'2 J < 5 . — v. s e 2 e ? —_ V'
) d.(&,ﬁ) =0 j ,501t ( ;Gﬂﬂ)cj) =0 )

Mais les ©j sont des vecteurs indépendants en nombre égal




€.3-
4 la diwmension de l'espace formé par leur enveloppe lindaire.
Ils forment donc une base compléte, ce qui signifie que '
la relation
(2 dice, ¢j)= 0 ¥
/ 2]

N

entraine ?iqﬂy =0 , ce gqui est contraire a l'hypothese

]
'd'indépendance lindaire. La solution approchée obtenue pour
les wvaleurs /ﬁ définies par (1) sera appelée 8.

Considérons a présent la solution exacte s= ¢ +C
————————————————— exact "o

La solution exacte sans contrainte est celle pour laquelle
S=Cc+c _=a+ta , c'est a dire celle qui annule la distance

d(o+co,a+ao)° On a dongcs

S—CO & C
s-a €& A
0 .
et (Swoo,s~ao)‘= 0, ce qui peut s'édcerire:
(s,s) = (s,ao+oo) + (ao,og) = 0 (2)

Considérons alors deux cas:

a) CO: C

°

Alors, 8 = c +2 o= EN G
En wvertu de (1), f f*
J

Prémultipliant par j( et Faisant la somme sur i,on obtient:

{50 - f - ) ’A. \
(2 fier, ?/‘J 4)= (% fie,ae)
ous (§a§) = (éaao) (
En vertu de (2), on a aussi:

(8,5) = (s,2) (1)

Comme 8§ est un wminimum 1ié, tandis que s varie librement,

[
~

A

le probléme (1) méne a
(8,8) - 2(§,a5)2} (s,s) - 2(s,a0)

et, par (3) et (L4):

"(§'s§)>/ -—(S,S)

soitf, finalement,

(8,8) & (s,9)

La norme du champ approché est plus petite que celle du champ

exact.



b) a_= 0
Alors, 8 €A, §—co € C. Donc
(§,§—oo) =0 = (8,8) - (8
soit:
(§9§) = (éoco)
et (2) devient:
(S,S) = (Ssco)°

Le probléme 1 méne alors a
(8,8) ¥ (s,8)

9

o)

6.4 -

(5)

La norme du champ approché est plus grande gue celle du

champ exact.

On peut faire le méme raisonnement pour le deuxiéme pro-

e

bléme, mais les inégalités s'inversent.

En résumé, on obtient le tableau suivant:

ou encore, par les égalités wvues plus haut:

(8,a.) ¢ (s,a,) € (a_+a,a_)

- a = 0
fo) .
- (CO+ g, COL+ C) 2‘(59
- ou encore,
- O

(696) £ (595) { (ao+asa

o12)

6.3~ Application & la description duale Y -

A du chapitre

3

\

/

La fomnction bilinéaire est %f>uﬁui =T .
N 2T .
sont définies par p, = —, = p#i{ ,
i A
Le produit scalaire de: deux champs u(1) et

J Pif(4).ﬁf(i)
R 2

Déefinissons alors l'espace

homogeénes s

i
G
¥
[

e
3K

* A= gpady
¢

o

A~des champs

Les dimpulsions

u(2) est.

irrotatiornnels




Soit C 1t

l'espace des champs incompressibles howmogéenes, quii. "
vérifient les relaulons:

—7
AI{..
LI
* A = 0 Audg

Pour acehd et c eC,

(a,0) = /9,- ,/,0, TE

[ﬂl,y)&jkaA dS &fﬁt,;p&,,/k Akdﬁ
“

‘f’ jm, (?ﬂk)alJ j Erjk lzj‘f
\TT//~> Ak:o
=0 v \é/}'

Donc les sous-espaces A

et C sont orthogonaux. Du fait de
la lindarité, la solution réelle est du type ¢ otC ou a_+a,

avec -¢ = champ incompressible non-homogeéne, cc—é—dn du
types 4ﬂ?= nmfA—
|77 s
~a = champ irvotatiomnel non~homogéne, c.-a-d. du
type: };7’: %ad\f
On a @
(0,2,) = fﬂ/‘):)"gfjna/nkd&:‘f YM!« o
N _,_? ..? 0
- . i - L D dS
- m, E’ ’DA JS*‘:; Aada m,ARE,k J\f
L T 2, ¥ f& J
-7 d
gfev““ R A S
) ARECIrY
e | & -AdS
(e/a0) = - fs,’" Ay 55 <2 L%
De méme,

(are) = |




— £-€-
(a,oo) = ngjflm Lf dS |

On voit aisément gque le probléme

(a+a0,a+ao) -2 (a,co) minimum
n'est autre que le principe en . De méme, le: probleme
CG+CO,C+GO) - Z(ao,o) minimum
revient & écrire le principe de variation du potentiel vec-
teur. On en conclut le tableau suivant:
* W = 0 sur 31
! CRCh ’ " aglﬁ*fu‘§¥
| Pl ar s [ T, dR < | 222 dr
— R £ R =@ R 2,:
iz
* = s S ..
A = O sur 82
- - \ .
aok A . ackh CAYR
whh 2ot g < [ T, g dR s | POPIP R
R 2p R

oy o - - - o~ oot St ptg

Pour un probléme plan, le potentiel vecteur se réduit
& la fomction de courant 1’ .

drgy = ©
sl

Variation de
Energie cinétique

trop petite.

Variation de \}/

Bnergie cinétigque

trop grande.




67~

6.4~ Application & 1'étude de 1'écoulement laminaire du cha-

pitre U
La fonction F est quadratique; les impulsions sont les
. . . oF
tensions de viscosité G,
| 96’,/

o

On définit la transformée de Legendre B(V) =G0

Ij— T1(9)

produit scalaire sera donc
_] G‘,j(«ﬂ) 9«"(2—) dR

On ﬂellnlt alors les deux sous-—espaces su1vanu5°

* C= espace des champs incompressibles,compatibles

et homogeénes, ce qui signifie:

/‘:Lf = O jus -rﬂ
@;‘j = (9, “j "f/‘)/ Y;)
9,‘ M =

Cl'est bien un sous~espace vectoriel, vu les con-

2
o

ditiong homogénes ou lindaires,

¥ A = espace des champs sans forces de viscosité,

clest-a~dire vérifiant les relations:

&?jﬁ)" = 9,

MJGJ": O fue Jz
AjoutonS“que<ﬁ-est supposé symétrique. Il s'agit
d'un sous—espzce vectoriel car les conditioms sont
toutes homogénes.

Pour deux champs ¢ € C et a € A, on a:
= G, -~ " TINCAI N
()= f o R = {f‘ym/«ws Je WNMEEL
= _./fﬂt.‘(m/'ﬁj-;} 0’5 f/u [b }C’j [T,ui (}; )gﬂ___

St
[+]

L'orthogonalité est donc bien vérirfide.

Considérons alors une solution particulidre CO

‘}_ (Z)u)«t J“‘)
o3 My = A Aw 8
2wz o

et une seconde solution particuliére a,

CROE -ra»,w@.‘,:
mJ‘(GB"'-}(\ gj') :_}u /xwLSgZ,




La solution du probléme est l'unique intersection des ensem-

bles cd+C et aoon On a, d'autre part,

(a‘o,c)=j’; fSG mu JuaG“JdR

Jm udejrg‘ndR J'“' ip <R

J; m.'G}J',uJ- a8 - J;.,#my,'-u;ds-‘i Jf; r‘?'_u|- dR

(R}

v

il

J ,} Ay ds *’J rj unCﬂR

(3090)

De pius,

(a,0.) = 4{ [dujR = fc miuj dS - | 420 d R
= JC m u dS
.(.a_lsc‘o)' = 'f_;;l MJG—J'; E‘ dS .o

On se comvaincra aisédment du fait que

1) (o+co)9c+oo) - 2(c,a0) .QIF(D..L)JK 2/ /’j;“n d R
.,zj,# &.J.S
(Prlnclpe de variation des v1Lespes ou de la . .-

puissance extirémale)

2) (é,-:-aoya+ao) 2(a, o ) = l_ﬁ H(G) R - 2/ ./a"‘u" dS

(Principewde variation des tensions ou de 1la
puissance complémentaire extrédmale)

En conclusion, on peut ébablir le tableau ci-dessous:

1 = J‘ g +
) pq, =0 et £, = O sur 82

Alors, /"(D“) drif> fct de diss. ‘&H(G)dﬁ

2 a = 5
) Ei 0O sux 81

Alors, j::(?u) df ¢ ot de diss. s_[? H (a)dR
R




6.5~ Application aux principes du chapitre 5
Ici, le produit scalaire est _//,(330”?
R

=zé FdR ;
Yoyt -
Ak (=%, )

oF ;
- I‘I:"z‘

on a o= a) = 5
W, Vit !
On considérera les

* C= sous: espace des champs incompressibles,
clest-a~dire 1l'emsemble des

o %

us-espaces

o

deux s
homo=-

\ N I g
genes,ou W = Qora

champs ¢ tels que:
A = ‘W‘fﬁ_

s 2
w:/z,ai"“'

ole & = ©
* A= sous-espace des champs sans tourbillon. Ils
vérifient les velations:
k:-?
/Lmo w = o,
% -p .
m A = o JSut § R

On a
J fbag‘u—rwdﬁ-‘}\}iﬁgik w.dR.-

(Csa)
J fjﬂk% Wi d5 - }\/L w'Dw df = o

il

~p
m,AW-"»o "LOI'WQO

/h;g

-.?
jg;. M=o
Considérons alors les champs ¢ et a .

0 o répondant aux

conditions

suivantess:

wie A iy
—~p b e
CO: ‘ W= Nl i~
@Liv ,l; = O

- oty -py
a,s { }(%-?At:l?: /”.AWM 91

41= 4[ aua $4
On peut alors calculer
(c ,a) = J erJ» & dR = J\)uﬂiuk Jﬂkciﬁ
J /uw,‘ &,‘)‘k m}' M&JJ’» ‘}R /‘*"‘F& E.‘jk’ajﬁ‘kdﬁ

5
Z uwW oaw ds 3T mnotd dR
_J.;.,u, ,fw;? Aw dS -i:&)* /‘*

Vi

st



(o ,a) = - ]'E,/L,;"’M?as

sk
G

(cra,)

i
;)
=
§
¥
€
1
A
¢
—
<5 X ‘3’
~
)
>
£
(R
1.
=,
€
~
e
€
o
-

(1
i
¥y
<
3
~x

Dés lors, onm recommnaltra facilement les deux principes duaux:

. - AR PN v - -2 > .
1) * (c+cogc+co) - (c,ao) :Jk'tulz.rmfmd'?-_,ﬂw.ldﬁwi;?.([‘;*/‘“"“’)‘M
(Principe de vﬂriation des vitess es)
(a+ay,ava ) = (a,0,) th__ Caf +] @ piadds

(Principe de varlatlon de la vortlolté)

2)

of=

En conclusion, on peut affirmer:

=O, oﬂa«”zo sur S

1)_pg =0,
e 2

B
Alors,J‘ “aﬂ>";ot de tourbillon's j\fuo & R
ﬂ

2) =0 sur

mﬁu.m&u A

dﬂl"fct de tourbillOﬂ"gj
R

Alors, | i @iﬂ

b4




7.1
CHAPITRE 7 = Egoulements plqns de fluide parfait

Dans; ce chapitre, nous nous proposons de discuter l'appli-
cation de la formulatiom du chapitre 3 aux écoulements plans.
7.1- Dégenerescence duxpotentlel vecteur

Pour un écoulement plan, le potentiel wvecteur peut &tre

réduit & une seule composante. Em effet, on a , par définition
I
/”‘:Z A, - %A

fro 2, Ay - % A4

t

Pour un écoulement plan, ne peut dépendre de la coter z. On
a donc '

Dlauntre part, A2 ne peut dépendre de" x X1 ni AB de X, sans quoi
une variation de A entrainerait la naissance de vitesses uB
On peut donc écrire :

( o, o, AB) + ( Aq ({:XT)-’ Az('!xz)a 0)
L.e second vecteur est visiblement un gradient de fonction sca=
laire et on peut le supprimer sans altérer le mouvement (“inva-

riance de jauge"). Alors,

(0,0,"F) et f‘“rt = Ly s /Lu,_ =-% ¥V .
La fontion *’est communément appelée fonction de courant. Mais
ce qu'il importe de remarquer, c'est qué ;ndégenérescence du
potentiel vecteur, elle comnserve la propriété de borner l*éner-
gie cinétique.
En termes de la fonction de courant, la fonctiomnelle J5

du chapitre 3 s'écrit: .

e ' Q}iﬁy E L
J JL P ds 4 i, JdS
5 ‘{q e ! e 1

Quant & J1,.elle garde sa forme: @

J . 4/10_;%;0@,}“ -jg/uz’,,f o<

4



T2
On voit que les deux formes sont tout & fait similaires. Dans
les applications pratiques, on peut diviser les fonctionmnelles
par f’ et redéfinir f} par les relations |

‘/Mi : O—Z 9/ et /&?2 >~ 94 7V °
Alors, 5E = / 9,’%’9/%/@”? " / i, oS
3 A £

71 = / ﬂa{ﬁ -/}Myaﬂs
Cela revient a ch01sir un systéme d'unités ol la masse volumlque
serait dgale a4 1 . Sous cette forme, les deux probldmes peuvent
8tre traités par le méme élément fini, & condition de changer

l'ordre des vitesses par la correspondance:

1 . \'/
-Y ______ | S S
uﬁl‘l : F? -11:2
u;, i u,
w : =il
n ; B
_______ L e o om e e e o

Rappelons que w, désigne la vitesse tangentielle , prise dans
le sens de pareours "aire a gauche',

Nous avons construit un é1ément fini triangulaire: de degré
variable pour ces deux principes. On en trouvera une description
danen&*annexei Tl est congw pour stintégrer dans le programme
ASEF du LTAS.

7.2 Application 3 1'étude d'un écoulement en canal courbe:

Ce problé&me nous a été proposé par M. le professeur SMOLDEREN.
I1 s'agit de montrer les résultats que l'on peut obtenir en uti-

lisant un modé&le simple: éléments trintinédaires em petit nombre.
On choisit un: dcoulement particwlier, celui autour d'um angle
droit, caractérisé par la fonction complexe: F(z) = zz, dont

on prend une portion entre deux lignes de courant. Tous les

?%

noeuds ont été pris approximativews:. i

|

ment au croisement d@éQuipotentieiles

et de lignes de‘courant; ce qui per=
met une vérification simple des résulsnt
tats. On touvera ci-contre un sbhdé-

ma de l'écolement considéré, Les con-

ditions aux limites sont représen-

tées ci- dessous.



7.3

fig. 1 fig., 2

Pourdi'approche par la fonction de courant, on pose d;_ = 0,

et f est imposé sur les surfaces latérales. A l'entrée, il
faut imposer la vitesse normale par le biais de *f’. Cela signi-
fie que si 1l'on ne comnaft que les vitesses, il fawt évaluer

la fonction de courant par umn moyen d'intégration quelconque.
Dans notre cas, on a imposé les valeurs théoriques de la fonc# .~
tion de courant,

Avec le potentiel des vitesses, il faut imposer y’ =0 a
1'extémité (condition homogéne);,ﬁ& = O sur les contours laté-
Kraux; la vitesse normale est imposée & l'entide. Ces vitesses
sont concentrées par le programme en espéces de sources énergé-
tiquement équivalentes au droit des noeuds du wmodéle. (cfr} an-
nexe). ‘

On vérifiera aisément que les conditions sont remplies pour

avoir une bornation de l'énergie cinétique. On trouvera:

™) » T > T(y) .

La différence domnera une mesure de la qualité des deux appro=-
ches. »

Le lecteur trouvera, page 7%4, le modéle par éléments finis.
Les pages 7.5 & '7.19 contiennent les résultats obtenus. Le pro-
gramme général de résolution ASEF ayant &té congu pour le cal-
cul des structures, on ne s'étonnera pas de touver des titres
comme " contraintes" ou"déplacementsm o (voir correspondance

en annexe). Pour. ne fex S alowrdir, hows hne donnons 7w’une paitie

deg il bets .
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7.. 5.:.:=J

===== CALCUL DES CONTRAINTES
NOMBRE DE CAS DE CHARGE 1P AN 1
 IPTION D IMPRESSIONS DE CONTROLE 10p L9
APTIAM D IMPRESSION DES COMTRAINTES ISTRES GENERAL 0
CONTRAINTES POUR LE CAS DE CHARGE AR 1
ELMT | NOEUDS TYPE f)ﬁ?g+) J*xt+>
NO | ' :
T 2 1 5 40 20.2626 2.24613
2. 1 5 6 40 18.2096 2.02125
3 5 10 6 4 TITTA22 T 4.68220
4 5 9 10 | 40 16.4010 2.27575
5 9 14 10 49 15,7958 " 5190659
6 9 13 14 40 14,7622 2.64244
7 13 18 14 40 13.8246 5.76644
8 13 17 18 40 13.0974 3.11719
o 17 22 18 40 C 11.8866 6034147
10 17 21 22 . 40  11.5842 3.85754
11 21 26 22 N 40 10.0384 6.97639
12 21 25 26 | 41 10.1115 5.05576
13 25 30 28 40 8.46180 7.32938
14 25 20 30 40 £.71792 6.5C591
15 . 29 33 30 40 T7.00354  8.43800
16 33 34 30 - 40 7.52088 8.33403
17 33 37 34 4o 5.05480 10.1096
18 . 37 38 34 .40 . €.92004 10.£250
19 37 41 38 40 | 3.84381 . 11.5430
20 41 42 38 40 636567 11.8814
21 41 45 42 40 3.12289 13.1256
t



S

A4

S

pve

NGMBRE CE CAS DE CHARGE
CPTION C IMPRESSIONS DE CONTROLE

CPTICH DO IMPRESSfDN DES CIUNTRAINTES ISTRES GENERAL

CCNTRAIMTES FCUR LE CAS DE CHARGE HNR

Iap

- ——-— T - o - s V" - W S WS o . - - o

)

wn

10
11

12

14
15
lo

17

19

20.

21

Ui

(¥s]

D

13
13
17
17

21

41

41

13

NOEUDS
1 5
5 6

10 o
9 10

14 10

14

A18 14

17 18

22 18

21 22

26 22

25 26

30 26

25 30

33 30

34 30

37 24

38 34

41 33

42 3%

45 42

40

40

40

40

40
49

%0

- =7.61006
' 5,63679

6411803

4092881

4439576
4067574
4452402

5.03638

5.23157

5.55983
6.25655
6.12183

T.60082

6.61684

10.3079

8425936
11,6663
10.2560
13.0054

12.3678

-14.6972
-12,2268
-15.9574
-18.0935

-15.,5292

~-14.33219

~-l2.4651

212.9349

-10.2288
R

-11.46508

-3.29111

LR

‘1003384

-6.70976

-6.35748
f705q923
~5.12427

-6.26054

-14.8273
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"CAS CE CHAKGE NR 1 7> ‘ ENERGIE POTENTIELLE TOTALE
''''''''''''''''''' ’ 4310447 Do

CEPLACEMENTS ALX NOEULS

- - -~ - o -

CANS LES AXES STRUCTURAUX

NOEGD CCNPGSAHTE DeDela - | CEPLACEMENT CHARGE ©£U RcACTIO

- _----___-__-~__-___-__-_-_--_-;-__-;;f_;-_--__-; ........ Lo
o 1 1 -1.939969D 02 -1.025344D 01
2 | L 2 -2.0381160 02 -2.116¢25D0 01

3 1 3 ~-1.588370D 02 ~2,253363D 01

4 1 4 ~1.971570D 02 ~ -1.176603D 01

5 1 5 ~1.8014450 02 2.8155660-14

& - 1 p ~1.763675C 02 5.3841820-L4

7 1 ¢ -1.8019970 02 " l.311€84D-13

g 1 8 ~1.7666890 02 - =1.540990D-13
5 ' 1 9 ~1.613609D 02 | =2.4913400-13
1c . 1 10 ~1.§99463D 02 . 2,0738570-13
11 RV : 11 “ -1.606689D 02 - ~3.526513D-14%
12 L 12 ~1.6054080 02  =4.2565550-13
13 1 13 ~1.456866D 02 ~ . =3.6926020-13
14 o | 14  -1.4539410 02 :3.0420110—14
15 | L 15 ~1.450947D 02  3.126383D-13

, le.‘ ‘ 1 16  =1.4499530 02 ~7.5051080- 14
17 ,: L -1.320229D 02  =1.612044D-13
18 .1 18 -1.3151170 92 © 3,6859400-14
s 1 19 =1.3164110 02 "  ~1.77€3570-14
2¢ B! 20 ~1.31072@D'02 -9.,7033490- L4

21 L : 21 -1.1988270 02 ‘ -2.3225370-13



;- - -

CA>D DL CHAVLGE  Bim 1 o . ENERLLIE FUTENTLIDULLE TUDPLC
A | A 314{Jo ~ D ©%. g i
DEPLACEMENTS AUX NDENDS Nl '

e o - - . W —

DANS LES AXES STRUCTURAUX

NDEUD COMPOSANTE D.D.L. DEPLACEMENT CHARGE CU REACTION
_ \/1/ ‘ ‘ A
T T T T T alo00000 01 -1.1321120 01
? ‘4 .2 4.060000D 01 -2.523128D-01
3 1 3 6.23400600 01 2.000102D-01
4 1 4 | 8.5800000 D1 1.113972D0 01
5 1 5 2.000020D 01 ~ -1.773615D 01
6 1 6 4114502001 . =1.4277470-12
7 1 7 6.213145D 01 L 1.1763570-14
j8 . 1 f. ' 8 ~8.580000D 01 - 1;8336090 01
9 1 9 | .Z.OOOOOOD_OL | ~1.6365410 01
10 | 1 19 | | 4:033314D 01 5.995204D=15
o 1 S S 6.221960D 01 -4.618528D-14
12 1 12 '8.%890000 01 1.57677¢D 01
13 . 1 | . 13 . 2,000000D 01 v-l.468380D 0l
N |
La | L 14 - 19:9§ZQ§§PWQLM“, ~ =5.329071D-14
15 ;. 1 | 15 . ¢.2254895 01 4.218847D=14
16 1 ‘ 16 8.580000D 01 .1.4540090 01
17 1 T | 2.000000D 01 ‘-1;3038C4D 01
18 L 18 4.0517380.01. 1.820766D-14
19 1 19 . 6.222814D 01 1~4}596323D—14

aa B 1 an a RannAnN AT 1 2T1QIEP A1
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7.4- Etude des résultats
To4.1 - L'énergie cinétique donne bien les relations
T(¥)z T(¢) 5 T(y) = T(¢).

Les deux approches sont donc suffisantes. On notera cepen-

dant que la valeur trouvée est dans les deux cas supérieure
a4 la valeur théorique. Cela est dfi & la polygonalisation des
contours du modéle qui’ a pour effet notamment de rétrécir
légerement la section de passage. Mais dans le cadre du
modéle choisi, on a encadrement de 1'énergie,

Les vitesses moyennes différent assez sensiblement
d'une approche & l'autre. Cela est dfi au découpage trian-
gulaire,

7.4.2 - Etude des aberrations de découpage, dans le cas

des éléments lindaires.

I1y a, en fait, deux phénoménes distincts:
1) Les valeurs.de Y ou ¥ étant imposées aux sommets
d'un quadrilatére, lesrvitesses différent selon que l'on
découpe le quadrilatére selon l'une ou l'au tre diagonale,
Clest 1l'anaelzapie . de dérivation.
2) La matrice de raideur elle méme différe.d'un cas & l'au-
tre: c'est 1'énmzioe

sneey de ralideur.

Ted.2.1=- Etude de ‘"anisotropie de dérivation

T1 n'est pas indifférent, du point de wvue

des vitesses moyennes dans les éléments, de découper un quadri-
larére comme dans la figure 1 ou comme dans la figure 2. Dans -
ces figures, les fl&ches représentent les vitesses pour

‘7"4 =1 ;%_:O ;y;.—.-o; %:0. On voit que octest fort
différent. Mais lorsqu'on prend la moyenne des deux triangles,
pondérée par les aires respectives, soit
%

SI + SII
les résultats sont identiques

S + S

ey
5 A 1 X

Can A4 dans les deux cas, pour des

éléments lindéaires. Pour le

montrer, utilisons les"coor=-

dognées triangulaires! défi-

nies par:

Cao 2 | “x p ) %Xy 3
, .2 :xa(‘éa 4\2('32,)41\3 ds

A 1 A
?
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%y A Xa dl A3 N
\ 1= 1 9 9 Y Az
. 'é A A A { M3
—
A

dtm A = f 2 8 (S= aire du tri-
angle)

-,-;‘3 La signature du déterminant 1
est (+4) si le triddre est droi-

tier, ce qui a lEeu si les points

1,2,3 sont numérotés lors d'un parcours "aire i gauche". Les

dérivées se correspondent par la formule:

Di = 22, ©
= AL a’% ‘
avec
~, 4 31“33 B b
A ,;’j = 22 Ay~ X3 ‘.7(3'74 ag-Ae
| I e =419

Pour \f linéaire, (f: /\;Lf + M‘f 1“’3‘7"_3

et 9,,? ] :_L ( 279 B h Y ){ L{’;)
az—(f - 25 ’J:z"r& 'ﬁ's"I; d""-’/'— (fg

Considérons alors deux cas : |

Triangle 1 (1,2,3) | B
+ (ﬂz‘ﬁa Pl YR ' P °) %

grad = m—

Triangle 2 (1,3,4%)

4 (3{‘3«1 ° Y Th ) Qz)

’1'1“13 '1'5-1,' Ay-Ap ©

: - 2
grad (f 2 Sy \~ig @ Ay~ T, -3 (':/
La moyenne pondérée est donc: (32'39 4379 Yu 92 i Ys ) (\ql%
23 - Ty oAy %A T3 NY,
cas 2 Triangle ¥ (1,2,4) ’ 0,
y 499 49 ° L da )(‘;a;)
grad 7 = E—E:; xz—x'lf "11'. -2, © xa- 2L F‘I
Triangle 2 (2,3,4 A
_( ’ ’o) gy v G2 G2l (Sv%
1 | grad T — o Ay-Ay EhgoTr Al ¥y

-y oy - - 1

La moyenne pondérée est donc: 31 %‘l B3 Wl # ) Y2

| o ' G-ty gy Aty MRy [\ B3

Ainsi, la moyenne pondérée par les aires est invariantes
Cl'est donc cette seule quantité qui peut servir de base pour

la comparaison. Lorsque S, v S, ,on peut simplifier en prenant




(7’”“1'7") - grad‘ifj(‘l) + grad P (2)
oy 2
L'erreur est trés faible si les cellules quadrangulaires sont

approx:.mat:.vement des parallelogrammes.

70 4 2,0 - Anlsotroplev de raldeur

Soit un. quadrilatére, dont
vl o oso o ontprend les diagonales comme
axes. Les composantes de ces

X<
2 S . s
axes dans un’systeme orthonor-

6—
4
4

avec le précédent sont données par:

- 4 ' P " esy
£ = 0 / 2 A

La transformation est linéaire., La matrice jacobienne s'éecrit

4 Cof o
J= 1] Aol o
o o 4

s
et son déterminant vaut sin« . Les dérivées du systéme

orthonormé se transforment par la formmle classique

-“'y ]-I?Y °
Définissons des coor onnees triangulaires dans le systéme
orthogonal :

—

X

On a aussi

J_l)? = A y-i)U + X, J’I)(zf’ A ]
soit ’;L_’ = )\4 Ay f>‘1,'7¢2, + >\3 X, (‘14 /'xz— %5) ) ——A)\
Les coordonnées triangulaires gardent donc la m&me définition

en axes obliques. Les dérivées peuvent donc se calculér K par

i

X/t;(—ﬂ + xzxz + >\3x3

o - 9
Yy = "y T Ry, A
aveg J A A CeA of o A 4 '12 ’3(-3
= Am ol o 31 yz %3
(¢} o 1 /] 1

Pour le triangle (1,2,3),

mé dont le premier axe coincide

744




7 . ,'12

il

i

-k A o
] : ( a c .o)
1 -1 -4
et JA - b ceedd
o o chtmint
( 1 1 )
- ¢ dwid

1
. g Chmat
Ce qui donne [JA}’: A . o e
(@44 )c ol - btewsd  _cotd-a arb

Lepn acgmol o
et [947’ 1 - C himel Chin & o
L'interpolation lindaire de ‘f peut s'écrire
f: ‘/\4741%2747")373 .

Par conséquent,

_chhd  cesd-b wCpmd cfpmd o©
Kmex-b - (ewsdia) af&)

. 94
) e = I chnd - (ceatd+2) ( '
94?94.}7 - (74 7,2 ?3)@1‘5)2&1”‘;’114 { cead ;;

] @ A
Aol

?fgf = q'Kq.
K est la matrice de raideur de 1'élément. Pour l'assemblage
dans le quadrilatére, i1l suffit de la gonfler au moyen de
zéros

Bt dbectd - cliab. (a-bfecotd @</$)[czwor’u4) o

J A
k H): e al ic?i 2acceddd - [afﬂ) /ﬁ'fffdd} o
brb) 2iat s
SYH. (a+0) °
o

La matrice de raideur du triangle (1,2,4) s'obtient & partir de
la premiére, en notant que

4 Am (-] = g
vl (f—d) = .. codX
d et en considérant la figure ci-
-0l

contre. (Remarquons que 1'éner-

4 a MV . ‘gie cinétique est indépendante
4 de la direction de la viiesse.
et donc aussi de l'orientation du triangle)
On obtient




T .43

k(z) 4 ‘wg-zfd‘zf‘zﬁdw 3 a@-.f. (a—d/ajmd_‘la o - (a‘ﬂ)(e[e”q“e)
- é«wﬂ/‘ld%‘d a1d? 2adeodd o ~(arh)(a-dene)
[ (4
ST M. . (= + 43')3'

La matrice de raideur du quadrilatdére est donnée par
x=x (1) x(2)_

2e242 b3 (24 decsct b (c-b) | ab (%)t (a-h)lc-d)cdesa - 2% ceotd-b | b-oleasd
242 (aib) Emit | (@+b)? cZaipnta | (mb)CZMd | (ath Jdeim=t

J—— — — e — . e

,Z‘;zd‘..na’*(czfdz/f'&“d acelld-¢) ' _atewd | dedd-a
| c20l? ( @4b)? pmiut l CZ{afb)M—'_fi{ . ézﬁj@iﬁﬁd

'_.l
- syM. — - — = — ﬁ_.: |
|

|

o

1
| dnind

TLe cas ou l'oncoupe par la diagonale 4-3 est équivalent
au probléme représenté ci-dessous:

On retrouve le probléme précédent moyennant les correspon-

dances
a— d 1 —4
G —p b ‘ 2 —= 3
b —* c ; 3 — 2
d -~ 2a 4 —& 1
La matrice de r%ideur s'éecrit done
- @ Cod  ~ acedd +¢
zm‘nzd' © Y PNrTR ' -
i . ﬁ.z(f’”f’z'fi‘ L eUet) W
~L___ - ALt besad | Hewd -€
ke perdlpntd erd ) BEpiL \ o
, ) _ cndai - 2 b¢
1 sy gl dewsabdte ] | de (52)16-0) S adend-
|| T ar b (erd) T (c+d)*al simtd |
N SYMT T T T T Ty ay c2(24B)  Tewd ok (63

L | | T 2 (e )
Ltanisotopie est nulle si les deux matrices sont égales,

Considérons d'abord le cas particulier ou o =:%§ .

* Ltégalité des composantes (1,3) exige

£ _ d
@b a?(c+d) (1)

* Pour les composantes (1,4), il faut:



T4

A = €
(as4)d* w(cid) (2)

Divisant les équations (1) et (2) membre & membre, on obtient
c/d = lc=d]

Liégalité des composantes (2,3) entraine:
2 L (3)
cifarb) b3(c+d)
Divisant les relations (1) et (3) membre & membre, on trouve

[o=a.]

Ltégalité des composantes (1l.2).s'écrit, si 1l'on tient compte
des relations c=d et a=b:
2a202

—204=O,d'0ﬁ e=a
On obtient donc a =1b =c¢ = d, (Carré) _

I1 est facile de vérifier : . 1'égalité des autres com-
posantes sous cette condition. C'est évidemment la seule
condition indépendante de of qui puisse convenir. Or pour

108 quelconque, a =b =c¢ = d donne v
: 4 o  2(cwd~-1) ~2 (cordr 1) \ .
: 1 : b -2(itewsa) +2(et-1) daws Lo
R =Zem | 4 . Zeos
agm SY M

4

dans les deux cas de découpage . (Rectangle)

Teh.2,3 - Conclusion _
Les cellules rectangulaires sont insensibles au sens de

découpage. On s'arrangera donc pour avoir un découpage sen-
siblement rectangtilaire. Dans ce cas, on fera la moyenne
arithmétique des vitesses sur Ies deux éléments d'une cellule.

Nous avons suivi cette méthode pour établir les diagram-
mes de vitesses ci-dessous..En absci sse, il s'agit d'une
coordonnée arbitraire correspondant aux numéros d'éléments.
Chague courbe correspond a un Cou101r“ d’elements .

7l s3-Comparaison des vitesses u&bl_af_ggﬁ)et.u{wmcf)

P g R et o e s wat e

' Les diagrammes qui suivent sont suffisamment parlants: les vi=-
tesses sont trd¥s voisines s sauf. dans le voisinage immédiat: de
l'entrée du canal. La raison de dette différence est & rechercher
dans'les conditions aux limites. Pour la fonctlon de courant,

on impose la valeur de j) ” calculee au besoin par

F(4) = plde) - J,uhaa



,f;ji“."“:"%‘l S I
o :

ytp)|

148

i : .

<<<<<<

| Edints "“ y[%j —ﬂ;‘/" "}ff/» "E&;w.ewl,’ - #4(%) ""'é‘c‘df»
a2 | 49231 (19,4167 |13,9620 | 1434k | Aojogc | 10,6633
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.z | 443358 | 449500 |4 87570 asm A5, 3207 | 45,7447, |156505
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ViTessEs VERTICALES
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2¢ “COuLoIR”

1 . APPROCHE
& APPROCHE ¥
3 SOLUTION EXACTE

o el

'-_’“;_y

20

—_— .

5 s& s1 5o kg ke 46 4% do 38 5 % = 3o NCELT
55 53 51 4y 4y k5 43 41 39 3 35 3B 3 28

Viresses VeRTicALES

- 2% "couLgIrR"

4. APPR.OCHE 7) _
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ncy

. . o v
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55 83 51 49 by hs 43 41 39 37 385 33 3129
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On dit que la fonction de courant est le champ de connaissance
forte, c'est & dire qu'il est la base de la discrétisation et,
en fin de compte, le champ que l'on varie dans 1l'@pplication
du prncipe Js,

Pour le potentiel des vitesses, on impose la vitesse normale,

variable conjuguée dexglJ s -mais par des "sources", flux con=-

e .
centrés énergdtiquement dquivalents. Si, au poht de vue énergé-
tique, cela donne le bon résultat, ce procédé n'entraine pas

moins: une transformation locale du champ des vitesses.

Loin de ces limites, la différence est trés faible, illus-
trant ainsi ce que MARTIN [42] appelle "le principe de Saint-
Venant de la mécanique des fluides". , ,

Normalement, ce sont lea conditions sur le champ de cone
naissance forte qui doivent donner les meillefirs résultats:.

() C'est bien le cas, comme on peut le constater en comparant
les valeurs de (-uy(ﬁ))) aux valeurs théoriques.

*

7.5 ~ Ceci montre clairement que, m@me par de modéles rela-
tivement simples, la méthode des éléments finis permet de
traiter avec succés les écoulements.plans de fluides parfaits.
On pourrait, d'autre part, traiter le cas axisymétrique sans
grand changement par rapport & ce qui précdde,

e sfosksf ook skokskok




8.1
CHAPITRE 8 « FORMULATION VARTIATIONNELLE DE LA LUBRIFICATION

8,1= Dérivation d'un principe canonique de la lubrification

Le probldme a déja été évoqué au chapitre ¥, paragraphe 8.
Nous allons ici montrer comment, & partir des principes du
chapitre 4, on peut  déduire unerméthode d'analyse duale
des problémes de lubrification stationnaire.

Le schéma esﬁ le m8me que dans le chapitre 4. Les conditions
aux limites sont:

en y= O : uy = Vi (<= 4,3)
en y= h 2 ui = O i
On fait les hypothéses suivantes:
u,= @ partout
Seuls les T, sont considérés: (4= 43)
p= constante sur toute la hauteunr h. .
Les conditions aux limites sufyles vitesses en y=0 et en
=h sopt imposées a4 priori. Nous noterons S* pour la surface
latérale. Dans ces conditions, le principe & trois champs

stéerit & R(u, @ ,p) = 0, avec: ,
R{%1% )~ / “‘F -,p)hq,w)diifl‘u,deﬁ[Zj« G, Dh'*rabwde

Pour avoir des renseignements sur la forme des tensions de vis-
cosité, varions u, @

Fug B GG~ A
Or‘Qiﬁ ne dépend pas de y. On a donc:

02 Gé/' = 2y [7(,3)

soit O‘;;; = Q’*y + ,g—’
Il est clair que bi est la"tension de frottement" sur la surface
mobile. Restituant cette forme dans le principe et intégrant

le terme qui s'y rapporte sur la hauteur, on trouve:(«ﬂ-=3urfac&
honizontale)

a:a 43 42 L " .' e

Ay £ cl,b +é~ A= cl.ﬂ_ - [@, 16, a4 4 9,.1(, ]dﬁ
Zkf ¢ p /”’ ’ %” ) "é ‘7 )le a S"
1)y Aig s v [ L) 2y (oigy 6] ¢ )i g )] #

Cnme
o

_'l; /i"”" (/“;'/"z"} ol§ [ 9. = oeli) olaws Az otw-ue‘wu/t)
Oy = s @IS ] g - ) o8 |

.4g étant la portion du contourm de SL correpondant




a s
1. .
e ~ Jﬂ[ﬂ,‘(j 4[;{) Oy 2e; AR = -/S/a,';fé,')ﬁkk;‘dj 7’*4 a’‘w R
=/ X G ol» ~/ [a;[f!:,’),ui/jj ol +‘/~Jz L Vi oz
-2 2 o
o j_Q +a,‘ ur da = '/S i i oS -j/; 9,-/. ui ok
= hi 9. - ‘ o 3
_J[(//«thaa ZQ ,/i.dJL
D'oli le principe canonique de la lubrification: B(LC) =0
N ca- 43 L.
Lé= /(?Lﬁ’.ﬁé + &’bl//'_l ) 6rblL a, 7‘-/>V ..,c’),'/« )Jﬁ
) ¢ 2. — + IZ- y T 7,
a 7 2y :

Les équation d'Euler de ce principe sont:
PR 'A) A\AZ
f@.l. Lo A ¥ - - g, = o. (’1)
}/U 2/u z -
-fe .
5,45 4&«_4_,4/41__4_*1/,':0.
z A

(2)

[7/ [ Ly~ 91/9: )
(3)
/IF.,T»}/)'.‘/«: ) A /{l ton ne peut donc y imposer
A que la pression (n)
(¢ Z:i - /I”Z + Mg 7:— = o W’J, (15)
O e ig e e (6)
O gp =0 St (7)

8.2 - Principe & deux champs (p,q)

Restituons la valeur des tensions de viscosité: le sys~

téme formé par les équations (1) et (2) donne comme solutions:

A :
ay= «-j‘fﬁt/‘ "/z" )

\ - . e
6‘//- "—7"' )ai ‘7’ l/'z
XA .
(M*éé_ Yb, = . V&
4 p 2 Tl = !
il ne reste plus qu‘'a caleculer
?'Q,‘ - W
L > — Py

ce qui donne:



6 — , 73 ,,V..' . 8;’
R R Ay | ?
e

At ek -
On obiient aloxrs le principe mixtes

31 1 g 9. 48) 1 390 T e~y g (poF) o
’JJ}M& }4:::3,

dont les équations d! Euier sont:
’ 6/“’ 3 O n=> ©
g7 l:fz'; [27/.-1’,»4’/+ e
P F o Ly
b s ,
/‘1417,-:”7,‘%_ W"é

8.3- Si 1%Yon impose a priori 1gjrelations

vl 43 . .
R A o opof ot :
on obtient le principe'de variation des pressions:
43 -
!;(;%; 2, p ap - = 9¢a)ob% + j pi o s rmes -

dont 1'équation dat Euler,

v
~ /z/.‘ ) % (& ) N

est célébre sous le nom d' édquation de REYNOLDS (cfr. par ex.
: LELOUP,[#1])

En surface, on obtient:

vk _ 43

. - P (9 = /T, g,
S A
8.4 - Si, au contraire, on impose 9,'%. =0 ,es!b%'l‘l,'z-:i sur 4 ’
, [ pwacs - [ p9q. dN ; .
J/j‘.a,/« dr - /%n,zw ‘1241!,"-.7: ce qui donme:

\iw (g5, -9 00) dn 4 [ fmip, stoz i

(Principe de variation des débits)s

Une maniére simple d'imposer la continuité des: débits consiste

a poser
A g ==y ’
Alors, on obtient:
f ] (09%y - h Ve hoy)da ] lads-moay) e
JT A
On peut transformer les termes aux limites:

Jo B (7m0 =700y elo -é Flbhayq topy)de . (F=wethou by
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j@, L ¥) %%dﬁ LI*)";;,_ + é e

{:-Qb{’ sont les extémités de fi . Par conséquent, par con=

1
tinunité, 7’ f/ et: le crochet est invariant. On obtient donc:

j (% %y - Ay 1 Ahay)dn -j Oy olo i

(Principe de variation de la fonction de courant{) t est la direc-

tion de la tangente, pour un sens de parcours "aire a gauche",

8,5 - Bornes supérieures et inférieures en lubrification.
-—-D(A) -—»(Q) J‘B df)—
AQ/L
> 0

o

L]

Considérons la Fforme quadratique lz

Elle est définie positive; car >0 et
1)! les champs homogdnes statiquement admissii-

bles a, vérifiant les relations:
A= DA/\'

2) les champs homogenes cindmatiquement ad-
missibles: ¢, tels que

D= o~ /’% Z.

@,’7,. = 9 _Juec S

Définissons alors

Migy = o A £4

Ces deux familles scnt orthogonales:
: A3 9/ . 2. ~
(a,0)= - h T o p . 7dn- - Jy it +ujn poig. A < o

3)‘soit un champ ,particulier statiquement

admissible non-homogéne: ay:
i Rz -3
a.,:f f= R0k
4= F nus 4
4) soit enfin o, un champ particulier cin. ad.

non-homogéne défini par les relations:
%
Q(’ > /"-—& 7)

9,7 )
Mig: = g we

ey i
4,

Alors, 3 1 /
(a,0,) = [Q’%} 7 oipl 1) da =£(V‘[‘9r+ A0iq;) da 'iihf‘/:@“*




| oy da .-*J A7 -

2
53
3 o ) |
o) = =), M "f“’"m' '!g,,‘?,/hl./‘ ot [, pUETE

Par conséquent,
°(c+cgyc+cy) = 2 (c,a,) =

L% (g ) [ -q)dn 12y frigede

On retrouve le principe de variation des débits.

° (a+ag,,axd,) =2 (a,cy) =

LA oyt an <x | ko dara] T mi

On retrouve le principe de variation des pressions.

Conclu51on. appelons "puissance laminaire" la demi-norme. Clest

la puissance qui correspondrail &4 des vitesses imposées nulles.,
e [N -
1°_CAS: ¢, = 0, co=-a=d. Vi =0, vg =0 SuJ’I"gZ °

-Alors,

3
1.9, ol ¢ puissance laminaire ¢ '£— O p ,}“d,/L
JL

jﬂ-,&s

2° cAS: a, = 0, c.~a=d. p = O sur £, .

Alors,

' ‘ W{ w*
L% Ok U p AJZ’{ puiésance laminaire < [Lé/\f}; [ Z’"]})/; 'Z/ﬁ}-ﬂ—

8.6 = Il est dome possible de faire des édtudes en lubrification
par la méthode des é1léments finis. Bien plus, les principes de
variation de p et de la fonction de courant différent peu de
ceux relatifs aux écoulements plans de fluide parfait. Moyennant
des modifications mineures (hauteur variable, "forces" de wvolu-
me), on pourrait donc utiliser le méme élément fini. L'existen-
ce de bormnes supérieures et inférieures permet de tester la con-
vergence de ll'approximation. L%extensdion au cas du "squeeze film"
est simple.(cfr. REDDI ,[14] et [#]). La méthode des é1éments Ffi-
nis semble donc trés prometteuse dans ce domaine, surtout qutel=
le permet d'étudier facilement les géométries compliquées .

*: E 3




9.1
CHAPITRE 9 - TRATTEMENT DE® ECOULEMENTS DE STOKES PLANS PAR
ANATOGIE ETASTIQUE. [46]
gjq-Considérons le prinecipe,de variation des vitesses établi
au chapitre 4.

Ulw) - _/,f'f,u;ds -f/[/;./u,‘ - F(Du)] AR pmim .
| 5 b

Pour vérifier la condition essentielle d'incompressibilité,
on peut écrire le principe en termes de la fonction de cou-
rant définie par

/“4"‘9,371‘ o )
Le principe s'écrit alors

_/[/EELV/'/E, ] r![/%%%-fga/wj c/S-[/A&,/“O.'/';IQ
4

Transformons les différents termes:
1) 4, - e, s0it explicitement: &1=24 =%

7

Des lors,F 'T‘/“‘[%fwzi +28; ]

=L+ o)™ 29,42 Y + 22at)’]
ds%
? .lf(fgaaz\;) ) Wzg,,? )

J (m‘m&}a_r%md/)eh “_Jg[ 91(”/:)734(”2)] fds

£

ol la derniére intégrale est nulle, puisque la
pesanteur est irrotationnelles

Or, m, =fz et m, =—f4 s oﬁjg est le vecteur
tangent (défini dans le sens "aire & gauche").
Dés lors,

L B )= - [P ) [l
gi 1l'on écrit éf = f}wﬁ’+f&4? ’

il vient finalement

- -ty = ~5p .
s ab = S 010 + mn k@‘@ = d'& ‘e
f§ fh - tfi fe -
3) Examinons J Fiwiea . On a évidemment
— - 4
Le produit scalaire se conserve lors d'une trans-
formation orthogonale:
Kowi= T+ Fp Ry
Dtautre part,
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CRUNE

b o
o4
Q¥
Cre

- .
* ;&:,uff; %*ﬁ‘;qﬁ%z-gy%-gym-
Lt'intégrale peut donc s‘ecrire'
T oy 4o+ f%’hu J}t‘i
f( LYY w/",e }eh’ U \I) On
8, A
ol 7. et ‘%,, sont les extrémités d'arcs ;d',e-":f;.g.&;j: SE BT

parcourus dans le sens précisé ci-dessus.

S5i 1l'on impose

la continuité de la fonction de courant, on peut écrire

s}z: ; en “‘fg— et

Le crochet est donc invariant.

L]

Finalement, on obtient le principe de variation de la

fonction de courant:

5d = o

avece

L)

ey Ty R

f jf [(au"’)z f(’au‘f’)z - 29, ¥ % * 4(9,¢9) Jds

Pour les plaques de KIRCHHOFF, le principe de variation de la

fléche s'éerit (31

§J =0

h)

ou

. 2
;7:= /ngi[(a”&r)-(%luaz"ZLfahmr%z“' +2P“ﬂ)&%M¢F;’dS

/(Tm 20t o f-/ fin 25 - E20)WG)

On en déduit aisément 1l'analogie résumée dans le tableau

suivant

Ecoulement de STOKES Plaque de KIRCHHOFE

Y= (viscosité)

¥ (fet.de courant)
/gt (compos. tg. de la
pesanteur)

D (rigidité flexion-
nelle)

v (fléche)

7;’(effort tranchant)




9.3

Ecoulement de STOKES Plague de KIRCHHOFF
An  (tension de visc. ~ HMpt  (moment de torsion)
normale)
_Z; (tension tg. de H; (moment de flexion)
viscosité) ‘
- = effort tranehant
1% e
[T T 2s de KIRCHHOFF)
-4 vz (coeff. de POISSON)

F (du) (fct ~de dlSSLpatlon) AP (énergie libre)

* Pour les plaques,

8%,
- My *.D[ bﬁé) D{g,,zf a'ga_) 3€tCeace
ou
Mx_ 4 ° Sf,,w—
] 4 IS ;azz’l"’
Hj, __.D
o 0 A-w Fpp 45

Hag

* Pour l'écoulement de STOKES,
G';'D = 2/4/-—34/5‘1 = Z/Ufall 70
G, = Z/dzﬂz = -2/912.7”
Ty = /;[deigﬂr) /“-( 22~ < 41)‘/)

ce qui donne

6;2 4 -1 o N
O = p[ 4 A4 0 - S ¥
-0a o o 2 ~%u ¥

On obtient ainsi les nouvelles correspondances:
0'42 P Nﬁ-

'042. A H?

.,0.44 P = Nz?,

Le fait de trouver (- 1) comme coefficient de POISSON ne
doit pas étonner. En effet, les tensions ne se correspondent
pas exactémént, ccomme 6n vientode 1& volire ~—onts Jo Lo,
" Cettevranalogiela un’grand intérét, car elle permet d'é-
tudier les écoulements de STOKES avec des éléments de pla-

que. Cela représente une économie considérable en program-



9.4
mation. On sait, en effet, que la constuction d'éléments ol
la condition de jonctién s'éecrit en termes de la dérivée
normale du champ ne se fait pas sans problémes.

9,2~ Btude d'un écoulement 3 paroi crénelée.

Pour illustrer l'application de l'analogie élastigque,
étudions 1'écoulement représenté ci-dessous. La paroi supé-
rieure est plane, la paroi inférieure présente des aspérités
rectangulaires de facgon périodique. |

e L L~ Nt
™
L&

7 7 a2 V7
T 2 =
77 T I @ O/ 7

0

Considérons la section- (1)

a) I1 est clair que u; est symétrique par rapport & cette

section; ga?déimvééﬁest"dénc:uﬁeﬂfoﬁctiontimpaiﬁér&eixl_pris

égal:-a zéro en (1), D&s lors, Tuy =0, d'ob o, =0 en

cette section. ‘ )

b) D'autre part, Uy doit 8tre antisymétrique par rapport

a4 la section considérde, donc impaire en'xy . Sa dérivée se-

conde a la méme parité, ce qui signifie 9, , = 0. Comme

U, = O sur toute la hauteur de la section, on peut écrire
4, =0

L'équation de NAVIER-STOKES donne alors

Ol,/v =/u(34,+%z/ﬂz =0 .

Un raisonnement semblable pourrait &tre tenu pour la
section (2). Il suffit donc de considérer -la portion de
ltécoulement comprise entre-les plans (1) et (2). Les condi-
tions aux limites sont alors:

L M=0 ; U=O
v L L L Ll

. W=
Qﬁ/@f:o Fﬁrz °
/;///7¢

: wso,) A=z ©
1 g Niddd
| e

ou, ce gqui est équivalent:



F .o

=2/ 9.5
S L Ll L L L LL LS L
a_, odn_,
24 1
gﬁ:o ?i’: o
G LT I
o
on g f////////
On notera qu'en posant < =1, on ne fait que fixer l'échel-

le des vitesses, Dans le m8me ordre.d'idées, on peut aussi
poser /#—: 1, ce qui fixe 1'échelle des pressions. Notons
explicitement la relation de similitude: soient p 5 V ,/u ’
T respectivement une pression, une vitesse, une viscosité ,
une léngueur de référence., On peut écrire

p=Pp ; v=V¥v ; 2 =,M/I ;1 =LT.
Lféquation de NAVIER-STOKES s'écrit alors

£ gers p - ES nvty
] A

La similitude dynamique est donc conservée si

S e
— /Z = C— °
On peut aussi exprimer cette .'réglé-’. en termes de la fonc-

tion de courant. Le résultat est

Aﬁz =C':t2£ o
o A
Nous considérerOns divers rapports entre la largeur et la

profondeur des creux. Ils sont donnés par les 7 schémas de
la page suivante. Voici leurs caractéristiques:

CAS1: 1 =2 1/h = 0,667 .

CAS 2 =3 1/h = 1,667 .

CAS 3 : 1 =4 1/h = 2,667 .

CAS 4 ¢+ 1 =4 1/h = 2,000 .

CAS 5 ¢ 1 =4 1/h = 1,82 .

CAS 6 ¢ 1 =4 1/h = 1,000 .
T 1 4

CAS 1/h = 0,500 .

Le probléme est traité par 1'élément de plaque quadrangulaire
conforme du ITAS. Les résultats sont consignés en page 9.8.

On observe, lorsque 1/h est suffisamment petit, l'apparition

de tourbillons. Les valeurs de la fonction de cou rant correspon-
dant & ceux-ci sont soulignées. LOrsﬁuﬁil‘fdun second tour-
billon en sens inverse, les valeurs correspondantes sont sou-
lignées deux fois.
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| | 9.15
On trouvera, aux pages 9.9 & 9.15, les lignes de courant dans
les 7 cas. On les a rangés par importéance croissante des tour-
billons.,
Examen des résultats

1) Nmesure que la profondeur augmente, on assiste & la forma-
tion de tourbillons., Les tourbillons naissent dans le coin du
creux. On a donc deux tourbillons gui’', pour une plus grande
profondeur, se rejoignent pour en.former un.seul, & plan de
symétie vertical, mais aplati’du c6té de 1l'écoulement prin-
cipal. Pour de plus grandes profondeurs, on voit apparaitre

de nouveaux tourbillons en sens inverse. Ils se forment d'une
maniére analogue aux - premiers mais: sont beaucoup plus lents,
2) La valeur de la puissance dissipée varie d'un cas & l'autre
de la fagon suivante:

CAS PUISSANCE 1 _1/n
1 0,6454661 2 0,667
2 0,6324835 3 1,667
3 0,5997827 4 2,667
4 0,5954533 4 2,000
5 .0,5951628 4 1,82
6 0,5855926 4 1,000
7 0,5690973 4 0, 500

On observe donc que la puissance dissipée

-augmenté . si 1 diminue

=augmente si 1/h augmente, pour 1 = cte.
Les tourbillons donnent donc & 1l‘'écoulement une configura-
tion moins dissipative, C'est assez logique, puisque 1l'écou-
lement obéit & un principe de moindre dissipation.

9.3 - Cet exemple montre bien les résultats que l'on peut
obtenir, méme avec un maillage assez peu serré, 11 faut ce-
pendant noter gue 1'élément utilisé.est assez évolué (assem-
blage de triangles du troisiéme degré). Au point de vue du
temps de traitement du probléme, voici le détail pour le
cas 4: (IBM 370/155) ,

Préparation des données: 5,239 sec

Génération des éléments:15,665 sec

Résolution: 17,284 sec

TOTAL 32,949 sec.

Le programme travaille sur 197 degrés de liberté.. ,
On peut donc krottver dans 1l'analogie élastique une solution




9.1¢
efficace et peu cofiteuse en software,puisque on peut utiliser
des éléments finis déja construits.

%k * R
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APPENDICE~ Note sur 1'élément "40" de fluide parfait,
approche par potentiel des vitésses ou fonction

de courant.

I1 s'agit d'un élément fini triangulaire de degré va-
riable. Tl permet de faire une approche par le potentiel
des vitesses ou la fonction de courant. Nous parlerons,
pour fixer les idées, de la fonction de courant.

La fonction de courant est développée en un polyndme
de degré quelconque:

y’/: Q4~1 &zlf &sy—]-aq Zz+&5_1y+é?.6y2f....

En pratique, il conviént cependant de se limiter au degré
3, qui est le degré imposé pour les "forces appliquées".
(Conventionnellement, nous dirons "déplacement"pour la
variable de connaissance fortey "force" pour la variable
conjuguée & la surface). Les polyndmes sont utilisés sous
une forme pseudo-formelle qui permet la construction au-
tomatique de 1'élément, le degré étant spécifié par 1ltuti-
lisateur.

1) On peut écrire

7# =a'f f':(l,x,y;xg,xy,yg,....)

On a j/(x(i)):qi= a'f(x(i)) , x(1) étant les noeuds
du triangle.

L'ensemble de ces relations s'écrit:

. £ (x(1)) )
g= C a ou C = £1(x(2)) est appelee matrice

de connexion .

°
-]
o

2) Dérivons la fonction de coutrant:

/Di+ = a-'aif
Yoy = alof (0;f)'a

A/Q"*a"f"m = a'lf 9;T(2;f)'ws] a = a'la
a
1

versraml

= q'C” qa = q'Kq
ou K est appelée "matrice.- de raideur", par analogie avec

ltanalyse des structures.
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3) Veeteurs de dérivation

Considérons une fonction /7 =pb'f,
La fonctionnelle

:{ 7uwi7. 7uuif/a¢4

est =~bilinéaire

-définie positive pour les gradients

-symétrique. '
C'est donc un produit scalaire pour les gradients (mais
non pour les fonctions elles- mémes).

Nous 1'écrirons donc: (gradfggrad?) = a'lb . Supposons

a présent que
M+

= %
/7 T
Cela revient & dire
-”Gj’: (&/ A= ﬂtodu Aee Compolonw |
Dés lors,
R = J.
)T T G
et .
[W)@M/?} : a'Ib - “,éIé/‘/ = @y,
_ i - - ¢ e
- 7[(’ .Z‘)[» z&(c I,)éa

=k [6’1/;!?//,;5 celimne

Les veeteurs dg sont appelds "veeteurs de dérivation®, .Ils
donnent en effet soit les moyennes, soit les moments des
dérivées. ‘

Conclusion: Vitesse moyenne :

9{ 4
[ gyt = )
Moment selon x 44' i
(47)1

y

On montre facilement que pour




A3,

= xn+l , 8= nombre de termes jusque et y compris
le degré n, +1 , soit:
Ss(w) + 1
2
_ n+l . . .
=y , 8= nombre de termes jusqu'au degré (n+l)

compris, soit :

S;(n+23(n+3)

2

Dans 1'élément 40, seuls d
nent:

5 et d3 sont calculés., Ils don-

| éaf#u? et (227ﬁ£ﬁ?.°

4) Modes rigides. Singularité de la matrice de raideur

La fonctionnelle (grad%,gradf) est nullecsi et seule-
ment si gradj= 0. Cela signifie que ¥ est constante. C'est
ce quecnous appellerons "mode rigide!,toujours par analogie
avec les structures.

Pour 71' =constante, g; = q. Des lors, pour f7 gquelcon-
que, on a '7(Xi) = g5 et

(?"“d”]; T“df) = ylﬁ',/ ?/ =0 car gudy=0

Puisque les g; sont arbitraires, on doit avoir
kirg. - £ k..
'/71 N 7 ) / v 7

Donec, < I =0 : La somme des éléments d'une colonne
de K est nulle.

5) Réduction de la matrice de .raideur et des vecteurs—de
dérivation. (routine REDM40)

Torsque le degré du polyndéme est » 3, on est amené &

définir des points intérieurs pour dékerminer tous les coef-
ficients du polynéme. Ces noeuds intérieurs ne participent

pas & la connexion et il convient de les éliminer.
Considérons le cas ol

l'indice 2 se rapportant aux points intérieurs. Alors,




A, 4
grad Y ne peut &tre nul partout dans 1'élément sans que
lton ait g, = O. Donci(grad?f, grady:) > QayiCettériné-
gudtionrpeut s'écrire

3 ’) 1 K o . /)( 2‘73)::(1' < s 0
(0 9, e #22] | 4, > 92 ) | faag, o Kop 95

pour tout q, différent de 0. Cela signifie que K22 est
. définie positive. Par conséquent , partant de 1'équation

s ()
(Ku kzz,) % A2
on peut écrire

9, = R (p2-ki9,)
et [k“-— k,fa kzl.‘o qu ) ﬁ»ﬂ = 4‘,4 - irdz "}a.,//*z

®

s0it Kaed g, < 4 )

équation qui définit 1l'opération de réduction de la matrice

de raideur.et la transformation du vecteur "force". Lorsque
. ‘ *

Py= 0, ce qui sera généralement le cas pour nous, p =Dq

Montrons que Kred conserve la singularité de K. Pour cela,

mettons X sous la forme
K Kip E ku Ao ) ( AtkyB 92 D
K.: (K?'I KZL) = ( o K‘zz) ( B D A kzz B Kzz D

On trouveipar identification

DEE
B = K)_;" KZ'}' F
A= K- Ky Ko7 1Kpy= Kud
dtou ' ‘
E kgz) Kud © )
K= ( o Kn) \lki'f, E .
I1 s'ensuit que dtm K = dim (KQQ) . dtm (Kred) ;
s dim K
its dt K = —_— = .
S0 m ( red) T 0

I1 faut encore, réduire les vecteurs de dérivation.
Les considérations qui suivent valent pour tout vecteur
z tel que =z'q soit invariant, & conditidén que Py, = 0.

On a g
(?)14 %11) (_kz"}(z,q‘) N

5, 3.) 4 )-
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It

(37- 3 &'k, ),
= £ 3*'q,

avec

.3';5 = 3,’ - ;Cvz kz;.‘}z

6) Distribution de forces énergétiquement éguivalentes (rou-
tine FAPP40) ’ |
L'élément peut recevoir, sur le premier cdté de son
contour, des forces en distribution continue. Elles sont
définies par la valeur locale de la densité de force en
4 points. (1) . La densité ést interpolée:par la.routine

gui’calcule énsuite le nombre voulu de forces énergétique-

“

ment équivalentes, c'est & dire telles que

/,’UPGQ . = PC)qli)
S ]

Pour cela, on prend pour coordonnée la longueur parcourue
sur:"le contour. ILes forces s'éerivent

, e ) k
AB) = 47w o £ = (4. 47)
L'interpolation se fait au moyen d'une: matrice de connexion
locale C, telle que- ’

. b
£=
On procede d'une facon analogue pour les déplacements:
qla) = a'4 (4) ot 4= (4 4”)
et _ ¢ a
1=

Le terme de surface s'éerit alors:

[1p g - SO ell < o Nb.

:E'Nf{'a :,F;j
. _opet g - I PP P
ol P= C? N'b = Cq NCr,»

est le vecteur force associé aux déplacements.du premier
cdté.

7) Remarques générales

a) L'élément est appelé par le programme ASEF du ITAS,
via une routine nommée ASP40 qui transmet les données et
fait lire ce qui est propre & 1l'élément.

g - - - — -~ — - o - o -1 ——

Sur 1L'ASEF: carte additionnelle n° 2, Mettre IFO = 1.
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b)Résultats: le programme ASEF a été congu pour. le
calcul des structures, On ne s'étonnera donc pas d'y trou-
ver des termes se rapportant & cette diseipline. Voici la

correspondance des diverses grandeurs:

STRUCTURES Y >
Déplacement ’f P
Contraintes{ Vitesses [“1 Vitesses{

. e Ad

2 ,My

Reactions, Vitesses normales Vit. tg.
forces
Energie potentielle | En. cinétique En. cinétique

8) Note sur 1l'interprétation~dés-résultats-
Dans 1'élément n® i ,

a(i) = c(i)a(i) et E(i)= Cc'(i)I(i)c(i).
L'assemblage peut 8tre schématisé comme suitt

(i) = L(i) Q@ ,
ol Q est le vecteur déplacement global pour llécoulement
complet, et L(i) la matrice d'incidence de 1'élément. L'é-
nergie cinétique relative & 1'élément n°i est donc

44'G) Kli)gu) = 4 Q" L'ti) KG)LL) &
Pour 1l'écoulement complet, il suffit de faire la somme
sur tous les éléments: ~- ¢

- 4 &' (£1'0) kG)LY) @
Varions Q. $T= 6Q'[ £ i) k) Lei)l e
Le premier membre de la_conditiod ‘natiirelle s'éerit:
Z U'u) kL)
]
s Uu)..ku)cau)
= & Le)c't) me'a) qt)
b S
matrice moments moyens-~(cf supra)

On obtient donc une conditions sur les valeurs moyennes.

Ce sont donc les seulés: grandeurs qui ont uni.sens au point
de vue du principe variationnel. Calculer des vitesses
locales est abusiZy Clest pourquoi seules les vitesses .
moyennes sont calculées dans 1'élément. En fait, on pour-



AT
rait calculer les moments jusqu'a l'ordre (n-1l), n étant’
le degré du champ ou ¥ . Mais ces grandeurs sont dif-
ficiles & interpréter. On dit., d‘'habitude que le champ
connu partout(celui qui a été discrétisé dans 1'élément)
est connu fortement. Le champ connu en moyenne est dit de
connaissance faible.



CONCLUSION

- — BT - o - -

Les exemples traités ci-dessus mettent en lumiére:zla sou-
plesse d'utilisation de la méthode des éléments finis., Un
de ses grands avantages est de permettre 1l'étude de formes
compliquées. |

Certains cas d'écoulements ont déja été traités par PIN
TONG, MARTIN, ODEN, REDDI, CHU . (5] ,{12],13], (24] ,[{15 ,[16].
Parfois, on peut utiliser directement des élément finis exis-
tant pour le calcul des structures. Dans d'autres cas, il
faut construire de nbuveaux éléments, mais ils sont souvent
simples et, pour beaucoup, trés voisins.

Enfin, la possibilité d‘'une analyse duvale, garantissant
1l'encadrement d'une norme, permet de vérifier la convergen~-
ce de la discrétisation, Ce n'est certes pas le moindre avan-
tage de la méthode des éléments finis,
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