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Abstract : This paper proposes a methodology to estimate the maximum revenue that can be generated
by a company that operates a high-capacity storage device to buy or sell electricity on the day-ahead
electricity market. The methodology exploits the Dynamic Programming (DP) principle and is specified
for hydrogen-based storage devices that use electrolysis to produce hydrogen and fuel cells to generate
electricity from hydrogen. Experimental results are generated using historical data of energy prices on
the Belgian market. They show how the storage capacity and other parameters of the storage device
influence the optimal revenue. The main conclusion drawn from the experiments is that it may be
interesting to invest in large storage tanks to exploit the inter-seasonal price fluctuations of electricity.

1 Introduction
Developing sustainable energy systems is one of the most critical issues that today’s society must address.

Due to the random nature of Renewable Energy Sources (RES) generation, fossil-fuel-based generation
capacity is currently still needed to provide flexibility and to cover reliably peak supply. This issue can
be partially addressed or mitigated in several ways [1]: (i) by diversifying the types of renewable energy
sources to reduce the correlation between the amount of energy supplied by these sources, which lowers the
risk of shortage of supply, (ii) by developing electricity storage resources, (iii) by increasing the flexibility
of the demand, to smooth out peak demand or (iv) by developing the electrical network since the variance
in the energy supplied by renewable sources tends to decrease with the size of the zone on which they are
collected [2]. This has been the main motivation for developing the European network these latter years.
Note that authors have also reported that variance in the energy supplied by renewables could be further
decreased by building a global electrical grid that connects continents together [3], [4].

During recent years, storage has gradually become more and more profitable thanks to technological
progress. Consequently, economic actors on the energy market are currently planning to invest in stor-
age devices. Among the different storage technologies, pumped-storage hydroelectricity and batteries are
currently among the most mature. Other technologies exist such as for example super capacities, energy
conversion to natural gas, compressed air energy storage, flywheels, superconducting magnetic energy stor-
age and storage of electricity in the form of hydrogen. This latter one seems to be particularly promising
due to its capability to store large quantities of energy at relatively low cost, and is therefore well suited for
long-term storage [5]. Additionally, the round trip efficiency of hydrogen-based storage devices is rather
good. For example, the energy efficiency of an electrolyzer is around 80% and the one of a fuel cell is
generally between 40% and 60%, which results in an overall round-trip efficiency of 35% up to 50%, with
the potential to get an efficiency higher than 70% in hybrid fuel cell/turbine systems and more than 80% in
Combined Heat and Power (CHP) systems.

However, before investing in such a hydrogen-based storage technology, a careful analysis of the return
on investment needs to be carried out. Such an analysis implies, among others, to be able to estimate
the revenues that can be generated by such a storage device on the power exchange markets, which is the
focus of this paper. We will consider the case of a company that operates the hydrogen-based high-capacity
storage device makes money by buying or selling electricity on the day-ahead market. In such a context,
the company has to decide on the day-ahead which amount of electricity to store or to generate for every
market period. The main complexity of this decision problem originates from the fact that a decision to
store or generate electricity at one specific market period may not only significantly impact the revenues
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that could be generated at other market periods of the day, but also the revenues that could be generated
months ahead. As a result, long optimization horizons have to be considered for computing operation
strategies for high-capacity storage devices.

The valuation of energy storage technologies on power markets has already received considerable at-
tention in the scientific literature [6–11]. For example, reference [10] proposes an approach based on
mixed-integer programming for optimizing bidding strategies for hydropower. This approach can handle
uncertainty in market prices and water inflows. However, the computational complexity of this technique
grows very rapidly with the state/action space, which makes this approach unsuitable for estimating the
revenues that can be generated by a storage capacity over a long period of time. Another example is ref-
erence [11] where a methodology based on Approximate Dynamic Programming (ADP) is proposed for
optimizing jointly in the day-ahead the trading of renewable energy and of storage management strategies.
The main advantage of ADP is that its complexity grows only linearly with the time horizon. However, its
complexity grows exponentially with the size of the state/action space (a phenomenon also referred to as
the “curse of dimensionality” in the literature), which may make ADP techniques not suitable for handling
problems that involve many storage devices.

Before explaining the details of this approach, we will describe in Section 2 the bid process for a typical
day-ahead electricity market such as the Belgian electricity market and lay out in Section 3 a mathematical
model for energy storage under the form of hydrogen. A first formulation of our problem as a dynamic
programming problem will be stated in Section 4 where we assume that only the market prices of the next
market day are known. Section 5 specifies this formulation to the case where the market prices are assumed
to be known over the whole optimization horizon and provides a fully specified algorithm that exploits
this new formulation for computing the maximum operational revenue. The complexity of this algorithm
is proportional to the product of the size of the state space, the action space and the optimization horizon
and is therefore well suited for long time horizon. Section 6 provides experimental results computed from
historical data gathered over the Belgian electricity market. Finally, Section 7 concludes the paper.

2 Optimization on the day-ahead energy market
Let us consider a power exchange market for the day-ahead trading of electricity, providing the market

with a transparent reference price. Producers and retailers submit every day offers to the market operator of
the power exchange market. An offer is defined by a volume and a limit price, and can span several market
periods. The market clearing price is computed by the market operator at the intersection of the supply
and the demand curves. For the Belpex model that will be used, the bid process happens every day for the
day-ahead. The prices for electricity on the Belgian day-ahead market are determined via a blind auction
with the possibility to define linked Block Orders that allows the execution of (a set of) profile block(s) to be
subjected to the execution of another block. This possibility allows to design complex linked structures (i.e.
families) that take into account the different possible price outcomes of the market clearing price. Figure 1
shows the distribution of prices over the year 2013.

In this paper, we consider that the storage capacity is an agent which interacts with the electricity ex-
change market under the following assumptions: (i) the evolution of the price of electricity does not depend
on the behavior of this agent. This assumption is also called "market resilience"; this resilience is actually
of the order of 5.10−3e/MWh on the Belgian power exchange market [12] which means that one actor only
will hardly make any sizable change, and (ii) the evolution of the prices is known when determining the
agent behavior.

3 Problem formalization
Let us introduce a discrete-time system whose state variable is fully described by the amount of energy

in the storage device. The state space S contains all possible states si,j ∈ S , where the indices (i, j) refer
to hour j during day i (in MWh). Let A be the set of possible actions and ai,j ∈ A the action taken at time
(i, j). At every time step, an action ai,j = [aGRi,j , a

RG
i,j ] ∈ A is applied on the system, where aGRi,j is the

amount of energy transferred into the storage (R) from the grid (G), and aRGi,j is the amount of energy taken
out of the storage (R) to the grid (G).
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Figure 1: Number of periods of one hour as a function of the price of electricity for the year 2013.

The considered dynamics is defined over nD days and nH market periods (nH = 24). We denote by I

and J the sets of time indices:

I = {0, ..., nD − 1},
J = {0, ..., nH − 1}.

The system dynamics is given by the following equation:

∀i ∈ I,∀j ∈ J, si,j+1 = f(si,j ,ai,j) (1)

where we use the convention si,nH
= si+1,0 for any i ∈ I. The notation ti,j is introduced as the time index

corresponding to time (i, j) ∈ I× J. This transition function can be rewritten as follows:

si,j = si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ), ∀(i, j) ∈ I× J. (2)

At any time (i, j) ∈ I× J, the following constraints have to be satisfied:

si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) ≤ Sc (3)

si,0 +

ti,j−1∑
t=ti,0

(aGRt − aRGt ) ≥ 0 (4)

The bidding process occurs only once for each day i ∈ I, which means that all actions taken on day i+ 1
are computed on day i. We denote by si ∈ S the vector of states defined as si = [si,0, si,1, ..., si,nH−1]. We
denote by Ai ∈ A the matrix of actions defined as follows: Ai =

[
aGRi ;aRGi

]
with

aGRi = [aGRi,0 , a
GR
i,1 , ..., a

GR
i,n−1]

and
aRGi = [aRGi,0 , a

RG
i,1 , ..., a

RG
i,n−1].

The dynamics corresponding to the bidding process logic is then

si+1,0 = F (si,0, Ai), ∀i ∈ I,∀Ai ∈ Ai (5)

where the feasible action space Ai is the set of matrices of actions Ai which satisfy the constraints at time
i ∈ I defined by Equations (3) and (4).
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We define a reward function ρ(si,0, Ai,pi) for day i which measures the revenues generated by taking a
sequence of actions Ai when starting from the state si,0, function of the vector of prices of electricity pi
for day i. The value of the reward function is given by the total amount of money paid or collected when
transferring energy to and from the grid. For every day i, the reward function is defined by

ρ(si,0, Ai,pi) =

ti,0+n−1∑
t=ti,0

r(at, pt)

where r(st, at, pt) is given by

r(st, at, pt) =

(
aRGt ηd − aGRt

ηc

)
pt

with ηd and ηc being the discharge and charge efficiencies, respectively.
In the context of the day-ahead energy market developed in Section 2, the prices of electricity are known

one day before, i.e. the prices of electricity on day i ∈ I are known when choosing the sequence of actions
Ai ∈ Ai. An admissible policy π(i, si,0) : I × S → A is a function that maps states into actions such that,
for any state si,0, the action π(i, si,0) satisfies the constraints (3) and (4) (which defines the set of feasible
actions Ai ⊂ A). We denote by Π such a set:

Π = {π : I× S→ A : ∀si,0 ∈ S,∀i ∈ I, π(i, si,0) ∈ Ai}

Arguably, the decision of a policy π to be made during the bidding process is whether to buy or sell
energy to maximize the revenues on the long term. An optimal value function V ∗i+1(si+1,0) is introduced
as the maximum expected revenue that can be obtained from time (i + 1, 0) = (i, nH) over the remaining
time-steps:

∀si+1,0 ∈ S, V ∗i+1(si+1,0) = max
(Ai+1,...,AnD−1)∈Ai+1×...×AnD−1

E
pi+1,...,pnD−1

[
nD−1∑
k=i+1

ρ(sk,0, Ak,pk)

]

From these value functions, an optimal policy π∗ ∈ Π can be defined as follows:

∀i ∈ I,∀si,0 ∈ S, π∗(i, si,0) ∈ arg max
Ai∈Ai

(
ρ(si,0, Ai,pi) + V ∗i+1(si+1,0)

)
. (6)

4 A Dynamic Programming approach to compute the optimal rev-
enue of storage

In this paper, we make the (strong) assumption that the evolution of the prices is perfectly known. This
has the two following consequences on the resolution of the above-described problem:

• the problem becomes deterministic;

• the day-ahead structure of the problem disappears.

Les Q0, Q1, . . ., Q24∗nD−1 be the sequence of functions defined as follows:

Qt(s, a) = r(s, a, pt) + max
feasiblea′∈A

Qt+1(f(s, a), a′),∀(s, a) ∈ S ×A, t = 0 . . . nD ∗ 24 (7)

with

QnD∗24(s, a) = 0, ∀(s, a) ∈ S ×A.

It is straightforward to see that when the prices are known we have:

V ∗i (s) = max
a∈Ai

Qi∗24(s, a)
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Since the state/action space is continuous, it is not possible to compute exactly the sequence of func-
tions Qt, from which it is possible to estimate in a straightforward way the maximum revenue that can be
generated by our storage capacity. Instead, we suggest to approximate the computation of this sequence
of functions by discretizing the state and the action space [13, 14]. More specifically, the state space is
discretized into a set {σ(i), i = 1 . . . nS}, and the action space is discretized into a set {α(i), i = 1 . . . nA}.
We also choose a projection function Γ : S → {σ(1), . . . , σ(nS)} which projects any element of the state
space S into a unique element of the discretized space. In such a context, the problem is reduced to a dy-
namic programming problem with a finite horizon of nD ∗24 time-steps that can be solved with a backward
value iteration algorithm [15]. The resulting algorithm is sketched in Procedure 1. It has a complexity pro-
portional to the product of the size of the state space, the action space and the optimization horizon. A(σ)
denotes the set of feasible discretized actions for a given discretized state σ so that the maximization over
possible actions α(i) takes into account the constraints stated in Equations (3) and (4).

From the sequence of Q̂t functions outputted by Procedure 1, one can extract a bidding policy. Note that
the near-optimal revenue that is obtained from an initial state s0 can be calculated as follows:

arg max
α′∈A(Γ(s0))

Q̂0(Γ(s0), α′)

Another way to calculate this revenue is to simulate the system with the policy extracted from these Q̂t
functions. As way of example, Procedure 2 provides a way for computing the sequence of actions outputted
by this policy when the initial state of the system is s0.

Procedure 1 Q-iteration in the discretized state-action space
Input: pt, ∀t = 0, ..., nD ∗ 24− 1;

for t = nD ∗ 24− 1 to 0 do {Backward loop over all time periods}
for σ = σ(1) . . . σ(nS) do {Loop over discretized states}

for α = α(1) . . . α(nA) do {Loop over actions}
Q̂t(σ, α) = r(σ, α, pt) + max

α′∈A(σ′)
Q̂t+1(σ′, α′) where σ′ = Γ(f(σ, α))

end for
end for

end for
return Q̂t,∀t ∈ 0, . . . , nD ∗ 24− 1

Procedure 2 Computation of the sequence of actions generated by the bidding policy

Input: Q̂t,∀t ∈ 0, 1, . . . , nD ∗ 24− 1; s0

σ0 = Γ(s0)
for t = 0 to nD ∗ 24− 1 do {Loop over all time periods}

for α = α(1) . . . α(nA) do {Loop over actions}
α∗t = arg max

α′∈A(σt)

Q̂t(σ
′, α′)

σt+1 = f(σt, α
∗
t )

end for
end for
return α∗t , ∀t ∈ 0, . . . , nD ∗ 24− 1

5 Mathematical model for energy storage under the form of hydro-
gen

Each storage capacity is defined by its maximum capacity, its maximum power consumption and restitu-
tion to the network as well as the efficiencies for those three steps. A hydrogen-based high-capacity storage
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device is composed from three main parts: (i) an electrolyzer that transforms water into hydrogen using
electricity (ii) a tank where the hydrogen is stored (iii) a fuel cell where the hydrogen is transformed into
electricity. Figure 2 gives a schematic representation of such a device, whose main 3 elements are detailed
hereafter.

Figure 2: Sketch of the hydrogen based high-capacity storage.

5.1 Electrolysis

Currently the dominant technology for direct production of hydrogen (95%) is steam reforming from fos-
sil fuels. However sustainable techniques also exist, such as electrolysis of water using electricity from one
of the many renewable sources. It also has the advantage of producing high-purity hydrogen (>99.999%).

The technical performance of this process has a strong dependency on the rate at which the electrolysis
is forced. The charge energy efficiency as a function of the cell voltage is given by:

ηc =
1.48

CellV oltage

The minimum voltage necessary for electrolysis is 1.23 V . Henceforth, the process can theoretically reach
efficiencies above 100% but the rate at which the reaction happens is then very low [16]. The part of the
voltage that exceeds 1.23 V is called overpotential or overvoltage, and leads to losses in the electrochemical
process while allowing a higher rate in the reaction. Current density as a function of voltage is approximated
at standard temperature for Flat-Plate Bifunctional Cells by

I = s× (CellV oltage− 1.48),

where s is a constant dependent on the setup used for the electrolysis. The evolution of the efficiency with
the voltage and with the power generated can be seen on Fig. 3(a) and 3(b), respectively.

5.2 Fuel cell

A fuel cell is a device that converts the chemical energy from a fuel, here hydrogen, into electricity
through a chemical reaction with oxygen or another oxidizing agent. Unlike heat engine, the efficiency
of a fuel cell is not limited by the Carnot cycle and has a theoretical discharge efficiency ηd = 83% in
the case of hydrogen. This efficiency is however lowered when the amount of power generated by the
fuel cell increases as illustrated on Fig. 4. In standard operating conditions, the function ηd(Wfc) can be
approximated as a linear equation:

ηd = ηdmax − sfcWfc

where sfc is a constant dependent on the setup used for the fuel cell and Wfc is the power density of the
fuel cell.
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(a) Efficiency as a function of Voltage (b) Efficiency as a function of Power

Figure 3: Evolution of the efficiency of the electrolysis process as a function of the rate at which the
electrolysis is forced. Parameters used can be found in Table 1.

Figure 4: Characteristics of a PEM fuel cell [17]. (a) The voltage as a function of the current density,
commonly referred to as the performance curve. The efficiency is proportional to the voltage; it is indicated
on the secondary vertical axis. (b) The power density as a function of the current density. (c) The efficiency
as a function of the power density. The dotted line corresponds to the regime above maximum power. (d)
The efficiency of a complete fuel cell system in a vehicle, as a function of power load, shown both for a
PEM and an ICE. The vertical dotted lines indicate average loads in a car (left) and a bus or truck (right).
The curves in (d) do not refer to the same fuel cell as in (a) to (c).

5.3 The storage device
One significant constraint that influences the choice of the storage device technology is often the energy

density imposed by the application. In the case where hydrogen is to be used as a fuel stored on board of a
vehicle, pure hydrogen gas must be pressurized or liquefied. The drawback is that it necessitates the use of
external energy to power the compression. This constraint does not hold for grid energy storage, especially
in the case where hydrogen can be stored in natural reservoirs such as in underground caverns, salt domes
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or depleted oil/gas fields.

In the following, the storage device will be characterized by the energy capacity of the device Rc (in
MWh). It will be assumed that any leak in the storage device can be neglected.

6 Experimental results
In the first part of this section, the algorithm described in Procedure 1 will be used to compute the

maximum revenues that could be generated over the period ranging from 2007 to 2011 by a high-capacity
storage device whose parameters are defined in Table 1. The historical data of electricity prices provided
by Belpex over the last few years will be used as input [12]. In the second part, the influence of the
discretization of the algorithm will be studied. Finally, the impact of the storage capacity on the overall
gain will be analyzed.

6.1 Base case
To compute the revenues of the storage capacity defined by Table 1, we have first discretized the state-

action space to be able to use Procedure 1. We choose for the state space a discretized step δs = 0.5
MWh. The discretization step for the action space is taken equal to δu = 0.5 MWh. That leads to
a discretized state space equal to : {0, 0.5, 1, . . . , Rc} and a discretized action space equal to the finite
set :{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}.

Electrolysis selectrolysis 1MA/V
Fuel cell ηdmax 60%

sfc 0.4
Wfc,max 5 MW
Wfc,min 0.8 MW

Storage device Rc 1000 MWh
s(0,0) 0 MWh

Table 1: Data used for the electrolysis sets and fuel cells in the base case.

By using the bidding actions computed using procedures 1 and 2, we have determined the evolution of the
cumulated revenues as a function of time. The results are plotted on Fig. 5. As we can see, the cumulated
revenues are not always growing. Indeed, they are decreasing during periods of time when the tank is filled
with hydrogen. We note that at the end of the period 2007-2013, a cumulated revenue of 233,000e is
obtained.

Figure 5: Cumulated revenues
∑
t r(at, pt) as a function of time.
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The evolution of the level of energy stored inside the storage tank st is shown on Fig. 6(a). It can be seen
that hydrogen tends to be stored during summer and transformed back into electricity during winter. This
is explained by the fact that most of the years, prices are higher in winter and lower in summer (see Fig. 7).
Besides, daily fluctuations can also be seen on Fig 6(b). Energy is accumulated during night and transferred
back to the grid during day.

(a) Evolution throughout the years 2007 to 2013 (b) Zoom over a smaller period

Figure 6: Evolution of the energy stored (st) as a function of time for the base case.

(a) Average over all years (b) Average over individual years

Figure 7: Evolution of the average prices for the years 2007 to 2013 as a function of the period of the year.

On Fig. 8, we have plotted the evolution of the price as a function of the period of the day. We can observe
that with the years, the difference between on-peak and off-peak prices tends to decrease. More specifically,
the peak prices occurring traditionally during the day tend to get much closer to the average price value.
This can be explained by the significant investments that have been made after 2008 in photovoltaic panels.
Let us now go back to Fig. 5 where we have plotted the evolution of the cumulated revenues over time. As
one can observe, the rate of growth in cumulated revenues is higher for the first two years than for the rest
of the period. This observation is a direct consequence from this flattening of the price evolution over the
day.

Finally, we end this subsection by Fig. 9, which nicely illustrates on a single graphic the relation that
exists behind the evolution of the prices and the sequence of actions taken.
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(a) Average over all years (b) Average over individual years

Figure 8: Evolution of the price as a function of the hour of the day for the years 2007 to 2013.

Figure 9: Illustration of the sequence of actions and of electricity prices with time. A dot is associated to
every market period and its color refers to the action taken. Its position gives the market price at this time.

6.2 Influence of the capacity of the storage tank on the maximum revenue

In this section, we study the revenues obtained as a function of the size of the reservoir. We have modeled
the storage reservoir as varying between a few MWh up to a reservoir which is large enough for never being
fully filled by the agent. The results are plotted on Fig. 10. We remind that in the previous subsection,
a maximum capacity of 1000 MWh was used for the storage device. As we can see, the revenues are a
growing function of the storage capacity. However, the incremental revenue obtained from the exploitation
is lowered as the storage capacity increases. Whatever the size of the reservoir, it is not possible to generate
of revenue which is larger than 272 000 e.

6.3 Influence of the discretization on the maximum revenue

In this section, we study the influence of the discretization steps δx and δu on the results obtained. To
do so, we have run Procedure 1, followed by Procedure 2, for several values of δx and δu. Figure 11 plots
the results obtained. Several interesting observations can be made. First, for a given value of δx (δu), the
return of the bidding policy does not vary anymore when δu (δx) becomes lower than δx (δu). Second, if
δu > δx (δx > δu), better results can be obtained by moving δu closer to δx (δx closer to δu). Finally, in the
case where the discretization steps are equal, the smaller they are, the better the quality of the policy. Note
however, that below a certain value of the discretization steps, the quality of the policy remains roughly the
same.
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Figure 10: Evolution of the expected revenues as a function of storage capacity for the years 2007 to 2013.

Figure 11: Revenues generated by the bidding policies as a function of the action space discretization step
(δu) and the state space discretization step (δx)

7 Conclusion
In this paper, a methodology has been proposed for estimating the revenues that can be generated by

a high-capacity hydrogen-based storage device on the energy markets. It was then used to estimate the
revenues that could be generated on Belpex - the Belgian power exchange market.

The results show that for fixed size electrolyzers and fuel cells, significantly higher revenues can be
achieved by having large storage capacities, such as for example hydrogen tanks that would take tens of
days to fill or to empty. This is explained by the fact that with huge tanks, the storage device can be
operated so as to exploit inter-seasonal price fluctuations. The results also show that over the last years, the
revenues that could have been generated by storing devices have decreased.

The research reported in this paper could be extended along several directions. First, our algorithm
for estimating the future revenues assumes that the market price is not influenced by the storage device
itself and, more importantly, that the future price evolution is known. It would be worth extending the
methodology proposed in this paper to a more general case. Note that this would imply working in a
probabilistic setting where we would compute an expected future revenue or a distribution over future
revenues.

Second, the only mechanism considered here for valorizing storage has been to buy or sell energy on
the electricity market. But other mechanisms also exist, such as for example selling services to the balanc-
ing/reserves markets [18] or those that would relate to absorbing the excess of energy produced locally by
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renewable sources of energy so as to relieve congestions [19]. In this respect, it would be worth computing
the revenues that can be generated by storage devices when all these mechanisms are taken into account.

Finally, it would be interesting to study how oracles built for predicting the future revenues of storage
devices could be exploited to give clear indications about the storage technology in which to invest and
about where to install storage devices.
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