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1. Introduction

Les méthodes d’estimation d’erreur de solutions obtenues par
éléments finis peuvent se subdiviser en deux catégories. Dans la
premiére, on essale d’abord de déterminer, par une voie quelque
peu empirique, une "meilleure" solution, par exemple par lissage
des contraintes. Cette "meilleure" solution sert de base a un
calcul d’erreur par différence avec la solution obtenue. La
difficulté est évidemment de définir des algorithmes
d’amélioration a posteriori de la solution, et les résultats s’en
ressentent.

Dans la seconde catégorie de méthodes, on s’efforce de
n’utiliser que les résultats obtenus par le calcul, et on en
analyse les défauts. La solution est en effet défectueuse dans la
mesure ou elle viole les conditions locales d’équilibre. A priori,
une telle approche a beaucoup d’attraits, car le caractére local
des défauts doit permettre de déterminer en quels endroits la
solution est particuliérement mauvaise, et d’en déduire une
stratégie de raffinement du maillage.

Mais cette vole est rocailleuse, car il n’y a pas
nécessairement convergence locale de 1’équilibre, si bien qu’une
-attention particuliere s’impose pour définir des mesures d’erreur
consistantes. Notre point de wvue est qu’il faut considérer le
déséquilibre dans son cadre naturel, c’est-a-dire comme un élément
de 1’espace dual. En d’autres termes, un déséquilibre ne peut étre
valablement mesuré que par le travail qu’il est susceptible de
produire. Les quelques lignes qui suivent présentent des mesures
d’erreur de caractére quasi-local permettant de déterminer Iles
lieux ol un raffinement de maillage s’ impose en priorité.

2. Probléme variationnel

Soit @ un ouvert de Rz, de frontiére 80. On considére une
forme bilinéaire

alu,v) = J (8u, H8v) dS (1)
Q

ou u et v sont des champs de déplacement définis dans Q, 8 un
opérateur de dérivation du premier ordre, H un opérateur matriciel
symétrique permettant de calculer les contraintes

c = H 8u.

La forme bilinéaire {1) esg.définie et bornée dans un ensemble V
(qui est une puissance de H (Q))

lalu,v)| = C IIuIIV NVHV (2)

Moyennant des fixations suffisantes, conduisant & restreindre V a
un sous-espace Vo’ la forme (1) est également VO—.elliptique:



a(u,u) =z « Huﬂs dans V0 . (3)

Dans ces conditions, il est assez naturel, et trés commode,
d’utiliser dans VO la norme énergétique

Jul? = a(u,u) . (4)

Nous considérerons des formes linéaires du type

f(v) = (f,v)ds + [ (t,v) ds , (5)
Q bord
avec
fel?®@ , tel%bord) |,

le bord étant restreint a la partie de 3R exempte de fixations. De
telles fonctionnelles sont toujours bornées sur V0 :

f(v)
iff = sw T < o (6)
0

Le probléme variationnel envisagé consiste a minimiser dans VO

1’énergie potentielle totale

EPT(u) = % alu,u) - £(u) . 7)

Il est équivalent de chercher 1'élément u € V0 tel que pour tout

vevlV ,
o}

alu,v) = £{v) . (8)

3. Probléme approché

On résout le probléme (8) de maniére approchée en définissant
un sous-espace d’éléments finis Vh cc V0 et en cherchant a
minimiser 1’énergie potentielle totale dans Vh, ce qui revient a

chercher u € V.  tel que pour tout v. e V. ,
h h h h
a(uh, vh) = f(vh) . (9)

Bien entendu, la solution u.h ainsi obtenue est entachée d’une
erreur, c’est-a-dire que u # u , sauf dans le cas particulier ou

le hasard voudrait que u € Vh . Il en découle en particulier que



EPT(uh) = EPT(u) ,

1’égalité étant 1’ exception.

4. Expression de 1l’erreur en fonction des déplacements

L’erreur de la solution obtenue peut étre mesurée globalement
par la norme |u - uhl. Celle~ci est intimement liée a 1’erreur en

énergie totale, car

ju - uhl2 = a(u - u, u- uh) = |u|2 - 2 alu, uh) + |uh|2
— 2 —
=J9q° +aly, u) -2f()
= J4? + 2 EPTC0) (10)

Cette relation est en fait valable pour tout déplacement approché,
gu’il soit ou non obtenu par la méthode de Rayleigh-Ritz.
Précisément, cette derniére méthode consiste & minimiser EPT(uh),

ce qui revient donc & minimiser 1’erreur en énergie. La
conjugaison des deux relations (8) et (9), écrites avec

v=v €V c V donne
h h
alu, vh) = f(vh) = a(uhx vh) 3 alu - u vh) = 0, {11)

pour tout v, € Vh . Cela signifie que le résidu (u - uh) d’ une

analyse de Rayleigh-Ritz est orthogonal a la solution approchée.
I1 en résulte en particulier que

|u - uhl2 = alu - u, u) , (12)

relation dont nous aurons & nous servir. Par ailleurs, la
linéarité des espace Vb et Vh implique que 1’on peut poser dans

(8 et (9) v = u et v, = u, ce qui donne les théorémes de
Clapeyron

alu,u) = f(u) (13)
et

a(uh, uh) = f(uh) . (14)

Il en découle

__1 - _ 1
EPT(uh) =-3 a(uh, uh) =-3 f(uh) (15)

d’ou, par (10}, »z



fu-ul® =% - Iuf® = f@ - £(u) (16)

résultat bien connu.

Tout serait évidemment fort simple si 1’on connaissait la
solution exacte u, ce qui n’est malheureusement pas le cas. On
peut évidemment travailler par extrapolation a partir de plusieurs
analyses, en tenant compte du fait que 1’erreur ju - uhl tend vers

zéro lorsque le maillage se raffine. Mais une telle méthode est
coliteuse et peu satisfaisante en ce qu’elle ne donne pas
d’ indications sur les endroits ou il convient de raffiner le
maillage.

5. Mesure de 1’erreur en fonction des défauts d’équilibre

Commencgons par noter que

alu -u, v

ju-ul = su —— (17)
n veV K|
0
Or,
a(u~uh,v) = a(u,v) - a(uh,V) = f(v) - a(uh,v) . (18)

Développons ces deux termes. On a, en notant e les éléments et b
les portions de frontiéres d’éléments appartenant au bord chargé,

flv) =y J (t,v)ds+% J (f,v) dS . (19)
b b e e

Par ailleurs, en notant

¢ = H du ,
h h

on obtient

a(uh,v) = E Ie(vh,av)ds

et, en intégrant par parties sur chaque élément,

afu,v) =Y J (Neo ,v)ds -} J (8¢ ,v) dS ,
h h h
e Je e e

ol 8’ est l’opérateur conjugué a 8 et N’ 1’opérateur de frontiére
correspondant. Séparons sur les frontiéres d’éléments les
interfaces i et les bords b. Il vient, en tenant compte de la
présence de deux termes sur les interfaces,



a(uh,v) =y 7J (AN’ah,v) ds + ¥ J [N’ah,v] ds -}y J (a’oh,v) as
i i b b e e
(20)
Rassemblant les résultats (19), (20) et (21), on obtient

a(uh,v) =

rYJ - Ne, vlids -} [ (AN, v)ds + } J (a’oh + f, v) dsS
b b i i e e

(21)

11 s’agit du travail des défauts d’équilibre:

t - N’oh sur les bords
AN’O‘h sur les interfaces
B’oh + f dans les éléments,

pour un déplacement d’essai v. Si 1’on se donne ce déplacement v,
1’expression (21) est une fonctionnelle gh(v) que 1’on peut

calculer a partir des données et des résultats de 1’analyse
effectuée. 11 est clair que

gh(vJ

Vo i

fu - uhl = sup
v e

= Ighl’ , (22)

|gh|’ étant la norme dans le dual Vé. Lorsque le maillage se
raffine, |gh|’ > 0. Mais cela ne signifie pas que les défauts

locauxzd’équilibre tendent vers zéro ponctuellement, ni méme au
sens L”. Un contre-exemple typique est 1’élément du premier degré
dans lequel on a constamment 6’0h = 0, si bien que

LI 1o +fl%as=0 [£fl*ds ,
e e B Q

grandeur qui ne tend pas vers zéro. Il convient donc d’étre treés
attentif aux normes utilisées. Dans cette optique, nous dirons
gu’une mesure d’erreur est consistante si elle tend vers zéro
lorsque ju - uh| le fait.

6. Une mesure inconsistante d’erreur

On est tenté de majorer 1’expression (21} en faisant
usage de diverses inégalités a la Schwarz-Cauchy. Ainsi,



A

I +t - Neo, v)ds | =J |t -No | |v] ds
b B b b

= (JIt-No2ds)V? ( vi?as )
h
b b
et
IT F (t-N'o ,v) ds | = (T J [t-N'e 12 as )2 (¥ S Iv|® ds )2
h h
b b b b b b
Notant
2 1/2
“ﬁno,ub = (Y I [#]7 ds) )
b b
on a donc obtenu le majorant
it - N oh"O,ub "V”O,ub

De la méme fagon, et avec des notations similaires,

|Z I.(AN 0h, v) ds | = lAN Gh“D,Ui "V"O,Ui
i i
et
[y I (8 oh + f, v) ds | =18 oh + f”O,Ue "V”O,Ue ,
e e
si bien que
gh(v) = {It-N oh"D,Ub ”V”O,Ub + AN U‘hllD,Ul ”VHO,Ui +
+ 187 ¢ +£fll ftvil é b (v) (23)
h 0,ve 0,ve h '
On a alors
2 —
fu uh| = alu - u, u) = gh(u) = bh(u) ,
et on peut évaluer bh(u) par
bh(u) o bh(uh) . (24)

Ce procédé est du reste susceptible de nombreuses variantes sur
lesquelles nous n’insisterons pas, car notre objet est de faire
remarquer que la convergence énergétique n’ implique pas que

8'ec + £l —> 0 |,
h 0,ve

ce que nous savons déja, ni non plus que



AN’ o I ., —> 0,
h O,ui

puisque précisément, une partie des charges réparties est
redistribuée sur les frontiéres de 1’élément de maniere
énergétiquement équivalente. Le méme phénoméne se produilt
également au droit des bords. La mesure d’erreur (23) est donc
inconsistante. lLa raison de cette inconsistance est & chercher
dans le fait que 1l'’on a remplacé la norme naturelle des charges,
celle du dual, par une norme au sens du carré moyen, qui est plus
forte. Du reste, il s’agit d’une mesure globale qui ne donne
‘aucune indication directe sur les régions ou le maillage doit étre
raffiné.

7. Evaluations énergétiques locales de 1’erreur

Considérons deux éléments e, et e, ayant en commun une

interface i. Pour la simplicité de 1’exposé, nous supposerons les
éléments de degré 1, bien que les idées énoncées ci-dessous soient
plus générales. Définissons un déplacement ¥ nul sur la frontiere

de e1U e , et quadratique sur 1’interface 1. Pour ce

2
déplacement,

gh(W) = [ (6’oh+f,w)dS + f (6’0h+f,w]dS + [ (AN’oh,w)ds , (25)

e (5] 1
1 2

grandeur qu’il est aisé de calculer. Ceci fournit une mesure du
déséquilibre d’ interface

g ()

i

Il est clair que cette mesure d’erreur, de caractére local, est
consistante, car Y € V0 , ce qui implique

e(y) = (26)

gh(v]
ey) = sup = lgl” - (@1
vev i
0
On notera gque 1’expression (26) contient une partie des

déséquilibres intérieurs d’éléments, ce qui est une nécessité du
fait de la compensation partielle de ces déséquilibres avec
ceux de 1’interface.

De la méme fagon, en choisissant pour ¥ une bulle d’élément,
on obtient

gh(W) = [ (a’oh + f, y) ds (28)
e
et



J (a’mh + £, y) ds

v

e(y) =

Les mesures d’erreur de ce genre peuvent étre calculées dans
le cadre d’un post-processeur, puisqu’elles ne font appel qu’aux
données et aux résultats obtenus. En outre, nous nous proposons de
montrer que les déplacements Y menant aux plus grandes valeurs de
e{yY) sont & ajouter en priorité au modéle: il s’agit donc
d’ indicateurs de régions a raffiner.

8. Analyse de sensibilité

Soit u la solution approchée obtenue. Proposons—-nous de

1’améliorer par addition d’un champ de déplacement particulier gy
ol q est un nombre, et Y la forme du déplacement. On cherchera
donc le déplacement

G=uh+qtp (30)

qui minimise

EPT(1) = -é- alu+ q ¥, u+qy) - £lu+ qy)
1
= % alu, u) +qalu,g) +5q a@y) - £lu) - q £
= EPT(u) + > @ Y] - 0 [£) - alu, ¥)]
h 2 n’
= EPT(w) + 2 o Jy|° - a g, () (31)

Le minimum de cette expression par rapport a g s’obtient pour

gh(w)

N

Pour cette valeur, on obtient

. L W
EPT(u) = EPT(uh) -5

2 lez

Ainsi, 1’addition du degré de liberté Y, sans rien changer au

= EPT(u,) - % W) . (32)

reste de la solution, permet de gagner %' 82(w) sur 1’énergie
potentielle totale. En vertu de la formule (10), cela signifie que

e s 2 .
la norme de 1’erreur est diminuée de & (Y). Par conséquent, un

9



raffinement rationnel de maillage doit commencer par 1’addition
des champs de déplacement ayant le plus grand =(y).
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