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“Of course, there is not much hope of observing this phenomenon directly.”

Albert Einstein, 1936.





Thesis abstract

In the early 1960s, gravitational lensing (GL) has received a special attention when S. Liebes
and S. Refsdal have derived in detail some of the basic equations of the theory. While
Liebes (1964) discussed the probability of detecting these GL effects and considered several
astrophysical applications, Refsdal (1964) derived, inter alia, his famous relation which
links the Hubble parameter (H0) to the expected time delays between pairs of lensed images.
From that moment, the scientific community fully realized that gravitational lensing effects
offer a new way of probing cosmology. However, an important fact has been to accept that
the determination of H0 seems to be model dependent, not only on the universe model, but
also on the mass distribution of the deflector. The main topic of the present thesis constitutes
a straight continuation of this inquiry. We have been sounding parts of the mathematical
lensing framework on two fronts. First, considering to first order a very small misalignment
between the source, the lens and the observer, we have derived the expressions of the
lensed image positions along with their amplification ratios, for the case of power-law axially
symmetric mass distributions, the so-called ε−γ family of models (Wertz, Pelgrims & Surdej,
2012). Combining these results has allowed us to derive an expression for H0 independently
of the model parameters. We have extended this study to the ε − γ family of models with
external shear, as well as to the singular isothermal ellipsoid (SIE) models. For both these
types of models, we have obtained an expression of H0 which is once again independent, to
first order, of the model parameters. Furthermore, we have demonstrated the feasibility of
analytically constraining to first order the model parameters by only using the astrometric
positions of the lensed images. Therefore, for the case of a small misalignment between
the source, the deflector and the observer, it is straightforward to determine whether the
ε − γ or SIE family of models constitutes a judicious representation of the mass distribution
of the deflector. It is conceivable that similar results can be deduced for other families of
models. Secondly, we have developed a new analytical approach in order to determine the
expression of the deflection angle, hereafter α̂. Since the latter depends on the deflector mass
distribution, there exists no global explicit expression but only an implicit definition of α̂.
Therefore, the analytical methods used to obtain the explicit expression differ for different
types of mass distribution. However, using the Fourier transform theory, one may basically
express α̂ in terms of the Fourier transform of the surface mass density. Such a method
allows us to approach any mass distribution in a unique way. As a first application, we have
separately derived the expression of the two components of α̂ for the case of homoeoidal
symmetric lenses (Wertz & Surdej, 2013). This original result constitutes a first proof that
the Fourier approach constitutes a promising alternative to the complex formalism introduced
by Bourassa & Kantowski (1975, corrected by Bray 1984). A particular case of homoeoidal
symmetric lenses lies in the non-singular isothermal ellipsoid (NSIE) family of models for
which the analytical treatment has been somewhat limited (Kovner 1987a, Kormann & al.
1994, Keeton & Kochanek 1998). The use of the Fourier approach has made possible to
derive a complete analytical treatment for the NSIE, i.e. the expressions of the deflection



angle, the deflection potential, and the critical and caustic curves even off the axis (Wertz &
Surdej, submitted to MNRAS on 3rd of February 2014). This original result has allowed
us to investigate and better understand the NSIE family of models. Furthermore, it is also
of great interest for mass distribution modeling and to rigorously determine the expected
time delays between pairs of lensed images. The previous analytical treatments mainly
consisted of parametric models for the deflector. An alternative way to grasp lenses consists
in modeling their mass distribution using non-parametric models. With this aim in mind, we
have proceeded as follows: we tessellate the lens plane with squared pixels, and associate to
each of them a constant surface mass density. Making use of the Fourier approach, we have
derived the expression of the deflection angle for the whole grid. This result contains the
main advantage of the non-parametric models, i.e. to model any type of mass distribution
without any preconception, and the usefulness of handling quantities which can be described
with analytical functions.



Résumé

Au début des années 1960, l’étude des mirages gravitationnels a connu un nouvel essor
lorsque S. Liebes et S. Refsdal ont tous deux publié ce qui s’est avéré être les équations
fondamentales de cette théorie. Tandis que Liebes (1964) discutait de la probabilité de
détecter ce phénomène conjointement à l’étude de différentes applications astrophysiques,
Refsdal (1964) déterminait sa célèbre relation exprimant le paramètre de Hubble (H0)
comme une fonction des délais temporels mesurés à partir des courbes de lumières obtenues
par l’observation des images multiples d’un quasar distant. A partir de cette période, la
communauté scientifique a pleinement pris conscience de l’utilité que pouvait apporter
l’étude des mirages gravitationnels pour l’estimation des paramètres fondamentaux de la
cosmologie. La détermination de H0 semble toutefois dépendre profondément du modèle
de déflecteur en plus de celle du modèle d’univers adopté. Le sujet central de cette thèse
est dans la continuité directe de cette réflexion. Nous avons investigué mathématiquement
ce phénomène sur deux fronts. Premièrement, en considérant au premier ordre un petit
désalignement entre la source, le déflecteur et l’observateur, nous avons établi les équations
donnant la position des images multiples ainsi que leurs rapports d’amplification pour le
cas d’une distribution de masse à symétrie axiale obéissant à une loi de puissance (Wertz,
Pelgrims & Surdej, 2012). En combinant ces résultats, nous avons déterminé une expression
de H0 indépendante des paramètres du modèle. Nous avons étendu cette étude d’une part
en perturbant le modèle précédent au moyen d’un cisaillement gravitationnel externe, puis
en considérant le modèle ellipsoïde isotherme singulier (EIS). Pour ces deux types de
modèles, nous avons obtenu au premier ordre une expression de H0 qui, une fois encore,
s’exprime uniquement à partir de quantités observables. De plus, nous avons démontré
qu’il était possible d’exprimer les différents paramètres du modèle en termes de la position
des images multiples uniquement. En conséquence, dans le cas d’un petit désalignement
entre la source, le déflecteur et l’observateur, il devient immédiat de déterminer lequel de
ces deux modèles permet de rendre compte le plus efficacement la distribution de masse
du déflecteur liée au mirage gravitationnel étudié. Il est tout à fait raisonnable de supposer
que des relations équivalentes puissent être déduites pour d’autres familles de déflecteurs.
Deuxièmement, nous avons développé une nouvelle approche analytique permettant de
déterminer l’expression explicite de l’angle de déflexion, noté ci-après α̂. Etant donné
que ce dernier dépend inextricablement de l’expression de la distribution de masse, il
n’existe aucune méthode générale permettant de déduire l’expression explicite de α̂ mais
uniquement une définition implicite. Par conséquent, les approches employées peuvent
différer d’une famille de modèles à une autre. En utilisant la théorie des transformées de
Fourier, il est possible d’exprimer α̂ en termes de la transformée de Fourier de la densité
surfacique de masse. Nous avons étudié, comme première application, le cas des déflecteurs
à symétrie homoéoïdale et sommes parvenus à établir séparément l’expression des deux
composantes de α̂. Ce résultat original constitue une première preuve de l’utilité de cette
approche ce qui permet de nous convaincre qu’elle puisse être une alternative robuste au



formalisme complexe introduit par Bourassa & Kantowski (1975, corrigé par Bray 1984).
Un cas particulier de déflecteur à symétrie homoéoïdale réside dans l’ellipsoïde isotherme
non singulier (EINS) qui n’a jamais fait l’objet que d’un développement analytique assez
restreint (Kovner 1987a, Kormann & al. 1994 et Keeton & Kochanek 1998). L’application
des transformées de Fourier a permis de retrouver l’expression du potentiel de déflexion
ainsi que celle de l’angle de déflexion sous une forme différente mais équivalente. De plus,
nous avons apporté une solution analytique complète pour les expressions des caustiques
et lignes critiques correspondantes (Wertz & Surdej, soumis à MNRAS le 3 février 2014).
Les différents traitements analytiques cités précédemment s’attardent sur des modèles
paramétriques. L’approche “Fourier" s’avère également utile dans l’étude des modèles non
paramétriques. En considérant le plan du déflecteur comme une mosaïque de pixels carrés
auxquels sont associés une densité surfacique de masse constante, il est a priori possible de
modéliser toutes distributions de masse, quelqu’elles soient. En utilisant les transformées de
Fourier, nous avons établi l’expression de l’angle de déflexion pour ce type de modèle. Nous
sommes convaincus de l’utilité que va trouver cette expression analytique dans l’étude de la
reconstruction de la distribution de masse des déflecteurs.
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1
Introduction to the gravitational lensing

theory

1.1 General introduction

Since the emergence of the Einstein’s general relativity theory (GR, Einstein 1916), our

understanding and knowledge about the origin and evolution of the universe have been

constantly improving. However, despite all efforts provided by several generations of

scientists, there exists no definitive answer to the universe model’s puzzle. To date, probing

the cosmological parameters remains an open subject, so much that many present and

future space missions have been proposed and selected to try answering these fundamental

questions.

One of the most beautiful predictions of GR concerns the deflection of light rays which

pass close or through a mass distribution. Such a phenomenon is known as gravitational

lensing (GL) and has first been observed by D. Walsh, B. Carswell and R. Weymann in

1979. Currently, GL studies allow to investigate numerous fields of astrophysical research,

e.g. exoplanet detection and characterization, dynamic of galaxies, distribution of dark

matter inside galaxy clusters, or cosmography diagnosis. The use of GL phenomena as

a cosmological tool constitutes a unique and independent way to probe the fundamental

universe parameters such as H0, Ωm or ΩΛ. The GL phenomena can be approached ac-

cording to two regimes : the strong lensing and the weak lensing. Based upon the same

physical concepts, the first one includes GL which produces multiple lensed images or giant

luminous arcs, while the second one includes small magnification and distortion which do

not lead to the formation of multiple lensed images. Both of these regimes can be used

as cosmological probes. The strong GL allows to observe multiple (de-)amplified lensed

images of a background source. The foreground origin of the light bending may be due, for

instance, to a galaxy or a cluster of galaxies. From the observation of the light curves of
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the lensed images of a quasar (galaxy-quasar lensing), the time delays, together with the

modeling of the deflector mass distribution, may reveal the value of H0 (Refsdal 1964 a and

b). When the deflector is a galaxy cluster (cluster lensing), the lensed images of background

galaxies may take the form of huge and twisted arcs. The study of their shapes allows to

reconstruct the mass distribution of the cluster and then to constrain the dark matter inside

the cluster. Furthermore, since the strength of lensing directly depends on the ratios between

angular diameter distances between the source, the deflector and the observer, cluster lensing

is sensitive, as well as galaxy-quasar lensing, to the value of the cosmological parameters.

Even though the study of the lensed images of a unique source can in principle provide a study

of the geometry of the universe, the statistical approach of the GL phenomenon constitutes

a more powerful and trustworthly tool to constrain the cosmological parameters. Indeed,

Turner, Ostriker and Gott (1984) have first developed a formalism in order to calculate

statistical quantities associated with GL of quasars in the framework of flat Friedmann-

Lemaître-Robertson-Walker (FLRW) universes. In particular, the integrated probability

for a quasar at a given redshift of being multiply imaged by a galaxy is sensitive to the

cosmological parameters. This approach has already been investigated for different types

of deflectors : the singular isothermal sphere (e.g. see Turner, Ostriker & Gott, 1984, Gott,

Park & Lee, 1989, Surdej et al., 1993), the point-like deflector (e.g. Fukugita, Futamase

& Kasai, 1990), or more recently the singular isothermal ellipsoid (Oguri et al., 2012).

These statistical studies need of course a representative sample of lensed quasars at various

redshifts. Such a lensed quasar distribution has already been obtained from the "sloan digital

sky survey quasar lens search" (SQLS, see Oguri et al., 2012). In the foreseeable future,

the international liquid mirror telescope (ILMT) will also provide an ideal tool in order to

consistently detect and catalog lensed quasar candidates in a narrow strip of the sky (Borra

et al. 2009). In addition, the recently launched Gaia mission should also provide a sample of

bright lensed quasar candidates over the whole sky.

Since the galaxy shapes are intrinsically elliptic, the distillation of relevant information from

an individual lensed image of a distant galaxy in the weak lensing regime turns out to be

difficult However, a statistical study of the shapes and orientations of a set of galaxies may

lead to the reconstruction of the tidal gravitational field, the so-called shear (Bartelmann

& Schneider, 2001). Actually, if the shear can be observed from image distortions, the

distribution of mass can be directly deduced. As a consequence, weak lensing also constitutes

a powerful tool to probe the nature and distribution of dark matter in galaxy clusters and large-

scale structures. Finally, let us mention the impact of weak lensing on the cosmic microwave

background (CMB). This relic radiation represents the signature of the decoupling between
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photons and matter, approximately 300,000 years after the Big Bang (z ' 1000). Since it

travels over very long distances, this radiation is slightly deflected by the presence of matter

which fills the universe. Furthermore, this matter acts mostly on the CMB as weak lensing.

Therefore, together with the Planck observations, the study of the weak lensing effects on

the CMB should lead to a better estimation of the cosmological parameters.

The present thesis focuses on strong gravitational lensing of point-like sources (e.g. quasars)

from a mathematical and theoretical point of view. All the results presented in the following

introduction come from the literature and can be mostly found in the excellent monograph

"Gravitational Lenses" by Schneider, Ehlers & Falco (1992, hereafter SEF). Specific ref-

erences will always be indicated. Our goal in this chapter consists of presenting these

well-known results to the non-specialist readers.

1.2 Gravitational lensing theory hypotheses

The gravitational lens theory, alike any other theory, is based upon some assumptions

which simplify the handling of the involved concepts but allow to quantitatively grasp

the phenomenon. In this section, we present these fundamental assumptions, starting

points for GL studies, and we discuss their range of validity. For more details about the

gravitational lensing theory hypotheses, the reader is invited to consult "Singularity Theory

and Gravitational Lensing", Petters, Levine & Wambsganss (2001), and "Aspects statistiques

du phénomène de lentille gravitationnelle dans un échantillon de quasars très lumineux",

Claeskens (1998).

1.2.1 The geometrical optics approximation

Light is commonly defined as an electromagnetic radiation which exhibits properties of

both waves and particles, also called the wave-particle duality of the light. Wave optics

constitutes a convincing approximation of an exact physical theory of light, which allows

the studies of interference, diffraction and polarization phenomena, among others. However,

since the "distortions" of spacetime studied in the framework of GL are much larger than the

wavelength of light, the diffraction effects can be reasonably ignored. Light bundles from

two or more lensed images could, in principle, show interference. However, since the time
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delays between these lensed images are much larger than the coherence length of the light

wave, interference effects can be ignored.

Consequently, the gravitational lensing phenomenon can be studied under the geometrical

optics approximation which can be summarized by the three following statements (Misner,

Thorne & Wheeler 1973, p. 571 - 583). First, light is propagating along null geodesics of

spacetime which are called light rays. Furthermore, light rays lie in and are orthogonal to

surfaces of constant phase. Secondly, A light ray’s polarization vector is orthogonal to the

ray and transported parallel along the ray. Thirdly, light obeys the law of photon conservation

which states that the number of photons is always conserved. From the last statement, one

deduces that the gravitational lensing phenomenon deforms the cross sectional area of light

bundles, which affects the flux of unresolved lensed images.

For the case of a point-like source located on a caustic curve, the geometrical optics ap-

proximation leads to an infinite amplification factor, which is of course unphysical. As a

consequence, a more rigorous way to study this case should be investigated using the wave

optics approximation (see chapter 7 of SEF, 1992). Despite that, the geometrical optics

approximation suffices for the majority of the lensing situations.

1.2.2 The FLRW universe and the weak-field approximation

Owing to its nature, the deflector constitutes an inhomogeneity lying in the universe. There-

fore, a rigorous treatment of the gravitational lensing phenomenon should require an inho-

mogeneous description of the spacetime in the vicinity of the deflector. Unfortunately, there

exists no exact solutions for the Einstein field equations in such a situation. With a view

of analytically treating the gravitational lensing theory, a reasonable assumption consists

in describing the spacetime geometry with the FLRW metric. The latter models describe

matter dominated universes which can be considered homogeneous, isotropic and without

pressure, at large scale. A light ray dealing with gravitational lensing will propagate during

most of its travel through a FLRW universe for which the spacetime metric is given by (e.g.

see Schutz 1985) :

ds2 = −c2dt2 + R2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θ dφ2

)]
. (1.1)

The determination of the latter equation, the signification of all the terms and other basic

results concerning FLRW universes can be found in section 1.3.2.
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Since the shortest distance between the deflected light rays passing through the lensing

galaxy and its center is at least of the order of kpc, the strength of the gravitational field

can be considered very small. Indeed, by denoting Φ the Newtonian gravitational potential

and c the speed of light in vacuum, we have typically Φ/c2 . 10−5. Therefore, the weak

gravitational field approximation can be adopted and the deflection angle is sufficiently small

to be associated with the value of its tangent. The geometry of spacetime in the lens plane

can then be described by the well-known metric :

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 +

(
1 − 2Φ

c2

)
dr2 , (1.2)

which is an exact solution of the linearized Einstein field equations. The latter equation is

used in section 1.4.1 in order to determine the expression of the deflection angle. For the

case of a point-like deflector, e.g. a black hole, the weak-field approximation is no longer

valid. Nevertheless, the latter spacetime metric together with the distribution theory allow to

derive the expression of the deflection angle.

1.2.3 The transparent geometrically-thin lens approximation

The distances involved in the gravitational lensing theory are of the order of cosmological

distances. Typically, the distance between the observer and the source (resp. the deflector),

e.g. a quasar (resp. a galaxy), is often larger than one Gpc. Moreover, the distance along

which the light ray is bent corresponds roughly to the thickness of the deflector, which

is much smaller. We assume then that the change in direction of the light ray occurs

instantaneously in a plane, the so-called lens plane, which is defined perpendicularly to

the source-observer line-of-sight and includes the deflector gravity center. Let us therefore

define the observer and source planes which are both perpendicular to the line-of-sight

and include respectively the observer and the source. As a consequence, the light rays are

regarded as propagating along straight lines and the 3D mass distribution density of the

deflector represented by the volume ρ(b, l) can be modeled by means of the projected surface

mass density Σ(b) defined as :

Σ(b) =

∫

R

ρ(b, l) dl , (1.3)

where l corresponds to an affine parameter defined along the direction of light propagation. In

addition, we assume that galactic and extragalactic extinction is negligible. This hypothesis
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reflects more the a priori unknown extinction-law through the light travel than a quantitative

and measured value of the extinction.

1.3 General relativity, cosmology and distances

1.3.1 Foreword

Cosmology, i.e. the study of the universe as a whole, raises some of the most fundamental

questions of physics : how did the universe begin, how did the matter originate, where do the

laws of physics come from ? Our ability to understand the origin and evolution of the universe

essentially depends, at least until now, on the Einstein’s theory of general relativity. This

geometric theory of gravitation generalizes the special relativity theory and Newton’s law

of universal gravitation, providing in a very elegant way a unified description of gravity as

due to the curvature of its spacetime. The relation between the energy-momentum contained

in the universe and the curvature of spacetime is fully determined by the so-called Einstein

field equations :

Gµν ≡ Rµν −
gµν
2

R + gµν Λ =
8πG
c4 Tµν , (1.4)

where Rµν represents the Ricci tensor, gµν the metric tensor, R the curvature scalar, Λ the

cosmological constant, and Tµν, the energy-momentum tensor. Behind its apparent simplicity

lies a very powerful tool in order to quantitatively describe most parts of the observed

phenomena in the universe. According to large-scale observations, the universe turns out

to be highly homogeneous and isotropic. Indeed, on scales typically much larger than 10

Mpc, the uniformity of the universe is apparent in the average density, the types of galaxies

and their chemical composition, for instance. Furthermore, since the speed of light is finite,

looking far away results in looking back in the past. The observations lead to the conclusion

that the early universe presents the same level of homogeneity. The isotropic property of

the universe means that it looks the same, on average, in every direction, i.e. there exists

no preferred direction. In addition, the expansion of the universe seems to be at the same

rate in every direction we look at. As a consequence, galaxies seem to recede from us at a

speed which is proportional to their distance. This feature can be expressed by the famous

Hubble’s relation v = Hd, where v represents the recession velocity of the galaxies, d their
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distances from us, and H, the Hubble parameter which is time dependent. The actual value

of H is denoted as H0 and is estimated to be 67.3 ± 1.2 km s−1 Mpc−1 (Planck Collaboration

2013). Let us note that the latter expression of the Hubble relation is local, i.e. applicable for

v/c � 1. For the case of distances d & 1 Gpc, relativistic corrections have to be considered.

Fortunately, 1 Gpc is large enough to maintain the homogeneous and isotropic features of

the universe.

1.3.2 The FLRW metric

Let us now derive the cosmological metric which describes the geometry of an homogeneous

and isotropic universe. The present approach follows Schutz (1985). Let us remind the two

following assumptions. First, we consider the spacetime as a set of hypersurfaces of constant

cosmic time t, also called proper time, which are perfectly homogeneous and isotropic.

Therefore, any events which belong to such an hypersurface are considered as simultaneous.

Secondly, the mean rest frame of the galaxies agrees with this definition of simultaneity. We

denote xi with i ∈ {1, 2, 3} the space coordinates and t the proper time associated to a galaxy.

At one given moment denoted by t0, the hypersurface of constant proper time t0 has the line

element given by :

dl2(t0) = gi j(t0) dxi dx j , (1.5)

where the components of the metric tensor gi j are time dependent because of the expansion

of the universe. At another time t1 > t0, the hypersurface with constant proper time t1 has

the line element given by :

dl2(t1) = gi j(t1) dxi dx j , (1.6)

where gi j(t1) can be represented as :

gi j(t1) = R2(t1, t0) gi j(t0) , (1.7)

with R(t1, t0), a function which guarantees that all the components of the metric tensor

increase at the same rate, i.e. which convey the isotropy of the universe. This latter function

can be scaled to equal 1 at t0 and be denoted by R(t). In that form, R(t) is known as the scale
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factor. The general form of Eq. (1.6) is then given by :

dl2(t) = R2(t) gi j dxi dx j , (1.8)

and the line element for the full spacetime takes the form :

ds2 = −c2dt2 + R2(t) gi j dxi dx j . (1.9)

Under the isotropic assumption, the geometry of spacetime must be spherically symmetric

with respect to the origin of the system coordinates. One can then demonstrate that the

expression of the line element dl2 always takes the form (see Schutz 1985) :

dl2 = e2Λ(r)dr2 + r2dΩ2 , (1.10)

where dΩ2 = dθ2 + sin2 θ dφ2, when adopting the spherical coordinates (r, θ, φ). Let us insist

on the fact that the latter equation results from geometrical considerations only. In order to

take account of the homogeneity feature of the universe, a necessary and sufficient condition

is that the curvature scalar R must have the same value at every point, By inference, the

trace of the Einstein tensor G, whose components are defined by Eq. (1.4), must also be

constant :

G = Gi jgi j = − 1
r2

[
1 − d

dr

(
r e−2Λ(r)

)]
≡ K , (1.11)

where K is a constant. After integrating the latter equation with respect to r, we obtain :

e2Λ(r) ≡ grr =
1

1 + Kr2

3 − C
r

, (1.12)

where C represents a constant of integration. Its value can be constrained by requiring

that the geometry of spacetime has to be locally flat. Therefore, grr(r → 0) = 1 implies

C = 0. Furthermore, by denoting the so-called curvature constant k = −K/3 and scaling the

coordinate r in such a way that k = −1, 0 or 1, the latter equation simply transforms into :

grr =
1

1 − kr2 . (1.13)

As a result, the spacetime geometry which meets the homogeneous and isotropic conditions
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can be described by the metric :

ds2 = −c2dt2 + R2(t)
[

dr2

1 − kr2 + r2dΩ2
]
, (1.14)

which is called the Friedmann - Lemaître - Robertson - Walker metric. Let us note that all the

time dependence lies in the scale factor R(t) which explicit expression requires solving the

Einstein field equations (1.4). Due to the chosen definition of k, the coordinate r is unitless

and R(t) has units of length. We may deduce important consequences from the latter form of

the FLRW metric.

1.3.3 The non-trivial concept of distances

At the human scale, the determination of the distance between two objects is rather intuitive.

We can easily imagine to simple use a rigid ruler in order to count how many meters separate

two objects. Since we need to measure the distance between two galaxies, the use of a

ruler is, of course, no longer appropriate. Because of the expansion and the geometry of the

universe, and the finite speed of light, there exist several definitions of the notion of distance

between two events. Let us define several of them which are particularly relevant.

Let us first consider the so-called comoving coordinate distance between two events. By

denoting O the observer located at the origin of the coordinate system (r, θ, φ), the comoving

coordinate distance χ(r) between O and the event E characterized by (r, 0, 0) is given by :

χ(r) =

r∫

0

1√
1 − kr′2

dr′ =



arcsin (r) if k = 1 ,

r if k = 0 ,

arcsinh (r) if k = −1 .

(1.15)

By definition, the comoving coordinate distance χ(r) between two events does not depend

on the time coordinate which indicates that χ(r) remains constant and independent on the

expansion of the universe. Of course, the possible proper motions are neglected since they

are significantly smaller than the systematic expansion speed over cosmological distances.

Therefore, χ(r) may be useful in order to define the cosmological redshift of a distant

event.

Let us consider two photons, each one emitted from a galaxy G characterized by (r, 0, 0).

The emission times are denoted by tE and tE + ∆tE, and the reception time by tR and tR + ∆tR.
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Therefore, since the comoving coordinate distance χ(r) is constant and from Eq. (1.14)

remembering that ds2 = 0 for the case of a photon, we have :

χ(r) =

tR∫

tE

c dt
R(t)

=

tR+∆tR∫

tE+∆tE

c dt
R(t)

. (1.16)

In addition, we can reasonably assume that R(t) remains constant during the considered time

scale. Therefore, Eq. (1.16) leads to :

∆tR

∆tE

=
R(tR)
R(tE)

=
λR

λE

≡ 1 + z , (1.17)

where λE (resp. λR) corresponds to the wavelength of the emitted photon (resp. received

photon), and z, the redshift of the source emitting the photons.

Another method to define the distance between two events can be based on the use of the

physical property of the considered astrophysical objects. Indeed, we can compare the proper

size of a galaxy with respect to its angular size on the sky plane in order to determine its

distance. Such a distance is called the angular diameter distance. Let us consider on one

hand a galaxy characterized by its position (r, 0, 0), a proper size l projected on the sky plane

and an angular size φ � 1, and, on the other hand, an observer located at the origin of the

coordinate system. The angular diameter distance DA(r) is simply defined by :

DA(r) =
l
φ
. (1.18)

Using the angular part of Eq. (1.14) and assuming, without lost of generality, that the proper

size l lies in the plane θ = π/2 and one of its extremity corresponds to φ = 0, the expression

of l takes the form :

l =

l∫

0

dl′ = R(tE) r

φ∫

0

dφ′ = R(tE) r φ , (1.19)

and then, using Eq. (1.17) the expression of the angular diameter distance transforms into :

DA(r) =
R0 r
1 + z

, (1.20)

where R0 ≡ R(tR) represents the value of the scale parameter at the present reception time.

In the framework of the gravitational lensing theory, the involved distances are angular

diameter distances relative to a FLRW metric. Explicit expressions, in terms of cosmological
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parameters, of the angular diameter distances between two events located respectively at

redshifts z1 and z2 require to solve the Einstein field equations (1.4) for the FLRW metric.

First, we can express the components of the energy-momentum tensor for the case of a

perfect fluid (Schutz 1985) :

Tµν = diag
(
ρc4, p

R2(t)
1 − kr2 , p R2(t) r2, p R2(t) r2 sin2 θ

)
, (1.21)

where diag represents "the diagonal matrix components", and ρ denotes the mass density, p

the pressure, both measured by a comoving observer. As a result, from Eqs. (1.4), (1.14) and

(1.21), and since the FLRW universe has no pressure (p = 0), we obtain the two following

equations :

(
Ṙ
R

)2

=
8πGρ

3
− kc2

R2 +
Λc2

3
, (1.22)

and

3
R̈
R

= −4πGρ + Λc2 , (1.23)

where the · denotes the derivative with respect to the proper time t. We recall that R and ρ

are both proper time dependent functions, and we denote by the subscript 0 the quantities

evaluated at the proper time t0, i.e. the current proper time. Let us define three cosmological

parameters which can be, in principle, deduced from the observations. The Hubble parameter

H(t), the deceleration parameter q(t) and the density parameter Ω(t) are respectively defined

by :

H(t) =
Ṙ(t)
R(t)

, (1.24)

q(t) = − R̈(t)R(t)
Ṙ2(t)

, (1.25)

Ω(t) =
8πGρ(t)
3H2(t)

, (1.26)

with H0, q0 and Ω0 representing current values of those parameters. After dividing by H2
0
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both members of Eq. (1.22), the latter one and Eq. (1.23) transform into :

H2

H2
0

= Ω0
ρ

ρ0
− kc2

R2H2
0

+
Λc2

3H2
0

, (1.27)

and

H2q =
H2

0Ω0

2
ρ

ρ0
− Λc2

3
, (1.28)

which remain valid for any value of the proper time t, especially for t = t0. Therefore,

by defining the scaled cosmological constant ΩΛ = Λc2/3H2
0 and the curvature parameter

Ωk = −kc2/R2
0H2

0 , we obtain from Eqs. (1.27) and (1.28) the two following relations :

ΩΛ =
Ω0

2
− q0 , and −Ωk = Ω0 + ΩΛ − 1 . (1.29)

For the case of matter-dominated cosmologies, the pressure p = 0 and the equation of

motion for matter, T µν
;ν = 0, together with the isotropy assumption lead to ρR3 = constant.

Therefore, using Eq. (1.20), we have ρ/ρ0 = (1 + z)3 and Eq. (1.29) leads to the expression

of the Hubble parameter in terms of observable quantities for the matter-dominated FLRW

universe :

H2(z) = H2
0(z)

[
Ω0 (1 + z)3 + Ωk (1 + z)2 + ΩΛ

]
. (1.30)

From the FLRW metric (see Eq. (1.14)) and Eq. (1.17), the element of comoving coordinate

distance dχ is simply given by :

dχ = c
dt
R

= − c
R0

dz
H(z)

, (1.31)

and from Eq. (1.30), the comoving coordinate distance χ(z1, z2) between two events located

at z1 and z2 is given by :

χ(z1, z2) =
c

H0 R0

z2∫

z1

dz√
Ω0 (1 + z)3 + Ωk (1 + z)2 + ΩΛ

. (1.32)

The latter integral can only be solved for particular values of the cosmological parameters

Ω0, Ωk and ΩΛ. For the case of ΩΛ = 0 and from Eq. (1.15), the comoving radial coordinate

r(z1, z2) of an event located at z2 in the referential of an event located at z1 < z2 is given, for
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Figure 1.1: Illustration of the angular distance DA(0, z) as a function of the redshift z for the two
cases (Ω0,ΩΛ) = (1, 0) (red) and (Ω0,ΩΛ) = (0.315, 0.685) (black) for different values of the Hubble
parameter [66, 68, 70, 72, 74] km s−1 Mpc−1.

any values of k, i.e. whatever the sign of Ω0, by :

r(z1, z2) =
2c

H0R0Ω
2
0(1 + z1)(1 + z2)

[
(2 + Ω0(z2 − 1))

√
Ω0z1 + 1 − (2 + Ω0(z1 − 1))

√
Ω0z2 + 1

]
,

(1.33)

which is called the generalized Mattig relation. From Eqs. (1.20) and (1.33), we obtain the

expression of the angular diameter distance DA(z1, z2) for the case of the matter-dominated

FLRW universe without cosmological constant :

DA(z1, z2) =
2c

H0Ω
2
0(1 + z1)(1 + z2)2

[
(2 + Ω0(z2 − 1))

√
Ω0z1 + 1 − (2 + Ω0(z1 − 1))

√
Ω0z2 + 1

]
,

(1.34)

which can be reduced, for the case z1 = 0, i.e. with respect to an earth observer, to :

DA(z) =
2c
H0

Ω0z + (Ω0 − 2) (
√

Ω0z + 1 − 1)
Ω2

0(1 + z)2
. (1.35)

For the case of the so-called ΛCDM universe with ΩΛ = 0.685, Ω0 = 0.315, hence k = 0,

the angular diameter distance between the earth (z1 = 0) and an event located at z2 ≡ z is

implicitly given by :

DA(z) =
c

H0(1 + z)

z∫

0

dz′√
Ω0(1 + z′)3 + ΩΛ

. (1.36)

In Fig. 1.1, we have illustrated the dependence of the angular diameter distance DA(z) as a

function of the redshift z for the two previous cases.
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1.4 From general relativity to the deflection angle

In the present section, we derive the expression of the deflection angle of a light ray passing

near or through a deflector. The present approach follows Van Drom (1989) and Schutz

(1985).

1.4.1 First derivation of the expression of the deflection angle

We adopt here the standard tensor notation. Greek and Roman subscripts refer respectively

to spacetime and spatial coordinates or components. Furthermore, we use the Einstein

summation convention.

Since the involved angles are very small (typically 1 arcsec), and the four-momentum vector

p of a photon points towards the direction of its propagation, we can always define the

x-component of the deflection angle as the ratio between the z- and x-components of the

deviated photon four-momentum :

αx =
pz

px , (1.37)

where the system of coordinates is defined such as the components of the non-deviated

photon four-momentum are given by p = (0, 0, pz). Since the deflection angle remains small,

the z-component of the four-momentum photon is assumed constant, while the x-component

can be evaluated by the sum of all the infinitesimal contributions along the x-direction with

respect to z :

px =

∫

R

dpx

dz
dz . (1.38)

The equation of motion for a photon is simply given by :

∇p p ≡ pαpβ;α = 0 , (1.39)

where the semi-colon symbol denotes the covariant derivative, and pβ the component of the

one-form p̃ (also called dual vector) associated to the vector p. From the definition of the
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Figure 1.2: Illustration of the propagation of a deflected light ray along the direction of the
four-momentum vector p.

covariant derivative (e.g. see Weinberg 1972), the latter equation can be reduced to :

pαpβ,α − Γ
γ
βαpαpγ = 0 , (1.40)

where the comma symbol followed by a subscript denotes the usual partial differentiation

with respect to the coordinate labeled, and Γ
γ
βα the connexion coefficients which can be

expressed in terms of the metric tensor components gi j :

Γ
γ
βα =

1
2

gµγ
(
gµβ,α + gµα,β − gβα,µ

)
. (1.41)

Therefore, by denoting λ an affine parameter (which could be chosen equal to λ = τ/m for

the case of a massive particle with a proper time τ), Eq. (1.40) can be reduced to :

pβ,λ =
1
2

gαµ,βpαpµ . (1.42)

In the framework of the gravitational lensing theory, gravitational fields are supposed to be

weak. The components of the metric tensor can therefore be expressed by gαµ = ηαµ + hαµ
where ηαµ = diag (−1, 1, 1, 1) represents the components of the Minkowski metric tensor, and

|hαµ| � 1, a first order perturbation. Let us recall that ηαµ is the metric which describes the

geometry of a pseudo-Euclidean spacetime with four dimensions. As a result, the ordinary

Newtonian potential Φ completely determines the metric, which has, to first order and in

agreement with Eq. (1.2), the following form :

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 +

(
1 − 2Φ

c2

)
dr2 , (1.43)



16 CHAPTER 1

where the sign of Φ is chosen negative, so that, far from a mass M, the Newtonian potentiel

equals −GM/r. Under these assumptions, Eq. (1.42) simply reduces, to first order, to :

pβ,λ =
1
2

hαµ,βpαpµ . (1.44)

Furthermore, from Eq. (1.43), we easily deduce that htt = hxx = hyy = hzz = −2Φ/c2. As a

result, after reminding that px = py = 0 at order 0, the x-component reduces to :

px,λ =
1
2

(
htt,x pt pt + hzz,x pz pz) , (1.45)

= − 2
c2 Φ,x pz pz , (1.46)

where the last equality is deduced from the fact that, for the case of a photon, we have

ηµνpµpν = 0, which implies that pt = pz. Since pz remains essentially constant and by

noticing that pz = pz = dz/dλ ' constant and px = px, Eq. (1.46) can be transformed

into :

d
dz

(
px

pz

)
= −2Φ,x

c2 . (1.47)

Finally, from Eq. (1.37), the x-component of the deflection angle can be expressed by :

αx = − 2
c2

∫

R

∂Φ

∂x
dz . (1.48)

By following the same argument for the y-component and z-component, the deflection angle

vector is finally given by :

α = − 2
c2

∫

R

∇⊥Φ dz , (1.49)

where the vector ∇⊥Φ lies in the plane perpendicular to the direction of the deflected light

ray propagation. Since the deflection angle is assumed to be very small, we approximate

the gradient operator ∇⊥ with ∇ which lies in the lens plane. Furthermore, the integral is

performed along the line-of-sight characterized by the affine parameter l. Consequently, Eq.

(1.49) reduces to :

α = − 2
c2

∫

R

∇Φ dl . (1.50)
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1.4.2 Gravitational lens deflection angle

Since in the framework of the gravitational lensing theory, we consider the geometrically-

thin lens approximation, we assume that the deflection angle vector lies in the lens plane.

Therefore, by denoting (bx, by) the system of coordinates in the lens plane, and by assuming

that the Newtonian potential Φ vanishes in the source and observer planes, Eq. (1.50) can be

transformed into :

α (b) = − 2
c2

O∫

S

∇Φ (b, l) dl , (1.51)

where b = (bx, by) represents the light ray impact parameter in the lens plane. We note that

the gradient operator ∇ now applies only on the bx and by components. The latter equation

can be expressed as :

α (b) = −∇ψ (b) , (1.52)

where ψ(b) is called the deflection potential and is defined by :

ψ(b) =
2
c2

O∫

S

Φ (b, l) dl . (1.53)

From Eqs. (1.51) and (1.52), we deduce two interesting intermediate results. First, since the

deflection angle can be expressed by the gradient of a scalar quantity, its curl vanishes :

∇ × α(b) = 0 . (1.54)

The second result is obtained by taking the divergence of Eq. (1.51) :

∇ · α(b) = − 2
c2

O∫

S

∆Φ (b, l) dl , (1.55)

where ∆ represents the Laplacian. By using the Poisson equation of the Newton gravitational

theory ∆Φ = −4πGρ(b, l), the latter equation reduces to :

∇ · α(b) =
8πG
c2 Σ(b) , (1.56)
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where we have defined the surface mass density Σ(b) by :

Σ(b) =

O∫

S

ρ (b, l) dl , (1.57)

in agreement with Eq. (1.3). From Eqs. (1.54) and (1.56), we easily deduce that :

∆ α(b) =
8πG
c2 ∇Σ(b) . (1.58)

Since the Laplacian ∆ is a linear differential operator, the solution α(b) can be written as an

integral over a distribution of sources given by the right member of the last equation :

α(b) =
8πG
c2

x

R2

G(b, b′) ∇Σ(b′) db′ , (1.59)

where G(b, b′) represents the Green’s function for the Laplacian equation and is given by :

G(b, b′) = − 1
2π

1
|b − b′| . (1.60)

By substituting Eq. (1.60) into Eq. (1.59), the deflection angle expression reduces to :

α(b) = −4G
c2

x

R2

∇Σ(b′)
|b − b′| db′ . (1.61)

Finally, assuming that Σ(b) = 0 at the integration limits, the integration by parts of the right

member of the latter equation gives :

α(b) = −4G
c2

x

R2

Σ(b′) (b − b′)
|b − b′|2 db′ . (1.62)

The latter expression of the deflection angle constitutes a fundamental result of the gravi-

tational lens theory. Indeed, this expression allows one to determine the deflection angle

of a light ray which reaches the lens plane at a given impact parameter b, for any mass

distribution of the deflector. We note that Eq. (1.62) is independent of the frequency of the

deflected light, which implies that the gravitational lensing phenomenon is achromatic.

We insist on the fact that Eq. (1.62) of the deflection angle has been derived for an asymp-

totically flat spacetime derived from the FLRW metric (see Eq. (1.43) and their related

assumptions). For the case of a spheric (k = 1) or hyperbolic (k = −1) geometry of spacetime,

the vicinity of the deflector can still be described by an asymptotically flat spacetime. Indeed,

the cosmological model dependence of Eq. (1.62) is included in the scale factor R(t) through
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the terms b′ (and of course b) which is very small in comparison with the involved distances

between the source, the lens and the observer. Therefore, it is reasonable to assume that this

expression holds for those cosmological models. One keeps in mind that further calculations

will be performed, unless explicitly mentioned, for an asymptotically flat spacetime.

The possibility of analytically deriving the explicit expression of the deflection angle essen-

tially depends on the expression of the surface mass density Σ(b). For mass distributions

characterized by a high level of symmetry, e.g. axially mass distributions (see Section 1.10),

Σ(b) takes a very simple form which allows to calculate straightforwardly the integrals

appearing in Eq. (1.62). For the case of the singular isothermal ellipsoid (SIE) models,

the use of Eq. (1.62) turns out to be very difficult. By the way, the first derivation of the

SIE deflection angle proposed by Kormann & al. (1994) makes use of the Green’s function

theory instead of Eq. (1.62). However, the Fourier transform theory allows to consider the

determination of the expression of the deflection angle in a unique way (Wertz & Surdej,

2014). Such a method has been successfully used to derive a complete and original solution

for the case of the non-singular isothermal ellipsoid (NSIE) family of models (Wertz and

Surdej, submitted to MRNAS on 3rd February 2014).

1.4.3 The deflection potential

In section 1.4.2, we have defined the deflection potential ψ(b) (see Eq. (1.53)). From Eq.

(1.62), we can derive the explicit expression of the deflection potential as follows. First, we

have :

∇ψ(b) =
4G
c2

x

R2

Σ(b′) (b − b′)
|b − b′|2 db′ . (1.63)

Integrating both members with respect to b over R2, we obtain, up to an additive constant :

ψ(b) =
4G
c2

x

R2

Σ(b′)



x

R2

(b − b′)
|b − b′|2 db


db′ . (1.64)

Noticing that ∇ ln |b| = b/|b|2, the expression of the deflection angle reduces to :

ψ(b) =
4G
c2

x

R2

Σ(b′) ln |b − b′| db′ . (1.65)
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Furthermore, the deflection potential is a solution of the Poisson equation. Indeed, by taking

the Laplacian of the latter equation with respect to b, we have :

∆ψ(b) =
4G
c2

x

R2

Σ(b′) ∆
(
ln |b − b′|) db′ , (1.66)

=
8πG
c2

x

R2

Σ(b′) δ2(b − b′) db′ , (1.67)

=
8πG
c2 Σ(b) , (1.68)

where δ2 represents the 2D Dirac delta function and the second equality comes from the

theory of distributions (see example 2.3.2 from « Théorie des distributions », L. Schwartz

1950).

1.5 The lens equation

The fundamental equation of the gravitational lens theory consists in linking the positions

of a point-like source to those of the lensed images, taking into account the deflection

angle. This equation, the so-called lens equation, can be deduced in two distinct ways : the

physical and the geometrical approach. The first one can be analytically derived from the

application of the Fermat principle, while the second can be straightforwardly deduced from

the geometric illustration of the gravitational lensing phenomenon.

First, we adopt the physical approach. Let us consider a light ray emitted by a point-like

source S at time t = 0. We assume that the light path is composed of two straight line seg-

ments, SP and PO, in agreement with the transparent geometrically-thin lens approximation

(see section 1.2.3). According to the metric of the weak gravitational field (see Eq. (1.43))

and recalling that ds2 = 0 for a photon, the arrival time t of this light ray is given, to first

order, by :

t ' 1
c

O∫

S

(
1 − 2Φ(l)

c2

)
dl , (1.69)

=
l
c
− 2

c3

O∫

S

Φ(l) dl , (1.70)

where l can be read into the curvilinear Euclidean length of the path S (the source) - P
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Figure 1.3: Illustration of the gravitational lensing phenomenon. The source S located at the
position bS in the source plane emits light rays towards all directions. The light ray characterized by
the impact parameter b in the lens plane is deflected by the quantity α and reaches the observer O in
the observer plane.

(position of the lensed image in the lens plane) - O (the observer). We can evaluate the

expression of l to first order as :

l = SP + PO , (1.71)

=

√
D2

DS + (b − bS)2 +

√
D2

OD + b2 , (1.72)

' DDS + DOD +
(b − bS)2

2DDS

+
b2

2DOD

, (1.73)

where bS represents the point-like source position in the source plane, DOD (resp. DDS and

DOS) the angular diameter distance between the observer and the lens planes (resp. the

lens and the source planes, the observer and the source planes). According to the Fermat’s

principle, the gravitationally lensed images appear at locations that correspond to extrema in

the light travel time t (b, bS). Therefore, the lensed image positions b of a point-like source

located at bS in the source plane satisfy :

∇t (b, bS) = 0 , (1.74)

where ∇ represents the gradient operator with respect to b. After substituting Eqs. (1.70) and

(1.73) into Eq. (1.74), and considering a stationary configuration, i.e. the involved distances
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and mass distribution do not change during the considered time scale, we obtain

0 =
1

2DDS

∇ (b − bS)2 +
1

2DOD

∇b2 − ∇ψ(b) , (1.75)

=
DOS b

DOD DDS

− bS

DDS

− ∇ψ(b) , (1.76)

where the deflection potential ψ(b) is defined by Eq. (1.65). The latter equation constitutes

the lens equation, whose standard form, using Eq. (1.52), is given by :

bS =
DOS

DOD

b + DDS α(b) . (1.77)

For a given deflector, characterized by a mass distribution (information contained into ψ(b)

and then α(b)), and a given cosmology (information contained into the distances DOD, DDS

and DOS), the lens equation gives the position b of the gravitationally lensed images of a

point-like source located at the position bS. The geometrical approach of determining the

lens equation leads to the same expression as the one given in Eq. (1.77) (see Fig. 1.3). We

note that the inversion of the lens equation can only be carried out analytically for simple

mass distributions.

Finally, we can express the latter equation in terms of vectorial angle quantities. To that end,

we define θ and θS as follows :

θ =
b

DOD

, and θS =
bS

DOS

. (1.78)

Therefore, Eq. (1.77) simply transforms into :

θS = θ +
DDS

DOS

α(DODθ) . (1.79)

The advantage of this formulation of the lens equation resides in the fact that the involved

vectorial quantities are no longer defined in different planes.

1.6 Time delays

Let us consider a background source, e.g. a quasar, which emits simultaneously two photons.

We assume that these photons propagate towards two distinct lensed images of the source.

Since the followed paths are not equal, the arrival time of these photons are different.
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Consequently, since they are produced by the same background source, the corresponding

observed light curves are shifted in time. This difference in arrival time is called the time

delay and is denoted by ∆t. Let us calculate ∆tAB between the light curves of two distinct

lensed images of a point-like source.

First, we can define the Fermat potential τ(b, bS) as :

τ(b, bS) =
DODDOS

2DDS

(
b

DOD

− bS

DOS

)2

− ψ(b) , (1.80)

which satisfies the equation ∇τ(b, bS) = 0 = ∇t(b, bS). Then, we can interpret τ as being the

light travel time along the rays. The first term of the right member describes the deviation

of the light ray compared to an unbent ray which crosses the lens plane at b = bSDOD/DOS.

On the other hand, the second term of the right member leads to the time delay that a

ray experiences as it crosses the deflection potential ψ at the position b in the lens plane.

Furthermore, from Eqs. (1.70), (1.73) and (1.80), the relation between τ(b, bS) and t(b, bS)

can be expressed as :

ct(b, bS) = τ(b, bS) + DOS +
b2

S

2DOS

. (1.81)

In the latter equation, the second and third terms of the right member are constant, for a fixed

configuration of source-deflector-observer and under the adopted assumptions. Therefore,

those terms should not contribute to the total time delay.

By denoting with the subscript A (resp. B) the quantities relative to image A (resp. B),

the time delay ∆tAB between the two light curves, deduced from observations, of the lensed

images A and B is given by :

∆tAB(bS) =
1
c

(
τ(bB, bS) − τ(bA, bS)

)
, (1.82)

=
1
c

DODDOS

2DDS


(

bB

DOD

− bS

DOS

)2

−
(

bA

DOD

− bS

DOS

)2 − 1
c
[
ψ(bB) − ψ(bA)

]
, (1.83)

or, identically, after inserting Eq. (1.78) into Eq. (1.83) :

∆tAB(θS) =
1
c

DODDOS

2DDS

[
(θB − θS)2 − (θA − θS)2

]
− 1

c
[
ψ(DODθB) − ψ(DODθA)

]
, (1.84)

where bA (resp. bB) are deduced from Eq. (1.77), for a given source position bS and mass

distribution of the deflector. We underline the fact that the derived time delay corresponds to

the difference of the times at which the light rays reach the observer. In order to obtain the
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Figure 1.4: Illustration of the considered distances in a closed universe (k = 1). The triangle
O − S − D lies at the surface of a sphere.

proper time difference, ∆t has to be multiplied by the time dilation factor 1 + Φ0/c2, where

Φ0 corresponds to the value of the gravitational potential at the observer position. For the

case of the Earth, we have Φ0/c2 ' 10−9, which implies that this correction is unnecessary

in applications of gravitational lensing.

We have derived the expression of the time delay (see Eq. (1.84)) for the case of asymp-

totically flat spacetimes. Unlike the deflection angle (see Eq. (1.62)), Eq. (1.83) does not

remain exact for the case of FLRW cosmological models. The argument follows SEF 4.6,

p. 143. In order to determine the time delay in such a case, we recall the expression of the

FLRW metric :

ds2 = −c2dt2 + R2(t)
(

dr2

1 − kr2 + r2dΩ2
)
, (1.85)

where dΩ2 = dθ2 + sin2 θ dφ2. By denoting η, the so-called conformal time, defined as

follows :

R(η) dη = c dt , (1.86)

where R(η) represents the scale parameter R(t) expressed in terms of the conformal time, the

FLRW metric transforms into :

ds2 = −R2(η)
(
dη2 − dσ2

)
. (1.87)

We assume the emission time to be η = 0. According to Eq. (1.85) and recalling that ds2 = 0
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along light rays, the geometric contribution ηgeo to the excess time delay relative to the case

of no lensing is given by :

ηgeo = σOD + σDS − σOS , (1.88)

where the function σ represents distances measured by means of the metric ds2 given in Eq.

(1.87). In order to evaluate the right member of the latter equation, we first assume k = 1.

According to the law of cosines in spherical trigonometry applied to the spherical triangle

O-S-D (see Fig. 1.4), and considering that σOS ' σOD + σDS, we obtain :

ηgeo =
sinσDS sinσOD

2 sinσOS

α2 , (1.89)

where α4-terms have been neglected. Furthermore, by definition of the angular diameter

distance (see Eq. (1.18)) and by denoting ROS (resp. ROD) the value of the scale parameter for

the source (resp. the deflector), we have :

DOD = ROD sinσOD , DOS = ROS sinσOS , DDS = ROS sinσDS . (1.90)

After inserting Eq. (1.90) into Eq. (1.89), we simply obtain :

ηgeo =
DODDDS

DOS

α2

2 ROD

. (1.91)

Since the time delay is small in comparison with the Hubble time H−1
0 , we have ctgeo = R0ηgeo

where R0 represents the actual value of the scale parameter. Furthermore, by definition of

the redshift, we have 1 + zD = R0/ROD. As a consequence, using the lens equation given in

Eq. (1.79), the geometrical contribution to the arrival time compared to the unbent light ray

is finally given by :

ctgeo = (1 + zD)
DODDOS

2DDS

(θ − θS)2 . (1.92)

The latter result holds for k = −1 or k = 0. Comparison between Eq. (1.92) and the

geometrical contribution in Eq. (1.80) leads to the conclusion that taking into account the

cosmology appears by simply “redshifting” the quantity ctgeo. The same conclusion can be

deduced for the potential contribution to the time delay, to the extent that ctpot is simply given

by :

ctpot = (1 + zD)ψ(DODθ) + constant , (1.93)
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where the constant remains the same for all light rays leaving the source plane and reaching

the observer plane. As a conclusion, from Eqs. (1.92) and (1.93), the total time delay

between the light curves of two lensed images can be expressed as :

∆tAB(θS) =
(1 + zD)

c

(
DODDOS

2DDS

[
(θB − θS)2 − (θA − θS)2

]
− [
ψ(DODθB) − ψ(DODθA)

])
. (1.94)

1.7 Lens equation in terms of dimensionless quantities

The inconvenience of the expression of the lens equation given by Eq. (1.77) resides in

the fact that the different vectors are defined in different planes. Indeed, b is defined in the

lens plane, bS, in the source plane, while α(b) corresponds to a vectorial angle. However,

both quantities bDOS/DOD and DDSα(b) lie in the source plane. Therefore, it is convenient

to express the lens equation, as well as other quantities, in terms of vector quantities which

all lie in the same plane (see Eq. (1.79)). In order to obtain further results in a canonical

form, we introduce dimensionless quantities. First, we express the lens equation in terms of

quantities defined in the lens plane :

DOD

DOS

bS = b +
DDS DOD

DOS

α(b) . (1.95)

Let us define a length scale b0 in the lens plane. Then, we define the dimensionless vectors

x, y and α̂(x) such as :

x =
b
b0
, y =

DOD

DOS

bS

b0
, α̂(x) =

DDS DOD

DOS b0
α(b0x) . (1.96)

We note that all these vectors lie in the lens plane. As a consequence, after inserting Eq.

(1.96) into Eq. (1.95), the lens equation in terms of dimensionless quantities takes the simple

form :

y = x + α̂(x) . (1.97)

From Eqs. (1.62), (1.96), and after noticing that the jacobian of the 2D variable change

b→ x is equal to b2
0, we deduce that the expression of the dimensionless deflection angle
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defined in the lens plane can be express as :

α̂(x) = −4G
c2

DDS DOD

DOS

x

R2

Σ(b0x′)
x − x′

|x − x′|2 dx′ , (1.98)

= −1
π

x

R2

κ(x′)
x − x′

|x − x′|2 dx′ , (1.99)

where we have defined the dimensionless surface mass density κ(x) by :

κ(x) =
Σ(b0x)

Σcr

, (1.100)

where the critical surface mass density Σcr is given by :

Σcr =
c2

4πG
DOS

DDS DOD

. (1.101)

From Eqs. (1.65) and (1.96), the dimensionless deflection potential, defined up to an additive

constant, is given by :

ψ̂(x) =
DDS DOD

DOSb2
0

ψ(b0x) , (1.102)

=
4G
c2

DDS DOD

DOS

x

R2

Σ(b0x′) ln |x − x′| dx′ , (1.103)

=
1
π

x

R2

κ(x′) ln |x − x′| dx′ . (1.104)

From Eq. (1.68), the dimensionless Poisson equation takes the simple form :

∆ψ̂(x) =
DDS DOD

DOSb2
0

∆ψ(b0x) , (1.105)

= 2 κ(x) . (1.106)

The dimensionless Fermat potential is simply given by :

τ(x, y) =
1
2

(x − y)2 − ψ̂(x) . (1.107)

From Eqs. (1.78), (1.94) and (1.96), the dimensionless expression of the time delay between

the light curves of two lensed images can be expressed as :

∆tAB(y) =
(1 + zD)

c


DODDOS

2DDS


(
b0xB

DOD

− b0yB

DOD

)2

−
(
b0xA

DOD

− b0yA

DOD

)2 −
DOSb2

0

DODDDS

[
ψ̂(xB) − ψ̂(xA)

] ,

(1.108)
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which leads, after some trivial simplifications, to :

∆tAB(y) =
(1 + zD)

c
DOS

DODDDS

b2
0

(
τ(xB, y) − τ(xA, y)

)
. (1.109)

Let us summarize the main results of this section :

y = x + α̂(x) , (1.110)

α̂(x) = −1
π

x

R2

κ(x′)
x − x′

|x − x′|2 dx′ , (1.111)

ψ̂(x) =
1
π

x

R2

κ(x′) ln |x − x′| dx′ , (1.112)

α̂(x) = −∇ψ̂(x) , (1.113)

∆tAB(y) =
(1 + zD)

c
DOS

DODDDS

b2
0

(
τ(xB, y) − τ(xA, y)

)
, (1.114)

τ(x, y) =
1
2

(x − y)2 − ψ̂(x) . (1.115)

It is important to notice that we assume that κ is non-negative and smooth, although in

specific models, we may admit some singularities, e.g. the Chang-Refsdal lens (Chang &

Refsdal 1984, An & Evans 2006). Furthermore, the integrals which appear in Eqs. (1.111)

and (1.112) hold if κ decreases at infinity faster than |x|−2.

1.8 Amplification, critical and caustic curves

In addition to produce multiple lensed images of a background source, the gravitational

lensing phenomenon affects their observed flux. Indeed, the differential deflection across a

light bundle distorts its cross-sectional area. Therefore, since the photon number is preserved

(Etherington 1933), the flux of a lensed image is simply determined by its area in the lens

plane.

Let us consider an undeflected infinitesimal source with a constant surface brightness I which

subtends a solid angle dΩs on the sky plane. Since the gravitational lensing phenomenon is

achromatic, we do not specify the observed frequency of the source flux. The observed flux

Fs of the unbent image of the source is given by :

Fs = I dΩs . (1.116)
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Let us now consider a mass distribution located along the line-of-sight of the emitting light

source which produce several lensed images. The solid angle dΩi of a particular lensed

image differs from dΩS and the observed flux of this image is given by :

Fi = I dΩi . (1.117)

As a consequence, the amplification factor µ which affects the lensed image is defined by :

|µ|= Fi

Fs

=
dΩi

dΩs

. (1.118)

Since the lens equation (see Eq. (1.110)) represents a surjective mapping x → y, the

amplification factor is obtained from the Jacobian determinant of this lens mapping. The

Jabobian matrix for Eq. (1.110), also called the amplification matrix, is given by :

A(x) =
∂y
∂x

, (1.119)

and the amplification factor µ takes the form :

µ(x) =
1

det A(x)
. (1.120)

The flux of a lensed image located at the position x of an infinitesimally small source located

at y, both lying in the lens plane, is scaled by the factor |µ(x)|. For the case |µ(x)| > 1,

the lensed image is brighter than the unbent image of the source, while for |µ(x)| < 1, it is

fainter. We note that µ(x) can be positive or negative, and the corresponding images are

said to have positive or negative parity. In addition, we can construct the amplification map

corresponding to a given lens mapping x→ y by associating to any position y in the source

plane the value of the corresponding modulus of the amplification factor in the lens plane.

We have illustrated in Fig. 1.5 the amplification map associated with different mappings.

Using Eqs. (1.110) and (1.113), the amplification matrix A(x) takes the form :

A(x) =


1 − ∂2ψ̂

∂x2
1
− ∂2ψ̂

∂x1∂x2

− ∂2ψ̂

∂x1∂x2
1 − ∂2ψ̂

∂x2
2

 . (1.121)

Furthermore, from Eq. (1.106), we have :

κ(x) =
1
2

(
∂2ψ̂

∂x2
1

+
∂2ψ̂

∂x2
2

)
, (1.122)
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Figure 1.5: Illustration of two amplification maps (AM). The left panel represents the AM for two
point-like lenses characterized by M1 = 2M2 where Mi corresponds to their masses. The right panel
represents the AM for a cluster of point-like lenses characterized by different masses. One clearly
distinguishes different zones for which the amplification factor tends towards infinity. Those curves
are called caustic curves (more informations are given in the text).

which, combined with Eq. (1.121), leads to :

A(x) =


1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

 , (1.123)

where γ1 and γ2 are defined by :

γ1 =
1
2

(
∂2ψ̂

∂x2
1

− ∂
2ψ̂

∂x2
2

)
, and γ2 =

∂2ψ̂

∂x1∂x2
. (1.124)

Therefore, the determinant of the amplification matrix A(x) is simply given by :

det A(x) = (1 − κ)2 − γ2 , (1.125)

where κ, which is responsible for the isotropically increase of the image size, is here called

the convergence, while γ =

√
γ2

1 + γ2
2, which is responsible for the stretches of the image

tangentially around the lens, is called the shear. Of course, both are functions of x. Since

the amplification matrix is real and symmetric, it may be expressed as a diagonal matrix

formed by the eigenvalues λ1 and λ2 which can be derived when solving the equation

det (A(x) − λi I2) = 0, where I2 represents the identity matrix of size 2. Therefore, the
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amplification matrix takes the form :

A(x) =


λ1 0

0 λ2

 =


1 − κ − γ 0

0 1 − κ + γ

 . (1.126)

The amplification matrix is strongly linked to the Fermat potential given in Eq. (1.107).

Indeed, A(x) corresponds to the Hessian matrix of τ(x, y). Such a relation can be easily

deduced by noticing the fact that the Hessian matrix H of any real-valued function f for

which all second partial derivatives exist, is related to the Jacobian matrix J by :

H
[
f (x)

]
= J

[
∇ f (x)

]
. (1.127)

Hence, since A(x) = J
[
∇τ(x, y)

]
where ∇ denotes the gradient operator with respect to x,

we have :

A(x) = H
[
τ(x, y)

]
. (1.128)

Since the lensed image positions x(i) are those for which ∇τ(x(i), y) = 0, and making use of

the Hessian matrix properties, we may deduce three different types of lensed images. First,

for the case of A(x) being a positive-definite matrix, i.e. λ1 > 0 and λ2 > 0, or identically

det A(x) > 0 and tr A(x) > 0, the lensed image position x(i) corresponds to a minimum

of τ(x(i), y). Such a lensed image x(i)
I is denoted as Type I. We deduce from Eq. (1.126)

that λ1 > 0 implies γ < 1 − κ, which combined with λ2 > 0 implies 0 < κ < 1, hence

0 < 1 − κ < 1. Therefore, it follows that 0 < λ1 < 1, hence 0 < (1 − κ)2 − γ2 < 1, and finally

µ(xI) ≥ 1. As a result, the flux of a Type I lensed image is always amplified or unaltered (in

the very special case κ = 0 = γ). In addition, for smooth mass distributions with a finite total

mass, there always exists at least one Type I lensed image (Schneider 1984).

Secondly, for the case λ1 < 0 < λ2, i.e. det A(x) < 0, the lensed image position x(i)

corresponds to a saddle point of the iso-density contours of τ(x(i), y). Such a lensed image is

denoted as Type II. We deduce that γ2 > (1 − κ)2 and µ(xII) < 0. As a result, Type II lensed

images have always a negative parity.

Thirdly, for the case of A(x) being a negative-definite matrix, i.e. λ1 < 0 and λ2 < 0, or

identically det A(x) > 0 and tr A(x) < 0, the lensed image position x(i) corresponds to a

maximum of τ(x(i), y). Such a lensed image is denoted as Type III. Since λ1 ≤ λ2, there is no

possibility to consider the fourth case λ2 < 0 < λ1. We deduce that λ1 < 0 implies 1 − κ < γ,

which combined with λ2 < 0 implies κ > 1. Therefore, it follows that γ2 < (1 − κ)2, and

finally µ(xIII) > 0. As a result, Type III lensed images have always a positive parity. We have
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Table 1.1: Summary of the lensed image features for types I, II and III.

λi det A(x) tr A(x) κ(x) µ(x)
Type I λi > 0 > 0 > 0 0 < κ < 1 ≥ 1
Type II λ1 < 0 < λ2 < 0 – (1 − κ)2 < γ2 < 0
Type III λi < 0 > 0 < 0 κ > 1 > 0

Remark : For the case of Type II lensed images, the values of λi do not allow a direct deter-
mination of the sign of tr A(x).

summarized those lensed image characteristics in Table 1.1.

For very special values of x we may have λ1 = 0 and/or λ2 = 0, hence det A(x) = 0. For

such specific values of x, the so-called critical points, the amplification factor formally

diverges : µ(x) → ∞. The geometrical locus in the lens plane at which the amplification

factor tends towards infinity are called critical curves. Of course, any elements of a critical

curve constitute critical points. Moreover, the source point located at the position y which

leads to a critical point from the lens mapping is called a caustic point. A curve for which

all points consist of caustic points is called a caustic curve. For any caustic curve, we

may associate, using the lens mapping, a critical curve which can sometimes degenerate

into a single point. For the case of several lens mass distributions and a point-like source,

we have illustrated in Fig. 1.6 the corresponding lensed image positions, the critical and

caustic curves and selected iso-density contours of the Fermat potential. For the case of a

diamond-shape caustic curve, we define two types of special caustic points. First, the set of

caustic points yfold which constitute a branch of the caustic curve is called a fold. From the

lens equation, we may deduce the lensed image points xfold of the fold points yfold. Such points

xfold are those for which A(xfold) · T(xfold, yfold) 6= 0 where T represents the tangential vector to

the critical curve at the position xfold. Secondly, the intersection point of two folds is located

at xcusp and is called a cusp. Such a point xcusp is one for which A(xcusp) · T(xcusp, ycusp) = 0.

Furthermore, all lenses produce always an even number of cusps (A. Weiss, p. 213).

For the case of a source crossing a fold (resp. a cusp), we note that two (resp. three) lensed

images merge (see Fig. 1.7). Due to the lensed image characteristics (see Table 1.1), the

parities of two lensed images on either side of a critical curve are opposite. For the case of

the source crossing a cusp, two lensed images share the same parity while the third one has

an opposite parity. Therefore, for a smooth mass distribution, one may link the amplification

factor of such lensed images. Indeed, the fold relation states that µ1 + µ2 = 0 where µi

corresponds to the amplification factor of two nearly merging lensed images of a source

which is infinitely close to a fold. In addition, the cusp relation states that µ1 + µ2 + µ3 = 0

where µi corresponds to the amplification factor of three nearly merging lensed images of a



Section 1.8 33

Figure 1.6: For the SIE lens model, we have represented the position of a point-like source (cross ×),
the associated lensed images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and iso-contours of the Fermat potential (gray solid lines). The cross + denotes the
central position of the deflector and the roman numbers refer to the type of lensed images.

source which is infinitely close to a cusp.

Given a smooth normalized surface mass density κ(x) which decreases faster that |x|−2 for

the case |x|→ ∞, the gravitational lens has a finite total mass and the deflection angle α̂(x) is

a bounded continuous function of x. Under these assumptions and by denoting y the position

of a point-like source not located on a caustic, we have the following results (SEF, 1992) :

nI ≥ 1 , (1.129)

n < ∞ , (1.130)

nI + nIII = 1 + nII , (1.131)

n = nI = 1 for sufficiently large values of |y| , (1.132)

where nI (resp. nII or nIII) denotes the number of lensed images of type I (resp. II or III) of the

point-like source located at y, and n = nI + nII + nIII. Furthermore, from the latter equation

and Eq. (1.131), we easily deduce that :

n = 1 + 2nII . (1.133)

Therefore, the total number of lensed images is always an odd number. Such a result is

known as the odd-number theorem. These results may be used to derive a necessary and
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Figure 1.7: Illustration of lensed image configurations for the case of a circular source which passes
through a SIE lens. The left panels represent the position of the source with respect to the tangential
caustic curve (diamond-like shaped solid line) and the so-called cut. The right panels represent
stretched and twisted lensed images. When the source crosses the caustic line, several lensed images
merge on the corresponding critical line (right panel, solid lines).
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sufficient condition to cause multiple lensed images of a source. Let us consider an isolated

transparent gravitational lens and a point-like source, both respectively located at distance

DOD and DOS from an observer O. The lens produces multiple lensed images if, and only if,

there exists a point x in the lens plane for which det A(x) < 0. On one hand, the condition is

necessary. Indeed, if det A(x) > 0 for all x in the lens plane, then the amplification matrix

A(x) is globally invertible and either λi > 0 or λi < 0, with i = 1 or 2. Therefore, according to

Table 1.1, there exist only Type I or Type III lensed images, hence nII = 0. As a consequence,

from Eq. (1.133), the total number of lensed images is 1, which means that no multiple

imaging occurs. On the other hand, the condition is sufficient. Indeed, let us consider x0 for

which det A(x0) < 0, from Eq. (1.131), there must be at least two additional lensed images

of Type I or III. Let us note that there exists another sufficient (but not necessary) condition

for possible multiple lensed images. The latter occurs if there exists x in the lens plane for

which κ(x) > 1. Indeed, according to Table 1.1, there exists at least a Type III lensed image.

However, under the considered assumptions, there must exists at least one Type I lensed

image (Schneider 1984). Therefore, κ(x) > 1 implies that there exists at least two lensed

images. The latter condition is not necessary since we may consider the case of xI, x′I and xII

which are three lensed images of respectively Type I, Type I and Type II, and κ(xII) < 1.

Finally, we underline the fact that the divergence of the amplification factor, which appears

when an infinitesimally small source crosses a caustic line, only indicates that the approx-

imation of geometric optics fails. In such a situation, the wave optics should be applied,

although it does not lead to any relevant correction. For more details about wave optics in

gravitational lensing, the reader may consult the chapter 7 of SEF (p 217).

1.9 The mass-sheet degeneracy

Let us consider a lens mass distribution characterized by its surface mass density κ(x) which

is linked to the deflection potential ψ̂(x) by ∆ψ̂(x) = 2 κ(x). We assume that this lens

produces multiple lensed images x(i) of a background source located in the lens plane at y.

Let us now consider the following transformation of the deflection potential :

ψ̂ν(x) =
ν

2
|x|2+s · x + (1 − ν) ψ̂(x) + K , (1.134)

where 0 < ν < 1 is a real number, s · x corresponds to an unobservable constant shift in

the source plane, and K is a constant which fixes the zero point of the deflection potential.
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Figure 1.8: Illustration of different surface mass density profiles for the case of the NSIE lens model
and for ν = 0, ν = 0.3, and ν = 0.7, respectively.

From Eq. (1.134), we may define the corresponding deflection angle α̂ν(x) and surface mass

density κν(x) such as :

α̂ν(x) = −∇ψ̂ν(x) , (1.135)

= −ν x − s − (1 − ν) ∇ψ̂(x) , (1.136)

and

κν(x) = ∆ψ̂ν(x) , (1.137)

= ν + (1 − ν) κ(x) . (1.138)

From the latter equation, the considered transformation can be understood as corresponding

to the addition of a circular disk of uniform surface mass density ν centered at x = 0.

Furthermore, the original surface mass distribution κ(x) is scaled by the factor (1 − ν). We

have illustrated in Fig. 1.8 different surface mass density profiles for the case of the NSIE

lens ( f = 0.4 and ρ0 = 0.2) model and for different values of ν. From Eq. (1.136), the lens

equation takes the form :

yν = x + α̂ν(x) , (1.139)

= (1 − ν) x − s + (1 − ν) α̂(x) , (1.140)
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which can be expressed as :

yν
1 − ν +

s
1 − ν ≡ y = x + α̂(x) . (1.141)

Therefore, for any value of 0 < ν < 1, the surface mass densities κ(x) and κν(x) exactly pro-

vide the same dimensionless quantities, i.e. lensed image positions and shapes, amplification

ratios between a pair of lensed images. From Eq. (1.141), one may not distinguish between

the source position y and the scaled and shifted source position yν, which both effects remain

unobservable. This effect is called the mass-sheet degeneracy and has first been pointed out

by Falco & al. (1985).

From Eqs. (1.107), (1.134) and (1.141), the Fermat potential τν(x, yν) is given by :

τν(x, yν) = (1 − ν) τ(x, y) + constant . (1.142)

Therefore, the mass-sheet degeneracy has a significative impact on the cosmography.

1.10 The simple case of axially symmetric lenses

A mass distribution for which the surface mass density κ(x) depends only on the radial

coordinate of the impact parameter is called an axially symmetric lens. Owing to their

simplicity, these models of deflectors represent an interesting class of models, both from the

mathematical and physical point of view. Indeed, the analytical treatment of such particular

deflectors allows the use of scalar quantities instead of the vector formalism. In this section,

we present the main results regarding axially symmetric lenses. Since the surface mass

density only depends on the radial coordinate, we have of course b = |b|. Then, without loss

of generality, we can set the orientation of the system of polar coordinates such as b = (b, 0).

Therefore, the expression of the deflection angle can be reduced to :

α(b) = −4G
c2

+∞∫

0

2π∫

0

Σ(b′)
b′ (b − b′ cosϕ′)

(b − b′ cosϕ′)2 + (−b′ sinϕ′)2 dϕ′ db′ , (1.143)

= −4G
c2

+∞∫

0

Σ(b′) b′


2π∫

0

b − b′ cosϕ′

b2 + b′2 − 2 b b′ cosϕ′
dϕ′


db′ . (1.144)
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After successively applying Eqs. (2.554 - 2) and (2.553 - 3) from Gradshteyn & Tyzhik

(2007), the ϕ-integral equals 2π/b if b′ < b and vanishes otherwise. Consequently, the

expression of the deflection angle reduces to :

α(b) = −8πG
bc2

b∫

0

Σ(b′) b′ db′ . (1.145)

From the latter equation, we can define the projected mass M(b) within a circle of radius b

by :

M(b) = 2π

b∫

0

Σ(b′) b′ db′ . (1.146)

In vectorial notation, the expression of the deflection angle for the case of a symmetric mass

distribution is simply given by :

α(b) = − 4G
b2c2 M(b) b . (1.147)

From the use of the dimensionless quantities, the latter equation can then be expressed as :

α̂(x) = −m(x)
x2 x , (1.148)

where x = |x| and the dimensionless projected mass m(x) ≥ 0 is defined by :

m(x) = 2
∫ x

0
x′κ(x′) dx′ . (1.149)

The scalar expression of Eq. (1.148) is simply given by :

α̂(x) = −m(x)
x

. (1.150)

From Eqs. (1.110) and (1.148), we may establish the lens equation for the case of axially

symmetric lenses :

y =

(
1 − m(x)

x2

)
x , (1.151)

which indicates that the source position, the center of the symmetric mass distribution and

the lensed image positions are collinear. The scalar form of the lens equation is simply given
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by :

y = x − m(x)
x

. (1.152)

Let us underline the fact that x and y, which appear in the scalar form of the deflection angle

definition and lens equation, are always positive or null : x ≥ 0 and y ≥ 0. However, the

components x1, x2, y1 and y2, which appear in the vectorial form of the mentioned quantities

may be positive, null or negative.

From Eq. (1.112) and making use of the polar system of coordinates, we may deduce the

expression of the deflection potential ψ̂(x) :

ψ̂(x) =
1

2π

+∞∫

0

x′κ(x′)



2π∫

0

ln
(
x2 + x

′2 − 2xx′ cosϕ
)

dϕ


dx′ , (1.153)

=
1

2π

+∞∫

0

x′κ(x′)
{
4π ln

(
max[x, x’]

)}
dx′ , (1.154)

= 2 ln (x)

x∫

0

x′κ(x′) dx′ + 2

+∞∫

x

x′κ(x′) ln (x′) dx′ . (1.155)

Since the deflection potential is determined only up to an additive constant, we can add to

the latter equation any term which is independent of x. Therefore by adding to Eq. (1.155)

the term :

K = −2

+∞∫

0

x′κ(x′) ln (x′) dx′ , (1.156)

the deflection potential transforms into :

ψ̂(x) = 2 ln (x)

x∫

0

x′κ(x′) dx′ − 2

x∫

0

x′κ(x′) ln (x′) dx′ , (1.157)

= 2

x∫

0

x′κ(x′) ln
( x

x′

)
dx′ . (1.158)

Of course, it is straightforward to deduce from the latter equation that α̂(x) = −∇ψ̂(x) and

α̂(x) = −dψ̂/dx.

Due to the symmetry of the considered mass distribution and using polar coordinates, we
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may significantly simplify the expression of the amplification matrix (see Eq. (1.123)) :

A(x) =


1 +

dα̂(x)
dx

0

0 1 +
α̂(x)

x

 , (1.159)

=


1 +

m(x)
x2 − 2κ(x) 0

0 1 − m(x)
x2

 , (1.160)

=


1 + κ̄(x) − 2κ(x) 0

0 1 − κ̄(x)

 , (1.161)

where we have used the relation dm(x)/dx = 2 x κ(x) for the second equality, and we have

defined the mean surface mass density κ̄(x) = m(x)/x2 ≥ 0. As a result, the amplification

factor takes the form :

µ(x) =
1

(
1 − κ̄(x)

)(
1 + κ̄(x) − 2κ(x)

) . (1.162)

As a consequence, for the case of axially symmetric lenses, the critical curves are simply

circles which radii can be determined from the latter equation. First, solving the previous

equation for κ̄(xt) = 1 with respect to xt leads to the determination of the radii of the

tangential critical curve. Secondly, the solution 1 + κ̄(xr) − 2κ(xr) = 0 with respect to xr

leads to the determination of the radii of the radial critical curve. The distinction between

tangential and radial results from the way two lensed images merge when a point-like source

crosses the corresponding tangential or radial caustic curves. Such curves are simply given

by the mapping of xt and xr, respectively. From Eq. (1.152), we deduce that the tangential

caustic curve simply reduces to the point yt = 0. In addition, let us notice that all axially

symmetric lenses do not necessarily lead to two critical curves.

To conclude this section, we may summarize some general properties of axially symmetric

lenses. First, let us note that the scalar form of the lens equation (see Eq. (1.152)) may

not rigorously lead to the determination of all lensed image positions. For instance, for the

case of the singular isothermal sphere (SIS) mass distribution, the surface mass density is

given by κ(x) = 1/(2x). Therefore, from Eq. (1.149), the projected mass m(x) corresponds

to m(x) = x. By substituting the latter equation into the lens equation (1.152), we obtain

x = y + 1 which seems to indicate the existence of only one solution. By considering the

vectorial form of the lens equation (see Eq. (1.151)), we obtain the following system of two
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equations to be solved : 

y1 = x1 − x1√
x2

1 + x2
2

,

y2 = x2 − x2√
x2

1 + x2
2

,
(1.163)

which leads to : 

x1 =
y1

y
(1 ± y) ,

x2 =
y2

y
(1 ± y) .

(1.164)

Therefore, remembering that x =

√
x2

1 + x2
2, the radial coordinate of the lensed image

positions is given by :

x = 1 ± y . (1.165)

Furthermore, from the latter equation and since the radial coordinate x ≥ 0, we deduce that

for the case y > 1, the second solution x = 1 − y has to be rejected. As a conclusion, only

the use of the vectorial form of the lens equation allows to determine all solutions.

Secondly, for a source position y1 > 0 (resp. y1 < 0), any image with x1 > 0 (resp. x1 < 0)

leads to x ≥ y. Furthermore, for sufficiently large values of the source position y, there

only exists one lensed image. Finally, since the general condition to obtain multiple lensed

images is A(x) < 0 for, at least, one point x located in the lens plane, we may consider the

two following cases : 1 + κ̄(x) − 2κ(x) < 0 and 1 − κ̄(x) > 0, or, 1 + κ̄(x) − 2κ(x) > 0 and

1 − κ̄(x) < 0. However, since 1 + κ̄(x) − 2κ(x) = dy(x)/dx, the second case produces no

multiple lensed images since y(x) increases monotonically. Therefore, any axially symmetric

lenses produce multiple lensed images if, and only if, 1 + κ̄(x) − 2κ(x) < 0. Furthermore,

from the last inequation, we deduce that :

κ(x) >
1 + κ̄(x)

2
≥ 1

2
, (1.166)

where the last inequality is deduced from κ̄(x) ≥ 0. As a result, a necessary condition to

produce multiple lensed images is κ(x) > 1/2, for at least one point.
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1.11 Elliptical symmetric lenses and complex representation

Since many galaxies appear to have elliptical-shape isophotes, elliptical mass distributions

seem to be more appropriate than axially symmetric ones in order to model gravitational

lenses. However, there is no guarantee that the light distribution of an observed galaxy

matches the distribution of matter. Such a family of deflectors has been studied in detail

although rather difficult to handle. One of them is the singular isothermal ellipsoid (SIE)

family of models. The explicit analytical treatment of the SIE has been first proposed by

Kormann & al. (1994). Let us summarize some general results. After having adopted the

polar coordinate system, the SIE dimensionless surface mass density can be expressed as :

κ(r, ϕ) =

√
f

2 r
√

cos2 ϕ + f 2 sin2 ϕ

, (1.167)

where r cosϕ = x1, r sinϕ = x2, and f represents the axis ratio of the elliptical iso-density

contours. Let us note that the abscissa axis points towards the minor axis of the ellipse. From

the expression of κ(r, ϕ) and Eq. (1.106), the Poisson equation takes the form :

1
r
∂

∂r

(
r
∂ψ̂(r, ϕ)
∂r

)
+

1
r
∂2ψ̂(r, ϕ)
∂ϕ2 =

√
f

r
√

cos2 ϕ + f 2 sin2 ϕ

. (1.168)

Assuming that the deflection potential ψ̂(r, ϕ) can be expressed with separated variables, i.e.

ψ̂(r, ϕ) = r ψ̃(ϕ), Eq. (1.168) reduces to :

ψ̃(ϕ) +
d2ψ̃(ϕ)

dϕ2 =

√
f

√
cos2 ϕ + f 2 sin2 ϕ

. (1.169)

The latter equation can be resolved using the Green’s function method. As a result, the

deflection potential is then given by :

ψ̂SIE(r, ϕ) =

√
f r

f ′

[
sinϕ arcsin

(
f ′ sinϕ

)
+ cosϕ arcsinh

(
f ′

f
cosϕ

)]
, (1.170)
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where f ′ =
√

1 − f 2. From the latter equation and Eq. (1.113), the deflection angle takes

the form :

α̂SIE(x) = −
√

f
f ′

[
arcsinh

(
f ′

f
cosϕ

)
e1 + arcsin

(
f ′ sinϕ

)
e2

]
, (1.171)

where the unit vector ei points towards xi. Afterwards, the amplification matrix :

A(r, ϕ) =


1 − 2κ sin2 ϕ κ sin 2ϕ

κ sin 2ϕ 1 − 2κ cos2 ϕ

 , (1.172)

leads to the determination of the amplification factor :

µ(r, ϕ) =
1

1 − 2κ(r, ϕ)
. (1.173)

The determination of the critical curve results from the solution of det A(r, ϕ) = 0 =

1 − 2κ(r, ϕ). Therefore, the simple solution κ = 1/2 leads to the following expression of the

critical curve :

rcri =

√
f

√
cos2 ϕcri + f 2 sin2 ϕcri

. (1.174)

By substituting the latter equation into the lens equation, we obtain a parametrized equation

for the corresponding caustic curve :

y1 =

√
f

√
cos2 ϕ + f 2 sin2 ϕ

cosϕ −
√

f
f ′

arcsinh
(

f ′

f
cosϕ

)
, (1.175)

and

y2 =

√
f

√
cos2 ϕ + f 2 sin2 ϕ

sinϕ −
√

f
f ′

arcsin
(
f ′ sinϕ

)
. (1.176)

Due to the singularity of the SIE surface mass density at the center x = 0, there exists a

region in the source plane for which a source produce multiple lensed images but which is

not surrounded by a caustic curve. One of these lensed images is infinitely faint and located

at x = 0. This region is surrounded by a curve, the so-called cut (Kovner 1987a), for which
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Figure 1.9: Illustration of gravitational lensing deformations due to a SIE deflector. The green lines
correspond respectively to the caustic curves (left panel) and to the critical lines (right panel).

the analytical expression can be simply deduced from y(ϕ) = lim
r→0

y(r, ϕ), hence :

y(ϕ) = −
√

f
f ′

[
arcsinh

(
f ′

f
cosϕ

)
e1 + arcsin

(
f ′ sinϕ

)
e2

]
. (1.177)

In order to visualize the different features of the SIE lens mapping, we have illustrated in

Fig. 1.9 the lensed images of Homer Simpson in two different situations. For instance,

such an illustration allows to easily recognize the parities of the different lensed images of a

particular part of the source (e.g. Homer’s head).

The SIE is a particular case of a more general family of lenses for which the deflection

potential obeys the relation :

ψ̂(r, ϕ) = r
∂ψ̂(r, ϕ)
∂r

, (1.178)



Section 1.11 45

whose general solution for the deflection potential is :

ψ̂(r, ϕ) = r F(ϕ) , (1.179)

where F(ϕ) represents a function of ϕ only. For the case of this family of models, in particular

SIE lenses, Witt & al. (2000) have proposed a very simple expression for the time delay

between a pair of two lensed images :

∆ti, j =
1 + zD

2c
DODDOS

DDS

(
r2

j − r2
i

)
. (1.180)

The main advantage of the latter equation is that the determination of the time delays

does not require to know the lens orientation, nor the need to search for the best-fit model

parameters. However, the use of the latter equation still requires to assume that the considered

mass distribution can be described by the SIE family of models. For the case of a small

misalignment between the source, the deflector and the observer, one can retrieve all the

model parameters using only the lensed image positions (Wertz & Surdej, submitted to

MNRAS on February 2014). Such an approach allows to conclude, without requiring any

numerical simulations, whether the SIE family of models constitutes a relevant choice. The

same approach has been first applied to axially symmetric mass distributions which obey a

power-law, as well as the latter perturbed with an external shear (Wertz, Pelgrims & Surdej,

2012).

As already mentioned, the analytical treatment of those families of models is difficult. When

the determination of the deflection angle is non-trivial and when complex integration theory

can lead to analytical handling, the lens theory can be usefully formulated in terms of

complex quantities. Such a complex representation of the gravitational lens theory has been

first proposed by Bourassa & Kantowski (1973, 1975), corrected by Bray (1984). Let us

summarize some general results of this approach. First, we may express the deflection angle,

the source and the lensed image positions in terms of complex numbers : yc = y1 + ı y2,

xc = x1 + ı x2 and Ic(xc) = α1(x1, x2) + ı α2(x1, x2), where ı represents the imaginary unit

and Ic(xc) is called the complex scattering function. From the latter equations and from Eq.

(1.111), the expression of Ic(xc) can be expressed as :

Ic(xc) = −1
π

∫

C

κ(x′c)
xc − x′c

dx′c . (1.181)

Adopting these notations, the lens equation in terms of complex quantities transforms into :

yc = xc − I∗c (xc) , (1.182)
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where the asterisk denotes complex conjugation. For the case of elliptical isodensity curve

lenses, also called homoeoidal symmetric lenses, we can define the coordinates ρ and φ in

the lens plane such as :

x1 = ρ cos φ , x2 =
ρ

f
sin φ , (1.183)

which allow to express the surface mass density in the simple form κ(r, φ) ≡ κ(ρ). After

substituting the coordinates (ρ, φ) into Eq. (1.181), the complex scattering function takes the

form :

Ic(xc) = − 1
fπ

+∞∫

0

ρ′κ(ρ′)



2π∫

0

dφ

xc − ρ′ cos φ − ı ρ′f sin φ


dρ′ . (1.184)

The φ-integral, hereafter Iφ, can be evaluated by making use of the complex integration

theory. First, reminding that cos φ = (eıφ + e−ıφ)/2 and sin φ = (eıφ − e−ıφ)/2ı, and defining

the variable z = eıφ, the integral Iφ becomes :

Iφ = ı

∫

C

1
ρ′
2

(
1 + 1

f

)
z2 − xcz +

ρ′
2

(
1 − 1

f

) dz , (1.185)

where C denotes a rectifiable closed curve element of the set U. The latter set U is defined

such as the integrand exists and is holomorphic (with the exception of the singular points

denoted by zk), and does not meet any of the zk. The singular points zk of the integrand are

simply given by :

z1,2 =
f xc ±

√
f 2x2

c + ρ′2 f ′2

ρ′ (1 + f )
. (1.186)

Therefore, the integral Iφ takes the form :

Iφ =
2 f ı

ρ′(1 + f )

∫

C

1
(z − z1)(z − z2)

dz . (1.187)

Making use of the Residue theorem and noticing that |z1| > 1, the latter equation leads to :

Iφ =
2 f ı

ρ′(1 + f )
2ıπ

(z2 − z1)
, (1.188)

=
2π√

x2
c + ρ′2 f ′2

f 2

. (1.189)

As a result, from Eq. (1.189) and noticing that the inner integral of Eq. (1.184) vanishes for
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ρ′ > ρ, the complex scattering function reduces to :

Ic(xc) = −2
f

sign(xc)

ρ∫

0

ρ′κ(ρ′)√
x2

c + ρ′2 f ′2
f 2

dρ′ . (1.190)

In the literature, the axis ratio f is sometimes expressed as cos β = 1/ f . By taking account

of this notation, the latter equation transforms into :

Ic(xc) = −2 sign(xc) cos β

ρ∫

0

ρ′κ(ρ′)√
x2

c + ρ′2 sin2 β

dρ′ . (1.191)

It turns out that separating the deflection angle into real and imaginary parts is extremely

difficult, and has not been published until recently. Therefore, we have proposed to use the

Fourier formalism in order to analytically determine the deflection angle for homoeoidal

symmetric lenses (Wertz & Surdej, 2014).





2
Asymptotic solutions for the case of

power-law axially symmetric and sie

gravitational lens models

2.1 Introduction

Determination of the Hubble parameter H0, based upon the gravitational lensing theory,

can be performed in different ways. Such a determination seems to be highly sensitive to

the nature of the deflector mass distribution. Indeed, from Eq. (1.94), the expression of

the time delays between pairs of lensed images directly depends on the deflection potential

produced by the deflector mass distribution. A first possible approach consists in obtaining a

statistical estimate of H0 from the determination of time delays between the light curves of

the lensed images of selected multiply imaged quasars. Let us mention the COSMOGRAIL

(COSmological Monitoring of GRAvItational Lenses) collaboration which has adopted

such an approach for about thirty lensed quasars. For each of the selected gravitational

lens systems, a precise lens model parameter fitting is required together with an efficient

data reduction procedure based on the MCS algorithm (Magain & al., 1998). Some results

obtained in this framework can be found, for instance, in papers by Eigenbrod & al. (2005,

2006, 2007), Saha & al. (2006), Vuissoz & al. (2007, 2008), Chantry & al. (2010), Courbin

& al. (2011), Sluse & al. (2012), Eulaers & (2013), Rathna Kumar & al. (2013) and Tewes

& al. (2013).

A second approach is dictated by the following questioning : might it be possible to find a

lensing regime or lensed image configurations for which the determination of H0 only de-

pends very slightly, for a given family of models, on the lens parameters ? We are convinced

that the answer is yes. For the case of a nearly perfect alignment between the source, the

deflector and the observer, the lensed image configurations are very symmetric and, then,
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the involved time delays between pairs of lensed images are very small. Considering the

lensed image positions as first order perturbations of the ones resulting from the perfect

alignment, we have shown the possibility of deriving H0 from the observable quantities only,

irrespective of the lens model parameters. The strength of this method consists, inter alia, in

obtaining analytical expressions which link the astrometric positions of the lensed images to

the model parameters. As a consequence, besides deriving H0 without any numerical model

fitting, it is straightforward to determine whether the considered family of models constitutes

a judicious representation of the lens mass distribution.

We have performed this study, as a first step, for a power-law axially symmetric family of

models characterized by mass distributions obeying the relation M(≤ |x|) = |x|ε where x
represents the normalized angular impact parameter in the lens plane. Furthermore, we have

considered both cases with and without external shear. The major results of this study have

been summarized in the paper entitled “Asymptotic solutions for the case of nearly symmetric

gravitational lens systems" and published in the peer reviewed journal Monthly Notices of

the Royal Astronomical Society (MNRAS) 424, 1543-1555, 2012. The full content of this

paper, referred in the remainder as to Paper I, is presented in the next Section 2.2. Several

additional calculations are presented in Section 2.3.

Following up on the promising results obtained for the power-law axially symmetric family

of models, we have investigated, as a second step, the case of the SIE family of models.

Again, we have demonstrated the possibility of expressing H0 as a function of observable

quantities only. Furthermore, we have applied such an approach to the multiply imaged

quasar Q2237+0305 for which the choice of the SIE family of models turns out to be

particularly appropriate. In order to confirm the relevance of the analytical results, we have

performed both SIE and NSIE numerical fitting. Although the numerically modeled image

positions are more accurate, the model parameters obtained immediately from the first order

equations are very close to the ones obtained from intensive calculations. The major results

of this study have been summarized in the paper entitled "Asymptotic solutions for the case

of SIE lens models and application to the quadruply imaged quasar Q2237+0305", recently

submitted to the peer reviewed journal MNRAS for publication. The full content of this

paper, referred in the remainder as to Paper II, is presented in Section 2.4.
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2.2 Paper I

Asymptotic solutions for the case of
nearly symmetric gravitational lens

systems

O. Wertz, V. Pelgrims and J. Surdej

Monthly Notices of the Royal Astronomical Society, 2012, 424, 1543-1555.
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Institut d’Astrophysique et de Géophysique de l’Université de Liège, Allée du 6 Août 17, Sart Tilman, Bât. B5c, 4000 Liège, Belgium

Accepted 2012 May 21. Received 2012 April 27; in original form 2011 November 30

ABSTRACT
Gravitational lensing provides a powerful tool to determine the Hubble parameter H0 from
the measurement of the time delay �t between two lensed images of a background variable
source. Nevertheless, knowledge of the deflector mass distribution constitutes a hurdle. We
propose in the present work interesting solutions for the case of nearly symmetric gravitational
lens systems. For the case of a small misalignment between the source, the deflector and the
observer, we first consider power-law (ε) axially symmetric models for which we derive an
analytical relation between the amplification ratio and source position which is independent
of the power-law slope ε. According to this relation, we deduce an expression for H0 also
irrespective of the value ε. Secondly, we consider the power-law axially symmetric lens models
with an external large-scale gravitational field, the shear γ , resulting in the so-called ε − γ

models, for which we deduce simple first-order equations linking the model parameters and the
lensed image positions, the latter being observable quantities. We also deduce simple relations
between H0 and observables quantities only. From these equations, we may estimate the value
of the Hubble parameter in a robust way. Nevertheless, comparison between the ε − γ and
singular isothermal ellipsoid (SIE) models leads to the conclusion that these models remain
most often distinct. Therefore, even for the case of a small misalignment, use of the first-
order equations and precise astrometric measurements of the positions of the lensed images
with respect to the centre of the deflector enables one to discriminate between these two
families of models. Finally, we confront the models with numerical simulations to evaluate the
intrinsic error of the first-order expressions used when deriving the model parameters under
the assumption of a quasi-alignment between the source, the deflector and the observer. From
these same simulations, we estimate for the case of the ε − γ family of models that the standard
deviation affecting H0 is σH0 = 2 km s−1 Mpc−1 which merely reflects the adopted astrometric
uncertainties on the relative image positions, typically σθ (i) = 0.003 arcsec. In conclusions, we
stress the importance of getting very accurate measurements of the relative positions of the
multiple lensed images and of the time delays for the case of nearly symmetric gravitational
lens systems, in order to derive robust and precise values of the Hubble parameter.

Key words: gravitational lensing: strong – cosmological parameters.

1 I N T RO D U C T I O N

In 1964, Refsdal (1964a,b) has first proposed to determine the value
of the Hubble parameter H0 from the observed time delay between
two lensed images of an intrinsically variable distant source. Un-

�E-mail: wertz@astro.ulg.ac.be (OW); pelgrims@astro.ulg.ac.be (VP);
surdej@astro.ulg.ac.be (JS)
†Aspirant du F.R.S. – FNRS.
‡IFPA, AGO Department, University of Liège.
§Also Directeur de Recherche honoraire du FNRS.

fortunately, such a determination turns out to be lens model de-
pendent. For the case of general isothermal models, Witt, Mao &
Keeton (2000) have derived a common and surprisingly simple ex-
pression of the time delay between two lensed images involving
only the observed image positions. Furthermore, Witt has analysed
deviations from the isothermal profile by considering a deflection
potential that obeys a power law. He concluded that when the model
is not isothermal, he could not eliminate the dependence of the mass
distribution from the time delay expression (Witt et al. 2000).

Our aim in this paper is to possibly identify gravitational lens
image configurations for which the determination of H0 is not,
or is very little, model dependent. For instance, in the case of

C© 2012 The Authors
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1544 O. Wertz, V. Pelgrims and J. Surdej

a perfect alignment between a background point-like source, a
foreground axially symmetric deflector and an observer, the re-
sulting lensed images consist of a ring, the so-called Einstein
ring, irrespective of the lens model. The time delays measured
between different regions of the ring are equal to zero, also in-
dependently of the adopted axially symmetric lens model. If the
source is very slightly misaligned, the Einstein ring breaks into two
lensed images which expressions of the flux ratio and time delay
turn out to be model independent of the power-law slope ε (cf.
Section 2). Therefore, such cosmic image configurations naturally
offer in principle the possibility of deriving robust estimates of
H0.

The main idea of this paper is to investigate for the case of more
complex mass distributions whether different observable quantities
such as the lensed image and deflector positions, the flux ratios
and time delays may be used to determine the Hubble parameter
irrespective of the lens model. Let us insist that we exclude here the
additional mass sheet degeneracy problem which has been originally
discussed by Falco, Gorenstein & Shapiro (1985).

In order to reproduce the general features of gravitational arcs,
Alard (2007) has already developed a singular perturbative method
for which he considers simultaneously two types of same order
perturbations of a point-like source perfectly aligned in a circularly
symmetric potential: first, the alignment may not be perfect and
secondly, the potential may not be perfectly circular. In the same
way, we have chosen to consider the perturbation of the alignment
between the point-like source, the axially symmetric deflector and
the observer but on the contrary, we consider axially symmetric de-
flectors to which we add an external perturbation, the shear, without
any restriction on its strength. Since the range of values of the shear
intensity is not restricted, the perturbation of the alignment and the
one of the potential, i.e. the shear, are not necessarily of the same
order.

In Section 2, we recall the basic gravitational lens, astrometric and
amplification equations for the case of axially symmetric deflectors
which mass distributions obey a power-law dependence with respect
to the impact parameter. We also assume that the lensed images
are not resolved individually. Assuming a very small misalignment
between the source, the lens and the observer, we then derive first-
order expressions for the lensed image positions, flux ratios and
time delays.

In Section 3, we consider more realistic gravitational lens mass
distributions by adding an external shear which may account for the
formation of more complex gravitational lens image configurations
(up to five lensed images). Still for the case of a very small mis-
alignment between the source, the lens and the observer, we show
how it is possible to infer the value of the Hubble parameter from
the linearized astrometric and time delay expressions, irrespective
of the values of ε and γ . In Section 4, we test the validity of the
astrometric equations as well as the robustness of the inferred values
of H0 versus the degree of misalignment between the source, the
lens and the observer, and the gravitational lens model parameters.
Some general conclusions form the last section.

2 A X IA LLY SY MMETRIC LENSES

2.1 Mass distributions and lens equation

Owing to their simplicity, axially symmetric lenses represent an
interesting class of models to probe asymptotic solutions which
may turn out to be of practical interest. To this end, we characterize

axially symmetric mass distributions as follows:

M(≤ |x|) = |x|ε, (1)

where x = θ/θE represents the normalized angular impact param-
eter θ in the lens plane, ε ∈ [0, 2[ the mass distribution power-law
slope and θE the value of the Einstein ring angular radius in the case
of a perfect alignment between the source, the lens and the observer.
The case ε = 0 corresponds to the point mass and ε = 1 corresponds
to the singular isothermal sphere lens model. Furthermore, M = 1
corresponds to the normalized mass of the deflector located inside
the Einstein ring. In the case of axially symmetric lens models,
the deflection angle at the normalized impact parameter x can be
expressed as a two-dimensional vector (Schneider 1984)

α̂(x) = −M(|x|)
|x|2 x = −∇xψ̂ (x) , (2)

where ψ̂(x) represents the normalized deflection potential. After in-
troducing the expression of the axially symmetric mass distributions
(see equation 1), equation (2) becomes

α̂(x) = −|x|ε−2 x. (3)

Considering a typical source, deflector and observer configuration,
the lens equation links the position of the source, the impact param-
eter and the deflection angle (Schneider 1984)

y = x + α̂(x), (4)

where y = θS/θE is the normalized angular point-like source po-
sition θS projected in the lens plane and the normalized impact
parameter x refers to the image positions in the lens plane. Af-
ter introducing the expression of the deflection angle (equation 3),
equation (4) becomes

y = (1 − |x|ε−2
)

x. (5)

In Fig. 1, we have represented the modulus of the deflection angle
α̂(x) as a function of the modulus of the normalized image position
x for several values of the parameter ε.

Given the symmetry of the deflector, it is appropriate to use
a system of polar coordinates. Assuming an arbitrarily oriented
coordinate system which is centred on the deflector’s gravity centre,
the lens equation reduces to
(

y1

y2

)
= y

(
cos θ

sin θ

)
= [1 − (r (i))ε−2]r (i)

(
cos ϕ(i)

sin ϕ(i)

)
, (6)

Figure 1. The modulus of the deflection angle |α̂(x)| is represented as a
function of the modulus of the impact parameter |x|. The left-hand panel
illustrates the deflection angle for values of ε in the range [0, 1[ by steps of
0.1 and the right-hand panel illustrates the deflection angle for values of ε in
the range [1, 2]. The cases ε = 0, 1 and 2 correspond to the point mass, the
singular isothermal sphere and the uniform disc lens models, respectively.

C© 2012 The Authors, MNRAS 424, 1543–1555
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where i refers to the ith image, y =
√

y2
1 + y2

2 = |θS|/θE and

r (i) = |θ (i)|/θE = |x(i)| ≥ 0 (7)

is the normalized image radial coordinate. Furthermore, θ and ϕ(i)

represent the source and image angular coordinates. According to
the lens equation (see equation 5), the image positions (r(i); ϕ(i)) are
located along the same direction as the source-deflector direction
(y; θ ) and we have thus ϕ(i) = θ or ϕ(i) = θ + π. The analytical
resolution of equation (6) is only possible for several integer values
of ε. As a consequence, a numerical resolution is mandatory for
most values of ε. Depending on the model parameters, equation (6)
leads to one, two or three lensed image solutions. In the remainder,
we shall concentrate on the properties of the two brightest lensed
images. The three model parameters are thus θS, θE and ε.

2.2 The amplification ratios

Since gravitational lensing preserves the surface brightness of the
source and only changes the cross-section of the ray bundles (Ether-
ington 1933), the amplification μ of a lensed image is given by the
determinant of the jacobian matrix of the surjective lens mapping
x → y (Schneider, Ehlers & Falco 1992)

μ =
∣∣∣∣
∂ y
∂x

∣∣∣∣
−1

. (8)

From equations (6) and (8), we easily deduce the analytical expres-
sion of the amplification factor, in polar coordinates:

μ(i) = [1 − ε (r (i))ε−2 + (ε − 1) (r (i))2(ε−2)
]−1

. (9)

The amplification factor diverges (i.e. 1/μ(i) vanishes) for a lensed
image located on the so-called critical curve and all points located
on such a curve are termed critical points.1 Denoting rc ≥ 0 the
radial coordinate of a critical point, equation (9) reduces to
[
1 − (ε − 1) (rc)ε−2

] [
1 − (rc)(ε−2)

] = 0, (10)

and leads to the single solution rc,t = 1, for ε ≤ 1, and to the two
solutions rc,t = 1 and rc,r = (ε−1)1/(2−ε), for ε > 1. As a result, the
first critical curve, the so-called tangential critical curve, reduces
to a unit radius circle and is the region of the lens plane where two
lensed images merge tangentially into an Einstein ring as the source
gets perfectly aligned with respect to the lens and the observer. The
second critical curve, the so-called radial critical curve, reduces to
a circle whose radius is rc,r and is the region of the lens plane where
two of the three lensed images merge along the radial direction. The
images of the critical curves in the projected source plane, under
the lens mapping, are called caustics (Erdl 1992). Since yc is the
radial coordinate of the caustic points, equation (5) leads to yc,t = 0
for any value of ε and the so-called tangential caustic reduces to a
point. Similarly, equation (5) leads to yc,r = (2−ε) (ε−1)(ε−1)/(2−ε)

if ε > 1 and the so-called radial caustic reduces to a circle whose
radius is yc,r .

Since the real source cannot be directly observed, its original flux
cannot be estimated either. Therefore, the only relevant observable
quantity is the amplification ratio (μ(1)/μ(2)) between the two main
images 1 and 2 which can be simply measured from their image
flux ratio. First of all, we can reduce the amplification factor defined
by equation (9) while substituting (r(1))ε −2 by 1 − (y/r(1)) and

1 For more details about lensing near critical points, see Schneider et al.
(1992).

Figure 2. The amplification ratio |μ(1)/μ(2)| is plotted as a function of
y for various values of the power-law slope (ε). For a small misalignment
(typically y < 0.15), the amplification ratio is found to be nearly independent
on the lens model (ε).

Figure 3. Image configuration in the lens plane for ε = 1.2 and (y ; θ ) =
(0.53 ;π/4). The projected point-like source is closed to the radial caustics
(dashed line circle) and the lensed images 2 and 3 radially merge along the
radial critical curve (dotted line circle). In the case of a perfect alignment
between the source, the observer and the lens, the highly distorted images 1
and 2 merge along the tangential critical curve (solid line circle).

(r(2))ε −2 by 1 + (y/r(2)) from equation (6). Therefore, with no loss
of generality, the expression of the amplification ratio becomes

μ(1)

μ(2)
= r (1)

r (2)

[
(ε − 2) + (ε − 1) y

r(2)

(2 − ε) + (ε − 1) y

r(1)

]
. (11)

First, the amplification ratio increases with y, for all values of ε

∈ [0, 2[ (see Fig. 2). Although there are always two images for
lens models characterized by ε < 1 when y �= 0, a third image may
appear for ε > 1 and the latter merges with image 2 when the source
crosses the radial caustics (see Fig. 3). This situation occurs when
y = yc,r (see Fig. 2) and the amplification ratio decreases until the
two merging lensed images vanish.

Secondly, the amplification ratio is independent on the lens model
when typically y < 0.15 (see Fig. 2), i.e. in the case of a quasi-
perfect alignment between the source, the lens and the observer.
This very interesting property highlights the strong link between
the amplification ratio (μ(1)/μ(2)) and the source position (y) which
can now be estimated irrespective of the power-law slope ε. This
property can be explained from equation (11) when considering the

C© 2012 The Authors, MNRAS 424, 1543–1555
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case of an infinitesimal misalignment between the source, the lens
and the observer, typically y < 0.15.

2.3 First-order equations and solutions

To first order and in accordance with Alard (2007), we can write

(r (i))(ε−2) = 1 + (ε − 2)(r (i) − 1). (12)

After substituting equation (12) into equation (5), the latter can be
rewritten as

(r (i))2(2 − ε) − r (i)(2 − ε) + (−1)i y = 0, (13)

where (i) = 1 and (i) = 2 refer to the two brightest lensed images.
Resolution of this quadratic equation gives the radial coordinate of
the images to first order as a function of the radial coordinate of the
source (y) and of the lens model (ε):

r (1) = 1 + y

2 − ε
+ O(y2), (14)

r (2) = 1 − y

2 − ε
+ O(y2). (15)

After substituting equations (14), (15) and y/r(i) with their first-
order development terms into equation (11), the amplification ratio
between the two brightest lensed images becomes

μ(1)

μ(2)
= − (2 − ε)3 + (2 − ε)3y + 2(2 − ε)(1 − ε)y2 + (1 − ε)y3

(2 − ε)3 − (2 − ε)3y + 2(2 − ε)(1 − ε)y2 − (1 − ε)y3
.

(16)

To first order, it is clear that the amplification ratio merely reduces
to

μ(1)

μ(2)
= −1 + y

1 − y
, (17)

that is to say the flux ratio between the two brightest lensed images
is only a function of the source position (y). We note that for the case
ε = 1, equation (17) turns out to be perfectly exact. This property
arises from equations (14) and (15), where O(y2) = 0 for the case
ε = 1. As a result, for a small misalignment between the source,
the axially symmetric deflector and the observer, the amplification
ratio between the two brightest lensed images is independent of the
power-law slope ε and is equal to the one defined by the singular
isothermal sphere (SIS) model.

One could have hoped that equation (17) remains valid for more
general axially symmetric lens models. Considering the most gen-
eral axially symmetric deflection potential ψ̂ = ψ̂(r), the ampli-
fication ratio μ(1)/μ(2) can be expressed (see equations 2, 4 and 8)
as

μ(1)

μ(2)
= −

1 + 1−K2+K3
(1−K2)2 y

1 − 1−K2+K3
(1−K2)2 y

, (18)

where Kn = (dψ̂(r)/dr)r=1 depends on the deflector model (ε)
only. In this way, the independency of the amplification ratio versus
the analytical form of the deflection potential implies the following
condition:

1 − K2 + K3

(1 − K2)2 = 1. (19)

This condition is generally not satisfied. Indeed, considering for
instance the family of axially symmetric deflection potentials pro-
posed by Alard (2007)

ψ̂(r) = 1

ε
rε [1+β(r−1)], (20)

Figure 4. Contour plot diagram of the amplification ratio as a function of
the lens model (ε) and source position (y). Each curve has been established
for a fixed value of the source position, i.e. y. The maximum value of ε along
the abscissa is less than 2 because for ε > 1, the radius of the radial caustics
(yc,r ) decreases when ε increases. As a result, there remains only one image
for y > yc,r .

and after substituting this deflection potential into the expression of
Kn, we deduce
1 − K2 + K3

(1 − K2)2 = (1 − K2 + K3)

(1 − K2 + K3) + β (4β − 2ε − 3)
. (21)

From equations (18), (19) and (21), we find that the amplification
ratio between the two brightest lensed images is only a function of
the source position, if and only if β = (2ε + 3)/4 or β = 0. The latter
case, i.e. ψ̂(r) = rε/ε, corresponds to the lens models previously
used.

From equation (17), we may express the normalized source po-
sition y as a function of the amplification ratio μ(1)/μ(2) and we
find

y = θS

θE
= −1 + μ(1/2)

1 − μ(1/2)
, (22)

where μ(1/2) = μ(1)/μ(2) and θS = |θS|. It is very convenient to
represent equation (16) by means of a contour plot diagram (see
Fig. 4) where each curve of μ(1)/μ(2) corresponds to a fixed value
of the source position, i.e. y, as a function of ε in the range of
0−1.6. As we see, the amplification ratio is found to be independent
on the power-law slope ε for small values of the source position
(y); this results in nearly horizontal curves for typically y < 0.15.
Furthermore, the relative error �μ(1/2) between the exact and the
first-order expression of the amplification ratio (resp. equations 11
and 17) is maximum for the case ε = 0. Assuming y = 0.15, �μ(1/2)

is then found to be ∼0.0025, which corresponds to an absolute error
on the value of θS of σθS = 0.001 θE. We note that closer is the
value of ε to 1, more accurate is equation (17). In addition, we can
determine θS from equation (22) insofar as we know the Einstein
ring angular radius θE. To this end, the sum of equations (14) and
(15) simply leads to first order to

θE = 1

2

(
θ (1) + θ (2)

)
, (23)

and their difference to

y =
(

2 − ε

2

) (θ (1) − θ (2)
)

θE
, (24)

where θ (i) = |θ (i)| represents the radial coordinate of the ith image.
Note that this latter equation had been established empirically by
Refsdal & Surdej (1994). As a result, the source position θS is given
by

θS = −1

2

(
1 + μ(1/2)

1 − μ(1/2)

)(
θ (1) + θ (2)

)
, (25)
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and from equations (22) and (24), we can determine ε which is
given by

ε =
(

θ (1) + θ (2)

θ (1) − θ (2)

)(
1 + μ(1/2)

1 − μ(1/2)

)
+ 2. (26)

Thus, for a small misalignment between the source, the deflector and
the observer, we can in principle derive all values of the lens model
parameters (θS, θE and ε) from the astrometric and amplification
ratio equations.

2.4 Time delay and the Hubble parameter

A very interesting cosmological application of gravitational lensing
consists in the determination of the Hubble parameter H0 from
the measurement of the time delay �t between two lensed image
light curves (Refsdal 1964a,b). According to the wavefront method,
Refsdal & Surdej (1994) have established for the case of small
redshifts and of an axially symmetric lens model the analytical
expression2 for �t:

�t =
(

1 + zl

c

)(
DOL DOS

DLS

)
θS

(
θ (1) + θ (2)

)
, (27)

and H0

H−1
0 =

(
1

1 + zl

)(
zs − zl

zlzs

)
�t

θS (θ (1) + θ (2))
, (28)

where DOL, DOS and DLS represent the angular-diameter distances
between the observer and the lens, the observer and the source, and
the lens and the source; zs and zl are the redshifts of the source
and the lens, respectively and �t is the time delay between the two
brightest lensed images. From equation (24) and for the case ε = 1,
i.e. for the SIS model, we note that equation (27) reduces to

�t =
(

1 + zl

2c

)(
DOL DOS

DLS

) [
(θ (1))2 − (θ (2))2

]
. (29)

The latter equation holds for more general isothermal lens models
whose associated deflection potentials are assumed to obey the
relation ψ̂ = r F (ϕ), where F (ϕ) is an arbitrary function of ϕ

(Witt et al. 2000, their equation 12). These authors also consider
potentials of the form ψ̂ = rε F (ϕ) which include our power-law
models for the particular case F = 1/ε. However, for these cases,
Witt et al. (2000, see their equation 25) could not eliminate the
dependence of the mass distribution, i.e. ε, from the time delay
expression. As we have just previously shown, θS can be estimated
from the amplification ratio between the two lensed images and
their angular positions (see equation 25). For a small misalignment
between the source, the deflector and the observer, the expression
of �t thus reduces to

�t =
(

1 + zl

2c

)(
DOL DOS

DLS

) (
μ(1/2) + 1

μ(1/2) − 1

) (
θ (1) + θ (2)

)2
,

(30)

and the Hubble parameter

H−1
0 =

(
1

1 + zl

)(
zs − zl

zlzs

) (
μ(1/2) − 1

μ(1/2) + 1

)
2�t

(θ (1) + θ (2))2
.

(31)

As a consequence, H0 can be deduced from observable quantities
irrespective of the power-law slope ε. Let us remind that we do not
consider here the additional mass sheet degeneracy problem that
has been first pointed out and discussed by Falco et al. (1985).

2 In their paper, θ (i) is the angular distance of the ith image from the deflec-
tor’s gravity centre and θ (2) was chosen negative.

For the case of a flat universe with �M = 0.3, �� = 0.7 and
cosmological values for the lens and source redshifts (Perlmutter
et al. 1999), equation (31) should be replaced by

H−1
0 =

(
1

1 + zl

)(
zs − zl

zlzs

) (
F (zs − zl)

F (zl) F (zs)

)

×
(

μ(1/2) − 1

μ(1/2) + 1

)
2�t

(θ (1) + θ (2))2
, (32)

where F(z) is defined to first order by (Peebles 1993)

F (z) = 1

(1 + z)
− [�M + 2 (1 − ��)]

z

4(1 + z)
, (33)

= 1

(1 + z)

(
1 − 9z

40

)
. (34)

As a result, for the case of a small misalignment between the source,
the lens and the observer, the Hubble parameter may be estimated
from only observable quantities of the gravitational lens system,
namely the redshifts of the lens and of the source, the time delay,
the relative positions and the amplification ratio between the two
brightest lensed images.

2.5 Mass estimation of the deflector

In addition, it is interesting to note that we can derive an expression
for the mass M( ≤ θE) of the deflector inside the Einstein radius
θE from the expression of the time delay (Borgeest 1985). Indeed,
from equations (22), (23), (27) and using the following equation
(Refsdal & Surdej 1994)

θ2
E = 4G

c2

(
DLS

DOL DOS

)
M(≤ θE), (35)

the mass of the deflector M( ≤ θE) may be expressed as

M(≤ θE) = c3

8 G(1 + zl)

(
μ(1/2) − 1

μ(1/2) + 1

)
�t. (36)

The latter can thus be derived irrespective of ε and of H0 for the
case of a small misalignment between the source, the lens and the
observer. The corresponding gravitational lens systems always then
consist of two symmetric lensed images, almost equally bright.

3 AXI ALLY SYMMETRI C LENSES
WI TH SHEAR

3.1 General equations

Most of observed gravitational lens systems actually consist of
more than two lensed images. Therefore, it seems wise to consider
lenses with a somewhat perturbed symmetry. Such a perturbation
can be represented by the tidal field caused by an external large-
scale gravitational field, the so-called shear. The whole system is
then described by the general lens equation:

y = x + α̂gen(x) = x + α̂iso(x) + α̂aniso(x), (37)

where the general deflection angle is split into two parts. The first
part, the isotropic contribution, represents the light deflection of the
beam due to the axially symmetric lens (see equation 3), whereas
the second part, the anisotropic contribution, represents the shear
influence which can be expressed as (Kovner 1987)

α̂aniso(x) = γ

(
cos 2ω sin 2ω

sin 2ω − cos 2ω

)(
x1

x2

)
, (38)
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1548 O. Wertz, V. Pelgrims and J. Surdej

where γ ≥ 0 is the shear intensity and ω ∈ [0; 2π] represents the
shear orientation measured from the same oriented coordinate sys-
tem centred on the deflector’s gravity centre as the one used to
measure the lensed image positions. In the remainder, these models
will be labelled ε − γ . Given the symmetry of the central deflec-
tor, it is again appropriate to use a system of polar coordinates.
Using the same notation as in equation (6), the lens equation (37)
becomes

y cos θ = [1 − (r (i))ε−2
]
r (i) cos ϕ(i) + γ r (i) cos (2ω − ϕ(i)),

(39)

y sin θ = [1 − (r (i))ε−2
]
r (i) sin ϕ(i) + γ r (i) sin (2ω − ϕ(i)).

(40)

Note that for γ = 0, i.e. without the external large-scale gravitational
field, we recover the axially symmetric lens equation (6). Given
several image positions (r(i); ϕ(i)), equations (39) and (40) should
allow us to retrieve all the model parameters θS, θ , θE, ε, γ and ω.

The amplification μ of a lensed image is derived combining
equation (8) and equations (39) and (40). The analytical expres-
sion of the amplification factor, in polar coordinates, is then found
to be

μ(i) = {(1 − γ 2) + (r (i))ε−2
[
(2 − ε)(1 − γ cos(2(ω − ϕ(i))))

− 2
]+ (ε − 1)(r (i))2(ε−2)

}−1
. (41)

The critical curves are simply deduced from the condition 1/μ(i) =
0 using equation (41). Denoting rc the radial coordinate of a crit-
ical point which depends on the angular coordinate ϕc ∈ [0 ; 2π],
and using the variable ρ(rc; ε) = r2−ε

c with ε < 2, equation (41)
becomes

(1 − γ 2) ρ2 + ρ [(2 − ε) (1 − γ cos (2(ω − ϕc))) − 2]

+ (ε − 1) = 0, (42)

which is simply a quadratic equation of the variable ρ.
Denoting �(ϕc) = [(2 − ε) (1 − γ cos (2(ω − ϕc))) − 2] in equa-

tion (42) and after some trivial algebraic calculus, the resolution of
this quadratic equation leads to two solutions which represent the
equations of the critical curves in a system of polar coordinates and
are given by

rc,1(ϕc) =
[

−�(ϕc) +
√

�(ϕc)2 − 4(1 − γ 2)(ε − 1)

2(1 − γ 2)

]( 1
2−ε

)

,
(43)

rc,2(ϕc) =
[

−�(ϕc) −
√

�(ϕc)2 − 4(1 − γ 2)(ε − 1)

2(1 − γ 2)

]( 1
2−ε

)

.
(44)

We note that for 0 ≤ ε < 1 and γ < 1, we have rc,1(ϕc) ∈ R+ and
rc,2(ϕc) ∈ C for any value of ϕc which indicates that there is only one
critical curve, rc,1(ϕc). For ε ≥ 1 and γ < 1, we have rc,1(ϕc) ∈ R+

and rc,2(ϕc) ∈ R+ for any value of ϕc which indicates that there are
two critical curves. For 0 ≤ ε < 1 and γ > 1, a set of values of
rc,1(ϕc,p) and rc,2(ϕc,q) show a non-null imaginary part. Otherwise,
all the other real values constitute two mirror-symmetric curves.
For ε > 1 (excepted ε = 3/2) and γ > 1, we have rc,2(ϕc) ∈ R+

and rc,1(ϕc) ∈ C for any value of ϕc which indicates that there is
only one critical curve, rc,2(ϕc). For ε = 3/2, we have again two
critical curves. All the related caustic curves (yc,j ; θ c,j) can be simply
deduced by either substituting rc,1 or rc,2 in the lens equations (39)

Figure 5. Critical curves (in the lens plane) and their associated caustic
curves (projected in the lens plane) for different values of the lens model
parameters (ε ∈ {0, 0.5}, γ ∈ [0; 2] and ω = 0). The top panels are for ε =
0 (the so-called Chang–Refsdal lens model; Chang & Refsdal 1984) and
the bottom panels are for ε = 0.5. The left-hand panels illustrate the critical
curves and the right-hand ones illustrate the corresponding caustics.

and (40) and become

yc,j

⎛
⎝

cos θc,j

sin θc,j

⎞
⎠ = [1 − (rc,j )ε−2

]
rc,j

⎛
⎝

cos ϕc

sin ϕc

⎞
⎠

+ γ rc,j

(
cos (2ω − ϕc)

sin (2ω − ϕc)

) ,

(45)

where j ∈ {1, 2} and (yc,j; θ c,j) represents the polar coordinates of
the caustic points. Examples of critical curves and their associated
caustic curves are shown in Fig. 5 for several values of ε and γ .

3.2 First-order equations and asymptotic solutions

For the case of a perfect alignment between the source, the lens and
the observer, i.e. for y = 0, we may deduce from the lens equations
(39) and (40) the exact positions (r (i)

0 ; ϕ(i)
0 ) of the lensed images. On

one hand, equation (39) × sin ϕ(i)−equation (40) × cos ϕ(i) leads to

y sin (ϕ(i) − θ ) = r (i)γ sin
[
2(ϕ(i) − ω)

]
, (46)

and from the latter equation and for y = 0, the exact image angular
coordinates are found to be

ϕ
(i)
0 = ω + i

π

2
, (47)

where i ∈ {0, 1, 2, 3} indicates that there are four lensed images. On
the other hand, equation (39) × cos ϕ(i) + equation (40)× sin ϕ(i)

leads to

y cos (ϕ(i) − θ ) = r (i)
[(

1 − (r (i))ε−2
) + γ cos

[
2(ϕ(i) − ω)

]]
,

(48)
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Asymptotic solutions 1549

Figure 6. Illustration of different image configurations for the case of a
point-like source and the lens model ε = 0.5 with a shear intensity γ =
0.5 and a shear orientation ω = 0. When the source (asterisk) crosses the
caustics (solid line), images 0 and 3 (asterisks) merge on the critical curve
(dashed line).

and from the latter equation and for y = 0, the exact image radial
coordinates are expressed as

r
(i)
0 = (1 + (−1)iγ

)1/(ε−2)
. (49)

We infer that images 0 and 2 (resp. 1 and 3) are located at the
same angular distance on opposite sides with respect to the lens
gravity centre and along the same direction as the shear (resp. along
a perpendicular direction to that of the shear; see Fig. 6).

Considering a small misalignment between the source, the lens
and the observer, the resulting image positions only slightly deviate
from the perfect alignment case. Thus, the ith image position (r(i);
ϕ(i)) can be expressed as

r (i) = r
(i)
0 + �r (i), (50)

and

ϕ(i) = ϕ
(i)
0 + �ϕ(i), (51)

where �r(i) and �ϕ(i) represent small variations of the image polar
coordinates, i.e. |�r(i)| 
 1 and |�ϕ(i)| 
 1.

For the case of a small misalignment between the source, the lens
and the observer, we shall now demonstrate how we can retrieve all
the model parameters from the astrometric equations only developed
to first order.

On one hand, from equations (46), (50) and (51), the expression
of �ϕ(i) reduces to

�ϕ(i) = y sin (ω − θ + iπ/2)

2 (−1)i γ r
(i)
0

. (52)

We note that for θ = ω or θ = ω + π, we have �ϕ(0) = �ϕ(2) =
0, and for θ = ω+π/2 or θ = ω+3π/2, we have �ϕ(1) = �ϕ(3) =
0, whatever the value of y.

On the other hand, from equations (7), (48), (50) and (51), the
expression of �θ (i) = θE �r(i) reduces to

�θ (i) = y θE cos (ω − θ + iπ/2)

(2 − ε) (1 + (−1)i γ )
. (53)

We note that for θ = ω or θ = ω + π, we have �θ (1) = �θ (3) = 0,
and for θ = ω + π/2 or θ = ω + 3π/2, we have �θ (0) = �θ (2) =
0, whatever the value of y.

Equations (52) and (53) compose a set of eight independent equa-
tions for six model parameters (θS, θ , θE, ε, γ and ω). Furthermore,
we note that �ϕ(0) = −�ϕ(2), �ϕ(1) = −�ϕ(3), �θ (0) = −�θ (2)

and �θ (1) = −�θ (3).

3.2.1 The ε − γ model parameters

Given that �ϕ(0) + �ϕ(2) + �ϕ(1) + �ϕ(3) = 0 and using equations
(47) and (51), the expression of the shear orientation ω merely
reduces to

ω = 1

4

(
ϕ(0) + ϕ(1) + ϕ(2) + ϕ(3) − 3π

)
. (54)

From equations (49) and (50) and given that �θ (1) + �θ (3) = 0 and
�θ (0) + �θ (2) = 0, we have

θ (1) + θ (3) = 2 θE (1 − γ )1/(ε−2), (55)

and

θ (0) + θ (2) = 2 θE (1 + γ )1/(ε−2). (56)

Furthermore, dividing equation (55) by equation (56) simply leads
to

θ (1) + θ (3)

θ (0) + θ (2)
=
(

1 − γ

1 + γ

) 1
ε−2

. (57)

Before determining ε and γ , it is appropriate to determine the
angular coordinate of the source, i.e. θ . To this end, from equations
(47), (51) and (52), we have

�ϕ(1) − �ϕ(3) = ϕ(1) − ϕ(3) + π = ϕ(1,3) = − y cos (ω − θ )

γ (1 − γ )1/(ε−2)
,

(58)

and

�ϕ(0) − �ϕ(2) = ϕ(0) − ϕ(2) + π = ϕ(0,2) = y sin (ω − θ )

γ (1 + γ )1/(ε−2)
,

(59)

where ϕ(i,i+2) = (ϕ(i) − ϕ(i+2) + π
)
. We note that for the case i = 2,

we have ϕ(2,4) = −ϕ(0,2) by virtue of ϕ(4) = ϕ(0) + 2π since i = 4
corresponds in fact to i = 0. Dividing equation (59) by equation (58)
and from equation (57), the relative angular coordinate θ of the
point-like source is found to be

tan (θ − ω) =
(

ϕ(0,2)

ϕ(1,3)

)(
θ (0) + θ (2)

θ (1) + θ (3)

)
. (60)

Up to now, we have thus determined the values of ω and θ from
the only astrometric positions of the lensed images. We shall now
proceed with the determination of the remaining model parameters
(γ , ε, θE and θS) in terms of the same observable quantities. To this
end, from equations (49), (50) and (53), we have

θ (0) − θ (1) + θ (3) − θ (2)

θ (0) + θ (1) − θ (3) − θ (2)
= (1−γ ) cos (ω− θ )+ (1+γ ) sin (ω− θ )

(1−γ ) cos (ω− θ )− (1+γ ) sin (ω− θ )
.

(61)

Furthermore, combining equations (55) with (58) and (56) with
(59) to express cos (ω − θ ) and sin (ω − θ ) as a function of ob-
servable quantities, the value of the shear intensity γ derived from
equation (61) takes the form

γ = ϕ(1,3) θ (1,3) − ϕ(0,2) θ (0,2)

ϕ(1,3) θ (1,3) + ϕ(0,2) θ (0,2)
, (62)
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1550 O. Wertz, V. Pelgrims and J. Surdej

where θ (i,i +2) = (θ (i))2 − (θ (i +2))2. From equations (57) and (62),
the value of the lens model parameter ε is then found to be

ε =
log
(

ϕ(0,2) θ (0,2)

ϕ(1,3) θ (1,3)

)

log
(

θ (1)+θ (3)

θ (0)+θ (2)

) + 2. (63)

From equations (55) and (56), the value of the Einstein ring angular
radius is given by

θE = 1

2

(
θ (i) + θ (i+2)

)

{
1

2

[
1 +
(

ϕ(0,2)θ (0,2)

ϕ(1,3)θ (1,3)

)(−1)i
]}log

(
θ (1)+θ (3)

θ (0)+θ (2)

)
/ log

(
ϕ(0,2)θ (0,2)

ϕ(1,3)θ (1,3)

)

,
(64)

where i = 0 or 1. Finally, from equations (58), (59) and using
equations (55) and (56), the radial coordinate of the point-like source
turns out to be

θS = 1

2

(
ϕ(1,3) θ (1,3) − ϕ(0,2) θ (0,2)

ϕ(1,3) θ (1,3) + ϕ(0,2) θ (0,2)

) [ (
ϕ(0,2)

)2 (
θ (0) + θ (2)

)2

+ (ϕ(1,3)
)2 (

θ (1) + θ (3)
)2
]1/2

.

(65)

Furthermore, we note that from equations (55), (56), (58), (59) and
(62), we have

θS cos

(
ω − θ + iπ

2

)
= (−1)(i) ϕ(i+1,i+3)

(
ϕ(0,2) θ (0,2)−ϕ(1,3) θ (1,3)

ϕ(0,2) θ (0,2)+ϕ(1,3) θ (1,3)

)

(
θ (i+1) + θ (i+3)

2

)
.

(66)

In summary, all model parameters (θS, θ , θE, ε, γ and ω) can be
expressed as functions of the observable quantities θ (i) and ϕ(i),
derived from the only first-order astrometric equations.

3.2.2 The amplification ratios

We shall now investigate the amplification relations. Alike for the
case of axially symmetric lens models, the relevant observable is
also here the amplification ratio μ(i)/μ(j) between pairs of lensed im-
ages. Considering a four image configuration, we only have three
independent amplification ratios which can be expressed as a func-
tion of the source position, i.e. y. We have chosen to show two series
of typical curves for the amplification ratio: |μ(3)/μ(2)| (see Fig. 7)
and |μ(0)/μ(2)| (see Fig. 8).

Figure 7. The amplification ratio |μ(3)/μ(2)| is plotted as a function of y
for various values of the shear intensity (γ ∈ [0, 0.6]) and for various lens
models (ε ∈ {0, 0.3, 0.6, 0.9}) with ω = 0 and θ = π/8. The various plotted
symbols refer to the ε = 0.6 curve.

Figure 8. The amplification ratio |μ(0)/μ(2)| is plotted as a function of y
for various values of the shear intensity (γ ∈ [0, 0.6]) and for various lens
models (ε ∈ {0, 0.3, 0.6, 0.9}) with ω = 0 and θ = π/8. The various plotted
symbols refer to the ε = 0.6 curve.

First, we observe that the amplification ratio is almost indepen-
dent on the lens model (i.e. upon ε) when typically y < 0.15. On
the other hand, the former is dependent on the shear intensity γ . In
the case of a perfect alignment between the source, the lens and the
observer, i.e. for y = 0, the amplification ratio |μ(3)/μ(2)| evidently
depends on the shear intensity (γ ), whereas |μ(0)/μ(2)| = 1 for all
values of γ . These properties can simply be accounted for from
equation (41) where we substitute r

(i)
0 and ϕ

(i)
0 from equations (47)

and (49). That is, the amplification factor for the ith lensed image
reduces to
(
μ

(i)
0

)−1
= 2 γ (ε − 2)

(
γ + (−1)i

)
, (67)

and thus the amplification ratio becomes

μ
(i)
0

μ
(j )
0

= γ + (−1)j

γ + (−1)i
, (68)

where i ∈ {0, 1, 2, 3} and j ∈ {0, 1, 2, 3}. Therefore, for y =
0, the amplification ratio becomes |μ(0)/μ(2)| = |μ(1)/μ(3)| = 1
and |μ(3)/μ(2)| = |μ(1)/μ(2)| = |μ(3)/μ(0)| = |μ(1)/μ(0)| = |(γ +
1)/(γ − 1)| as confirmed from Figs 7 and 8.

In order to express the amplification ratios to first order, it is
useful to consider the amplification factor to second order. First,
from equation (48) we express the term (r(i))(ε −2) to first order as

(
r (i)
)(ε−2) = 1+ (−1)i γ − y

r
(i)
0

⎡
⎣
(

1− �r (i)

r
(i)
0

)
cos

(
ω− θ + iπ

2

)

− sin

(
ω − θ + iπ

2

)
�ϕ(i)

⎤
⎦,

(69)

where cos [2(ω − ϕ(i))] � ( − 1)i, �ϕ(i) being defined by equa-
tion (52) and �r(i) by equation (53). On the other hand, after in-
serting equation (69) into equation (41) and after some obvious
simplifications, the amplification factor reduces to

(
μ(i)
)−1 =

(
μ

(i)
0

)−1
− y

r
(i)
0

(
1 − �r (i)

r
(i)
0

)[
cos

(
ω − θ + iπ

2

)

−sin

(
ω− θ + iπ

2

)
�ϕ(i)

][
A(i)(γ, ε) − (ε−1)

y

r
(i)
0(

1− �r (i)

r
(i)
0

) [
cos

(
ω− θ + iπ

2

)
− sin

(
ω− θ + iπ

2

)
�ϕ(i)

]]
,

(70)

C© 2012 The Authors, MNRAS 424, 1543–1555
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at U
niversity of L

iege on January 14, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



Asymptotic solutions 1551

where we denote A(i)(γ , ε) = (ε − 2) + (−1)i γ (3ε − 4), a function
of ε and γ . After inserting equations (52) and (53) into equation (70)
and considering up to second-order terms only, the amplification
factor reduces to

(
μ(i)
)−1 =

(
μ

(i)
0

)−1
− y

r
(i)
0

A(i) cos

(
ω − θ + iπ

2

)
+
(

y

r
(i)
0

)2

⎡
⎣(ε−1) cos2

(
ω− θ + iπ

2

)
+A(i)

(
cos2

(
ω− θ + iπ

2

)

(2−ε)(1+ (−1)i γ )

+ sin2
(
ω − θ + iπ

2

)

2 γ (−1)i

)⎤
⎦. (71)

It is interesting to note that for the case of models without shear,
i.e. γ = 0, we recover from equation (71) the amplification ratio
previously established (see equation 17). Indeed, for γ = 0, it is easy
to prove that r

(i)
0 = 1, 1/μ

(i)
0 = 0 and A(i) = ε − 2. Furthermore,

from equations (14), (15) and (53), the indices corresponding to the
two brightest lensed images are i = 0 and 2, and we assume ω =
θ . That is, the amplification factor of images i = 0 and 2 simply
reduces to
(
μ(0)
)−1 = −y (ε − 2) (1 − y), (72)

(
μ(2)
)−1 = y (ε − 2) (1 + y), (73)

and the amplification ratio between the two brightest lensed images
becomes

μ(0)

μ(2)
= −1 + y

1 − y
, (74)

the latter corresponding to equation (17).
For the case of models with shear and from equation (71), we

deduce three independent amplification ratios given to first order by

μ(1)

μ(0)
= −

(
1 + γ

1 − γ

)

×
[

1 − y

(
sin (ω − θ ) A(1)

r
(1)
0

μ
(1)
0 + cos (ω − θ ) A(0)

r
(0)
0

μ
(0)
0

)]
, (75)

μ(2)

μ(0)
= 1 − y cos (ω − θ )

A(0)

γ (ε − 2)(1 + γ ) r
(0)
0

, (76)

μ(3)

μ(0)
= −

(
1 + γ

1 − γ

)

×
[

1 + y

(
sin (ω − θ ) A(3)

r
(3)
0

μ
(3)
0 − cos (ω − θ ) A(0)

r
(0)
0

μ
(0)
0

)]
. (77)

For the case of a perfect alignment between the source, the lens and
the observer, i.e. y = 0, we recover the amplification ratios given
by equation (68). For the general case of a small misalignment
between the observer, the lens and the source, the amplification ratio
remains a complex function involving all model parameters (see
equations 75–77). Unlike for the case of the ε family lens models
(see equation 17), the expressions of the amplification ratios derived
for more complex deflectors turn out to be very model dependent.

3.2.3 Time delays and the Hubble parameter

Let us now consider the determination of the value of the Hubble
parameter H0 from the measurement of the time delay �t between

two lensed image light curves for the case of axially symmetric
power-law lens models with an external shear. The time delay is split
up into two parts with the first one being the well-known geometrical
part �tgeo and the second one the potential part �tpot due to the
retardation of the deflected rays caused by the gravitational field of
the lens, the so-called Shapiro effect. Adopting the same notation
for the source and image positions as previously, the time-delay
function t(x) for the ith image is given by (Narayan & Bartelmann
1996)

t
(

x(i)
) =

(
1 + zl

c

)(
DOLDOS

DLS

)
θ2

E

[
1

2
(x − y)2 − ψ̂ tot(x)

]
,

(78)

where zl represents the redshift of the lens, DOL, DOS and DLS

represent the usual angular-diameter distances, c is the speed of
light in vacuum and ψ̂ tot is the total lensing potential, which gradient
corresponds to the general deflection angle, apart from an irrelevant
constant

α̂gen(x) = −∇xψ̂ tot = −∇xψ̂ iso − ∇xψ̂aniso. (79)

The time delay between images i and j is therefore given by

�ti,j =
(

1+zl

c

)(
DOLDOS

DLS

)
θ2

E

[
1

2

(
x(j ) − y

)2 − 1

2

(
x(i) − y

)2

− ψ̂ tot

(
r (j ); ϕ(j )

)+ ψ̂ tot

(
r (i); ϕ(i)

) ]
.

(80)

Since α̂iso(x) is independent on the angular coordinate, we deduce
∇xψ̂ iso = (∂ψ̂ iso/∂r, 0) and the expression of the isotropic lensing
potential becomes

ψ̂ iso

(
r (i)
) =

(
r (i)
)ε

ε
, (81)

for ε �= 0 and

ψ̂ iso

(
r (i)
) = ln

(
r (i)
)
, (82)

for ε = 0. Since α̂aniso(x) = −∇xψ̂aniso, the expression of the
anisotropic lensing potential becomes (see equation 38)

ψ̂aniso

(
r (i); ϕ(i)

) = −γ

(
r (i)
)2

2
cos
[
2(ω − ϕ(i))

]
. (83)

Furthermore, we note that
1

2

(
x(j ) − y

)2 − 1

2

(
x(i) − y

)2 = 1

2

[
(r (j ))2 − (r (i))2

]

−y
[
r (j ) cos (ϕ(j ) − θ ) − r (i) cos (ϕ(i) − θ )

]
. (84)

For a small misalignment between the source, the lens and the
observer, the position of the ith image is given by r (i) = r

(i)
0 +�r (i)

and ϕ(i) = ϕ
(i)
0 + �ϕ(i), where r

(i)
0 is defined by equation (49),

�r(i) = �θ (i)/θE by equation (53), ϕ
(i)
0 by equation (47) and �ϕ(i)

by equation (52). For ε �= 0 and combining equations (80), (81) and
(84) to first order, the time delay between images i and j becomes

�ti,j =
(

1+zl

c

)(
DOLDOS

DLS

)
θ2

E

⎧
⎨
⎩

(
ε − 2

2 ε

)[
(r (j )

0 )ε−(r (i)
0 )ε
]

−y
[
r

(j )
0 cos (ω − θ + jπ/2) − r

(i)
0 cos (ω − θ + iπ/2)

]
⎫
⎬
⎭.

(85)

It is interesting to note that for images i and i + 2, i.e. 0 and 2 or 1
and 3, the time delay simply reduces to

�ti,i+2 =
(

1 + zl

c

)(
DOLDOS

DLS

)
θS

× (θ (i) + θ (i+2)
)

cos (ω − θ + iπ/2). (86)
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The latter expression is a simple function of the model parameters
which may be retrieved from the linearized astrometric equations.
For ε = 0 corresponding to the point-like mass distribution, and
combining equations (80), (82) and (84) to first order, the time
delay between images i and j becomes

�ti,j =
(

1 + zl

c

)(
DOLDOS

DLS

)
θ2

E

[
−1

2
ln

(
1 + (−1)i γ

1 + (−1)j γ

)

−y
(
r

(j )
0 cos (ω − θ + jπ/2) − r

(i)
0 cos (ω − θ + iπ/2)

)]
.

(87)

For images i and i + 2, i.e. 0 and 2 or 1 and 3, the time delay simply
reduces to equation (86) as for the case ε �= 0. From the value of
the time delay observed between two such lensed images, we may
thus deduce the value of the Hubble parameter H0 in a robust way
with the values of θ , γ , ε, θE and ω − θ given by equations (60),
(62), (63), (64) and (65), respectively.

For the case of a flat universe with �M = 0.3, �� = 0.7 and
cosmological values for the lens and source redshifts, and from
equation (66), equation (86) transforms into

H0 = (1+zl)

(
zszl

zs −zl

)(
F (zl)F (zs)

F (zs −zl)

)
(−1)i ϕ(i+1,i+3)

2 �ti,i+2

(
θ (0) +θ (2)

)

× (θ (1) + θ (3)
)(ϕ(0,2) θ (0,2) − ϕ(1,3) θ (1,3)

ϕ(0,2) θ (0,2) + ϕ(1,3) θ (1,3)

)
, (88)

where F(zl), F(zs) and F(zs − zl) have been defined by equation (34).
As a final result, in the case of a small misalignment between

the observer, the lens and the source, the Hubble parameter H0

may be directly and robustly derived from the following observable
quantities: the redshifts of the lens and of the source, the time delays
and the astrometric positions of the four lensed images with respect
to the centre of the gravitational lens.

3.2.4 Mass estimation of the deflector

Alike for the case of axially symmetric lens models, we derive a
simple expression for the mass M(≤ θE) of the deflector inside
the radius θE from the expression of the time delays �t0,2 and
�t1,3. From equations (35), (55), (56), (58), (59) and (86), the mass
M( ≤ θE) may be expressed as

M(≤ θE) = c3 �ti,i+2

8 G(1 + zl)

(−1)(i+1)

ϕ(i+1,i+3)

(
ϕ(1,3) θ (1,3) + ϕ(0,2) θ (0,2)

ϕ(1,3) θ (1,3) − ϕ(0,2) θ (0,2)

)

×
[

1

4

(
1 + ϕ(0,2) θ (0,2)

ϕ(1,3) θ (1,3)

)

×
(

1 + ϕ(1,3) θ (1,3)

ϕ(0,2) θ (0,2)

)]log
(

θ (1)+θ (3)

θ (0)+θ (2)

)/
log

(
ϕ(0,2)θ (0,2)

ϕ(1,3)θ (1,3)

)

.

(89)

3.3 Comparison between the ε − γ and SIE families of models

Another interesting way to investigate four lensed image configu-
ration systems is to study intrinsically elliptical deflectors, in par-
ticular the singular isothermal ellipsoid (SIE) (Kormann, Schneider
& Bartelmann 1994). Even for the case of a small misalignment
between the source, the deflector and the observer, comparison
between the SIE and the ε − γ families of models leads to the con-
clusion that these models remain strictly distinct, excepted when
the alignment is perfect or when the SIE reduces to the SIS model
without any shear.

In order to demonstrate the clear distinction between these two
families of models, we have used the singular perturbative theory
developed by Alard (2007, 2008, 2010) accounting for a small ex-
ternal perturbation, i.e. 0 < γ 
1 and 0 < f 
1, where f represents
the axis ratio of the deflection potential isodensity contours. Within
that formalism, equation (37) may be expressed to first order as

y = (κ2dr + γ cos (2ϕ)) ur − γ sin (2ϕ) uϕ, (90)

for the ε − γ models, and

y =
(

κ2dr − 1 − f 2

4
cos (2ϕ)

)
ur + 1 − f 2

2
sin (2ϕ) uϕ, (91)

for the SIE models, where ur and uϕ represent, respectively, the
radial and orthoradial direction in polar coordinates, and κ2 =
2 − 2κ , with κ standing for the lensing convergence of the unper-
turbed symmetrical mass distribution. A straightforward compari-
son between equations (90) and (91) shows that because both the
(1 − f 2)/4 and (1 − f 2)/2 factors appear in equation (91), γ cannot
be merely associated with (1 − f 2)/4 and the two families of models
are thus shown to be very distinct, even for a small misalignment
between the source, the deflector and the observer, and for small
values of γ and f .

Alike for the ε − γ models, we have derived, for the SIE models,
simple relations linking all model parameters and positions of the
lensed images, for the case of a small misalignment. Furthermore,
from equation (80), the time delay between images i and j derived
for the case of the SIE models reduces to

�ti,i+2 =
(

1 + zl

c

)(
DOLDOS

DLS

)

× θS

(
θ (i) + θ (i+2)

)
cos (ω − θ + iπ/2), (92)

which is identical to equation (86). As a consequence, despite of the
difference between these two classes of models, we have derived
the same expression for the time delay which is only a function of
observable quantities and source position. However, still for a small
misalignment and for the case of SIE models, we easily deduce that

θS cos (ω − θ + iπ/2) = 1

2

(
θ (i) − θ (i+2)

)
. (93)

After substituting equation (93) into equation (92), the time delay
between images i and i + 2 becomes

�ti,i+2 =
(

1 + zl

2c

)(
DOLDOS

DLS

) [ (
θ (i)
)2 − (θ (i+2)

)2
]
. (94)

First, the latter equation, which is equivalent to equation (29),
holds for more general isothermal models (Witt et al. 2000) as
we have previously discussed in Section 2. Secondly, since equa-
tions (66) and (93) remain very distinct, the determination of
θS cos (ω − θ + iπ/2) essentially depends on the considered family
of models. Although equation (92) seems to be valid irrespective of
the considered models, the determination of the value of the Hub-
ble parameter, by use of observable quantities only, depends on the
adopted family of models. Therefore, we should always clearly dis-
tinguish the class of models that shows the best agreement with the
observed gravitational lens systems, even for a small misalignment
between the source, the deflector and the observer. For this purpose,
the fitting of models to observational data consists in making use
of equations (54), (60), (62), (63), (64) and (65), and similar cor-
responding equations for SIE lens models. This procedure is more
straightforward than numerical fitting (e.g. see Evans & Witt 2003)
but requires very well selected gravitational lens systems, i.e. nearly
symmetric lensed image configurations.
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4 VA L I D I T Y R A N G E O F T H E M E T H O D

4.1 Errors caused by the first-order equations

We first propose in this section to test the validity range of the
approximation r (i) = r

(i)
0 + �r (i) and ϕ(i) = ϕ

(i)
0 + �ϕ(i) while

using equations (52) and (53). For the case y = 0, i.e. for a perfect
alignment between the source, the deflector and the observer,
the astrometric errors of the model are equal to zero. As soon as
the source is no more perfectly aligned, we introduce errors in the
determination of the lensed image positions due to the use of the
first-order solutions, as compared with the exact solutions. These
errors become very large as the source gets closer to the tangential
caustic curve. Consequently, we may estimate the validity range of
equations (50) and (51) from the derivation of the expression of the
smallest acceptable distance between the source and the tangential
caustic curve. We denote (yc,m; θ c,m) the polar coordinates of the
tangential caustic point which is the closest to the centre of the
coordinate system, in the first quadrant (see Fig. 9). Moreover, from
equation (45), we deduce

y2
c = r2

c

{[
1− (rc)ε−2

]2 +γ 2 +2γ
[
1− (rc)ε−2

]
cos [2 (ϕc −ω)]

}
.

(95)

The critical point coordinates (rc,m; ϕc,m) associated with (yc,m;
θ c,m) are obtained by deriving equation (95) with respect to ϕc and
determining the extremum of y2

c . We find that

(
rc,m; ϕc,m

) =
(

1; −1

2
arccos

[
γ

ε − 2

]
+ ω

)
. (96)

Figure 9. Illustration of the shaded source area projected in the lens plane
across which the corresponding astrometric errors induced by the use of
the first-order equations remain smaller or equal to σθ (i) . The small circle
embedded inside this area has its radius equal to 0.15 γ and delimits the
most restrictive region of the projected source position for which our method
works well. The diamond-shaped solid line represents the tangential caustic
curve and the peanut-shaped dashed line represents its associated critical
curve. The solid circle (radius equals 1) represents the radial caustic curve,
whereas its associated critical curve corresponds to a point located at (0, 0).
The illustrated model refers to the following parameters: ε = 1, γ = 0.6,
ω = 0 and θE = 1.0 arcsec.

After substituting equation (96) into equations (45) and (95), the
coordinates of the tangential caustic point (yc,m; θ c,m) are found to
be
(
yc,m; θc,m

) =
(

γ ;
1

2
arccos

[
γ

ε − 2

]
− ω

)
, (97)

Hence, the smallest distance between the tangential caustic curve
and the lens centre is equal to γ , as shown in Fig. 9. Furthermore,
we note that for a fixed value of y, the distance from the tangential
curve is always the smallest for θ = θ c,m. As a consequence, the most
restrictive condition on the source position, which can be expressed
irrespective of θ and ε, takes the form 0 ≤ y < ζ γ , where ζ ∈ R+

has to be determined in order to account for realistic errors on the
positions of the lensed images. The relative astrometric positions
of the lensed images are usually known with a very high accuracy.
According to recent Hubble Space Telescope data, the absolute
error in the relative astrometry is of the order of ∼0.0005 arcsec
(e.g. Courbin et al. 2011). However, the system of coordinates used
in this paper is centred on the deflector’s gravity centre, usually not
better precisely known than ∼0.003 arcsec. Indeed, the photometric
centre and the gravity centre may not correspond exactly. Hence,
we assume a perfect position of the deflector centre and a relevant
error of σθ (i) � 0.003 arcsec on the positions of the lensed images.
Finally, the numerically derived value of ζ for which the astrometric
errors induced from the use of the first-order model are smaller or
equal to σθ (i) is found to be equal to ζ = 0.15. In conclusion, a
simple condition on y which validates the approximation defined by
equations (52) and (53) is given by

0 ≤ y < 0.15 γ. (98)

Since the tangential caustic curve is not a circle but a diamond-
shaped curve, we can simulate a less restrictive condition on y
which depends on the angular coordinate, i.e. θ . We have illustrated
this condition for the case of the SIS model, i.e. ε = 1, in Fig. 9 see
the shaded area.

4.2 Corresponding errors on the Hubble parameter

For the case of a small misalignment between the source, the lens
and the observer, we have derived in the previous section a simple
equation (see equation 88) for the Hubble parameter in terms of
observable quantities: the redshifts of the lens and the source, the
time delays between images i and i + 2, and the astrometric positions
(θ (i), ϕ(i)) of the four lensed images. We propose in the remainder of
this section to test the validity range of equation (88) when deriving
the value of the Hubble parameter. For this purpose, we find from
equation (80) that the exact value of the Hubble parameter is

H0 = �(z, �ti,i+2) θ2
E

[
1

2

(
x(j ) − y

)2 − 1

2

(
x(i) − y

)2

− ψ̂ tot

(
r (j ); ϕ(j )

) + ψ̂ tot

(
r (i); ϕ(i)

) ]
, (99)

where

�(z, �ti,i+2) = 1 + zl

�ti,i+2

(
zszl

zs − zl

)(
F (zl)F (zs)

F (zs − zl)

)
. (100)

We have then calculated for various positions of the source with
respect to the source caustics the relative error affecting H0. This
relative error corresponds to the absolute value of the difference
between the value of H0 estimated from our first-order relations (see
equation 88) and that given by equation (99), divided by the latter
value. For an easy to understand visualization, we have represented
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Figure 10. Illustration of the shaded source area projected in the deflector
plane across which the relative error on H0 due to the use of first-order
equations is smaller or equal to 1 per cent from the correct value. The left-
hand panel corresponds to the following model parameters: ε = 0.5, γ =
0.5, ω = 0 and θE = 1.2 arcsec, whereas on the right-hand panel: ε = 0.3,
γ = 0.7, ω = 0 and θE = 1.2 arcsec. The dashed lines represent the critical
curves and the solid lines represent their associated caustic curves.

in Fig. 10 the area of the caustics projected in the deflector plane
across which the error is smaller or equal to 1 per cent for two
different sets of model parameters. We naturally conclude that this
way of proceeding allows us to quantify the acceptable range of
slight misalignment between the source, the lens and the observer.

Furthermore, considering that our first-order equations are appli-
cable, we have estimated the errors affecting the value of H0 due to
measurement uncertainties on the observed lensed image positions
and that of the deflector. For this purpose, we have assumed a set
of model parameters (ε, γ , ω, θS, θ and θE) which we used to gen-
erate exact image positions (θ (i), ϕ(i)). Afterwards, using a Monte
Carlo method with Gaussian distributed pseudo-random numbers
around the exact image positions and deflector gravity centre with
a σθ (i) = 0.003 arcsec standard deviation, we have retrieved all
model parameters at each step from equations (54), (60), (62), (63),
(64) and (65). Note that at each step, we have searched the best
deflector gravity centre by covering a 0.001 arcsec grid step size
around the theoretical gravity centre position. In Fig. 11, we illus-
trate the distributions of the derived parameter values considering
50 000 simulations. In order to evaluate the error affecting the de-
rived parameter values, we have fitted with a Gaussian model all
the observed distributions. The fitting results are shown in Table 1.
From the model parameter fit results and from equation (88), we
have estimated the standard deviation affecting the Hubble parame-
ter determination, assuming zl = 0.4546, zs = 1.689, �t0,2 = 6.4 ±
0.0 d, �� = 0.7 and �M = 0.3. In conclusion, we find that the
Hubble parameter could be determined with a mean standard devi-
ation equal to σH0 = 1.3 km s−1 Mpc−1 which merely reflects the
adopted astrometric uncertainties (see Fig. 12).

5 C O N C L U S I O N S

We have shown in this paper that for the case of relatively symmet-
ric lensed image configuration systems, corresponding to power-law
axially symmetric deflector models and to a very small misalign-
ment between the background source, the foreground lens and the
observer, it is possible to determine the Hubble parameter value
irrespectively of the power-law slope ε. First, for the case of ax-
ially symmetric deflectors, we have derived two straightforward
linear equations linking the source position θS, the power-law slope
ε, the Einstein ring angular radius θE, and the lensed image po-
sitions θ (1) and θ (2) (see equations 23 and 24). Furthermore, we

Figure 11. Distributions of the model parameter values determined using
the first-order equations applied to 50 000 Monte Carlo gravitational lens
simulations. These bell-shaped distributions can be fitted with a normal dis-
tribution which central values represent the values of the model parameters.
The exact values of the parameters used to generate the exact image posi-
tions of the simulated gravitational lens systems were in this case ε = 0.5,
γ = 0.3, ω = π/8, θS = 0.07, θ = π/5 and θE = 1.2 arcsec. The fitting
results are shown in Table 1.

Table 1. Fit results.

Parameter Value Fit value σ

ε 0.5 0.5037 0.0247
γ 0.3 0.2991 0.0046
ω π/8 0.3927 0.0001
θS 0.07 0.0699 0.0012
θ π/5 0.6293 0.0009
θE 1.2 1.2000 0.0009

have shown that the amplification ratio μ(1)/μ(2) is only a func-
tion of the normalized source position θS/θE, irrespective of ε. As
a result, for such symmetric lensed image configurations, there
exists a straightforward relation between H0 and �t that only in-
volves the observable quantities θ (1), θ (2), μ(1)/μ(2), and the lens
and source redshifts, irrespective of the value of the power-law
slope ε.

For more realistic lens mass distributions with shear, the so-called
ε − γ models, and for the case of a nearly perfect alignment be-
tween the observer, the deflector and the point-like source, all lens
model parameters can be directly derived from the first-order astro-
metric equations. In the case of a small misalignment, typically y <

0.15γ , the astrometric equations lead to eight linear equations from
which we can deduce all values of the lens model parameters. The
expression of the time delay leads to three additional independent
linear equations which only depend on the source position and on
the lens model parameters. In particular, two of these three equa-
tions lead to a very simple dependence of the Hubble parameter
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Figure 12. Probability distribution of the Hubble parameter H0 evaluated
from equation (88) and from the derived lens model parameters (see Table 1).
The mean value of H0 essentially depends on the exact value of the time
delay between the two lensed images. In this case, the standard deviation
obtained is σH0 = 1.3 km s−1 Mpc−1 and essentially reflects the adopted
astrometric uncertainties on the image positions, i.e. σθ (i) = 0.003 arcsec.

versus the observed time delay (see equation 86). However, com-
parison between the ε − γ and SIE families of models leads to the
conclusion that these models remain most often distinct. From this
observation, we should succeed in retrieving which family of lens
models shows the best agreement with the observed gravitational
lens systems. Indeed, even if equation (86) holds for both families
of models (ε − γ , SIE), the determination of θS cos (ω − θ + iπ/2)
from the observed positions of the lensed images critically depends
on the correctly identified lens model (see equations 66 and 93). In
Section 4, we have tested the robustness of the determination of the
value of H0 as a function of the degree of misalignment between
the source, the lens and the observer and the ε − γ gravitational
lens model parameters. Assuming a flawless determination of the
time delay between two lensed images, i.e. σ�t = 0, the standard
deviation found is σH0 = 1.3 km s−1 Mpc−1 and only reflects the
adopted astrometric uncertainties, i.e. σθ (i) = 0.003 arcsec. In the
near future, we intend to model known gravitational lens systems
which look nearly symmetric with the two families of deflectors
(ε − γ , SIE) discussed in this paper. We shall select the best ones

in order to derive the value of H0 using the relative lensed image
positions and the measured time delays.
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Section 2.3 67

2.3 Derivation of Eqs. (96) and (97) proposed in Paper I

In the present section, we derive in details the expression of the polar coordinates (yc,m; θc,m)

of the tangential caustic point which is the closest to the center of the coordinate system.

To this end, we also derive its associated critical point located at (rc,m;ϕc,m). These results

correspond to Eqs. (96) and (97) in Paper I. The value of yc,m corresponds to the smallest

distance between the tangential caustic curve and the center of the deflector. To start with,

we recall that :

y2
c = r2

c

{[
1 − (rc)ε−2

]2
+ γ2 + 2γ

[
1 − (rc)ε−2

]
cos

[
2 (ϕc − ω)

]}
, (2.1)

where rc is defined by :

rc(ϕc) =


−Γ(ϕc) ±

√
Γ(ϕc)2 − 4(1 − γ2)(ε − 1)

2(1 − γ2)


( 1

2−ε )
, (2.2)

and Γ(ϕc) :

Γ(ϕc) = (2 − ε)
(
1 − γ cos

[
2(ω − ϕc)

]) − 2 . (2.3)

The approach is the following. We first deduce the expression of rc,m(ϕc) in terms of ϕc by

setting the derivative of Eq. (2.1) with respect to rc equal to zero. Let us denote this term by

r(ϕ)
c,m ≡ rc,m(ϕc). Then, we insert the expression of r(ϕ)

c,m into Eq. (2.1) which, after having been

derivated with respect to ϕc and set equal to zero, leads to the determination of ϕc,m in terms

of the model parameters ε and γ. Finally, we obtain successively the expressions of rc,m, yc,m

and θc,m.

The derivative of Eq. (2.1) with respect to rc leads to :

d
(
y2

c

)

drc
= (ε − 1) r2(ε−2)

c − ε A(ϕc) rε−2
c + B(ϕc) , (2.4)

where the functions A(ϕc) and B(ϕc) are defined by :


A(ϕc) = 1 + γ cos (ϕ̃) ,

B(ϕc) = 1 + γ2 + 2γ cos (ϕ̃) ,
(2.5)
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where we have adopted the notation ϕ̃ = 2(ϕc − ω). The expression of r(ϕ)
c,m can then be

deduced from Eq. (2.4) after having solved the following equation :

(ε − 1)
(
r(ϕ)

c,m

)2(ε−2) − ε A(ϕc)
(
r(ϕ)

c,m

)(ε−2)
+ B(ϕc) = 0 . (2.6)

From the latter equation, the expression of r(ϕ)
c,m can be simply expressed as :

r(ϕ)
c,m =


ε A(ϕc) ±

√
ε2A2(ϕc) − 4B(ϕc)(ε − 1)

2B(ϕc)


1/(2−ε)

. (2.7)

As a first step, we consider the particular case ε = 1 which corresponds to the SIS family

of models. For such a value of ε, the expression of r(ϕ)
c,m takes a very simple form which

allows to straightforwardly derive the expression of yc,m. Without loss of generality, we fix

the orientation of the system of coordinates to ω = 0.

2.3.1 Determination of yc,m for the case of ε = 1 (SIS) and ω = 0

For the case of ε = 1, Eq. (2.7) simply reduces to r(ϕ)
c,m = A(ϕc)/B(ϕc), which constitutes

the unique non-trivial solution. After substituting the latter equation into Eq. (2.1), the

expression of yc,m as a function of ϕc takes the form :

y2
c =

γ2 sin2 (2ϕc)
B(ϕc)

. (2.8)

The derivative of the latter equation with respect to ϕc leads to :

d
(
y2

c

)

dϕc
=
γ cos2 (2ϕc) + (1 + γ2) cos (2ϕc) + γ

B2(ϕc)
. (2.9)

After setting equal to zero the latter equation, we deduce the expression of ϕc,m :

cos (2ϕc,m) = −γ . (2.10)

As a result, after inserting the value of ϕc,m from the latter equation respectively into Eqs.

(2.7) and (2.1), we obtain : 
rc,m = 1 ,

yc,m = γ .
(2.11)
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Making use of Eq. (45) from Paper I together with Eq. (2.11), the angular coordinate θc,m is

simply given by θc,m = −ϕc,m.

2.3.2 Determination of yc,m for the case 0 ≤ ε ≤ 1 and ω = 0

Let us first define the variable ρ = r2−ε
c . Making use of the definition of ρ, the expression of

y2
c transforms into :

y2
c = ρ

2(ε−1)
2−ε

(
B(ϕc) ρ2 − 2 A(ϕc) ρ + 1

)
. (2.12)

After inserting Eq. (2.7) into the term in brackets of the latter equation, we obtain :

y2
c = ρ

2(ε−1)
2−ε

(
ε − 2

B

) (
ε A2

2
− B +

A
2

√
ε2A2 − 4(ε − 1)B

)
, (2.13)

≡ ρ
2(ε−1)

2−ε Ω(ϕc) , (2.14)

where we have adopted the notation A(ϕc) ≡ A and B(ϕc) ≡ B. The next step consists in

taking the derivative of the latter equation with respect to ϕc and setting the result equal to

zero. Such a calculus leads to :

2
(
ε − 1
2 − ε

)
dρ(ϕc,m)

dϕc
Ω(ϕc,m) + ρ(ϕc,m)

dΩ(ϕc,m)
dϕc

= 0 , (2.15)

which solution leads to the determination of ϕc,m. Let us enumerate some intermediate results.

We have :

dρ(ϕc,m)
dϕc

= −γ sin (2ϕc,m)
B2

[
ε (γ2 − 1) +

1√
K

(
ε2A(γ2 − 1) + 4(ε − 1)B

)]
, (2.16)

and

dΩ(ϕc,m)
dϕc

= −2γ sin (2ϕc,m)
B2

(
ε − 2

2

) [
2 ε A(B − A) +

√
K(γ2 − 1) +

AB√
K

(
ε2A − 4 (ε − 1)

)]
,

(2.17)

where the function K ≡ K(ϕc,m) is defined by :

K = ε2A2 − 4 B (ε − 1) . (2.18)
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Let us notice that the definition of K implies that the expression of Ω(ϕc) reduces to :

Ω(ϕc) =
ε A2

2
− B +

A
2

√
K . (2.19)

Substituting Eqs. (2.16) and (2.17) into Eq. (2.15), we obtain :

T 3 (γ2 − 1)(2 − ε) + 2T 2ε A
[
B (ε − 1) − A (3ε − 4)

]
− 16 (ε − 1)2 B2

+4T B (ε − 1)
[
ε (3A − B) + 2 A (ε − 2)

]
= 0 ,

(2.20)

where we have defined the function T = ε A +
√

K. The latter equation constitutes a

polynomial of the third order in terms of T . We may use the Bézout’s method which states

that solutions of the third order polynomial equation β0 + β1 T + β2 T 2 + β3 T 3 can be

expressed as linear combinations of the cube root of unity, denoted by :

 = −1
2

+

√
3

2
ı , (2.21)

where ı corresponds to the imaginary unit. Let us denote by T̃ one particular solution of Eq.

(2.20), we then have :

T̃ = α0 + α1  + α2 
2 , (2.22)

where the coefficients αi are, of course, functions of ϕc,m. According to the Bézout’s method

which gives mathematical relationships between the coefficients αi and βi, we obtain the

system of linear equations :



2ε A
[
B (ε − 1) − A (3ε − 4)

]

(γ2 − 1)(2 − ε)
= −3α0 ,

4B (ε − 1)
[
ε (3A − B) + 2 A (ε − 2)

]

(γ2 − 1)(2 − ε)
= 3α2

0 − 3α1α2 ,

− 16 (ε − 1)2 B2

(γ2 − 1)(2 − ε)
= 3α0α1α2 −

(
α3

0 + α3
1 + α3

2

)
.

(2.23)
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The inversion of these equations leads to the expression of αi in terms of A and B, hence of

ϕc,m implicitly : 

α0 = −
2ε A

[
B (ε − 1) − A (3ε − 4)

]

3 (γ2 − 1)(2 − ε)
,

α1 = δ1 − δ2 ı ,

α2 = δ1 + δ2 ı ,

(2.24)

where the function δi is given in such a way that the following equality is satisfied :

−δ1 + δ2

√
3 =

2
3

(
−A + 3B − 2A

ε − 2
+
εA(B − 3A)

1 − γ2

)
. (2.25)

After substituting Eq. (2.24) into Eq. (2.22) and noticing that (δ1 − δ2 ı)  + (δ1 − δ2 ı) 2 =

−δ1 + δ2
√

3, the solution T̃ of Eq. (2.20) simply reduces to :

T̃ = −
2ε A

[
B (ε − 1) − A (3ε − 4)

]

3 (γ2 − 1)(2 − ε)
+

2
3

(
−A + 3B − 2A

ε − 2
+
εA(B − 3A)

1 − γ2

)
,(2.26)

=
2

3(2 − ε)(γ2 − 1)

(
6AB(ε − 2) + 3B2(2 − ε)

)
, (2.27)

= 2B . (2.28)

Reminding that T = ε A +
√

K, together with Eq. (2.28), the next step consists in the

determination of the solution of the equation

2B = εA +
√
ε2A2 − 4(ε − 1)B , (2.29)

with respect to ϕc,m. Therefore, we obtain the expression of ϕc,m as a function of ε and γ :

cos
(
2ϕc,m

)
=

γ

ε − 2
. (2.30)

For the case ε = 1, i.e. for the SIS lens model, we retrieve the solution derived in Eq. (2.10).

As a result, after substituting Eq. (2.30) respectively into Eqs. (2.7) and (2.1), we obtain :


rc,m = 1 ,

yc,m = γ .
(2.31)

We note that from Eq. (2.29) and the definition of ρ, we straightforwardly deduce that

rc,m = 1. Finally, making use of Eq. (45) from Paper I together with Eq. (2.31), the angular

coordinate θc,m is simply given by θc,m = −ϕc,m.
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2.4 Paper II

Asymptotic solutions for the case of SIE
lens models and application to the
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ABSTRACT
For the case of a small misalignment between a point-like source, a singular isothermal el-
lipsoid deflector and an observer, we derive to first order simple relations between the model
parameters and the lensed image positions, and an expression for the time delay between pairs
of opposed images which is analog to the one previously derived for the case of ε − γ models
(Wertz, Pelgrims & Surdej, 2012). Combined with the first order astrometric relations, we
retrieve a simple expression for time delays, already derived by Witt et al. (2000) for the SIE
model, which solely depends on the lensed image positions. The real advantage of using the
first order equations when dealing with symmetric gravitational lens systems is to directly test
the validity of the adopted lens model without having to perform any accurate numerical fit. In
this paper, we present in details the calculations which lead to those relations between the SIE
lens model parameters and the lensed image positions. In addition, we model the well-known
gravitational lens system Q2237+0305, the so-called Einstein cross, with three families of
models : ε − γ, SIE and NSIE + shear, using a genetic algorithm from the Qubist Optimiza-
tion Toolbox (Fiege, 2010). We conclude that although the NSIE + shear model shows the best
agreement between the calculated and the observed image positions (< ∆x >= 0.0026 arcsec
), the more simple SIE also leads to quite satisfactory and acceptable results (< ∆x >= 0.0059
arcsec ). Furthermore, direct use of the SIE first order equations allows one to nearly recover
the same model parameters (relative deviation better than 2%), which indicates that those
relations are very useful and fully coherent. A comparison with previous studies is reported.

Key words: gravitational lensing : strong – cosmology : cosmological parameters.

1 INTRODUCTION

According to Refsdal (1964 a, b), the gravitational lens phe-
nomenon provides a powerful tool to derive the values of several
cosmological parameters, i.e. H0, Ωλ, as well as to deduce the ab-
solute mass of the lensing object, independently on the distance
ladder. Unfortunately, such a determination turns out to be model
dependent. However, for the case of a small misalignment between
the source, the deflector and the observer, Wertz et al. (2012) have
recently shown that a first order perturbative approach applied to
the lensed image positions may lead to the determination of the
Hubble parameter using observable quantities only (Wertz, Pel-
grims & Surdej, 2012). Let us note that a similar kind of approach
has been developed by Alard (2007) but his singular perturbative
method proves to be more restrictive.

The main idea of the present paper is to investigate for the
case of the singular isothermal ellipsoid (SIE) model whether we
can derive first order equations linking the model parameters to
the lensed image positions only. These equations are then used in

⋆ Aspirant du F.R.S. - FNRS.
† Also Directeur de Recherche honoraire du F.R.S. -FNRS.

order to derive model independent expressions for the time delays
between lensed images and the Hubble parameter. Let us note that
the derived expressions of H0 are consistent with the ones already
presented by Witt et al. (2000).

The outline of the present paper is as follows. In Section 2, we
recall the basic gravitational lens and astrometric equations for the
case of the singular isothermal ellipsoid (SIE). We also assume that
the lensed images are not resolved individually. Assuming a very
small misalignment between the source, the deflector and the ob-
server, we then derive, in Section 3, first-order expressions which
link the image positions to the model parameters, as well as the
possibility to infer from only observable quantities the value of the
Hubble parameter from the linearized astrometric and time delay
expressions. Afterwards, we discuss the apparent problem of the
degeneracy in determining the value of the parameter ̟ which rep-
resents the a priori unknown orientation of the elliptic-shape iso-
density contours, and we propose to test the validity range of the
astrometric equations. In Section 4, we test the first order equa-
tions for the case of the well-known quadruply imaged quasar :
Q2237+0305. We compare the first order model parameters ob-
tained with those determined numerically using a sophisticated ge-
netic algorithm, called Ferret (Fiege et al. 2004), which is a com-
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2 O. Wertz and J. Surdej

ponent of the Qubist Global Optimization Toolbox (Fiege 2010).
Some general conclusions form the last section.

2 THE SINGULAR ISOTHERMAL ELLIPSOID MODEL

The singular isothermal ellipsoid model (SIE) represents a partic-
ular case of more general models with elliptical mass distributions
(Bourassa et al. 1973, Bourassa & Kantowski 1975, corrected by
Bray 1984, Kormann & al. 1994). It can be described by its nor-
malized surface mass density κ(ρ) defined as :

κ(ρ) =

√
f

2ρ
, (1)

where f represents the axis ratio and ρ =
√

x2
1 + f 2 x2

2 with xi the
normalized cartesian coordinates of the impact parameter x. The
associated normalized deflection angle α̂(x) is given by :

α̂(x) = −
√

f
f ′

[
arcsinh

(
f
′

f
cos (ϕ)

)
e1 + arcsin

(
f
′
sin (ϕ)

)
e2

]
, (2)

where ei represents the unit vector along the direction xi, ϕ the an-
gular coordinate of the impact parameter, and f ′ =

√
1 − f 2. Ac-

counting for the notation defined by Kormann & al. (1994), the e1

direction corresponds to the semi-minor axis direction of the iso-
density contours. Therefore, the coordinate system adopted in that
paper is not arbitrarily oriented. Considering now an arbitrarily ori-
ented coordinate system for which the abscissa axis form an angle
̟ with the semi-minor axis (see Fig. 1), the expression of the two
components of the lens equation can be expressed as :

y cos (θ +̟) = r(i) cos
(
ϕ(i) +̟

)
−

√
f

f ′
arcsinh

(
f
′

f
cos

(
ϕ(i) +̟

))
,

(3)

y sin (θ +̟) = r(i) sin
(
ϕ(i) +̟

)
−

√
f

f ′
arcsin

(
f
′
sin

(
ϕ(i) +̟

))
,

(4)
where (r(i), ϕ(i)) represent the normalized polar coordinates of the
position of the image i, (y, θ), the normalized polar coordinates of
the point-like source and where θ and ϕ(i) are now measured from
the arbitrarily oriented coordinate system.

3 FIRST ORDER EQUATIONS AND SOLUTIONS

3.1 Small deviations from the perfect alignment

For the case of a perfect alignment between the source, the deflector
and the observer, i.e. y = 0, we may deduce from Eqs. (3) and (4)
the exact positions

(
r(i)

0 ; ϕ(i)
0

)
of the lensed images. On one hand, Eq.

(3) × sin
(
ϕ(i) +̟

)
- Eq. (4) × cos

(
ϕ(i) +̟

)
leads to :

y sin
(
ϕ(i) − θ

)
=

√
f

f ′
[
arcsin

(
f
′
sin

(
ϕ(i) +̟

))
cos

(
ϕ(i) +̟

)
(5)

−arcsinh
(

f
′
cos

(
ϕ(i) +̟

)
/ f

)
sin

(
ϕ(i) +̟

)]
,

and from the latter equation and for y = 0, the exact image angular
coordinates are expressed as :

ϕ(i)
0 =

iπ
2
−̟, (6)

where i ∈ [0, 1, 2, 3] indicates that there are up to four lensed
images. On the other hand, Eq. (3) × cos

(
ϕ(i) +̟

)
+ Eq. (4)

Figure 1. Illustration of the arbitrarily oriented coordinate system which
abscissa axis form an angle ̟ with the semi-minor axis of the iso-density
elliptic contours.

× sin
(
ϕ(i) +̟

)
leads to :

y cos
(
ϕ(i) − θ

)
= r(i) − 1

r(i) ψ̂
(
r(i), ϕ(i) +̟

)
, (7)

where ψ̂(r, ϕ) represents the normalized deflection potential defined
by :

ψ̂(r, ϕ) =

√
f

f ′
r
[
sin (ϕ) arcsin

(
f
′
sin (ϕ)

)

+ cos (ϕ) arcsinh
(

f
′

f
cos (ϕ)

) ]
. (8)

From Eq. (7) and for y = 0, the exact image radial coordinates are
expressed as :

r(0)
0 = r(2)

0 =

√
f

f ′
arcsinh

(
f
′

f

)
, (9)

and

r(1)
0 = r(3)

0 =

√
f

f ′
arcsin

(
f
′ )
. (10)

When considering a small misalignment between the source,
the lens and the observer, the resulting image positions only slightly
deviate from the perfect alignment case. Thus, the i-th image posi-
tion

(
r(i);ϕ(i)

)
can be expressed as :

r(i) = r(i)
0 + ∆r(i), (11)

and

ϕ(i) = ϕ(i)
0 + ∆ϕ

(i), (12)

where ∆r(i) and ∆ϕ(i) represent small variations of the image polar
coordinates, i.e. |∆r(i)|≪ 1 and |∆ϕ(i)|≪ 1. To first order, and after
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Asymptotic solutions for the case of SIE lens models 3

substituting Eqs. (11) and (12) into Eq. (5), the latter becomes :

y
[
sin

( iπ
2
− θ −̟

)
+ cos

( iπ
2
− θ −̟

)
∆ϕ(i)

]
=

−
√

f
f ′

[
arcsinh

(
f
′

f
S(i)

)
C(i) − arcsin

(
f
′C(i)

)
S(i)

]
(13)

where S(i) = cos (iπ/2) − sin (iπ/2) ∆ϕ(i) and C(i) = sin (iπ/2) +
cos (iπ/2) ∆ϕ(i). To first order, we find that arcsin

(
(−1)i/2 f

′
∆ϕ(i)

)
≃

(−1)i/2 f
′
∆ϕ(i) for i ∈ {0, 2} and arcsinh

(
(−1)(3−i)/2 f

′
∆ϕ(i)/ f

)
≃

(−1)(3−i)/2 f
′
∆ϕ(i)/ f for i ∈ {1, 3}. As a result, for i ∈ [0, 1, 2, 3],

Eq. (13) takes the form :

∆ϕ(0) = −∆ϕ(2) =
y sin (θ +̟)

√
f
[

1
f ′ arcsinh

(
f ′
f

)
− 1

] , (14)

and

∆ϕ(1) = −∆ϕ(3) =
y cos (θ +̟)

√
f
[

1
f − 1

f ′ arcsin
(
f ′
)] . (15)

To first order, and after substituting Eqs. (11) and (12) into Eq. (7),
the latter becomes :

y
[
cos

(
θ +̟ − iπ

2

)
+ sin

(
θ +̟ − iπ

2

)
∆ϕ(i)

]
= r(i)

0 + ∆r(i)

−
√

f
f ′

[
arcsinh

(
f
′

f
S(i)

)
S(i) + arcsin

(
f
′C(i)

)
C(i)

]
. (16)

As a result, from Eqs. (9), (10) and for i ∈ [0, 1, 2, 3], Eq. (16)
reduces to :

∆r(0) = −∆r(2) = y cos (θ +̟) , (17)

and

∆r(1) = −∆r(3) = y sin (θ +̟) . (18)

We note that the small azimuthal and radial variations of the lensed
image polar coordinates only depend on the source position com-
pared to the semi-minor axis direction of the iso-density contours.

3.2 The SIE lens model parameters

In this section, we will recover all lens model parameters from
Eqs. (6), (9), (10), (14), (15), (17) and (18). First of all, we need
to be careful with the handling of the mesured image angular
coordinates ϕ(i). As a reminder, these coordinates are measured
from the arbitrarily oriented coordinate system, which implies that
ϕ(i) ∈ [0, 2π]. However, according to the value of ̟ and θ, we may
have ϕ(i)

0 + ∆ϕ
(i) = iπ/2 −̟ + ∆ϕ(i) < 0 with i ∈ {0, 1, 2, 3}. There-

fore, for (θ +̟) ∈ [0,π] and ̟ ∈ [0,∆ϕ(0)[, we have, to first order,
ϕ(i) = iπ/2−̟+∆ϕ(i) ; but for (θ+̟) ∈ [0, 2π] and ̟ ∈ [ϕ

˜
(i), ϕ

˜
(i+1)]

with ϕ
˜

representing the image angular coordinate measured from
the semi-minor axis direction of the iso-density contours, we have
ϕ(k) = kπ/2−̟+∆ϕ(k) with k ∈ {i+1, ..., 3} and ϕ(l) 6= iπ/2−̟+∆ϕ(l)

with l ∈ {0, ..., i}. In the latter equation, since the angular quantities
are cyclic, the two members are equivalent but not equal. In fact,
we have ϕ(l) = iπ/2 −̟ + ∆ϕ(l)mod 2π, where mod represents the
modulo operation. In the remainder of this section, we will take
into account these properties, in particular for the determination of
the parameter ̟.

From Eqs. (14) and (15), we note that ∆ϕ(0) + ∆ϕ(1) + ∆ϕ(2) +

∆ϕ(3) = 0. Therefore, we have :

3∑

j=0

(
ϕ

( j)
0 + ∆ϕ

( j)
)
= 3π − 4̟. (19)

As a consequence, from the latter equation, the expression of̟ can
be retrieved :

̟ =
1
4

3π −
3∑

j=0

ϕ( j)

 +
lπ
2
≡ ̟0 +

lπ
2
, (20)

where l ∈ {0, 1, 2, 3, 4} such as ̟ ∈ [ϕ
˜

(l−1), ϕ
˜

(l)] with ϕ
˜

(−1) = 0 and

ϕ
˜

(4) = ϕ
˜

(0). Although we are not able to determine l unequivocally
from the lensed image positions, we can reduce the degeneracy to
only two values : ̟real and ̟real + π, which lead to two equivalent
SIE models. The latter property is shown in the next section.

From Eqs. (9), (10), (11), (17) and (18), we note that r(0) −
r(2) = ∆r(0) −∆r(2) = 2 y cos (θ +̟), and r(1) − r(3) = ∆r(1) −∆r(3) =

2 y sin (θ +̟). Therefore, we have :

θ(0) − θ(2) = 2 θS cos (θ +̟) , (21)

and

θ(1) − θ(3) = 2 θS sin (θ +̟) . (22)

Dividing Eq. (22) by Eq. (21), the relative angular coordinate θ of
the point-like source can be deduced from :

tan (θ +̟) =
θ(1) − θ(3)

θ(0) − θ(2) . (23)

Since the determination of θ depends on the value of ̟, the latter
parameter seems to be also degenerated. In fact, we show in the
next section that the value of θ can be derived unequivocally.

From Eqs. (21) and (22), the relative radial coordinate θS of
the point-like source can be expressed as :

θS =
1
2

√(
θ(0) − θ(2))2

+
(
θ(1) − θ(3))2. (24)

From Eq. (17), we note that r(0) + r(2) = 2 r(0)
0 . In addition, from Eq.

(18), we note that r(1) + r(3) = 2 r(1)
0 . Therefore, we have :

θ(0) + θ(2) = 2 θE

√
f

f ′
arcsinh

(
f
′

f

)
, (25)

and

θ(1) + θ(3) = 2 θE

√
f

f ′
arcsin

(
f
′ )
. (26)

Dividing Eq. (25) by Eq. (26), the axis ratio f is found to be :

arcsinh
(

f
′
/ f

)

arcsin
(
f ′
) =

θ(0) + θ(2)

θ(1) + θ(3) , (27)

the latter equation consisting of an implicit definition of f . From
Eqs. (25) and (26), the value of the Einstein ring angular radius is
given by :

θE =
f
′

2
√

f

θ(0) + θ(2)

arcsinh
(
f ′/ f

) = f
′

2
√

f

θ(1) + θ(3)

arcsin
(
f ′
) , (28)

where the axis ratio f is retrieved from Eq. (27).
As a result, we have thus determined the values of f , θS, θ, ̟

and θE from the only astrometric positions of the lensed images. In
addition, we note that the index of the lensed images i = {0, 1, 2, 3}
is in principle unknown. However, only four possible combinations
remain since the index values have to be consecutive. Furthermore,
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4 O. Wertz and J. Surdej

due to the symmetries in the relations between all model parameters
and the lensed image positions (see Eqs. (20), (23), (24), (27) and
(28)), we note that the inversion between the index of two opposed
lensed images does not have any impact on their determination :
0 ↔ 2 and 1 ↔ 3. In order to differentiate the two remaining

combinations (02
?↔ 13), we only need to calculate the value of f

from Eq. (27). Indeed, one combination leads to f < 1 while the
other one to f > 1, which points towards a non-physical situation
of having the minor axis larger than the major one.

3.3 The degeneracy affecting the value of ̟

As shown in the previous section, the parameter ̟ can only take
four possible values in accordance with the relation ̟l = ̟0+ lπ/2
for l ∈ {0, 1, 2, 3}. Furthermore, from Eq. (23) and after substituting
the different values of ̟, the different possible angular coordinates
θ of the source can be expressed as :

θlk = atan
(
θ(1) − θ(3)

θ(0) − θ(2)

)
−

(
̟0 +

lπ
2

)
+ kπ , (29)

with k ∈ {0, 1}. From the latter equation, we may deduce 8 different
combinations for the pair of parameters (̟l, θlk).

For each pair of these parameters and the already determined
values of f , θS and θE, we derive 8 sets of four lensed image po-
sitions. By comparison with the real lensed image positions, there
only remain two pairs of parameters : the real one (̟real, θreal) and
another one which leads to the same lensed image positions. Due
to the symmetry of the SIE lens models which leads to a diamond-
shape tangential caustic curve, and for fixed values of f , θS and θE,
the two pairs of parameters (̟, θ) and (̟ + π, θ) rigorously lead
to the same lensed image positions. As a consequence, among the
8 different remaining combinations of parameter pairs (̟l, θlk), the
only valid ones are (̟real, θreal) and (̟real +π, θreal). We thus find that
the parameter θreal is unequivocally determined.

3.4 Time delays and the Hubble parameter

Let us now consider the determination of the value of the Hubble
parameter H0 from the measurement of the time delay ∆t between
two lensed image light curves for the case of the SIE lens model.
The time-delay function t(x) for the i-th image is given by (Narayan
& Bartelmann 1996) :

t
(
x(i)

)
=

(
1 + zl

c

) (
DOLDOS

DLS

)
θ2

E

[
1
2

(x − y)2 − ψ̂tot(x)
]
, (30)

where zl represents the redshift of the lens, DOL, DOS and DLS rep-
resent the usual angular-diameter distances between the observer,
lens and source, c the speed of light in vacuum and ψ̂tot the total
lensing potential, which gradient corresponds to the general deflec-
tion angle, apart from an irrelevant constant :

α̂gen(x) = −∇xψ̂tot. (31)

For the case of the SIE lens model, the time delay between the
lensed images i and j is therefore given by :

∆ti, j =

(
1 + zl

c

) (
DOLDOS

DLS

)
θ2

E

[1
2

(
x( j) − y

)2 − 1
2

(
x(i) − y

)2

−ψ̂S IE

(
r( j);ϕ( j)

)
+ ψ̂S IE

(
r(i);ϕ(i)

) ]
, (32)

where ψ̂S IE is defined by Eq. (8). To first order, the expression of
the lensing potential can be simplified as follows. Considering the

image i, from Eqs. (11) and (12) we have respectively r(i) = r(i)
0 +

∆r(i) and ϕ(i) = iπ/2+∆ϕ(i) −̟. After substituting the latter results
into Eq. (8), the expression of the deflection potential for the lensed
image i reduces, to first order, to :

ψ̂S IE

(
r(i);ϕ(i)

)
= r(i)

0

(
r(i)

0 + ∆r(i)
)
, (33)

where r(i)
0 is defined by Eqs. (9) and (10), and ∆r(i) by Eqs. (17) and

(18). Therefore, from Eqs. (32) and (33), the time delay between
the lensed images i and j can be expressed as :

∆ti, j =

(
1 + zl

c

) (
DOLDOS

DLS

) [1
2

((
θ(i)

0

)2 −
(
θ

( j)
0

)2
)

−θS

[
θ( j)cos

(
ϕ( j)

0 − θ
)
− θ(i)cos

(
ϕ(i)

0 − θ
)

−θ( j)
0 ∆ϕ

( j)sin
(
ϕ

( j)
0 − θ

)
+ θ(i)

0 ∆ϕ
(i)sin

(
ϕ(i)

0 − θ
)] ]
. (34)

Since there are three independent time delays for a four-lensed
gravitational lens system, we only specify ∆ti,i+1 and ∆ti,i+2. The
expression : of ∆ti,i+1 reduces to

∆ti,i+1 =

(
1 + zl

c

) (
DOLDOS

DLS

) [1
2

((
θ(i)

0

)2 −
(
θ(i+1)

0

)2
)

+θS

[
cos

( iπ
2
−̟ − θ

) (
θ(i) + θ(i+1)

0 ∆ϕ(i+1)
)

+sin
( iπ

2
−̟ − θ

) (
θ(i+1) − θ(i)

0 ∆ϕ
(i)
))] ]

, (35)

while ∆ti,i+2 simply reduces to :

∆ti,i+2 =

(
1 + zl

c

) (
DOLDOS

DLS

)
θS

(
θ(i) + θ(i+2)

)
cos (̟ + θ − iπ/2) .

(36)
The latter equation is identical to the one already derived for a
power-law axially symmetric lens model with an external large-
scale gravitational field (the shear ; see Eq. (92) in Wertz, Pel-
grims & Surdej, 2012). In the latter paper, the authors had already
demonstrated that these two families of models remain strictly dis-
tinct, even at the first order, except when the alignment between the
source, the lens and the observer is perfect or when the SIE reduces
to the SIS model without any shear. Furthermore, from Eqs. (21)
and (22), we easily deduce that :

θS cos (̟ + θ − iπ/2) =
1
2

(
θ(i) − θ(i+2)

)
. (37)

After substituting Eq. (37) into Eq. (36), the time delay between
two opposed lensed images i and i + 2 becomes

∆ti,i+2 =

(
1 + zl

2c

) (
DOLDOS

DLS

) ((
θ(i)

)2 −
(
θ(i+2)

)2
)
. (38)

So we have retrieved the same expression for the time delays be-
tween two lensed images as the one already derived by Witt et al.
(2000). According to them, Eq. (38) remains valid irrespective of
the degree of misalignment. This implies that Eq. (36) derived from
the first order astrometric equations is rigorously identical to the
one derived without any approximation.

For completeness, we retrieve the expression of the Hubble
parameter for the case of the SIE lens model. From Eq. (38), H0

can be expressed as :

H0 =
1 + zl

2 ∆ti,i+2

(
zl zs

zs − zl

) (
F(zl)F(zs)
F(zs − zl)

) [(
θ(i)

)2 −
(
θ(i+2)

)2
]
, (39)

where F(z) is given to first order (Peebles 1993) by :

F(z) =
1

1 + z
− [ΩM + 2(1 −ΩΛ)]

z
4(1 + z)

. (40)
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Asymptotic solutions for the case of SIE lens models 5

x1

x
2

d

θS

D

Figure 2. Illustration of the different angular sizes involved in the test of
the validity range of the first order equations (see text).

3.5 Validity range of the first order equations

We propose to test the validy range of the first order Eqs. (20), (23),
(24), (27) and (28). It is clear that the accuracy of these latter equa-
tions is directly dependent on the accuracy of the two Eqs. (11) and
(12). Indeed, for the case of a perfect alignment between the source,
the lens and the observer, the differences between the real SIE
lensed image positions and those derived from the first order equa-
tions should be equal to zero. As soon as the source is no longer
perfectly aligned, the first order determination of the lensed image
positions loses some accuracy. Furthermore, these differences be-
come larger as the point-like source gets closer to the tangential
caustic curve. As a consequence, we can deduce a first estimation
of the validity range of the first order equations by illustrating the
distribution of the mean error E between the exact lensed image po-
sitions and the derived first order ones as a function of the smallest
distance D between the point-like source and the tangential caustic
curve (see Fig. 2) :

E =
1
4

3∑

j=0

√(
x( j)

1 − x( j)
1

)2
+

(
x( j)

2 − x( j)
2

)2
, (41)

where xi represents the first order lensed image positions derived
from the numerical inversion of the lens equation characterized by
the model parameters deduced from Eqs. (20), (23), (24), (27) and
(28). The angular diameter distance D is illustrated in Fig. 2. As
shown in Fig. 3, from a set of 1000 model parameters randomly
chosen, the mean error E increases with the degree of misalign-
ment between the source, the lens and the deflector, the latter be-
ing represented by small values of the angular distance D between
the point-like source and the nearest point of the tangential caustic
curve. For any value of f , we notice that the condition D ≥ 0.1 is
sufficient to obtain E ≤ 0.05 arcsec, but not necessarily. Indeed,
we note that even for small values of D, we can have small mean
error values of E. This occurs when the two following conditions
are being fulfilled : the misalignment is very small and the intrinsic
size of the tangential caustic curve is small, i.e. for large values of
f ≤ 1. Thus, even if the source is intrinsically close to the tangential

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D (arcsec)

Figure 3. For a set of 1000 model parameters randomly chosen, we have
represented the distribution of the mean error E between the exact lensed
image positions and the derived first order ones as a function of the distance
between the point-like source and the tangential caustic curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
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0.35
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D/ d
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(a
rc
se
c
)
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θS / d

Figure 4. For the same set of 1000 model parameters randomly chosen (see
Fig. 3), we have represented the distribution of the mean error E between the
exact lensed image positions and the derived first order ones as a function
of the normalized distance D/d between the point-like source and the tan-
gential caustic curve (left panel) and as a function of the point-like source
radial coordinate θS divided by the smallest distance between the tangen-
tial caustic curve and the center of the lens (right panel). The red crosses
correspond to the case of the multiply imaged quasar Q2237+0305.

caustic curve, the quantities ∆r(i) and ∆ϕ(i) remain small compared
to r(i)

0 and ϕ(i)
0 .

In order to further investigate this, we have represented E as
a function of the distance D (or θS since these two quantities are
correlated) divided by the smallest angular distance d between the
tangential caustic curve and the center of the lens (see Fig. 4). The
angular diameter distance d is illustrated in Fig. 2. As shown in
Fig. 4, from the same set of the 1000 previous model parameters,
a more precise condition on the alignment can be derived. For the
case of a perfect alignment, i.e. D/d = 1 and θS/d = 0, the mean
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6 O. Wertz and J. Surdej

Table 1. Real and first order lens parameters for the twelve SIE models
represented respectively in Fig. 5. For each lens model denoted by # i, we
have reported the real model parameters (first line) and the retrieved first
order ones (second line).

Real f ̟ θS θ θE θS/d
First order

#1 0.0875 0 0.0871 0.0616 0.9807 0.1876
0.0865 0.0006 0.0871 0.0610 0.9829

#2 0.6401 0.3307 0.0189 5.2981 0.8911 0.1459
0.6386 0.3300 0.0189 5.2988 0.8912

# 3 0.1806 0.6614 0.0661 5.7952 1.1218 0.1379
0.1796 0.6621 0.0661 5.7944 1.1226

# 4 0.0451 0.9921 0.0807 4.8440 1.1944 0.1459
0.0447 0.9896 0.0806 4.8461 1.1982

# 5 0.7232 1.3228 0.0111 0.2680 0.8120 0.1280
0.7222 1.3228 0.0111 0.2680 0.8123

# 6 0.3474 1.6535 0.0066 2.3762 1.0143 0.0206
0.3474 1.6535 0.0066 2.3762 1.0143

# 7 0.6606 1.9842 0.0204 4.4255 0.8348 0.1799
0.6585 1.9845 0.0204 4.4249 0.8346

# 8 0.3839 2.3149 0.0808 4.5837 1.1208 0.2490
0.3786 2.3189 0.0805 4.5805 1.1228

# 9 0.6273 2.6456 0.0161 1.4092 1.1957 0.0886
0.6267 2.6459 0.0161 1.4092 1.1958

# 10 0.0216 2.9762 0.0841 1.6905 0.8268 0.2428
0.0201 2.9770 0.0841 1.6905 0.8561

# 11 0.9106 3.3069 0.0032 4.2288 1.1758 0.0866
0.9104 0.1653 0.0032 4.2290 1.1758

# 12 0.8006 3.6376 0.0132 3.0002 0.8073 0.2216
0.7985 0.4965 0.0132 2.9984 0.8071

error E equals zero, as expected. Furthermore, for θS/d < 0.13,
the mean error is always such as E < 0.003 arcsec which typically
corresponds to the error on the observed positions of the lensed
images of Q2237+0305. Since the value of d is correlated with the
value of f , the latter validity range takes the form θS < 0.13 d( f )
where the analytical function d( f ) has not yet been determined but
could be numerically evaluated.

Furthermore, we have represented respectively in Figs. 5, 6
and 7 the lensed images, the point-like source, the tangential critical
and caustic curves for twelve SIE models and their associated first
order ones characterized by θS/d ∈ [0.0, 0.25], θS/d ∈ [0.25, 0.50]
and θS/d ∈ [0.50, 1.25], respectively. The model parameters related
to those SIE models are given in Tables 1, 2 and 3. We notice that as
θS/d increases, the accuracy of the first order SIE model decreases.

Finally, we have determined exact and first order time delays,
between pairs of lensed images for all the simulated models rep-
resented in Figs. 5, 6 and 7. For this purpose, we have assumed a
spatially-flat ΛCDM cosmology with a value H0 = 67.3 ± 1.2 km
s−1Mpc−1 for the Hubble parameter and the matter density parame-
terΩm = 0.315±0.017 (Planck Collaboration 2013). We have fixed
the redshifts of the simulated sources and lenses according to real-
istic cases of expected multiply imaged quasars as in Finet (2013).
From the normalised redshift distribution of the sources that are de-

#2

#3 #4

#5 #6

#7 #8

#9 #10

#11 #12

#1

Figure 5. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles #) and the SIE first order one
(crosses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d( f ) ∈ [0, 0.25]. The
solid lines correspond to the tangential critical and caustic curves deduced
from the SIE lens model, whereas the dashed lines correspond to the SIE
first order ones.
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Asymptotic solutions for the case of SIE lens models 7

Table 2. Real and first order lens parameters for the twelve SIE models
represented respectively in Fig. 6. For each lens model denoted by # i, we
have reported the real model parameters (first line) and the retrieved first
order ones (second line).

Real f ̟ θS θ θE θS/d
First order

#1 0.0991 0 0.2414 5.5107 1.1990 0.4278
0.0900 3.1177 0.2381 5.5227 1.2407

#2 0.4898 0.3307 0.1029 2.2189 1.1246 0.4061
0.4760 0.3227 0.1019 2.2266 1.1272

# 3 0.1932 0.6614 0.1655 2.8239 0.9943 0.3977
0.1835 0.6723 0.1647 2.8129 1.0023

# 4 0.8959 0.9921 0.0176 6.0540 1.1578 0.4151
0.8916 0.9935 0.0174 6.0528 1.1579

# 5 0.0991 1.3228 0.1054 0.2658 0.8550 0.2619
0.0946 1.3225 0.1054 0.2658 0.8729

# 6 0.0442 1.6535 0.1491 6.1133 0.9560 0.3372
0.0397 1.6563 0.1491 6.1134 1.0058

# 7 0.5573 1.9842 0.0798 1.1888 1.1709 0.3628
0.5475 1.9846 0.0798 1.1881 1.1696

# 8 0.7725 2.3149 0.0309 4.1916 1.1670 0.3102
0.7679 2.3157 0.0309 4.1888 1.1663

# 9 0.3119 2.6456 0.1569 3.6847 1.0854 0.4288
0.2983 2.6470 0.1569 3.6828 1.0872

# 10 0.1790 2.9762 0.2080 4.2419 1.0473 0.4640
0.1630 2.9980 0.2052 4.2355 1.0807

# 11 0.3390 3.3069 0.0958 2.2684 0.9373 0.3204
0.3301 0.1577 0.0952 2.2732 0.9418

# 12 0.2101 3.6376 0.2070 3.8973 1.1744 0.4328
0.1940 0.5068 0.2061 3.8979 1.2098

tected as multiply imaged, we have selected the most likely redshift
of the sources for Ωm = 0.315 as well as both values corresponding
to the half maxima of the distribution. For each source redshift, we
have calculated the differential contribution to the lensing optical
depth as a function of the deflector redshift. We have then selected
the most likely deflector redshift corresponding to the maximum of
this distribution, as well as those corresponding to half of its max-
ima. Added to this, we have considered the source and lens redshifts
of Q2237+0305. The values of the corresponding time delays are
summarized in Tables 4, 5 and 6. As expected, we note that the first
order time delays for a pair of opposed lensed images are identical
to the exact time delays.

4 APPLICATION TO A REAL CASE : Q2237+0305

The gravitational lens Q2237+0305 consists of a quadruply im-
aged QSO at z = 1.695, discovered by Huchra et al. (1985) in
the CfA Redshift Survey of Galaxies. The deflector which leads
to the formation of the lensed images is a nearby 15 mag face-on
spiral galaxy, at z = 0.0394 (e.g. Schmidt et al. 1998). Due to its
proximity, the lensing galaxy has already been explored in details.
Different approaches have been applied to model this system, e.g. a
constant mass-to-light ratio (Schneider et al. 1988; Rix et al. 1992;

#2

#3 #4

#5 #6

#7 #8

#9 #10

#11 #12

#1

Figure 6. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles #) and the SIE first order one
(crosses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d( f ) ∈ [0.25, 0.50].
The solid lines correspond to the tangential critical and caustic curves de-
duced from the SIE lens model, whereas the dashed lines correspond to the
SIE first order ones.
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8 O. Wertz and J. Surdej

#2

#3 #4

#5 #6

#7 #8

#9 #10

#11 #12

#1

Figure 7. Illustration of different lensed image configurations correspond-
ing to the SIE lens model (open circles #) and the SIE first order one
(crosses +). The source positions associated with the SIE lens model (open
square �) and the SIE first order one (cross ×) are also represented. The lens
model parameters were randomly chosen such as θS/d( f ) ∈ [0.50, 1.25].
The solid lines correspond to the tangential critical and caustic curves de-
duced from the SIE lens model, whereas the dashed lines correspond to the
SIE first order ones.

Table 3. Real and first order lens parameters for the twelve SIE models
represented respectively in Fig. 7. For each lens model denoted by # i, we
have reported the real model parameters (first line) and the retrieved first
order ones (second line).

Real f ̟ θS θ θE θS/d
First order

#1 0.2578 0.3307 0.3797 5.0953 1.0881 0.9326
0.1858 0.2560 0.3560 5.1187 1.1923

#2 0.3317 0.6614 0.1831 3.0445 1.0887 0.5194
0.3090 0.6805 0.1803 3.0279 1.0997

# 3 0.1522 0.9921 0.4275 4.7548 1.1511 0.8349
0.1102 0.9129 0.4068 4.8169 1.2520

# 4 0.3480 1.3228 0.3183 2.6204 1.0330 0.9847
0.2588 1.3930 0.2941 2.5930 1.1025

# 5 0.1217 1.6535 0.3406 6.1059 0.8283 0.8909
0.0780 1.6678 0.3401 6.1076 1.0078

# 6 0.8842 1.9842 0.0373 6.2076 1.1691 0.7792
0.8672 1.9807 0.0367 6.1899 1.1725

# 7 0.9300 2.6456 0.0248 2.4434 0.9144 1.1221
0.9066 2.6410 0.0236 2.3989 0.9173

# 8 0.3424 3.6376 0.3250 4.9287 1.0863 0.9449
0.2614 0.4324 0.3040 4.9469 1.1578

# 9 0.7360 3.9683 0.1326 5.5470 1.1356 1.1544
0.6634 0.8327 0.1321 5.5258 1.1241

# 10 0.5449 4.6297 0.1924 3.5078 0.9882 1.0013
0.4648 1.4665 0.1888 3.4897 1.0290

# 11 0.6862 4.9604 0.0829 3.7628 1.0243 0.6551
0.6577 1.8069 0.0805 3.7732 1.0266

# 12 0.8936 5.2911 0.0337 0.9354 0.9076 0.9904
0.8692 2.1485 0.0337 0.9435 0.9040

Keeton et al. 1997; Keeton & Kochanek 1998) or multi-parametric
models (e.g. a de Vaucouleurs law and King profile, Ken & Falco
1988; singular isothermal sphere and point mass along with exter-
nal shear, Kochanek 1991; a singular power-law axially symmetric
deflector with an external shear, Wambsganss & Paczyński 1994; a
non-singular power-law density for the distribution of mass, Chae
et al. 1998). The astrometric positions of the four lensed images of
Q2237+0305, which come from the CASTLES1 survey, are listed
in Table 7.

For the case of a singular power-law axially symmetric model
with external shear, the so-called ε − γ model, Wertz, Pelgrims &
Surdej (2012) have already derived first order equations which link
the lensed image positions to the model parameters. As a conse-
quence, we may determine which set of first order equations, be-
tween SIE and ε− γ, leads to the best agreement with the observed
lensed images. Furthermore, we have performed numerical model-
ing in order to independently determine the lens model parameters,
for both the ε − γ and SIE lens models. In addition, we have per-
formed another numerical modeling for the case of the non-singular
isothermal ellipsoid with external shear (NSIE + γ) which consti-
tutes a much more detailed model for the deflector. For this pur-

1 http://cfa-www.harvard.edu/castles/
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Asymptotic solutions for the case of SIE lens models 9

Table 4. Comparison between the values of the time delays derived from the
first order equations and the real SIE model. The corresponding lensed im-
age configurations are represented in Fig. 5. The time delays are expressed
in days.

Model Time delays Time delays
index zs zl (real) (to first order)

# 1 1.695 0.039 ∆t01 1.95 1.97
∆t02 0.76 0.76
∆t03 1.97 1.99

# 2 1.695 0.217 ∆t01 3.44 3.47
∆t02 0.70 0.70
∆t03 2.98 3.01

# 3 1.695 0.54 ∆t01 29.47 29.68
∆t02 8.59 8.59
∆t03 30.34 30.55

# 4 1.695 0.97 ∆t01 47.91 48.32
∆t02 14.14 14.14
∆t03 45.19 45.60

# 5 2.350 0.039 ∆t01 0.29 0.30
∆t02 -0.002 -0.002
∆t03 0.37 0.38

# 6 2.350 0.263 ∆t01 8.37 8.37
∆t02 -0.25 -0.25
∆t03 8.15 8.15

# 7 2.350 0.66 ∆t01 6.32 6.40
∆t02 2.04 2.04
∆t03 6.55 6.63

# 8 2.350 1.294 ∆t01 35.11 36.03
∆t02 14.47 14.47
∆t03 42.55 43.47

# 9 3.260 0.039 ∆t01 1.01 1.01
∆t02 -0.12 -0.12
∆t03 0.88 0.88

# 10 3.260 0.297 ∆t01 4.01 4.16
∆t02 -0.11 -0.11
∆t03 3.16 3.30

# 11 3.260 0.76 ∆t01 2.13 2.13
∆t02 -0.11 -0.11
∆t03 1.80 1.80

# 12 3.260 1.578 ∆t01 2.39 2.46
∆t02 -1.18 -1.18
∆t03 1.99 2.05

pose, the function of merit to be minimized is the following :

χ2
r =

1
N

3∑

j=0


x( j)

1 − x( j)
1

σ
( j)
1


2

+
1
N

3∑

j=0


x( j)

2 − x( j)
2

σ
( j)
2


2

, (42)

where N represents the number of degrees of freedom, σ( j)
1 (resp.

σ( j)
2 ) the measured uncertainties affecting the observed positions

x( j)
1 (resp. x( j)

2 ), and x( j)
i the image positions derived from the nu-

merical inversion of the lens equation characterized by the deduced
model parameters. For the case of the SIE (resp. ε − γ and NSIE
+ γ) model, the number of independent parameters equals 3 (resp.
4 and 6). Therefore, the corresponding number of degrees of free-
dom is NSIE = 5 (resp. Nε−γ = 4 and NNS IE+γ = 2). The global

Table 5. Comparison between the values of the time delays derived from the
first order equations and the real SIE model. The corresponding lensed im-
age configurations are represented in Fig. 6. The time delays are expressed
in days.

Model Time delays Time delays
index zs zl (real) (to first order)

# 1 1.695 0.039 ∆t01 1.11 1.33
∆t02 -1.89 -1.89
∆t03 2.00 2.23

# 2 1.695 0.217 ∆t01 3.27 3.79
∆t02 -5.12 -5.12
∆t03 5.96 6.48

# 3 1.695 0.54 ∆t01 13.63 15.00
∆t02 -18.32 -18.32
∆t03 9.81 11.18

# 4 1.695 0.97 ∆t01 5.28 5.68
∆t02 2.99 2.99
∆t03 8.03 8.43

# 5 2.350 0.039 ∆t01 1.00 1.06
∆t02 -0.01 -0.01
∆t03 1.40 1.46

# 6 2.350 0.263 ∆t01 6.02 6.54
∆t02 0.55 0.55
∆t03 8.57 9.09

# 7 2.350 0.66 ∆t01 9.40 10.26
∆t02 -11.46 -11.46
∆t03 9.11 9.97

# 8 2.350 1.294 ∆t01 13.39 13.87
∆t02 6.62 6.62
∆t03 14.75 15.23

# 9 3.260 0.039 ∆t01 2.64 2.77
∆t02 1.72 1.72
∆t03 2.69 2.82

# 10 3.260 0.297 ∆t01 11.85 13.02
∆t02 7.12 7.12
∆t03 17.46 18.63

# 11 3.260 0.76 ∆t01 7.00 7.60
∆t02 -6.85 -6.85
∆t03 11.10 11.70

# 12 3.260 1.578 ∆t01 32.60 35.52
∆t02 -9.04 -9.04
∆t03 15.75 18.67

optimization has been performed using a sophisticated genetic al-
gorithm, called Ferret (Fiege et al. 2004), which is a component
of the Qubist Global Optimization Toolbox (Fiege 2010). The best
sets of parameters for both the SIE and ε−γ models, as well as first
order lens parameters are summarized in Table 8.

We have assumed that the errors are described by a normal
distribution and are uncorrelated. Therefore, the probability that the
error of a single measurement lies in the interval [-a, a] is given by
p = erf

(
a/(σ

√
2)

)
where erf(.) represents the error function. As a

consequence, the corresponding inverse of the χ2 cumulative distri-
bution function with the number of degrees of freedom specified by
NSIE = 5 is given by χ2

cutoff = F−1(p|NSIE) = {χ2
cutoff : F(χ2

cutoff |NSIE) =

c© 2011 RAS, MNRAS 000, 1–12
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10 O. Wertz and J. Surdej

Table 6. Comparison between the values of time delays derived from the
first order equations and the real SIE model. The corresponding lensed im-
age configurations are represented in Fig. 7. The time delays are expressed
in days.

Model Time delays Time delays
index zs zl (real) (to first order)

# 1 1.695 0.039 ∆t01 4.66 5.32
∆t02 2.62 2.62
∆t03 2.69 3.35

# 2 1.695 0.217 ∆t01 6.99 8.04
∆t02 -8.98 -8.98
∆t03 3.09 4.14

# 3 1.695 0.54 ∆t01 64.40 71.77
∆t02 47.63 47.63
∆t03 49.56 56.93

# 4 1.695 0.97 ∆t01 33.93 44.81
∆t02 -46.41 -46.41
∆t03 0.21 11.09

# 5 2.350 0.039 ∆t01 0.74 1.26
∆t02 0.23 0.23
∆t03 2.11 2.63

# 6 2.350 0.263 ∆t01 0.31 0.71
∆t02 -0.77 -0.77
∆t03 2.54 2.94

# 7 2.350 0.66 ∆t01 3.13 3.62
∆t02 0.81 0.81
∆t03 0.82 1.31

# 8 2.350 1.294 ∆t01 77.74 88.43
∆t02 42.18 42.18
∆t03 43.04 53.73

# 9 3.260 0.039 ∆t01 1.51 1.80
∆t02 1.46 1.46
∆t03 1.61 1.89

# 10 3.260 0.297 ∆t01 11.80 13.91
∆t02 2.73 2.73
∆t03 3.27 5.39

# 11 3.260 0.76 ∆t01 12.11 13.19
∆t02 6.23 6.23
∆t03 7.51 8.60

# 12 3.260 1.578 ∆t01 0.35 1.03
∆t02 -3.56 -3.56
∆t03 0.52 1.20

Table 7. The lensed image positions for the Q2237+0305 system from the
CASTLES1 survey.

−∆α ∆δ

(in arcsec) (in arcsec)

A 0.0 0.0
B 0.673 ± 0.003 1.697 ± 0.003
C -0.635 ± 0.003 1.210 ± 0.003
D 0.866 ± 0.003 0.528 ± 0.003
G 0.075 ± 0.004 0.939 ± 0.003

Table 8. Optimal SIE and ε−γ lens parameters for the Q2237+0305 system,
derived by the Ferret sophisticated genetic algorithm which is a component
of the Qubist Global Optimization Toolbox.

SIE SIE ε − γ ε − γ NSIE + γ
First order First order

χ2
r 1.5466 12.204 18.165 - 0.01342

f 0.6649+0.0100
−0.0094 0.6479+0.0097

−0.0097 - - 0.6634+0.0110
−0.0096

̟ 1.9720+0.0028
−0.0029 1.9686+0.0024

−0.0024 - - 2.0111+0.0023
−0.0023

ε - - 0.6653+0.0100
−0.0094 1.5949 -

γ - - 0.1047+0.0100
−0.0094 -0.0292 0.0138+0.00012

−0.00012

ω - - 2.7437+0.0100
−0.0094 1.1729 2.7107+0.0010

−0.0010

θS 0.0652+0.0021
−0.0021 0.0669+0.0035

−0.0035 0.0595+0.0100
−0.0094 -0.0166 0.0632+0.0012

−0.0011

θ 6.1261+0.0150
−0.0146 6.0629+0.0408

−0.0408 6.0589+0.0100
−0.0094 6.0524 6.1236+0.0119

−0.0118

θE 0.8974+0.0023
−0.0023 0.9024+0.0021

−0.0021 0.8812+0.0100
−0.0094 0.8865 0.9396+0.0019

−0.0019

ρc - - - - 0.0332+0.0013
−0.0013

∆xA 0.0031 0.0163 0.0064 - 0.0028
∆xB 0.0087 0.0097 0.0082 - 0.0020
∆xC 0.0082 0.0006 0.0210 - 0.0030
∆xD 0.0036 0.0268 0.0335 - 0.0027

Notes. The parameters ε represents the slope of the power-law mass dis-
tribution, γ the magnitude of the external shear, ω the orientation of the
external shear and ρc the size of the core radius in arcsec. The lower and
upper limits correspond to the range of the lens parameters used by the
genetic algorithm routine. The distances between the lensed images and
the modelled images are represented by ∆x.

p} where :

F(χ2
cutoff |NSIE) =

χ2
cutoff∫

0

t(NSIE−2) e−t/2

2NSIE/2 Γ(NSIE/2)
dt . (43)

For a 1-σ error calculation, we have found χ2
cutoff = 5.8876 which

leads to the reduced value χ2
r,cutoff = 1.1775. Finally, we have sepa-

rately constructed 1-D paraboloid-like curves of best χ2
r as a func-

tion of each lens model parameter. The χ2
r,cutoff associated with these

curves gives the value of the error bars (see Table 8, columns 1 and
3). Concerning the uncertainties of the first order lens parameters,
we have derived them by means of the Monte Carlo method.

The SIE lens model shows the best agreement with the ob-
served image positions in comparison with the ε − γ model :
< ∆xSIE >= 0.0059 arcsec whereas < ∆xε−γ >≃ 0.0173 arcsec.
Therefore, this is what convinces us to use the SIE first order equa-
tions instead of the ε−γ ones. Furthermore, for the case of the ε−γ
model, the first order values of γ and θS appear to be non physical.
However, we note that the determined value of θE is similar for both
lens models which seems to indicate that the determination of the
Einstein angular radius very slightly depends on the choice of the
deflector’s family of models. We notice that both sets of lens pa-
rameters (SIE and first order SIE) are quite similar, which leads to
the conclusion that the use of the first order astrometric equations is
justified here. For both SIE and first order SIE models, we have de-
rived the value of θS/d and D/d from the parameters found in Table
8. For the case of SIE, one finds θS/d = 0.5438, D/d = 0.5649, and
for the case of first order SIE, θS/d = 0.5231 and D/d = 0.6054.

The NSIE + γ model shows the best agreement with the ob-
served lensed image positions in comparison with the SIE model :

c© 2011 RAS, MNRAS 000, 1–12
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Asymptotic solutions for the case of SIE lens models 11

Figure 8. Illustration of the Q2237+0305 gravitational lens system. We
have represented the corresponding surface mass density κ(ρ) characterized
by the model parameters f and ̟, as derived from the first order equations.
We have both represented the lensed image positions and the source posi-
tion, all of them from the model derived by the numerical SIE fitting (see
the dots •), the NSIE + γ (see the crosses +) and the first order equations
(see the open circles #). The diamond-shape and ellipse-shape solide lines
represent the numerically derived tangential caustic and critical curves, re-
spectively. The diamond-shape and ellipse-shape dashed lines represent the
corresponding first order tangential caustic and critical curves, respectively.

< ∆xNSIE+γ >≃ 0.0026 arcsec, which is smaller than the precision
of the observed image positions (see Table 7). The large number
of independent parameters (NNSIE+γ = 6) and the very high preci-
sion on the modeled image positions explain why we have found
χ2

r << 1. We note that the parameters f , ̟, θS and θ between the
SIE and NSIE + γ models are very similar, which seems to indicate
that the NSIE + γ derived numerical solution is the best for this
model, i.e. not a local minimum. The addition of a core leads to
the appearance of a fifth lensed image, denoted by E, located very
close to the gravity center of the deflector : −∆α = −0.0069 arc-
sec and ∆δ = 0.0018 arcsec. The observational existence of a fifth
lensed image has first been reported by Racine (1991), but it has
never been independently confirmed. For the case of the SIE, the
first order SIE and the NSIE + γ models, we have derived the val-
ues of the time delays (in hours) and amplification ratio between the
lensed image A and the other ones. We have summarized all these
informations in Table 9. As expected, the comparison between the
values of the time delay ∆tAB (resp. ∆tCD) for the case of the SIE
and the first order SIE models are extremely close. Indeed, we have
shown that the first order time delay expression (Eq. (38)) is identi-
cal to the one derived by Witt et al. (2000). Since Eq. (38) remains
valid without any approximation for any pairs of lensed images,
Eq. (35) seems to be useless. However, the SIE (resp. ε − γ) first
order Eqs. (20), (23), (24), (27) and (28) have the advantage to test
straigthforwardly, and without any numerical simulations, to what
extent the SIE (resp. ε − γ) family of models constitutes a good
choice and therefore whether the derived values for the time de-
lays and amplification ratios are trustworthy. Without using these
first order equations, Eq. (38) could still be applied to any symmet-

Table 9. Comparison between the values of the time delays (in hours) and
amplification ratios between two lensed images derived from the first order
equations and the real SIE and NSIE + γ models for Q2237+0305.

SIE SIE NSIE + γ
First order

∆tAD/h −5.3821± 0.6841 −7.2966± 0.5278 −5.4112± 0.4291
∆tAB/h 2.5992 ± 0.7172 2.5983 ± 0.6152 2.5080 ± 0.5192
∆tAC/h −17.969± 0.6969 −19.877± 0.7448 −18.009± 0.6192
∆tCD/h 12.587 ± 0.6849 12.580 ± 0.6541 12.597 ± 0.5812

µB/µA 0.797172 - 0.84483
µC/µA −0.184621 - −0.29492
µD/µA −0.305474 - −0.49083
µE/µA - - 0.0012186

Notes. We have fixed the value of the Hubble parameter to 67.3 ± 1.2 km
s−1Mpc−1 and the matter density parameter Ωm = 0.315 ± 0.017 (Planck
Collaboration 2013).

Table 10. Model predictions for the time delays (in hours) ∆tAB, ∆tAC and
∆tAD for Q2237+0305.

Reference Lens model ∆tAB/h ∆tAC/h ∆tAD/h

Schneider et al.
(1988)

Constant
mass-to-light
ratio

2.4 29.5 26.6

Best fit 0.54 -6.48 -6.12

Model 1 -2.1 -11 -7.1
Rix et al. (1992) Model 2 -1.5 -10.1 -6.1

Model 2a 1.7 -9.8 -3.7
Best fit 1.3 -7.4 -2.8

Wambsganss Point lens 2.97 -17.41 -4.87
and Paczyński SIS 1.51 -8.91 -2.46
(1994) Best fit 0.44 -2.54 -0.7

Schmidt et al.
(1996)

Bar accounted 2.0 -16.2 -4.9

Chae et al.
(1998)

Triaxial model [0.13,3.4] [-16.6,-0.77] [-5.5,-0.22]

Notes. The model 1 by Rix et al. (1992) refers to a R1/4 profile, model 2,
R1/4 with unresolved nucleus and model 2a is identical to model 2 with
only image positions fitted. The model in Schmidt et al. (1996) takes into
account the central galaxy bar.

ric quadruply imaged quasar but without the immediate confidence
that the SIE family of models constitutes a good approximation to
represent the mass distribution. For Q2237+0305, we have shown
that the ε−γ family of models did not properly fit the lensed image
positions while the SIE family of models does.

The values of the estimated time delay listed in Table 9 can be
compared with those in Table 10 which constitutes a summary of
the model predictions for Q2237+0305. A description of the cor-
responding lens models may be found in Vakulik et al. (2006). We
note that the determination of the time delays depends on the con-
sidered models. Unfortunately, the possibility of measuring very
accurate time delays between two lensed images from their light
curves seems to be very difficult. Different attempts have already
been performed (see e.g. Koptelova et al. 2006 and Vakulik et al.
2006) but none of them allows the authors to definitely conclude.
The uncertainties obtained, which correspond to a 95 % confidence
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12 O. Wertz and J. Surdej

level, exceed 100%. Therefore, we are not able to compare the
measured and the predicted time delays. In order to estimate the
value of the Hubble parameter with, at least, the same precision
as the Planck collaboration (2013), we have calculated that the un-
certainties on ∆tAB and ∆tCD should be respectively smaller than
σAB ≤ 0.0465 hours (i.e. 2.8 minutes) and σCD ≤ 0.225 hours (i.e.
13.5 minutes).

5 CONCLUSIONS

Use of the first order equations leads to a straightforward method of
determining whether the deflector’s mass distribution can be mod-
eled with the SIE or ε − γ family of models, without the need of
any precise model fitting. We have retrieved the same expression
for the time delays between pairs of opposite lensed images as al-
ready published by Witt & al. (2000). However, combined with the
first order equations, we could easily estimate the validity of these
time delay estimates and the relevance of the use of such a family of
models. In order to obtain a mean astrometric error ≤ 0.003 arcsec,
the validity range of the first order equations has been estimated to
be θS < 0.13 d( f ) which is similar to the one already deduced for
the ε − γ family of models (see Wertz & al. 2012).

Application to the quadruply imaged quasar Q2237+0305
constitutes a very interesting way of comparing the results of accu-
rate SIE modeling with those derived from the first order equations.
We have noticed that the model parameters deduced from the first
order equations and the numerical fit are very closed. This leads to
the conclusion that the numerical fit, besides being time consuming,
does not bring any significant improvement in this case. The degree
of misalignment has been evaluated to θS/d = 0.5438 > 0.13. This
latter value allows to understand why the mean astrometric error
< ∆x1er order >= 0.0134 arcsec is larger than the 0.003 arcsec which
corresponds to the error on the observed positions.

Unfortunately, the uncertainties obtained for the observed time
delays between the light curves of pairs of lensed images make any
comparison very risky. However, we have shown that in order to
derive the Hubble parameter with a high precision requires very ac-
curate values for the time delays. Therefore, we suggest that mon-
itoring the gravitational lens system Q2237+0305 with a very high
time sampling should constitute a promising way of determining
accurate values of the time delays and a precise determination of
the Hubble parameter based upon gravitational lensing.
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3
Use of the Fourier transform to derive

simple expressions for the gravitational

lens deflection angle

3.1 Introduction

Since the deflection angle is directly related to the lensing mass distribution, using its

explicit expression constitutes a real advantage in order to deeply investigate the associated

lens mapping. For the case of axially symmetric mass distributions, the expression of the

deflection angle α̂(x) reduces to a very simple form (see Eq. (1.148)) which constitutes

a great simplification of the general form appearing in Eq. (1.111). Unfortunately, for

the case of more complicated mass distributions, the derivation of the explicit expression

of the deflection angle turns out to be very difficult, or even not possible. In such a case,

two ways can be investigated : to adopt alternative analytical methods or to make use of

numerical calculations. In the first case, let us mention the use of the Green functions in

order to determine the SIE deflection potential (see Kormann & al., 1994), or the complex

representation of the lensing theory introduced by Bourassa & Kantowski (1975), corrected

by Bray (1984). For more details, see Section 1.11 or the related papers. Furthermore,

even if the use of Eq. (1.111) leads to the determination of the explicit expression of α̂(x),

the results obtained are sometimes so complicated that it may cause strong limitations on

further analytical treatments. Let us mention the case of the non-singular isothermal ellipsoid

(NSIE) studied by Kormann & al. (1994).

The deflection angle can always be deduced from the deflection potential ψ̂(x) defined by Eq.

(1.112). However, if the explicit expression of α̂(x) may not be obtained from Eq. (1.111),

the expression of ψ̂(x) may neither, in general, be explicitly deduced from Eq. (1.112). As a
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consequence, since the expression of the time delays between pairs of lensed images is a

function of ψ̂(x), their determinations require also alternative methods.

In the second case, numerical calculations can always be used to derive, from Eq. (1.111),

the deflection angle which affects a light ray characterized by the impact parameter x.

Such an approach has the disadvantages, in addition to be time consuming, to remove the

possibility of deeply understanding the characteristics of the lens mapping. In addition, due

to its non-linearity, the lens equation (see Eq. (1.110)) can only be analytically inverted

for very particular types of deflectors, e.g. black holes, SIS or an infinite sheet with a

constant surface mass density. For the majority of deflector models, the use of the numerical

techniques is then mandatory. For instance, in the framework of the statistical approach of

the gravitational lensing phenomenon, a huge amount of lens equation inversions is required.

As a consequence, using the explicit expression of the deflection angle constitutes a real

advantage. However, let us note that for the case of galaxy clusters and large-scale structure

lensing, numerical techniques constitute a better way to obtain detailed models. More

details about numerical techniques can be found in the excellent proceedings contribution

"Numerical Methods in Gravitational Lensing" by M. Bartelmann (2003). To this end, the

deflection angle can be expressed as the convolution of the surface mass density with a

kernel. This allows the use of the Fourier theory which is already implemented in very robust

algorithms.

According to this, we have investigated the possibility of elaborating a general method to

analytically derive expressions of α̂(x) in the strong lensing regime by making use of the

Fourier theory. To this end, we have expressed the deflection angle in terms of Fourier

transforms of the dimensionless surface mass density. Then, we have applied this method

to the case of homoeoidal symmetric mass distributions which englobe a large variety of

already known deflectors, e.g. SIS, SIE or NSIE. Such a family of models has already

been investigated by Bourassa & Kantowski (1973, 1975), but without having obtained

separate expressions for each component of α̂(x) (see Eq. (1.191)). Making use of the

Fourier approach, we have derived the expressions of the two components of the deflection

angle for the case of homoeoidal symmetric mass distributions. The latter result has been

summarized in the paper entitled “Use of the Fourier transform to derive simple expressions

for the gravitational lens deflection angle" published in the peer reviewed journal Monthly

Notices of the Royal Astronomical Society (MNRAS) 437, 1051-1055, 2014 (advance access

publication 2013 November 26). The full content of this paper, referred in the remainder

as to Paper III, is presented in Section 3.2. Several additional calculations are presented

respectively in Sections 3.3, 3.4, 3.5 and 3.6.
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As an application of the Fourier approach, we have investigated the NSIE family of models.

The derived expression for the deflection angle turns out to be more simple than the one

already presented by Kormann & al. (1994). These results have allowed us to derive the

expression of the deflection potential, in agreement with the one presented by Keeton &

Kochanek (1998). Nevertheless, we have performed a complete and original analysis of the

critical and caustic curves for which we have derived a complete analytical solution. The

latter result has been summarized in the paper entitled "The non-singular isothermal ellipsoid

lens model : a complete analytical solution" and submitted to the peer reviewed journal

MNRAS on 3rd February, 2014. The full content of this paper, referred in the remainder as

to Paper IV, is presented in Section 3.7. Several illustrations of such a model are presented

in Section 3.8.
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3.2 Paper III

Use of the Fourier transform to derive
simple expressions for the gravitational

lens deflection angle

O. Wertz and J. Surdej

Monthly Notices of the Royal Astronomical Society, 2014, 437, 1051-1055.
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ABSTRACT
Knowing that the gravitational lens deflection angle can be expressed as the convolution prod-
uct between the dimensionless surface mass density κ(x) and a simple function of the scaled
impact parameter vector x, we make use of the Fourier transform to derive its analytical ex-
pression for the case of mass distributions presenting a homoeoidal symmetry. For this family
of models, we obtain the expression of the two components of the deflection angle in the form
of integrals performed over the radial coordinate ρ. In the limiting case of axially symmetric
lenses, we obviously retrieve the well-known relation α̂(x) ∝ M(≤ |x|)x/|x|2. Furthermore,
we derive explicit solutions for the deflection angle characterized by dimensionless surface
mass density profiles such as κ ∝ (ρ2

c + ρ2)−ν ; corresponding to the non-singular isothermal
ellipsoid model for the particular case ν = 1/2. Let us insist that all these results are ob-
tained without using the complex formalism introduced by Bourassa and Kantowski. Further
straightforward applications of this Fourier approach are suggested in the conclusions of this
work.

Key words: gravitational lensing: strong – methods: analytical.

1 IN T RO D U C T I O N

Gravitational lens effects consist in the bending of light rays from
a background source, under the influence of a foreground mass
distribution along the line of sight (e.g. stars, galaxies, clusters of
galaxies, etc.). The study of this phenomenon requires realistic lens
models which fully account for the observed lensed image config-
urations, lensed image amplifications and/or time delays between
lensed images. From observation, we know that an appreciable frac-
tion of galaxies shows elliptical isophotes which suggest an ellipti-
cal mass distribution. First, axially symmetric lenses perturbed by
an external large-scale gravitational field, the external shear, were
studied in detail by Chang & Refsdal (1984), Kochanek (1991),
Wambsganss & Paczyński (1994) and An & Evans (2006), etc.
Those types of models have the advantage to be mathematically
simple to use. For instance, for the case of a nearly perfect alignment
among a point-like source, a power-law mass distribution perturbed
by an external shear and an observer, all lens model parameters can
be directly derived from the first-order astrometric equations (Wertz,
Pelgrims & Surdej 2012). Another approach consists in considering
lenses characterized by an elliptical symmetry, i.e. with isodensity
contours represented by concentric ellipses (so-called homoeoidal

� E-mail: wertz@astro.ulg.ac.be
†Aspirant du F.R.S. - FNRS.
‡Also Directeur de Recherche honoraire du F.R.S. -FNRS.

symmetry). Although the parameters of the elliptical isophotes may
vary with the major axis, the isophotes may as well turn out to be
‘twisted’. An elliptical lens is considered to be an adequate model
to represent observed gravitational lens systems (Schramm 1990).
We note that elliptical potentials may also be used as lens models
and these are mathematically easier to handle than elliptical mass
distributions. But for large ellipticities (e.g. ε � 0.5), the corre-
sponding mass distributions turn out to be unphysical (Kassiola &
Kovner 1993).

Whether considering the determination of the image positions,
image amplification ratios and/or time delays between observed
lensed images, the expression of the deflection angle (or deflection
potential) needs to be calculated for any given model. According to
the complexity of the expression for the dimensionless surface mass
density κ(x), the determination of the deflection angle may turn out
to be very complicated. For the case of elliptical mass distributions,
Bourassa, Kantowski & Norton (1973) first derived the expression
of the deflection angle using a complex formalism (Bourassa &
Kantoswski 1975; corrected by Bray 1984) which is rather difficult
to apply. According to this formalism, the lens equation is given
by

yc = xc + I ∗
c (xc), (1)

with the complex deflection angle (the scattering function)

Ic(xc) = −2 sign (xc) cos (β)
∫ ρ

0

ρ ′κ(ρ ′)√
x2

c − ρ
′2sin (β)2

dρ ′, (2)

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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where yc = y1 + ı y2 represents the complex source position,
xc = x1 + ı x2 the complex image positions, ρ, the radial coor-
dinate and 1/cos(β) = (1 − ε) with ε the ellipticity of the mass
distribution.

It turns out that separating the two components of the deflection
angle (equation (2)) is extremely difficult (Schneider, Ehlers &
Falco 1992). An alternative equivalent formulation has been derived
by Schramm (1990) from results of the classical three-dimensional
potential and ellipse theories. However, analytical solutions occur
only for very special or simple surface mass density expressions.
Let us however note that for numerical evaluation, their formulation
represents a very efficient tool.

In this paper, we propose to use the well-known fact that the
deflection angle can be expressed as a convolution product (e.g.
Bartelmann 2003), in order to analytically derive, with the help
of Fourier analysis, the expression of the two components of the
deflection angle (Section 2) without the need of invoking complex
expressions.

We first apply this new approach to the case of elliptical lenses and
derive the explicit expression of the deflection components for mass
distributions obeying the law κ ∝ (ρ2

c + ρ2)−ν , in particular for the
cases of the non-singular isothermal ellipsoid (NSIE; ν = 1/2)
and axially symmetric lenses (f = 1, see Section 3). Some general
conclusions form the last section.

2 D E F L E C T I O N A N G L E A N D F O U R I E R
A NA LY S I S

2.1 Basic equations and definitions

Since we adopt the thin lens approximation, a general mass dis-
tribution ρ(ξ x, ξ y, ξ z) is represented by its projected surface mass
density 	(ξ ) = ∫

R ρ(ξ , ξz) dξz, where ξ = (ξx, ξy) corresponds to
the impact parameter vector defined in the lens plane, perpendicular
to the line of sight (ξ z direction). Moreover, for a given light ray
characterized by a normalized impact parameter x = ξ/ξ0, where
ξ 0 represents a scaled factor which is dependent on the lens model,1

the scaled deflection angle is defined by (Schneider et al. 1992)

α̂(x) = − 1

π

“
R2

κ(x′)
x − x′

|x − x′|2 dx′, (3)

where κ(x) = 	(ξ0x)/	cri represents the dimensionless surface
mass density (also called convergence) with 	cri, the critical surface
mass density defined by

	cri = c2DOS

4 GDLSDOL

. (4)

For the case of simple lens models (e.g. axially symmetric lens
models), the expression of α̂(x) may be derived straightforwardly
from equation (3). However, it turns out to be generally more com-
plicated.

2.2 Deflection angle as a convolution product

Considering κ(x) which either has a sufficiently rapid decay at
infinity or is locally integrable, the expression of the deflection

1 In the case of axially symmetric lens models, the scaled factor equals
the Einstein radius ξE. Furthermore, the value of the Einstein ring angular
radius is given by θE = ξE/DOL.

angle, equation (3), can be expressed as a convolution product (e.g.
Bartelmann 2003):

α̂(x) = − 1

π
κ(x) ⊗ x

|x|2 . (5)

Making use of the Fourier convolution theorem which states that the
Fourier transform of a convolution product is equal to the pointwise
product of the Fourier transforms of the functions to be convolved
(Bracewell 1999), the expression of the deflection angle can be
expressed as

α̂(x) = −2 F+
[
F− [κ(x)] F−

[
x

|x|2
]]

, (6)

where

F∓[f ] = 1

2π

“
R2

f (x) e∓ıx·zdx. (7)

In equation (6), the Fourier transformF− [
x/|x|2] is independent of

the lens model and only needs to be calculated once. Its expression
is simply given by

F−
[

x
|x|2

]
= − ı z

|z|2 , (8)

where z = (z1, z2) represents the conjugate variables of (x1, x2) in
the Fourier space. As a consequence, equation (6) becomes

α̂(x) = 2 ı F+
[
F− [κ(x)]

z
|z|2

]
, (9)

which remains valid for any expression of the dimensionless surface
mass density κ(x).

3 H O M O E O I DA L SY M M E T R I C L E N S E S

For the case of homoeoidal symmetric mass distributions, the first
step now consists in explicitly expressing the Fourier transform of
the dimensionless surface mass density κ(x). Since the shape of
the isodensity contours consists of concentric ellipses, κ can be
expressed in terms of the coordinates (ρ, φ) defined such as
{

x1 = ρ cos (φ)

x2 = ρ

f
sin (φ) ,

(10)

where 0 < f ≤ 1 represents the axis ratio of the ellipses and is related
to the ellipticity ε by

f = 1 − ε. (11)

Under such conditions, we have κ(x) = κ(ρ). Therefore, the ex-
pression of the Fourier transform of κ(ρ) becomes

F− [κ(ρ)] = 1

2πf

∫ +∞

0
ρ ′κ(ρ ′)

{∫ 2

0
e−ıρ′zcos(φ′−θ)/f dφ′

}
dρ ′,

= 1

f

∫ +∞

0
ρ ′κ(ρ ′)J0

(
ρ ′z
f

)
dρ ′ , (12)

where J0(ρ ′z/f) represents the zero-order Bessel function of the first
kind and (z , θ ), the conjugate coordinates of (ρ, φ) in the Fourier
space defined such as
{

z1 = z
f

cos (θ )

z2 = z sin (θ ) .
(13)
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By substituting equation (12) into equation (9), the ith component
of the deflection angle reduces to

α̂i = − 1

πf

“
I

⎧
⎨
⎩

+∞∫

0

ρ ′κ(ρ ′)J0

(
ρ ′z
f

)
dρ ′

⎫
⎬
⎭

×
Fi(θ ) sin

(
ρz
f

cos (θ − φ)
)

cos2(θ ) + f 2 sin2(θ )
dz dθ, (14)

where I = [0, +∞[ × [0, 2], i ∈ {1, 2} and Fi(θ ) is simply defined
by

Fi(θ ) =
{

cos (θ ) if i = 1

f sin (θ ) if i = 2.
(15)

In the remainder part of this demonstration, we will focus our cal-
culation on the 1st component. Let us apply the Fubini’s theorem2

in order to first calculate the z-integral. It turns out that, for
ρ ′ ≥ ρ cos(θ − φ), the z-integral vanishes. Then, for 0 < ρ ′ <

ρ cos(θ − φ), one finds (Gradshteyn & Ryzhik 2007, 6.671,
p. 718)

+∞∫

0

J0

(
ρ ′z
f

)
sin

(
ρ z

f
cos (θ − φ)

)
dz

= f√
ρ2cos2(θ − φ) − ρ

′2
. (16)

After substituting equation (16) into equation (14), the latter equa-
tion can be reduced to

α̂1 = − 1

π

2∫

0

cos (θ )

cos2(θ ) + f 2 sin2(θ )

×
⎧
⎨
⎩

ρcos(θ−φ)∫

0

ρ ′κ(ρ ′) dρ ′
√

ρ2cos2(θ − φ) − ρ
′2

⎫
⎬
⎭ dθ. (17)

After applying the Fubini’s theorem once again, substituting θ − φ

by 
 and calculating the adequate upper and lower limits, equation
(17) reduces to

α̂1 = − 2

π

ρ∫

0

ρ ′ κ(ρ ′) I(ρ ′) dρ ′, (18)

where the integral I(ρ ′) is given by

I(ρ ′)

=
∫ l

−l

cos (
 + φ)
(
cos2(
 + φ) + f 2 sin2(
 + φ)

)√
ρ2cos2(
) − ρ

′2
d
,

(19)

with l = arccos(ρ ′/ρ). The resolution of the 
-integral is not trivial.
This integral can be expressed as the difference between two inte-
grals by developing cos(
 + φ) = cos(
)cos(φ) − sin(
)sin(φ).
We note that for the 2nd component of the deflection angle, the
term to be developed is sin(
 + φ) = sin(
)cos(φ) + cos(
)sin(φ)
which leads to the sum of the two same integrals over 
 but multi-
plied by sin(φ) (resp. cos(φ)) instead of cos(φ) (resp. sin(φ)). After

2 The Fubini’s theorem sets conditions which allows the order of integration
to be changed in iterated integrals.

some mathematical developments, the 
-integral takes the form

I(ρ ′) = π
√

2

2
sign (cos (φ))

(
1√

λ2 ρ
′2 + ω2

1

+ 1√
λ2 ρ

′2 + ω2
2

)
,

(20)

where the expressions of λ, ω1 and ω2 are given by

λ =
√

2
√

1 − f 2, (21)

ω1 =
√

2 ρ (f cos (φ) + ısin (φ)) , (22)

and

ω2 =
√

2 ρ (f cos (φ) − ısin (φ)) . (23)

Here, we note that because ω2 = ω∗
1 , the term in brackets is real, and

therefore we have I (ρ ′) ∈ R, for any values of 0 < f ≤ 1, φ ∈ [0, 2]
and ρ ∈ [0, +∞[. As a consequence, even if equation (20) contains
imaginary terms, the whole expression is a real valued function of
the real variable ρ ′ ∈ [0, ρ]. The 2nd component can be similarly
derived. In fact, the 
-integral reduces, in this case, to

I(ρ ′) = ıπ
√

2

2
sign (cos (φ))

(
1√

λ2 ρ
′2 + ω2

1

− 1√
λ2 ρ

′2 + ω2
2

)
.

(24)

The term in brackets is a purely imaginary quantity. But since the
whole expression is multiplied by the imaginary unit ı, the former is
a real valued function of the real variable ρ ′. Finally, the expressions
of the two components of the deflection angle reduce to

α̂1(ρ, φ) = −
√

2 sign (cos (φ))

×
⎧
⎨
⎩

ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

λ2 ρ
′2 + ω2

1

+
ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

λ2 ρ
′2 + ω2

2

⎫
⎬
⎭ , (25)

and

α̂2(ρ, φ) = −ı
√

2 sign (cos (φ))

×
⎧
⎨
⎩

ρ∫

0

ρ ′κ(ρ ′) dρ ′
√

λ2 ρ
′2 + ω2

1

−
ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

λ2 ρ
′2 + ω2

2

⎫
⎬
⎭ . (26)

Furthermore, in order to demonstrate that α̂1 = Re(I ∗
c (xc)) and α̂2 =

Im(I ∗
c (xc)) with Ic(xc) defined by equation (2), we simply calculate

α̂1 + ı α̂2 using equations (10), (25) and (26)

α̂1 + ı α̂2 = −2
√

2 sign (cos (φ))

ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

λ2 ρ
′2 + ω2

2

,

= −2 sign (xc)
1

f

ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

−(1 − 1
f 2 )ρ ′2 + x∗2

c

,

= −2 sign (xc) cos (β)

ρ∫

0

ρ ′ κ(ρ ′) dρ ′
√

x∗2
c − ρ

′2sin2(β)
,

= I ∗
c (xc), (27)

where cos(β) = 1/f. Finally, we have succeeded in demonstrating
that α̂1 and α̂2 constitute the real and imaginary parts of the complex
deflection angle defined by Bourassa & Kantowski (1975).
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For practical purposes, equations (25) and (26) can be used to
derive the analytical expression of the two deflection angle compo-
nents.

Let us first consider the family of models characterized by the
dimensionless surface mass density having the form

κ(ρ) = κ0(
ρ2

c + ρ2
)ν , (28)

with κ0 being a constant, ρc the core scale and ν a positive real
number. The latter dimensionless surface mass density includes a
large class of elliptical lens models. The expressions of the compo-
nents of the deflection angle deduced from equations (25) and (26)
reduce to

α̂1(ρ, φ) = κ0 λ2ν−2
√

2 (�(ρ, φ, ω1) + �(ρ, φ, ω2)) , (29)

and

α̂2(ρ, φ) = ı κ0 λ2ν−2
√

2 (�(ρ, φ, ω1) − �(ρ, φ, ω2)) , (30)

where �(ρ, φ, ωi) is defined by

�(ρ, φ, ωi) = ωi(
λ2ρ2

c − ω2
i

)ν

×
(

−
√

1 + λ2ρ2

ω2
i

2F1

[
1

2
, ν,

3

2
; −λ2ρ2 + ω2

i

λ2ρ2
c − ω2

i

]

+ 2F1

[
1

2
, ν,

3

2
; − ω2

i

λ2ρ2
c − ω2

i

])
, (31)

with 2F1(a, b, c, z) representing the Gauss hypergeometric function
and ωi is defined by equations (22) and (23). We note that since
ω2 = ω∗

1 , we have �(ρ, φ, ω2) = �∗(ρ, φ, ω1).
Let us now consider the so-called NSIE lens model, in which

dimensionless surface mass density is obtained from (28) with
κ0 = √

f /2 and ν = 1/2:

κ(ρ) =
√

f

2
√

ρ2
c + ρ2

, (32)

where ρc still represents the dimensionless core radius. With the
help of equations (29) and (30), we directly deduce the analytical
expressions for the two components of the deflection angle, without
having to use the complex representation of the lens theory alto-
gether with the results of Bourassa & Kantowski (1975) and Bray
(1984). Therefore, since we have

arcsinh (x) = log
(
x +

√
x2 + 1

)
(33)

and

arctan (q) = − ı

2
log

(
1 + ıq

1 − ıq

)
, (34)

the components of the deflection angle can be expressed as

α̂1(ρ, φ) =
√

f

f ′ sign (cos (φ)) log

[
A

B

]
, (35)

and

α̂2(ρ, φ) =
√

f

2f ′ sign (cos (φ)) arctan

(
C

D

)
, (36)

where f ′ =
√

1 − f 2 and

A =
(

1 + ρ2
c

ρ2

)
−

(
f

ρc

ρ
− f ′cos (φ) sign (cos (φ))

)2

, (37)

B = −f 2 ρ2
c

ρ2
+

⎛
⎝
√

1 + ρ2
c

ρ2
+ f ′cos (φ) sign (cos (φ))

⎞
⎠

2

, (38)

C = f ρ2 + f
′2ρc

√
ρ2 + ρ2

c

+ f ′ρ
(

ρc + f

√
ρ2 + ρ2

c cos (φ) sign (cos (φ))

)
, (39)

and

D = ρ sin (φ)

[
− f

′2ρ cos (φ)

+ f ′
(

f ρc −
√

ρ2 + ρ2
c

)
sign (cos (φ))

]
. (40)

We note that equations (35) and (36) are not identical to the ex-
pressions derived by Kormann, Schneider & Bartelmann (1994,
equations 62a– e) but remain rigorously equivalent. However, our
derived expressions of the deflection angle do not involve complex
quantities, unlike those derived by Kormann et al. (1994). Once
more, the reader may thus perceive the real interest of using the
Fourier approach developed in this work. Of course, for the case
of ρc = 0, the latter equations reduce to those for the singular
isothermal ellipsoid (SIE) case. In fact, for the singular case ρc = 0,
equations (29) and (30) take the simple form

α̂1(ρ, φ) = −
√

2 κ0
ρ2−ν

(2 − ν)

×
(

1

ω1
2F1

[
1

2
, 1 − ν

2
, 2 − ν

2
; − λ2

ω2
1

ρ2

]

+ 1

ω2
2F1

[
1

2
, 1 − ν

2
, 2 − ν

2
; − λ2

ω2
2

ρ2

])
, (41)

and

α̂2(ρ, φ) = −ı
√

2 κ0
ρ2−ν

(2 − ν)

×
(

1

ω1
2F1

[
1

2
, 1 − ν

2
, 2 − ν

2
; − λ2

ω2
1

ρ2

]

− 1

ω2
2F1

[
1

2
, 1 − ν

2
, 2 − ν

2
; − λ2

ω2
2

ρ2

])
. (42)

We note that the latter equations only remain valid for ν ∈ R+\Z ∪
{1}. For the case ν = 1 and κ0 = √

f /2, i.e. the SIE model, the two
components of the deflection angle take the form

α̂1(ρ, φ) = −
√

f

2f ′

(
arcsinh

(
f ′

f cos (φ) + ısin (φ)

)

+ arcsinh

(
f ′

f cos (φ) − ısin (φ)

))
(43)

and

α̂2(ρ, φ) = − ı
√

f

2f ′

(
arcsinh

(
f ′

f cos (φ) + ısin (φ)

)

− arcsinh

(
f ′

f cos (φ) − ısin (φ)

))
. (44)
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Using the fact that sinh x = −ı sin(ı x) and the addition properties
of the logarithmic functions, we straightforwardly retrieve the ex-
pected expression for the deflection angle introduced by Kormann
et al. (1994)

α̂(x) = −
√

f

f ′

[
arcsinh

(
f ′

f
cos (ϕ)

)
e1+arcsin

(
f ′sin (ϕ)

)
e2

]
,

(45)

where ϕ represents the angular coordinate defined in the polar co-
ordinate system and e1 (resp. e2) represents the unit vector along
the direction x1 (resp. x2).

Finally, for the case f = 1, i.e. for axially symmetric lenses, we
note that λ = 0. Therefore, in equations (25) and (26), we deduce
that

√
λ2 ρ

′2 + ω2
i = √

2 ρ (cos (φ) ± ı sin (φ)) sign (cos (φ)) is no
longer a function of ρ ′. As a result, the expressions for the two
components of the deflection angle take the expected form

α̂1(ρ) = − cos (φ)

πρ
M(≤ ρ) (46)

and

α̂2(πρ) = − sin (φ)

πρ
M(≤ ρ), (47)

where M(≤ ρ) = 2π
∫ ρ

0 ρ ′ κ(ρ ′) dρ ′. From these two last equa-
tions, we may retrieve the components of the deflection angle for
any axially symmetric lenses, e.g. the singular isothermal sphere or
spherical NFW lensing models.

4 C O N C L U S I O N S

Although it is a well-known fact that the deflection angle can be ex-
pressed as a convolution product between the dimensionless surface
mass density and the simple kernel x/|x|2, its analytical derivation
using the Fourier analysis in a systematic way proves to be a very
efficient and appropriate alternative method. For this purpose, we
have presented the derivation of the expression for the two com-
ponents of the deflection angle using the Fourier formalism. From
basic theorems of the Fourier and integrals analysis, we have derived
the expression of the two components of the deflection angle for the
case of homoeoidal symmetric lenses. This result is consistent with
the one already derived by Bourassa & Kantowski (1975) but, in
our case, we have obtained the expression of the two components
separately instead of a unique equation expressed in the complex
formalism. As a consequence, equations (25) and (26) turn out to be

very simple and useful in order to calculate the components of the
deflection angle. Indeed, for the case of the NSIE, we have derived
more simple expressions for the two components of the deflection
angle than those previously derived by Kormann et al. (1994). More
generally speaking, it should also be straightforward to derive the
expression of the deflection angle for the case of a pixelated lens
mass distribution such that each pixel in the lens plane represents a
constant area with a fixed surface mass density. Following such an
analytical approach, it should be easy and convenient to model any
unknown gravitational lens mass distribution. By means of such
an expression for the deflection angle, it should also be straight-
forward to analytically determine the values of the expected time
delays between pairs of lensed images.
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3.3 Deflection angle as the sum of two contributions

For the case of homoeoidal symmetric mass distributions, we illustrate hereafter, as an

application of the Fourier approach, how the deflection angle can be rigorously expressed as

the sum of two contributions, one isotropic, and an anisotropic one. In the remainder, we

focus our calculation on the 1st-component. Let us first recall the following expression of

the deflection angle α̂i derived in Paper II (see Eq. (14)) :

α̂i = − 1
π f

x

I



+∞∫

0

ρ′ κ(ρ′) J0

(
ρ′z
f

)
dρ′


Fi(θ) sin

(
ρ z
f cos (θ − φ)

)

cos2(θ) + f 2 sin2(θ)
dz dθ ,

where I = [0,+∞[×[0, 2π], i ∈ {1, 2} and Fi(θ) is simply defined by :

Fi(θ) =


cos (θ) if i = 1 ,

f sin (θ) if i = 2 .
(3.1)

Let us isolate in Eq. (3.1) the θ-integral given by :

I(z) =

2π∫

0

cos (θ) sin
(
ρ z
f cos (θ − φ)

)

cos2(θ) + f 2 sin2(θ)
dθ . (3.2)

Let us then apply, to this θ-integral, the second mean value theorem for integration (Dixon

1929) which states that if g : [a, b] → R is a monotonic function and h : [a, b] → R is an

integrable function, then there exists a number ζ ∈ ]a, b[ such that :

∫ b

a
g(t) h(t) dt = lim

t′→a+
g(t′)

∫ ζ

a
h(t) dt + lim

t′→b−
g(t′)

∫ b

ζ

h(t) dt . (3.3)

Therefore, we define the functions h1(θ, z) and g(θ) :

h1(θ, z) = cos (θ) sin
(
ρ z
f

cos (θ − φ)
)
, (3.4)

and

g(θ) =
1

cos2(θ) + f 2 sin2(θ)
, (3.5)



100 CHAPTER 3

the latter being monotonic in the intervals [kπ/2, (k + 1)π/2] with k ∈ {0, 1, 2, 3}. After

applying the second mean value theorem of integration, the θ-integral (Eq. (3.2)) takes the

form :

I(z) =

3∑

k=0

 lim
θ′→kπ/2+

g(θ′)

ζk∫

kπ/2

h1(θ, z) dθ

+ lim
θ′→(k+1)π/2−

g(θ′)

(k+1)π/2∫

ζk

h1(θ, z) dθ

 , (3.6)

where ζk ∈ ]kπ/2, (k + 1)π/2[, which depends on the parameters ρ, z, f and φ, may not be

unique. Furthermore, we note that

lim
θ→kπ/2+

g(θ) =


1 if k = 0, 2 ,
1
f 2 if k = 1, 3 ,

(3.7)

and

lim
θ→(k+1)π/2−

g(θ) =


1 if k = 1, 3 ,
1
f 2 if k = 0, 2 .

(3.8)

Therefore, Eq. (3.6) simply reduces to :

I(z) =

2π∫

0

h1(θ, z) dθ +

(
1 − f 2

)

f 2



ζ1∫

ζ0

h1(θ, z) dθ +

ζ3∫

ζ2

h1(θ, z) dθ

 ,

= 2π cos (φ) J1

(
ρ z
f

)
+ 2

(
1 − f 2

)

f 2

ζ1∫

ζ0

h1(θ, z) dθ , (3.9)

where the second equality holds because h1(θ, z) is a π-periodic function and therefore

ζ2 = ζ0 + π and ζ3 = ζ1 + π. After substituting Eq. (3.9) into Eq. (3.1), the expression of the

deflection angle takes the form :

α̂1 = − 1
π f

+∞∫

0



+∞∫

0

ρ′ κ(ρ′)J0

(
ρ′z
f

)
dρ′


2π cos φ J1

(
ρ z
f

)
dz

− 1
π f

+∞∫

0



+∞∫

0

ρ′ κ(ρ′)J0

(
ρ′z
f

)
dρ′


2

(
1 − f 2

)

f 2

ζ1∫

ζ0

h1(θ, z) dθ dz . (3.10)

After applying the Fubini’s theorem in order to calculate the z-integral in the first term of the
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latter equation, we find :

α̂1 = −2 cos φ
f

+∞∫

0

ρ′ κ(ρ′)



+∞∫

0

J0

(
ρ′z
f

)
J1

(
ρ z
f

)
dz


dρ′

−
2
(
1 − f 2

)

π f 3

+∞∫

0



+∞∫

0

ρ′ κ(ρ′)J0

(
ρ′z
f

)
dρ′



ζ1∫

ζ0

h1(θ, z) dθ dz . (3.11)

It turns out that, for ρ′ > ρ, the z-integral of the first term in the latter equation vanishes, and

for ρ′ < ρ, equals f /ρ (Gradshteyn & Ryzhik 2007, 6.512.3, p. 660). As a result, Eq. (3.11)

reduces to :

(3.12)α̂1 = −cos φ
π ρ

M(≤ ρ) −
2
(
1 − f 2

)

π f 3

+∞∫

0



+∞∫

0

ρ′ κ(ρ′)J0

(
ρ′z
f

)
dρ′



ζ1∫

ζ0

h1(θ, z) dθ dz .

The 2nd-component can be similarly derived :

(3.13)α̂2 = −sin φ
π ρ

M(≤ ρ) −
2
(
1 − f 2

)

π f 3

+∞∫

0



+∞∫

0

ρ′ κ(ρ′)J0

(
ρ′z
f

)
dρ′



ζ′1∫

ζ′0

h2(θ, z) dθ dz ,

where h2(θ, z) is defined by :

h2(θ, z) = f sin (θ) sin
(
ρ z
f

cos (θ − φ)
)
. (3.14)

For the case of axially symmetric lenses, i.e. f = 1, we obviously retrieve the expected

expressions of the deflection angle (see Eqs. (46) and (47) in Paper II). As a consequence,

for the case of mass distributions with homoeoidal symmetry, the two components of

the deflection angle can be expressed as the sum of two contributions. The first one is

proportional to the scaled mass of the deflector located inside the ellipse characterized by

the semi major axis ρ, divided by ρ. The second one represents the contribution of the

asymmetrical part of the mass distribution.

3.4 The singular isothermal ellipsoid (SIE) lens models

As already mentioned, the determination of the deflection angle for the case of the SIE family

of models making use of Eq. (1.111) turns out to be quite difficult. Besides, Kormann & al.
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(1994) have chosen to derive α̂(x) from the Poisson equation ∆ψ(x) = 2κ(x) and making

use of the Green’s function method. In Paper III, we have derived the expression of α̂(x)

after having specified the general result appearing in Eqs. (41) and (42) (from Paper III) for

the case of the SIE models. Of course, the determination of the latter general result is not

mandatory to obtain α̂(x) for that particular case. In this section, we present in details the

usefulness of the Fourier approach in order to derive α̂(x) for the case of SIE from Eq. (9)

(see Paper III).

First, let us recall the expression of the SIE dimensionless surface mass density :

κ(x1, x2) =

√
f

2
√

x2
1 + f 2x2

2

, (3.15)

where 0 < f ≤ 1 represents the axis ratio of the elliptic iso-density contours and (x1, x2) the

cartesian system of coordinates. For later purposes, we recall the expression of f ′ =
√

1 − f 2.

Due to the lens model symmetry, we introduce the coordinates (ρ, φ) defined such as (see Eq.

(10) from Paper III) : 

x1 = ρ cos (φ) ,

x2 =
ρ

f
sin (φ) ,

(3.16)

and the surface mass density simplifies into κ(ρ, φ) =
√

f /(2ρ). From Eq. (12) (see Paper

III), the Fourier transform of the surface mass density takes the form :

F − [κ(ρ, φ)
]

=

√
f

2 f

∫ +∞

0
J0

(
ρ′z
f

)
dρ′ , (3.17)

where J0(ρ′z/ f ) represents the zero order Bessel function of the first kind and (z, θ), the

conjugate coordinates of (ρ, φ) in the Fourier space defined such as :



z1 =
z
f

cos (θ) ,

z2 = ρ sin (θ) ,
(3.18)

and z =

√
f 2z2

1 + z2
2. Since z/ f > 0, the ρ′-integral can be simply reduced to (Gradshteyn &

Ryzhik 2007, 6.511.1, p. 659) :

∫ +∞

0
J0

(
ρ′z
f

)
dρ′ =

f
z
. (3.19)
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As a result, from Eqs. (3.17) and (3.19), one finds :

F − [κ(ρ, φ)
]

=

√
f

2
√

f 2z2
1 + z2

2

=

√
f

2z
. (3.20)

After inserting Eq. (3.20) into Eq. (9) (from Paper III), we derive the expression of the

deflection angle, each component separately. First, we have :

α̂i(ρ, φ) = ı
√

f F +


zi(

z2
1 + z2

2

)
z

 ,

=

√
f

2π

2π∫

0

Gi(θ)



+∞∫

0

sin
[

z ρ
f cos (φ − θ)

]

z
dz


dθ , (3.21)

where the function G(θ) is defined by :

Gi(θ) =



cos (θ)
cos2 (θ)+ f 2 sin2 (θ)

if i = 1 ,
f sin (θ)

cos2 (θ)+ f 2 sin2 (θ)
if i = 2 .

(3.22)

The z-integral is simply given by (Gradshteyn & Ryzhik 2007, 3.721.1, p. 423) :

+∞∫

0

sin
[

z ρ
f cos (φ − θ)

]

z
dz =

π

2
sign (cos (φ − θ)) . (3.23)

Therefore, Eq. (3.21) reduces to :

α̂i(ρ, φ) =

√
f

4

2π∫

0

sign (cos (φ − θ)) Gi(θ) dθ , (3.24)

=

√
f

4



π/2+φ∫

0

Gi(θ) dθ −
3π/2+φ∫

π/2+φ

Gi(θ) dθ +

2π∫

3π/2+φ

Gi(θ) dθ

 . (3.25)

For the case of the first component, after making use of the variable change Φ = sin (φ), Eq.
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(3.25) transforms into :

α̂1(ρ, φ) =

√
f

4



cos (φ)∫

0

1
1 − f ′2 Φ2 dΦ +

cos (φ)∫

− cos (φ)

1
1 − f ′2 Φ2 dΦ +

0∫

− cos (φ)

1
1 − f ′2 Φ2 dΦ

 ,(3.26)

=

√
f

2

cos (φ)∫

− cos (φ)

1
1 − f ′2 Φ2 dΦ , (3.27)

=

√
f

f ′
arcsinh


f ′ cos (φ)√

1 − f ′2 cos (φ)

 . (3.28)

From the definition of f ′, Eq. (3.16) and making use of the polar system coordinates (r, ϕ)

defined such as : 
x1 = r cos (ϕ) ,

x2 = r sin (ϕ) ,
(3.29)

Eq. (3.28) reduces to :

α̂1(r, ϕ) =

√
f

f ′
arcsinh

(
f ′

f
cos (ϕ)

)
, (3.30)

which constitutes the expected expression of the first component of the deflection angle for

the case of the SIE family of models. For the case of the second component, after making

use of the variable change Φ = cos (φ), Eq. (3.25) transforms into :

α̂2(ρ, φ) =

√
f

4 f



1∫

− sin (φ)

1

1 +
(

f ′
f

)2
Φ2

dΦ −
1∫

sin (φ)

1

1 +
(

f ′
f

)2
Φ2

dΦ

+

sin (φ)∫

− sin (φ)

1

1 +
(

f ′
f

)2
Φ2

dΦ

 , (3.31)

=

√
f

2 f

sin (φ)∫

− sin (φ)

1

1 +
(

f ′
f

)2
Φ2

dΦ , (3.32)

=

√
f

f ′
arcsin


f ′

f
sin (φ)√

1 +
(

f ′
f

)2
sin2 (φ)


. (3.33)

From the definition of f ′ and making use of the polar system of coordinates (r, ϕ), Eq. (3.33)
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reduces to :

α̂2(r, ϕ) =

√
f

f ′
arcsin

(
f ′ sin (ϕ)

)
, (3.34)

which constitutes the expected expression of the second component of the deflection angle

for the case of the SIE family of models. As a result, we retrieve the expected expression of

the deflection angle which is finally given by :

α̂(x) = −
√

f
f ′

[
arcsinh

(
f ′

f
cosϕ

)
e1 + arcsin

(
f ′ sinϕ

)
e2

]
, (3.35)

where e1 (resp. e2) represents the unit vector in the direction x1 (resp. x2), according to the

notation adopted by Kormann & al. (1994).

3.5 The uniform disk lens models

As an application of the Fourier method, let us consider a uniform disk characterized

by a radius R and a constant surface mass density K. For such a lens model, we have

κ(r, ϕ) = K χ[0,R](r) where χI represents the indicator function of the set I. The Fourier

method allows to straightforwardly derive the expression of the deflection angle. On one

hand, making use of the polar system of coordinates, the Fourier transform of κ(r, ϕ) leads

to :

F − [κ(r, ϕ)
]

=
1

2π

+∞∫

0

2π∫

0

K χ[0,R](r) e−ırz cos (ϕ−θ) r dr dϕ , (3.36)

=
K
2π

R∫

0

r J0(rz) dr , (3.37)

=
K R

z
J1(rz) , (3.38)

where Ji represents the Bessel function of the first kind of the i-th order. After inserting Eq.

(3.38) into Eq. (9) (from Paper III), the expression of the first component of the deflection
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angle takes the form :

α̂1(r, ϕ) = 2 ı R K F +

[
J1(Rz)

z1

z2
1 + z2

2

]
, (3.39)

=
ıKR
π

+∞∫

0

2π∫

0

cos (θ)
z

J1(Rz) eırz cos (ϕ−θ) dθ dz , (3.40)

= −2 K R cos (ϕ)

+∞∫

0

J1(Rz) J1(rz)
z

dz . (3.41)

From Gradshteyn & Ryzhik (2007, 6.576.2, p. 684), the solution of the latter integral takes

the form :

+∞∫

0

J1(Rz) J1(rz)
z

dz =
R r

2 (R + r)2 2F1

(
1,

3
2
, 3;

4rR
(r + R)2

)
, (3.42)

where 2F1(a, b, c; ζ) represents the Gauss hypergeometric function which can be simplified,

in the present case, into :

2F1

(
1,

3
2
, 3;

4rR
(r + R)2

)
=

(
r + R

max (r,R)

)2

, (3.43)

where the function max(r,R) is defined by :

max(r,R) =


r if r ≥ R ,

R otherwise .
(3.44)

As a result, after inserting Eqs. (3.42) and (3.44) into Eq. (3.41), the expression of the first

component of the deflection angle results in :

α̂1(r, ϕ) = −K
R2 r

(max (r,R))2 cos (ϕ) . (3.45)

Making use of the same argument, the expression of the second component of the deflection

angle differs from Eq. (3.45) only by the term sin (ϕ) instead of cos (ϕ) :

α̂2(r, ϕ) = −K
R2 r

(max (r,R))2 sin (ϕ) . (3.46)
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Its vectorial form α̂(x) is finally given by :

α̂(x) = −K
R2

(max (x,R))2 x , (3.47)

where x = |x| ≡ r in agreement with the notation introduced in Section 1.10. As expected,

the amplitude of α̂(x) is independent of ϕ, due to the symmetry.

For particular values of the radius R, the uniform disk lens model tends respectively towards

the point-like (R � r) or the infinite sheet with a constant surface mass density (R � r) lens

models. For the case of the point-like lens models, we have R→ 0, K → δ(x) and Eq. (3.47)

transforms into :

α̂(x) = −K
(R

r

)2

x , (3.48)

' − x
x2 . (3.49)

For the case of the infinite sheet with a constant surface mass density, we have R→ +∞ and

Eq. (3.47) transforms into :

α̂(x) ' −κx , (3.50)

where κ ≡ K represents the so-called convergence. Let us note that the present determination

of α̂(x) for the case of the uniform disk lens model has been obtained without having used

the simplification ϕ = 0. Indeed, such a simplification has been used in Section 1.10 in order

to determine Eq. (1.148) from Eq. (9) (from Paper III).

3.6 Regular grid composed of square pixels

In the previous sections, we have highlighted the usefulness of the Fourier method concerning

the determination of the deflection angle for the case of parametric lens models. In the

present section, we consider a non-parametric lens model which, in principle, fully accounts

for any type of mass distribution.
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x2

x
1

(0; (2N j + 1)∆)

x2 = (2j + 1)∆

x1 = (2i + 1)∆x1 = (2i − 1)∆

(∆ ; ∆)

((2N i + 1)∆ ; 0)

σij

x2 = (2j − 1)∆

Figure 3.1: Illustration of the (2N(i) + 1) × (2N( j) + 1) regular grid defined in the lens plane. To the
pixel pi j defined by the interval [(2i− 1)∆, (2i + 1)∆]∪ [(2 j− 1)∆, (2 j + 1)∆], we associate a constant
surface mass density σi j. Each of the pixels contributes to the bending of a light ray characterized by
an impact parameter x.

3.6.1 Determination of the expression of the deflection angle

Let us consider a general lens mass distribution which surface mass density defined in the lens

plane may be tessellated into 2∆ by 2∆ squares, the so-called pixels. For each of them, we

associate a constant surface mass density σi j. The whole grid contains (2N(i) +1)× (2N( j) +1)

pixels where N(k) ∈ N with k ≡ i or j. Furthermore, we define an arbitrarily oriented

cartesian coordinate system centered on the deflector’s gravity center. The origin of the latter

coordinate system is set at the center of the indexed pixel (0, 0) (see Fig. 3.1). Therefore, we
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characterize the total surface mass density by

κ(x) =

N(i)∑

i=−N(i)

N( j)∑

j=−N( j)

σi j χIi(x1) χI j(x2) , (3.51)

where i ∈ [−N(i),N(i)], j ∈ [−N( j),N( j)], Ik = [(2k − 1)∆ ; (2k + 1)∆] and χIk(xl) represents

the indicator function defined by :

χIk(xl) =


1 if xl ∈ Ik ,

0 otherwise ,
(3.52)

where l = 1 or 2. The surface mass density appearing in Eq. (3.51) allows to approximate

any general mass distribution. Of course, larger the number of pixels and smaller their size,

better the approximation. However, a realistic representation of a mass distribution requires

a finite number of pixels characterized by a small, but non zero, size. In the remainder, we

adopt the following notation :

N(i)∑

i=−N(i)

N( j)∑

j=−N( j)

=
∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

. (3.53)

For a light-ray characterized by an impact parameter x = (x1; x2) in the lens plane, the

deflection angle is given by Eq. (9) (from Paper III). First, we derive the expression of the

Fourier transform of κ(x).

F − [κ(x)] =
1

2π

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

(2i+1)∆∫

(2i−1)∆

(2 j+1)∆∫

(2 j−1)∆

e−ıx·z dx1 dx2 ,

=
2
π

sin (z1∆)
z1

sin (z2∆)
z2

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j e−2ı∆(iz1+ jz2). (3.54)

For the case N(i) = 0 = N( j), i.e. for a mass distribution composed of a unique square centered

at (0, 0), the sum equals 1. In addition, the terms e−2ı∆(iz1+ jz2), which represents rotations in

the Fourier space, can be simply understood as translations of each pixel from the position

(0, 0) to (2i∆, 2 j∆), weighed by σi j. After inserting Eq. (3.54) into Eq. (9) (from Paper III),

the deflection angle reduces to :

α̂(x) =
2ı
π2

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

x

R2

z sin (z1∆) sin (z2∆)
z1 z2 (z2

1 + z2
2)

eı
(
z1ζ

(i)
1 +z2ζ

( j)
2

)
dz1 dz2 , (3.55)
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where ζ(i)
1 = x1 − 2i∆ and ζ( j)

2 = x2 − 2 j∆. In the remainder, we will perform the calculus for

the first component α̂1(x) of the deflection angle :

α̂1(x) =
2ı
π2

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

x

R2

sin (z1∆) sin (z2∆)
z2 (z2

1 + z2
2)

eı
(
z1ζ

(i)
1 +z2ζ

( j)
2

)
dz1 dz2 . (3.56)

Let us transform the exponential function in terms of sine and cosine functions :

eı
(
z1ζ

(i)
1 +z2ζ

( j)
2

)
= cos

(
z1ζ

(i)
1 + z2ζ

( j)
2

)
+ ı sin

(
z1ζ

(i)
1 + z2ζ

( j)
2

)
. (3.57)

After inserting the latter equation into Eq. (3.56) and according to the parity of the integrand,

both integrals reduce to :

α̂1(x) = − 8
π2

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

+∞∫

0

sin (z2∆) cos
(
z2ζ

( j)
2

)

z2



+∞∫

0

sin (z1∆) sin
(
z1ζ

(i)
1

)

z2
1 + z2

2

dz1


dz2 .(3.58)

The solution of the z1-integral is given by (Gradshteyn & Ryzhik 2007, 3.742.1, p. 432) :

Iz1 ≡
+∞∫

0

sin (z1∆) sin
(
z1ζ

(i)
1

)

z2
1 + z2

2

dz1 =
π

4|z2|
(
e−|z2 |

∣∣∣∣∆−ζ(i)
1

∣∣∣∣ − e−|z2 |
∣∣∣∣∆+ζ(i)

1

∣∣∣∣
)
. (3.59)

Inserting the latter equation into Eq. (3.58) leads to :

α̂1(x) = −2
π

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

+∞∫

0

sin (z2∆) cos
(
z2ζ

( j)
2

)

z2 |z2|
(
e−|z2 |

∣∣∣∣∆−ζ(i)
1

∣∣∣∣ − e−|z2 |
∣∣∣∣∆+ζ(i)

1

∣∣∣∣
)

dz2 . (3.60)

The latter equation can be simplified once we consider separately the two cases 0 ≤ |ζ(i)
1 | ≤ ∆

and |ζ(i)
1 | > ∆ :

α̂1(x) =



− 4
π

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

+∞∫

0

sin (z2∆) cos
(
z2ζ

( j)
2

)

z2
2

sign
(
ζ(i)

1

)
e−z2∆ sinh

(
z2

∣∣∣ζ(i)
1

∣∣∣
)

dz2

if 0 ≤
∣∣∣ζ(i)

1

∣∣∣ ≤ ∆ ,

− 4
π

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

+∞∫

0

sin (z2∆) cos
(
z2ζ

( j)
2

)

z2
2

sign
(
ζ(i)

1

)
e−z2 |ζ(i)

1 | sinh (z2∆) dz2

if 0 ≤ ∆ ≤
∣∣∣ζ(i)

1

∣∣∣ .
(3.61)
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Finally, from the latter equation, the expression of the first component of the deflection angle

can be expressed as :

α̂1(x) = −1
π

∑

−N(i)≤i≤N(i)
−N( j)≤ j≤N( j)

σi j

{(
G [

(2 j + 1)∆; (2i + 1)∆
] − G [

(2 j + 1)∆; (2i − 1)∆
] )

−
(
G [

(2 j − 1)∆; (2i + 1)∆
] − G [

(2 j − 1)∆; (2i − 1)∆
] )

+ 2πx1 χIi(x1) χI j(x2)
}
,

(3.62)

where Ik is already defined by Eq. (3.51), and the function G(a; b) is given by :

G[a; b] = b arctan
(
a − x2

x1 − b

)
+ x1 arctan

(
x1 − b
a − x2

)
−

(a − x2

2

)
ln

(
(x1 − b)2 + (a − x2)2

)
.(3.63)

The term (π/2)x1 χIi(x1) χI j(x2) vanishes for all values of i and j excepted the ones cor-

responding to the pixel which contains the impact parameter. The expression of α̂2(x) is

simply given by inverting the role between x1 and x2 in Eqs. (3.62) and (3.63). We note that

we recover the case of an infinite sheet with a constant surface mass density by assuming

that N(i) = N( j) = 0 and ∆ → +∞. Indeed, under these assumptions and from Eqs. (3.62)

and (3.63), one simply finds :

lim
∆→+∞

[
∆ arctan

(
∆ ± x2

x1 + ∆

)
+ ∆ arctan

(
∆ ± x2

x1 − ∆

)]
= −x1 , (3.64)

lim
∆→+∞

[
x1 arctan

(±x1 − ∆

∆ − x2

)
+ x1 arctan

(±x1 − ∆

∆ + x2

)]
= −ı x1 ln

(
1 − ı
1 + ı

)
,

= −π
2

x1 , (3.65)

and

lim
∆→+∞

[
∆ ± x2

2
ln

(
(x1 + ∆)2 + (x2 ± ∆)2

(x1 − ∆)2 + (x2 ± ∆)2

)]
= x1 . (3.66)

After inserting Eqs. (3.64), (3.65) and (3.66) into Eq. (3.62), the expression of the first

component of the deflection angle reduces to :

α̂1(x1) = − κ
π

(2π x1 − 2x1 − πx1 + 2x1) ,

= −κ x1 , (3.67)
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where we have adopted the notation κ = σ00. The same procedure can be performed for the

second component. As a result, we obtain :

α̂(x) = −κ x , (3.68)

which constitutes, of course, the expected result.

3.6.2 Test of Eq. (3.62) for the case of the NSIS lens model

In the present section, we propose to illustrate the validity of Eq. (3.62) for the case of

the well-known non-singular isothermal sphere (NSIS). Such a model is defined by an

axially symmetric mass distribution characterized by the following surface mass density (see

Kormann & al., 1994) :

κ(x) =
1

2
√

x2
1 + x2

2 + ρ2
c

, (3.69)

where ρc represents the core radius. The expression of the associated deflection angle is

given by :

α̂(x) = −

√
x2

1 + x2
2 + ρ2

c − ρc

x2
1 + x2

2

x . (3.70)

First, we compare the components of the deflection angle for an arbitrary value of the

impact parameter. On one hand, for a fixed value of the impact parameter, for instance

x = (3.57, 1.41), expressed in dimensionless units, we compare the values of α̂(x) obtained

with three constant dimensioned grids characterized by the different pixel sizes ∆ = 2,

∆ = 2/5, and ∆ = 1/10, also expressed in dimensionless units (see Fig. 3.2). For each grid,

we have represented both the surface mass density profile associated with the grid and the

real one given by Eq. (3.69). A summary of the corresponding values of α̂(x) may be found

in Table 3.1. As expected, the value of α̂(x), derived from the grid model, tends towards

the real one as the resolution increases. On the other hand, for a fixed value of the impact

parameter, for instance x = (10.74, 12.41), and grid resolution ∆ = 2/3, both expressed in

dimensionless units, we compare the values of α̂(x) obtained with three grids characterized

by the different dimensions L = 19∆, L = 31∆ and L = 121∆ (see Fig. 3.3). For each

grid, we have also represented both the surface mass density profile associated with the grid
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Figure 3.2: Illustration of three grid models having the same size (L = 18) but characterized by
different pixel sizes in order to represent an NSIS model. The red dot and the black cross (left panels)
represent the impact parameter and the grid center positions, respectively. The black and red curves
(right panels) represent the surface mass density profile associated with the grid and the real lens
models, respectively.
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Figure 3.3: Illustration of three fixed resolution (∆ = 2/3) grid models characterized by different
sizes in order to represent an NSIS model. The red dot and the black cross (left panels) represent the
impact parameter and the grid center positions, respectively. The black and red curves (right panels)
represent the surface mass density profile associated with the grid and the real lens models,
respectively.
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Table 3.1: Comparison between the components of the deflection angle derived from the grid models
and the NSIS one. The resolution, characterized by the size ∆ of the pixels, increases from one model
to another. The dimension of the grid is fixed to L = 18.

α̂1(x) α̂2(x) ∆α̂1 ∆α̂2

NSIS −0.374067 - 0.147741 – –
∆ = 2 -0.351322 -0.149219 -0.022745 0.001478
∆ = 2/5 -0.374606 -0.146881 0.000539 -0.000860
∆ = 1/10 -0.374274 -0.147150 0.000207 -0.000591

Table 3.2: Comparison between the components of the deflection angle derived from the grid models
and the NSIS one. The dimension of the grid, characterized by L, increases from one model to
another. The size of a pixel is fixed to ∆ = 2/3.

α̂1(x) α̂2(x) ∆α̂1 ∆α̂2

NSIS −0.514061 - 0.593994 – –
L = 19∆ -0.423368 -0.540215 -0.090693 -0.053779
L = 31∆ -0.494017 -0.581257 0.020044 -0.127370
L = 121∆ -0.513403 -0.593611 0.000658 -0.000383

and the real one given by Eq. (3.69). A summary of the corresponding values of α̂(x) may

be found in Table 3.2. Once again, the value of α̂(x), derived from the grid model, tends

towards the real one as the grid dimension increases.

Secondly, we compare the lensed images produced by the NSIS lens model and the NSIS

successively modeled with two grids characterized by different resolutions. To this end, we

have selected a circular 2-D gaussian image for the source and set the core radius of the

NSIS equal to half the FWHM of the source. The lensed images obtained with the analytical

lens model are shown in Fig. 3.4. The lensed images produced by means of the two grids,

their representations and residual maps obtained by comparison (in terms of absolute value)

between the grid and the analytical lens models are shown in Figs. 3.5 and 3.6. For the

case of the first grid (see Fig. 3.5), the dimensionless size of the pixels has been set equal to

∆ = 25 and Ni = N j = 4. For the case of the second grid (see Fig. 3.6), the dimensionless

size of the pixels has been set equal to ∆ = 5 and Ni = N j = 20. Let us note that the total size

of the grid is equivalent in both cases (L = 100). As expected, the highest resolution shows

the best agreement with the lensed images produced by the analytical NSIS lens model.

The analytical expressions obtained in this section might constitute a very useful result,

particularly for the lens modeling. Indeed, together with a sophisticated genetic algorithm,

called Ferret, which allows to perform global optimization, we project to investigate the

modeling of well-known gravitational lens systems. As any non-parametric lens model, the

lens modeling can be approached without any preconception about the mass distribution of
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Figure 3.4: Left panel : the circular 2-D gaussian source. The white cross locates the center of the
deflector. Right panel : the lensed images produced by the NSIS model

the deflector. In addition, having analytical expressions for α̂(x) may lead to very efficient

numerical calculations which are, up to now, essential in order to invert the lens equation.
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Figure 3.5: Illustration of the lensed images produced by a grid lens model characterized by ∆ = 20
and Ni = N j = 5 and which approximates the analytical NSIS lens model. The top left panel
represents the source plane. The small filled square represents the size of a single pixel adopted to
characterize the NSIS mass distribution, while the big white square represents the total grid, both in
comparison with the source size. The top right panel represents the pixellated mass distribution in the
lens plane. The bottom panels represent the lensed images and the residual map, respectively.
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Figure 3.6: Illustration of the lensed images produced by a grid lens model characterized by ∆ = 5
and Ni = N j = 20 and which approximates the analytical NSIS lens model. The top left panel
represents the source plane. The small filled square represents the size of a single pixel adopted to
characterize the NSIS mass distribution, while the big white square represents the total grid, both in
comparison with the source size. The top right panel represents the pixellated mass distribution in the
lens plane. The bottom panels represent the lensed images and the residual map, respectively.
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3.7 Paper IV

The non-singular isothermal ellipsoid
lens model revisited : a complete

analytical solution

O. Wertz and J. Surdej
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ABSTRACT
The non-singular isothermal ellipsoid (NSIE) represents a realistic class of deflector models
leading to the formation of up to five lensed images. The first analytical approach of the
NSIE has been proposed by Kormann & al. 1994. Unfortunately, the complicated expression
derived for the deflection angle causes strong limitations for a proper analytical treatment of
this model. In the present paper, we propose a new expression for the NSIE deflection angle
based upon the Fourier approach (Wertz & Surdej 2014). Furthermore, we derive a complete
analytical expression for the normalized deflection potential ψ̂ as well as for the critical and
caustic curves, even off the axis.

Key words: gravitational lensing : strong – cosmology : cosmological parameters.

1 INTRODUCTION

The complete analytical treatment of a family of deflector models
presents the advantage to lead to rigorous expressions for the de-
flection angle, the deflection potential, the time delays and ampli-
fication ratios between pairs of lensed images, as well as the shape
of the critical curves and their associated caustic curves. For the
case of the NSIE family of models, an expression of the deflec-
tion angle has first been proposed by Kormann & al. (1994, here-
after KSB). Unfortunately, the complicated expression derived for
the deflection angle by KSB implies strong limitations for a com-
plete analytical treatment of this family of models. Their approach
consists in using the complex formalism together with the results
introduced by Bourassa & Kantowski (1973, 1975), corrected by
Bray (1984). This elegant representation of the lens theory allows
KSB to obtain analytical expressions for the deflection angle and
the internal shear. From these results, KSB were able to derive an-
alytical expressions for the intersection points between the critical
(resp. caustic) curves and the axes of the orthogonal coordinate sys-
tem, which restricted the analytic treatment to only a few particular
points. However, they have constructed complete critical and caus-
tic curves from an unfactorizable third order polynomial in κ, the
dimensionless surface mass density.

In the present paper, we apply the Fourier approach, devel-
oped by the authors (Wertz & Surdej 2014, hereafter WS), to derive
the expression of the NSIE deflection angle. Although rigorously
equivalent to the one derived by KSB, our expression of the de-
flection angle is more simple (Section 2). Consequently, this sim-
plification has allowed us to determine analytical expressions for
the deflection potential (Section 3) and a complete analytical treat-

⋆ Aspirant du F.R.S. - FNRS.
† Also Directeur de Recherche honoraire du F.R.S. -FNRS.

ment of the critical and caustic curves, even off the axes (Section
4). Some conclusions form the last section.

2 THE DEFLECTION ANGLE FROM THE FOURIER
APPROACH

We have recently proposed the use of the Fourier transform in order
to analytically derive simple expressions of the gravitational lens
deflection angle (see WS). As a reminder, the deflection angle can
always be expressed as a convolution product:

α̂(x) = − 1
π
κ(x) ⊗ x

|x|2 , (1)

where x = (x1, x2) corresponds to the normalized impact parameter
vector defined in the lens plane, perpendicular to the line-of-sight,
and κ(x) represents the dimensionless surface mass density, also
called convergence. Making use of the Fourier convolution theo-
rem and after some simplifications, the expression of the deflection
angle becomes

α̂(x) = 2 ı F +
[
F − [κ(x)]

z
|z|2

]
, (2)

where

F ∓[ f ] =
1

2π

x

R2

f (x) e∓ıx·zdx , (3)

denotes the Fourier transform (−) or its inverse (+), and ı represents
the imaginary unit.

The NSIE models are characterized by the dimensionless sur-
face mass density :

κ(x1, x2) =

√
f

2
√

x2
1 + f 2 x2

2 + ρ
2
c

≡
√

f
2ξ

, (4)
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2 O. Wertz and J. Surdej

where ρc represents the dimensionless core radius and ξ is defined

by ξ =
√

x2
1 + f 2 x2

2 + ρ
2
c . The NSIE models constitute a special

case of a more general family of models characterized by the di-
mensionless surface mass density having the form

κ(x1; x2) =
κ0(

ρ2
c + ρ

2)ν , (5)

where ρ =
√

x2
1 + f 2 x2

2, and for which we have already published
the expressions of the deflection angle components (see WS, Eqs.
(29), (30) and (31)). The NSIE family of models is obtained from
Eq. (5) by considering κ0 =

√
f /2 and ν = 1/2. After substituting

Eq. (4) into Eq. (2), the deflection angle takes the form:

α̂1(x1; x2) =

√
f

2 f ′
ln


2 f f ′x1ρc + ρ

2
c + f 2

(
r2 − ρ2

c

)

(2 − f 2)x2
1 + ρ

2
c + f 2(x2

2 − ρ2
c) + 2 f ′x1ξ

 , (6)

and

α̂2(x1; x2) =

√
f

f ′
arctan

(
f f ′x2( fρc − f ′x1 − ξ)

f ′x1(ρc + f ξ) + ( fρ2 + f ′2ρcξ)

)
, (7)

where r =
√

x2
1 + x2

2 and f ′ =
√

1 − f 2. These expressions of the
deflection angle components constitute a new simplification of the
expressions that we have already published for the NSIE (see WS).
We note that Eqs. (6) and (7) remain rigorously equivalent to the ex-
pressions derived by Kormann et al. (1994, Eqs. (62a-e)) although
no complex quantities are here involved.

For ρc = 0, these equations reduce to the singular isothermal
ellipsoid (SIE) deflection angle. Furthermore, by taking the limit of
Eqs. (6) and (7), as f tends towards 1, we retrieve the expression of
the non-singular isothermal sphere (NSIS) deflection angle.

3 THE DEFLECTION POTENTIAL ψ̂

The complicated expression of the deflection angle has caused
strong limitations on the analytic handling of this family of models.
As far as we know, the analytical expression of the deflection po-
tential has never been published yet. Fortunately, the simplification
of the deflection angle expressions that we have obtained allows us
to derive the analytical expression of ψ̂(x1; x2).

First, we recall that α̂(x) = −∇ψ̂(x). Since the deflection po-
tential is defined up to an additive constant, we have :
∫

α̂1(x1; x2) dx1 = −ψ̂1(x1; x2) + K1(x2) ≡ −ψ̂(x1; x2) , (8)

and
∫

α̂2(x1; x2) dx2 = −ψ̂2(x1; x2) + K2(x1) ≡ −ψ̂(x1; x2) , (9)

where K1 (resp. K2) represents an integration constant with respect
to x1 (resp. x2) which could be a function of x2 (resp. x1). Therefore,
by taking the derivative of Eq. (8) with respect to x2, we obtain an
equation for which only dK1(x2)/dx2 is unknown :

dK1(x2)
dx2

= α̂2(x1; x2) +
∂ψ̂1(x1; x2)

∂x2
. (10)

We deduce the expression of ψ̂1(x1; x2) from the undefined integral
of Eq. (6) in which we split the logarithm of a ratio into the differ-

ence of two logarithms.

−ψ̂1(x1; x2) =

√
f

2 f ′

∫
ln

(
f 2 x2

1 + 2 f f ′ρc x1 + f 2 x2
2 + f

′2ρ2
c

)
dx1

−
√

f
2 f ′

∫
ln

(
(2 − f 2)x2

1 + 2 f ′ξx1 + f 2 x2
2 + f

′2ρ2
c

)
dx1 .

(11)

The two latter undefined integrals can be analytically calculated
(see App. A1). After substituting the derivative of Eq. (11) with
respect to x2 into Eq. (10) and some algebraic simplifications, we
find the following very simple expression for dK1(x2)/dx2 :

dK1(x2)
dx2

= −sign (x2)
π

√
f

2 f ′
, (12)

from which we deduce the expression of the function K1(x2) :

K1(x2) = −|x2|
π

√
f

2 f ′
. (13)

After substituting Eq. (13) and the expression of ψ̂1(x1; x2) into
Eq. (8), the expression of the NSIE deflection potential can be ex-
pressed as :

ψ̂(x1; x2) =

√
f

4 f ′

[
2x2

(
arctan

(
f 2r2 − f

′2ρ2
c

2 f f ′ρc x2

)
− arctan

(
f 2 f ′x2ξ

P+

)

−arctan
(

f 2 f ′x2ξ

P−

))
− ρc f ′

f
ln

[
Q+
Q−

((
f 2r2 + f

′2ρ2
c

)2 − (2 f f ′ρc x1)2
)]

+2x1ln
[

( f ′x1 + ξ)2 − ( fρc)2

( f x1 + f ′ρc)2 + ( f x2)2

]
+ |x2| π sign

|x2|−
√
ρc( f ξ − ρc)

f f ′


 ,

(14)

where P± = f 2 f
′2 x2

2 ± fρcξ+ ρ
2
c and Q± = f 2(r2+ ρ2

c)± 2 fρcξ+ ρ
2
c .

We note that the argument of the sign function is real only if ρ ≥
ρc f ′/ f . For ρ < ρc f ′/ f , we set sign (z) = 1 with z ∈ C. In addition,
the derived expression of ψ̂ satisfies of course the Poisson equation
∆ψ̂(x1; x2) = 2κ(x1; x2).

For the case ρc = 0, i.e. for the SIE models, we retrieve
the well-known expression of the deflection potential published in
KSB. Indeed, for ρc = 0, we have ξ = ρ, P± = f 2 f

′2 x2
2, Q± = f 2r2,

and the deflection angle reduces to :

ψ̂SIE(x1; x2) =

√
f

f ′

[
x2

(
sign (x2)

π

4
− arctan

(
ρ

f ′ x2

))

+x1ln
(

f ′x1 + ρ

f r

)
+ |x2| π4

]
.

(15)

Furthermore, since ρ ≥ 0, f ′ ≥ 0 and by definition of the arctangent
function, we have :

arctan
(
ρ

f ′x2

)
=


π/2 − arctan

(
f ′x2
ρ

)
if x2 ≥ 0

−π/2 − arctan
(

f ′ x2
ρ

)
if x2 < 0 ,

(16)

which leads to :

ψ̂SIE(x1; x2) =

√
f

f ′

[
x2 arctan

(
f ′x2

ρ

)
+ x1ln

(
f ′x1 + ρ

f r

)]
. (17)

(18)

Finally, making use of the two following identities :

arctan (z) = arcsin
(

z√
1 + z2

)
, (19)

and

ln (z) = arcsinh
(

z2 − 1
2 z

)
, (20)
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The non-singular isothermal ellipsoid revisited 3

we retrieve the expression of the SIE deflection potential :

ψ̂SIE(x1; x2) =

√
f

f ′

[
x2 arcsin

(
f ′

x2

r

)
+ x1 arcsinh

(
f ′

f
x1

r

)]
. (21)

4 CRITICAL AND CAUSTIC CURVES

4.1 Problem statement

The critical curves correspond to the geometrical locus in the lens
plane at which the amplification factor µ tends towards infinity. We
recall that µ is defined by :

µ(x1; x2) =
1

(1 − κ)2 − γ2
, (22)

where κ(x1; x2) is given by Eq. (5), γ2 = γ2
1 + γ

2
2, and the two com-

ponents of the internal shear by :

γ1(x1; x2) =
1
2

(
ψ̂,11(x1; x2) − ψ̂,22(x1; x2)

)
,

=
1
2

(
α̂1,1(x1; x2) − α̂2,2(x1; x2)

)
(23)

and

γ2(x1; x2) = ψ̂,12(x1; x2) = α̂1,2(x1; x2) = α̂2,1(x1; x2) , (24)

where the derivative with respect to x1 (resp. x2) is denoted by
comma 1 (resp. comma 2). After substituting Eqs. (4), (23) and
(24) into Eq. (22), one obtains a third order equation in κ which
cannot be factorized off the axes, with respect to x1 or x2 (see KSB,
Eq. (69 a - e)). However, we propose to modify Eq. (22) into a form
which can be factorized, and therefore obtain a complete analytical
expression for the critical and caustic curves.

We first note that, from the Poisson equation :

ψ̂,ii(x1; x2) = 2 κ(x1; x2) − ψ̂, j j(x1; x2) , (25)

where i = 1 or 2 and j = 2 or 1. After substituting Eq. (23) into
Eq. (22), and making use of Eq. (25) with i = 2 (hence j = 1), the
amplification factor transforms into :

µ−1(x1; x2) = 1 − 2 κ(x1; x2) + ψ̂,11(x1; x2) ψ̂,22(x1; x2) − γ2
2(x1; x2) .

(26)
Our interest in this expression of the amplification factor lies in
the fact that the terms κ, ψ̂,11 and ψ̂,22 are no longer squared,
which simplify the further calculations. The explicit expressions of
ψ̂,11(x1; x2) and ψ̂,22(x1; x2) may be found in App. A2. The expres-
sions of γ2

1(x1; x2) and γ2
2(x1; x2) have been first derived by KSB

(see Eqs. (63 a - c)).
Since we are searching the solutions of the equation µ−1 = 0

in terms of x1 (or x2) and the parameters f and ρc, we gather all the
explicit terms in ξ and obtain :

µ−1(x1; x2) = F2(x1; x2) ξ + F1(x1; x2) = 0 , (27)

where the functions Fi(x1; x2), given in App. A3, do not depend ex-
plicitly on ξ. Furthermore, all solutions of Eq. (27) are necessarily
solutions of the following equation :

F2
2 (x1; x2) ξ2 − F2

1 (x1; x2) = 0 , (28)

even though the reciprocal is not true. Eq. (28) has the advantage to
be expressed in terms of x1, x2 and their whole power. Therefore,
Eq. (28) may be considered as a polynomial with respect to x1 or
x2, and can then be simplified to obtain the following equation to
resolve :
(
ζ3 + p2ζ

2 + p1ζ + p0

)
G1(x1; x2) G2(x1; x2) = 0 , (29)

where ζ = x2
1, pi representing real functions of x2, f , ρc, and are

defined by :

p2 =

[
x2

2

(
2 + f 2

)
−

(
2 − 3 f 2

) ρ2
c

f 2 − f
]
, (30)

p1 =

[
x4

2

(
1 + 2 f 2

)
+ x2

2
2
f 2

((
1 − f 2 + f 4

)
ρ2

c − f 3
)

+
ρc

f 4

(
2 f 9/2 − 2 f 3

(
1 + f 2

)
ρc +

(
1 − 4 f 2 + 3 f 4

)
ρ3

c

)]
,

(31)

and

p0 = x6
2 f 2 + x4

2

[(
3 − 2 f 2

)
ρ2

c − f
]

+x2
2
ρc

f 2

[
2 f 5/2 − 2 f

(
1 + f 2

)
ρc +

(
3 − 4 f 2 + f 4

)
ρ3

c

]

+
ρ2

c

f 4

[
− f 4 + 2 f 5/2

(
1 + f 2

)
ρc − f

(
1 + f 2

)2
ρ2

c + f
′4ρ4

c

]
.

(32)

Since they only lead to imaginary solutions, the functions
G1(x1; x2) and G2(x1; x2) are without any real interest. Therefore,
the squared value of the critical curve point abscissae are solutions
of the equation ζ3+ p2ζ

2+ p1ζ + p0 = 0. The resolution of the latter
equation leads to six solutions for x1 in terms of x2, f and ρc :

x(1)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

(
41/3 S 1

S 2
+ S 2

)
, (33)

x(2)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

(
41/3 

S 1

S 2
+ ∗ S 2

)
, (34)

and

x(3)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

(
41/3 ∗

S 1

S 2
+  S 2

)
, (35)

where  =
(
−1 + ı

√
3
)
/2 represents the first complex root of the

unity, ∗ its complex conjugate, S 1 is given by:

S 1 = f 4 f
′4 x4

2 + x2
2

(
2 f 2 f

′2
(
f 3 − 7ρ2

c

))

+
(

f 6 − 6 f 9/2ρc + 10 f 3ρ2
c + ρ

4
c

)
,

(36)

and S 2 is defined by :

S 2 =
(
A1 + R

√
A2

)1/3
, (37)

where A1 and A2 both represent third order polynoms with respect
to x2

2 and are given by :

A1 = x6
2 2 f 6 f

′6 + x4
2 6 f 4 f

′4
(

f 3 + 11ρ2
c

)

+x2
2 6 f 2 f

′2
(
f 6 − 3 f 9/2ρc − 2 f 3ρ2

c − 11ρ4
c

)

+ 2 f 9 − 18 f 15/2ρc + 57 f 6ρ2
c − 90 f 9/2ρ3

c + 78 f 3ρ4
c − 2ρ6

c ,

(38)

and

A2 = 12 f 4 f
′6 x6

2 + 24x4
2 f 2 f

′4
(
f 3/2 + ρc

)2

+12x2
2 f
′2

(
f 3/2 + ρc

) (
f 9/2 − 6 f 3ρc + 3 f 3/2ρ2

c + ρ
3
c

)

−3 fρc

(
f 3/2 − 2ρc

)2 (
4 f 3/2 + ρc

)
,

(39)

and, finally, R is given by :

R = 3 fρc

∣∣∣ f 3 + 2 f 2 f
′2 x2

2 − 4 f 3/2ρc + 2ρ2
c

∣∣∣ . (40)

We note that for ρc >
√

f /(1+ f ) ≡ ρc,max, we have x(i)
1 ∈ C for any
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4 O. Wertz and J. Surdej

values of x2, which implies that there are no critical curves. This
particular value of ρ has first been deduced by KSB. In the remain-
der, we will only consider the three ”+” solutions for the mathe-
matical treatment. Indeed, the ”−” solutions are exactly similar due
to the symmetry of the deflection potential.

4.2 Validity range of Eqs. (33) - (35)

According to the values of f , ρc and x2, the values of the critical
point abscissae are given by the solutions x(1)

1 , x(2)
1 or x(3)

1 . In order
to obtain the validity range of each solution, we have to verify under
which conditions these solutions are real and verify Eq. (27). The
solutions x(i)

1 are real only if their radicands, denoted by Γ(i) in Eqs.
(41) to (43), are real and positive. We will investigate separately
these two cases in the following sections.

Γ(1) = −p2 +
1

21/3 f 2

(
41/3 S 1

S 2
+ S 2

)
, (41)

Γ(2) = −p2 +
1

21/3 f 2

(
41/3 

S 1

S 2
+ ∗ S 2

)
, (42)

and

Γ(3) = −p2 +
1

21/3 f 2

(
41/3 ∗

S 1

S 2
+  S 2

)
. (43)

4.2.1 Conditions under which Γ(i) ∈ R
We note that for any value of 0 ≤ f ≤ 1, ρc ≥ 0 and x2 ∈ R, we have
S 1 ∈ R, A1 ∈ R and R ∈ R, whereas S 2 might not be real, which
may lead to x(i)

1 ∈ C. From Eq. (37), we deduce that S 2 lies in the
complex field when A2 < 0 with R 6= 0 or A† = A1 + R

√
A2 < 0.

The first condition is fulfilled for R 6= 0 and |x2| < X(2)
2 where X(2)

2 , a
function of f and ρc, is defined in App. A4. Furthermore, from Eq.
(40), we deduce that R = 0 if x2 = X(1)

2 where the expression of X(1)
2

is given by :

X(1)
2 =

√
2

2 f f ′

√
−2ρ2

c + 4 f 3/2ρc − f 3 . (44)

We note that X(1)
2 is real only for ρ(1−)

c ≤ ρc ≤ ρ(1+)
c , where ρ(1±)

c is
defined by :

ρ(1±)
c =

√
2

2

√
3 ± 2

√
2 f 3/2 . (45)

The second condition requires more attention. The study of the
function A† with respect to x2 leads to the conclusion that a nec-
essary condition (but not sufficient) to obtain A† negative is X(2)

2 <

|x2| < X(3)
2 where X(3)

2 is defined by:

X(3)
2 =

1
f f ′

√
7ρ2

c − f 3 −
√

6 ρc

√
8 ρ3

c − 4 f 3ρc + f 9/2 . (46)

We note that X(3)
2 is real only for ρc ≥ f 3/2/2, which indicates that

for ρc < f 3/2/2, the function A† is positive for any value |x2| > X(2)
2 .

Furthermore, for the case X(2)
2 < |x2| < X(3)

2 and for a fixed value
of f , we note that decreasing values of ρc implies increasing values
of A†, and, for fixed values of f and ρc, the sign of A† remains
unchanged. In other words, if we find a value of ρc, denoted for
instance by ρ̃c, for which A† > 0, then, for any real value ρc < ρ̃c

and X(2)
2 < |x2| < X(3)

2 , we have A† > 0. Therefore, the change
in sign of A† essentially depends on the values of f and ρc. By
taking account of these two latter observations, we may solve the

Table 1. Summary of the real or complex nature and the sign study of the
function A†

ρc > f 3/2/2

|x2 | < X(2)
2 X(2)

2 < |x2 | < X(3)
2 |x2 | > X(3)

2

f > f † 0 < f < f †

f 3/2/2 < ρc < ρ
†
c ρc > ρ

†
c

A† ∈ C > 0 > 0 < 0 > 0
S 2 ∈ C ∈ R ∈ R ∈ C ∈ R
Γ(1) ∈ R ∈ R ∈ R ∈ C ∈ R
Γ(2) ∈ R ∈ C ∈ C ∈ C ∈ C
Γ(3) ∈ R ∈ C ∈ C ∈ R ∈ C

ρc < f 3/2/2

|x2 | < X(2)
2 |x2 |> X(2)

2

A† ∈ C > 0
S 2 ∈ C ∈ R
Γ(1) ∈ R ∈ R
Γ(2) ∈ R ∈ C
Γ(3) ∈ R ∈ C

inequation A† > 0 with respect to f for the particular values ρc =

ρc,max and x2 = X(3)
2 . By denoting f † the value of f for which A† > 0

for these particular values of ρc and |x2|, then A† remains positive
for any value of ρc < ρc,max and X(2)

2 < |x2| < X(3)
2 . As a result, we

deduce that A† > 0 for any value of ρc when f > f †, where the
derived value of f † is given by :

f † =
−1 +

√
17 − 8

√
2

2
≃ 0.6923 . (47)

For the case f ≤ f †, there remains one possibility to obtain
A† < 0. After considering A† as a function of ρc and x2 = X(3)

2 , we
deduce that A† < 0 when ρc > ρ

†
c , where ρ†c is given by :

ρ†c =
f 3/2

2

1 +
√

2
2

 . (48)

We have summarized the real or complex nature of the func-
tion A†, its sign study and the impact on the nature of the function
S 2 in Table 1. We note that S 2 ∈ C does not necessarily imply
x(i)

1 ∈ C. Indeed, for the case X(2)
2 < |x2| < X(3)

2 , 0 < f < f † and
ρc > ρ

†
c , we have deduced that :

41/3 ∗
S 1

S 2
∈ R and  S 2 ∈ R . (49)

Furthermore, for the case |x2| < X(2)
2 , we have deduced that :

41/3 S 1

S 2
= (S 2)∗ , (50)

41/3 
S 1

S 2
= ( ∗ S 2)∗ , (51)

and

41/3 ∗
S 1

S 2
= (  S 2)∗ . (52)

Therefore, even if S 2 ∈ C, we note that Γ(1) remains real, which
implies that x(1)

1 ∈ C only if Γ(1) < 0. In addition, for the case
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|x2| < X(2)
2 and after substituting Eqs. (50), (51) and (52) into Eqs.

(33), (34) and (35), the latter equations can be reduced to:

x(1)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

(χ + χ∗) , (53)

x(2)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

(  χ + ∗ χ∗) , (54)

and

x(3)
1 = ±

√
3

3

√
−p2 +

1
21/3 f 2

( ∗ χ +  χ∗) , (55)

where χ =
(
A1 − ı R

√−A2

)1/3
. As a consequence, the latter equa-

tion leads to the fact that, for |x2| < X(2)
2 , Γ(i) remain real, for any

value of f and ρc, which implies that x(i)
1 ∈ C only if Γ(i) < 0. A

summary of the real or complex nature of Γ(i) may be found in Table
1.

4.2.2 Conditions under which Γ(i) > 0

In order to go further in the nature study of x(i)
1 , we need to deter-

mine, for a given set of parameters f and ρc, for which values of x2

the real value of Γ(i) is positive. We first notice that for any value of
f and ρc for which Γ(1) ∈ R, we have Γ(1) > 0 when |x2| < |x(±)

2,max1
|

and Γ(1) < 0 when |x2| > |x(±)
2,max1

| where x(±)
2,max1

is defined by :

x(±)
2,max1

= ± 1
f

√
f − 2 f 3/2ρc − f ′2ρ2

c . (56)

These special values of x2 correspond to the y-intercept of one of
the critical line, i.e. the top (resp. bottom) part. Furthermore, since
the values of x(±)

2,max1
have to be real, we obtain a condition for the

existence of the critical lines, with respect to ρc. Indeed, from Eq.
(56), we deduce that x(±)

2,max1
∈ R only for ρc ≤

√
f /(1 + f ). In the

same way, for any value of f and ρc for which Γ(3) ∈ R, we have
Γ(3) > 0 when |x2| < |x(±)

2,max2
| and Γ(3) < 0 when |x2| > |x(±)

2,max2
| where

x(±)
2,max2

is defined by :

x(±)
2,max2

= ±
√

2ρc

2 f

√√√
2 f 3/2 − ρc

2 − f 2

1 −
√

1 +
4√
fρc



 . (57)

These special values of x2 correspond to the y-intercept of the other
critical line, i.e. the top (resp. bottom) part. Furthermore, since the
values of x(±)

2,max2
have to be real, we obtain a condition for the exis-

tence of two critical lines, with respect to ρc. Indeed, from Eq. (57),
we deduce that x(±)

2,max2
∈ R only for ρc ≤ f 3/2/(1 + f ). In order to

organise all the particular values of ρc, let us note that for the case
f > f̃ , we have ρ(1+)

c >
√

f /(1 + f ), while for the case f ≤ f̃ ,
ρ(1+)

c ≤ √
f /(1 + f ), where f̃ is given by :

f̃ =
−1 +

√
9 − 4

√
2

2
≃ 0.4142 . (58)

Therefore, we can put in order all the particular values of ρc :

0 < ρ1−
c <

f 3/2

2
<

f 3/2

1 + f
<

√
f

1 + f
, (59)

if f > f̃ , and :

0 < ρ1−
c <

f 3/2

2
<

f 3/2

1 + f
< ρ1+

c ≤
√

f
1 + f

, (60)

if f ≤ f̃ . For all particular ranges of the ρc values defined by Eqs.
(59) and (60), we have studied the sign of the functions Γ(i) with
respect to x2. It is interesting to note that the particular values of x2

for which we observe a sign change for Γ(i) are simply given by X(1)
2 ,

X(3)
2 , x(±)

2,max1
, x(±)

2,max2
, respectively defined by Eqs. (44), (46), (56) and

(57), and X(2)
2 for which the complicated analytical expression can

be found in App. A4. We have summarized the sign study of the
functions Γ(i) in Table B1.

4.3 Analytical expressions of the critical and caustic lines

The last step in determining the validity range of the solutions x(i)
1

consists in testing which values of x(i)
1 , derived from Γ(i) ∈ R+ given

in Table B1, verify Eq. (27). We note that only a few cases for
which Γ(i) > 0 do not correspond to a solution of Eq. (27). We have
summarized the validity range of the solutions x(i)

1 in Table 2. Mak-
ing use of this table, we are able to analytically derive the critical
curves for any set of NSIE model parameters. In order to obtain the
corresponding caustic curves, we substitute the solutions x2 and x(i)

1
into the lens equation. Therefore, the analytical expressions of the
two components of the caustic curves are expressed by :

y1 = x(i)
1 − α̂1

(
x(i)

1 , x2

)
, (61)

and

y2 = x2 − α̂2

(
x(i)

1 , x2

)
, (62)

where the ranges of values of x(i)
1 are given in Table 2, for a fixed

set of model parameters. In App. B, we have illustrated the critical
curves and their corresponding caustic curves for different sets of
model parameters. In Figs. 1 to 6, for a given set of the model pa-
rameters f , ρc and for a given point-like source position (y1, y2), we
have represented the lensed image positions, the critical and caustic
curves, and the Fermat potential, τ(x1; x2) = (x − y)2/2 − ψ̂(x1; x2)
where ψ̂ is derived from Eq. (14).

5 CONCLUSIONS

The adopted Fourier approach has allowed us to derive simple ex-
pressions for the deflection angle of the NSIE gravitational lens
model. Although the latter remains rigorously equivalent to the one
already published by KSB, the expressions derived in the present
work are significantly more simple. Consequently, we have been
able to perform a complete analytical development of the NSIE
family of models. As far as we know, the expression of the deflec-
tion potential, as well as those for the critical and caustic curves,
have never been published before. Furthermore, the proposed an-
alytical treatment avoids numerical calculations of the time delays
and amplification ratios. As a consequence, any further model fit-
ting should be much more efficient and less time consuming. How-
ever, since the lens equation is highly non linear, the lensed image
positions still remain to be numerically derived.

Our results provide an additional proof of the relevance of
the Fourier approach in order to determine the expression of the
deflection angle for the case of more complex gravitational lens
models (see WS). We are convinced that such a method constitutes
a promising alternative to the complex formalism introduced by
Bourassa & Kantowski (1973, 1975), corrected by Bray (1984).
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6 O. Wertz and J. Surdej

Table 2. Validity ranges of the functions x(i)
1 with respect to x2 , f and ρc

0 ≤ ρc < ρ
(1−)
c ρ(1−)

c ≤ ρc <
f 3/2

2
f 3/2

2 ≤ ρc <
f 3/2

1+ f
f 3/2

1+ f ≤ ρc < ρ
(1+)
c ρ(1+)

c ≤ ρc ≤
√

f
1+ f

0 ≤ |x2 | < X(1)
2

x(1)
1 x(2)

1 x(2)
1 x(2)

1 x(3)
1

x(3)
1 if |x2 | < x(+)

2,max2
x(3)

1 if |x2 | < x(+)
2,max2

x(3)
1 if |x2 | < x(+)

2,max2

X(1)
2 ≤ |x2 | < X(2)

2
x(1)

1 x(1)
1 x(1)

1 x(3)
1

x(3)
1 if |x2 | < x(+)

2,max2
x(3)

1 if |x2 | < x(+)
2,max2



x(3)
1 if 0 < f < f †

and ρc > ρ
†
c

x(1)
1 otherwise

X(2)
2 ≤ |x2 | < X(3)

2
x(1)

1 x(1)
1



x(3)
1 if 0 < f < f †

and ρc > ρ
†
c

x(1)
1 otherwise



x(3)
1 if 0 < f < f †

and ρc > ρ
†
c

x(1)
1 otherwise

x(3)
1

X(3)
2 ≤ |x2 | ≤ x(+)

2,max1
x(1)

1 x(1)
1 x(1)

1 x(1)
1 x(1)

1

Particular values X(1)
2 ∈ C X(1)

2 ∈ C
of X(i)

2 with respect to ρc X(3)
2 ∈ C X(3)

2 ∈ C

We note that for f > f̃ , we have
√

f /(1 + f ) < ρ(1+)
c . Therefore, for this particular case, the last column can be omitted and the penultimate is valid for

f 3/2

1+ f ≤ ρc <
√

f /(1 + f ) instead of f 3/2

1+ f ≤ ρc < ρ
(1+)
c

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x 1

x
2

f =0.89
ρ c =0.23

Figure 1. For the lens parameters f = 0.89 and ρc = 0.23, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector
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Figure 2. For the lens parameters f = 0.07 and ρc = 0.02, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector
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Figure 3. For the lens parameters f = 0.68 and ρc = 0.03, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector

Wertz O., Surdej J., 2014, MNRAS, 437 : 1051-1055 (WS)

APPENDIX A: INTERMEDIATE RESULTS

In this appendix, we present some intermediate analytical results
which are used in the present paper.

A1 Undefined integrals

We first propose to express the solutions of the two undefined inte-
grals appearing in Eq. (11). Whereas the first undefined integral can
be straightforwardly derived from results established in Gradshteyn
& Ryzhik (2007, Eq. (2.731), p. 239), the second one is more diffi-
cult, especially because of ξ, which is a function of x1 :

∫
ln

(
f 2 x2

1 + 2 f f ′ρc x1 + f 2 x2
2 + f

′2ρ2
c

)
dx1 = −2x1

+2x2 arctan
(

f x1 + f ′ρc

f x2

)
+

(
x1 +

f ′ρc

f

)
ln

(
f 2r2 + 2 f f ′x1ρc + f

′2ρ2
c

)
,

(A1)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
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x
2

f =0.37
ρ c =0.12

Figure 4. For the lens parameters f = 0.37 and ρc = 0.12, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector

∫
ln

[
(2 − f 2)x2

1 + 2 f ′ξx1 + f 2x2
2 + f

′2ρ2
c

]
dx1 = −2x1

+x1ln
[(

2 − f 2
)

x2
1 + ρ

2
c + f 2

(
x2

2 − ρ2
c

)
+ 2x1 f ′ξ

]

+
1
f

( f x2 − ı f ′ρc) arctan
(

f ξ
f f ′x2 − ıρc

)

+
1
f

( f x2 + ı f ′ρc) arctan
(

f ξ
f f ′x2 + ıρc

)

+
1
f

(− f x2 + ı f ′ρc) arctan
(

f x1

f x2 − ı f ′ρc

)

− 1
f

( f x2 − ı f ′ρc) arctan
(

f x1

f x2 + ı f ′ρc

)
.

(A2)

We note that the result of Eq. (A2) is real. Indeed, the imaginary
parts pairwise vanish.

A2 Expression of the NSIE internal shear

In order to derive the expressions for the two components of the
internal shear (γ1 and γ2), we give the expressions of ψ̂,11 and ψ̂,22

in terms of x1 and x2 :

ψ̂,11(x1; x2) =

√
f
ξ

Ψ1 (x1, x2)

f 4r4 − 2 f 2 f ′2ρ2
c

(
x2

1 − x2
2

)
+ f ′4ρ4

c

, (A3)

where Ψ1 is defined by :

Ψ1 (x1, x2) = ρ4
c + f 4 x2

2

(
r2 − ρ2

c

)
− f 2ρ2

c

(
x2

1 − 2x2
2 + ρ

2
c

)
+

ξ fρc

(
f 2

(
x2

1 − x2
2

)
− ρ2

c f
′2
)
,

(A4)
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Figure 5. For the lens parameters f = 0.53 and ρc = 0.10, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector

and

ψ̂,22(x1; x2) =
f 3/2

ξ

Ψ2 (x1, x2)

f 4r4 − 2 f 2 f ′2ρ2
c

(
x2

1 − x2
2

)
+ f ′4ρ4

c

, (A5)

where Ψ2 is defined by :

Ψ2 (x1, x2) = ξ ρc

(
ρ2

c − f 2
(
x2

1 − x2
2 + ρ

2
c

))

+ f 3
(
x2

1r2 +
(
2x2

1 − x2
2

)
ρ2

c + ρ
4
c

)
− fρ2

c

(
x2

1 + ρ
2
c

)
.

(A6)

The expression of γ2 is given by :

γ2(x1, x2) =
f 5/2x1 x2

(
f ′

(
ξ2 + ( f ′x1 − fρc)2

)
+ 2 f ′ξ ( f ′x1 − fρc)

)

f ′ξ
(
2 f f ′x1ρc + ρ2

c + f 2 (
r2 − ρ2

c
))

T (x1, x2)
,

(A7)
where

T (x1, x2) = 2x2
1 + ρ

2
c − f 2

(
x2

1 − x2
2 + ρ

2
c

)
+ 2 f ′x1ξ . (A8)

A3 Expressions of the function Fi(x1, x2)

The expressions of the functions F1(x1, x2) and F2(x1, x2) are rather
long. However, the expression F2

2 (x1, x2) ξ2−F2
1 (x1, x2) takes a sur-

prisingly simple form (see Eq. (28)). First, the function F1(x1, x2)
can be expressed as a polynomial of the 9th degree with respect to
x1:

F1(x1, x2) = s9 x9
1 + s8 x8

1 + 4 f 2 f ′s7 x7
1 + s6 x6

1 + s5 x5
1 + s4 x4

1

+4 f ′s3 x3
1 + s2 x2

1 + s1x1 + s0 ,
(A9)

where the coefficients si are given by :

s9 = 4 f 4 f ′
(
1 + f

′2
)
, (A10)

s8 = − f 9/2
(
8 − 8 f 2 + f 4

)
+ 16 f 3

(
2 − 3 f 2 + f 4

)
ρc , (A11)

−1 −0.5 0 0.5 1
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f =0.26
ρ c =0.13

Figure 6. For the lens parameters f = 0.26 and ρc = 0.13, we have rep-
resented the position of a point-like source (cross ×), the associated lensed
images (dots •), the critical curves (dashed lines), the caustic curves (solid
black lines) and the iso-contours of the Fermat potential (gray solid lines).
The cross + denotes the central position of the deflector

s7 = f 2
(
4 + f 2 − f 4

)
x2

2 − f 3/2
(
8 − 8 f 2 + f 4

)
ρc

+
(
12 − 15 f 2 + 4 f 4

)
ρ2

c ,
(A12)

s6 = x2
2

(
4 f 9/2

(
−4 + 2 f 2 + f 4

)
+ 16 f 3

(
2 − 3 f 4 + f 6

)
ρc

)

+ f 4
(
8 − 8 f 2 + f 4

)
ρc + 4 f 5/2

(
−12 + 22 f 2 − 11 f 4 + f 6

)
ρ2

c

+16 f
′2 f

(
2 − f 4

)
ρ3

c ,

(A13)

s5 =
(
4 f 4 f ′

(
2 + 5 f 2 − f 4

))
x4

2 + 4 f ′x2
2

(
f 7/2

(
−8 + 5 f 4

)
ρc

+ f 2
(
4 + 18 f 2 − 24 f 4 + 5 f 6

)
ρ2

c

)
+ 4 f ′

(
f 3

(
4 − 6 f 2 + f 4

)
ρ2

c

− f
′2 f 3/2

(
8 − f 4

)
ρ3

c +
(
2 + 13 f 2 − 25 f 4 + 10 f 6

)
ρ4

c

)
,

(A14)

s4 = x4
2

(
2 f 9/2

(
−4 − 4 f 2 + 5 f 4

)
+ 48 f 5 f

′2ρc

)

+x2
2

((
8 f 4 − 5 f 8

)
ρc − 4 f 5/2

(
4 + 8 f 2 − 21 f 4 + 9 f 6

)
ρ2

c

+32 f 3
(
3 − 5 f 2 + 2 f 4

)
ρ3

c

)
+

(
f 2

(
8 − 24 f 2 + 23 f 4 − 5 f 6

)
ρ3

c

+2
√

f
(
−4 − 20 f 2 + 5 f 4

)
f
′4ρ4

c − 16 f
(
−3 + f 2

)
f
′4ρ5

c

)
,

(A15)

s3 = x6
2 f 6

(
3 + f 2

)
+ x4

2 f 4ρc

(
− f 3/2

(
8 − 5 f 2

)
+ 9ρc − 6 f 4ρc

)

+x2
2 f 2ρ2

c

[
2 f 3

(
1 − 2 f 2

)
− 2 f 3/2ρc

(
8 − 11 f 2 + 3 f 4

)

+ f
′2ρ2

c

(
9 + 6 f 2 − 5 f 4

)]
+ f

′2ρ4
c

[
2 f 3 − f 3/2 f

′2ρc

(
7 + f

′2
)

+ f
′2ρ2

c

(
3 + 4 f 2

)]
,

(A16)
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s2 = x6
2

(
−4 f 13/2

(
1 + f

′2
)
+ 16 f 7 f

′2ρc

)

+x4
2

[
8 f 6ρc − 5 f 8ρc − 4 f 9/2

(
6 − 7 f 2 + f 4

)
ρ2

c

+16 f 5
(
3 − 5 f 2 + 2 f 4

)
ρ3

c

]

+x2
2

[
16 f 4ρ3

c − 30 f 6ρ3
c + 18 f 8ρ3

c − 4 f 5/2
(
6 + f 2

)
f
′4ρ4

c

+16 f 3
(
3 − 4 f 2 + f 4

)
f
′2ρ5

c

]
+ f 2

(
8 − 17 f 2 + 5 f 4

)
f
′2ρ5

c

−4
√

f
(
2 + f 2

)
f
′6ρ6

c + 16 f f
′6ρ7

c ,

(A17)

s1 = 4 f ′
(

f
′2ρ2

c + f 2 x2
2

)2 [
f 4 x4

2 + x2
2

(
− f 7/2ρc + f 2

(
1 + f

′2
)
ρ2

c

)

+ρ2
c

(
− f 3 − f 3/2 f

′2ρc + f
′2ρ2

c

)]
,

(A18)

s0 =
√

f
(

f ′2ρ2
c + f 2 x2

2

)2 [(
− f 3/2 + ρc

)
ρ3

c + 2 f 2
(
x2

2 − ρ2
c

)
ρ2

c

+ f 4
(
x2

2 − ρ2
c

)2 − f 7/2ρc

(
x2

2 + ρ
2
c

)]
.

(A19)

Secondly, the function F2(x1, x2) can be expressed as a polynomial
of the 8th degree with respect to x1 :

F2(x1, x2) = f 4u8 x8
1 + 4 f 3 f ′u7 x7

1 + u6 x6
1 + 4 f f ′u5 x5

1

+2u4 x4
1 + u3 x3

1 + 4u2 x2
1 + 4

√
f f ′u1 x1 + u0 ,

(A20)

where the coefficients ui are given by :

u8 = 8 − 8 f 2 + f 4 , (A21)

u7 = − f 3/2
(
1 + f

′2
)
+

(
8 − 8 f 2 + f 4

)
ρc , (A22)

u6 = −4 f 4
(
−4 + 2 f 2 + f 4

)
x2

2

+4 f 2 f
′2ρc

[
−4 f 3/2

(
1 + f

′2
)
+

(
12 − 10 f 2 + f 4

)
ρc

]
,

(A23)

u5 = ρc

[
f 3

(
1 + f

′2
)
+ f 3/2

(
−12 + 17 f 2 − 5 f 4

)
ρc +

(
8 − f 4

)
f
′2ρ2

c

]

+x2
2

[
− f 7/2

(
3 + f

′2
)
+ f 2ρc

(
8 − 5 f 4

)]
,

(A24)

u4 = x4
2 f 4

(
4 + 4 f 2 − 5 f 4

)

+2x2
2 f 2ρc

[
−4 f 3/2

(
2 + f 4 + f 2

(
−3 + f

′2
)

+
(
4 + 8 f 2 − 21 f 4 + 9 f 6

)
ρc

)
+ ρ2

c

(
f 3

(
8 − 16 f 2 + 7 f 4

)

−16 f 3/2 f
′4ρc +

(
4 + 16 f 2 − 25 f 4 + 5 f 6

)
f
′2ρ2

c

)]
,

(A25)

u3 = −x4
24 f 9/2 f ′

(
2 + f 2 +

√
f
(
−8 + 5 f 2

)
ρc

)

+x2
2

[
4 f 4 f ′

(
1 + f 2 + f

′2
)
ρc + 8 f 5/2

(
−2 − f 2 + 3 f 4

)
f ′ρ2

c

+8 f 3
(
8 − 3 f 2

)
f
′3ρ3

c

]
+ 4

√
f f
′3ρ3

c

[
−2ρc +

√
f
(
2 f

(
1 − 2 f 2

)

+ f 3/2
(
−3 + 5 f 2

)
ρc + f

′2
(
7 + f

′2
)
ρ2

c

)]
,

(A26)

u2 = f 6
(
1 + f

′2
)

x6
2 + x4

2 f 4ρc

(
−4 f 3/2 f

′2 +
(
6 − 7 f 2 + f 4

)
ρc

)

+x2
2 f 2ρ2

c

(
− f 5 − 8 f 3/2 f

′4ρc −
(
−6 + 5 f 2 + f 4

)
f
′2ρ2

c

)

+ f
′2ρ4

c

(
f 5 − 4 f 3/2 f

′4ρc −
(
−2 + f 2 + f 4

)
f
′2ρ2

c

)
,

(A27)

u1 = x6
2 f 6

(
−1 +

√
fρc

)
+ x4

2 f 4ρc

[
−3 f

′2ρc +
√

f
(
f + 3 f

′2ρ2
c

)]

+x2
2 f 2 f

′2ρ3
c

[
−3 f

′2ρc +
√

f
(
2 f + 3 f

′2ρ2
c

)]

+ f
′4ρ5

c

[
− f

′2ρc +
√

f
(
f + f

′2ρ2
c

)]
,

(A28)

u0 =
(
f 2 x2

2 + f
′2ρ2

c

)2 (
f 4 x4

2 − 2 f 2
(

f − f
′2 x2

2

)
ρ2

c + f
′4ρ4

c

)
. (A29)

A4 Expression of the function X(2)
2

The values of X(2)
2 corresponds to particular values of |x2| which

lead to A2 < 0 with R 6= 0, where A2 is defined to Eq. (39) and R to
Eq. (40). The expression of X(2)

2 is then given by :

X(2)
2 =

√
3

3

−
2
(

f 3/2 + ρc

)2

f 2 f ′2
−

(
1 − ı√3

)
R2

22/3 R1

−
(
1 + ı

√
3
)

R1 R2

[
16 f 4 f

′8
(

f 3/2 + ρc

) (
ρ3

c + 3 f 3/2ρ2
c + 30 f 3ρc + f 9/2

)]


1/2

,

(A30)

where R1 is defined by :

R1 = 4 f 4 22/3
(

f 6 − 4 f 4 + 3 f 2 − 1
)
, (A31)

and R2 by :

R2 =
[
−16 f 6 f

′12
(
8 f 9 − 492 f 15/2ρc − 2229 f 6ρ2

c − 1460 f 9/2ρ3
c

−420 f 3ρ4
c + 48 f 3/2ρ5

c + 8ρ6
c

)
+ 48

√
3ρc f 15/2 f

′12

×
(
−8 f 9/2 + 3 f 3ρc − 24 f 3/2ρ2

c − 8ρ3
c

)2/3
]1/3

.

(A32)

APPENDIX B: ADDITIONAL ILLUSTRATIONS AND
TABLES

We present additional illustrations (Figs. B1, B2 and B3) of the
critical curves and the corresponding caustic curves, for different
values of the model parameters f and ρc. We also present in Table
B1 the complete sign study of the functions Γ(i).
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Figure B1. Illustration of the critical and caustic curves for the NSIE lens
model parameters f = 0.8 and ρc ∈ [0, 0.4].
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Figure B2. Illustration of the critical and caustic curves for the NSIE lens
model parameters f = 0.5 and ρc ∈ [0, 0.4].
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Figure B3. Illustration of the critical and caustic curves for the NSIE lens
model parameters f = 0.3 and ρc ∈ [0, 0.13].
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0 ≤ ρc < ρ
(1−)
c ρ

(1−)
c ≤ ρc <

f 3/2

2
f 3/2

2 ≤ ρc <
f 3/2

1+ f
f 3/2

1+ f ≤ ρc < ρ
(1+)
c ρ

(1+)
c ≤ ρc ≤

√
f

1+ f

0 ≤ |x2 | < X(1)
2

Γ(1) > 0 Γ(1) > 0 Γ(1) > 0 Γ(1) > 0 Γ(1) ∈ C
Γ(2) > 0 Γ(2) > 0 Γ(2) > 0 Γ(2) > 0 Γ(2) ∈ C

Γ(3) < 0 if |x2 |> x(+)
2,max2

Γ(3) > 0 if |x2 |< x(+)
2,max2


Γ(3) < 0 if |x2 |> x(+)

2,max2

Γ(3) > 0 if |x2 |< x(+)
2,max2


Γ(3) < 0 if |x2 |> x(+)

2,max2

Γ(3) > 0 if |x2 |< x(+)
2,max2

Γ(3) < 0 Γ(3) > 0

X(1)
2 ≤ |x2 | < X(2)

2

Γ(1) > 0 Γ(1) > 0 Γ(1) > 0 Γ(1) > 0 Γ(1) ∈ C
Γ(2) > 0 Γ(2) > 0 Γ(2) > 0 Γ(2) > 0 Γ(2) ∈ C

Γ(3) < 0 if |x2 |> x(+)
2,max2

Γ(3) > 0 if |x2 |< x(+)
2,max2


Γ(3) < 0 if |x2 |> x(+)

2,max2

Γ(3) > 0 if |x2 |< x(+)
2,max2

Γ(3) < 0 Γ(3) > 0 Γ(3) > 0

X(2)
2 ≤ |x2 | < X(3)

2

Γ(1) > 0 Γ(1) > 0
{
Γ(1) ∈ C if 0 < f < f † and ρc > ρ

†
c

Γ(1) > 0 otherwise

{
Γ(1) ∈ C if 0 < f < f † and ρc > ρ

†
c

Γ(1) > 0 otherwise
Γ(1) ∈ C

Γ(2) < 0 Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C
Γ(3) < 0 Γ(3) ∈ C

{
Γ(3) > 0 if 0 < f < f † and ρc > ρ

†
c

Γ(3) ∈ C otherwise

{
Γ(3) > 0 if 0 < f < f † and ρc > ρ

†
c

Γ(3) ∈ C otherwise
Γ(3) > 0

X(3)
2 ≤ |x2 | ≤ x(+)

2,max1

Γ(1) ≥ 0 Γ(1) ≥ 0 Γ(1) ≥ 0 Γ(1) ≥ 0 Γ(1) ≥ 0
Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C
Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C

x(+)
2,max1

< |x2 |
Γ(1) < 0 Γ(1) < 0 Γ(1) < 0 Γ(1) < 0 Γ(1) < 0
Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C Γ(2) ∈ C
Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C Γ(3) ∈ C

Particular values X(1)
2 ∈ C X(1)

2 ∈ C
of X(i)

2 with respect to ρc X(3)
2 ∈ C X(3)

2 ∈ C

Table B1. Summary of the sign study of the functions Γ(i) with respect to x2 , for the full validity ranges of f and ρc. We note that for f > f̃ , we have
√

f /(1 + f ) < ρ(1+)
c . Therefore, for this particular case, the last

column can be omitted and the penultimate is valid for f 3/2

1+ f ≤ ρc <
√

f /(1 + f ) instead of f 3/2

1+ f ≤ ρc < ρ
(1+)
cc©
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Table 3.3: Summary of the core radius values for the different NSIE lens models represented in Fig.
3.7 - 3.13.

Figure label ρc Number of caustic Remarks
(resp. critic) curves

Fig. 3.7 0 1 The case of the SIE model
Fig. 3.8 0.03 2 The fifth lensed image appears
Fig. 3.9 0.08 2
Fig. 3.10 0.13 2
Fig. 3.11 0.23 1 Since we have ρc > f 3/2/(1 + f ), one caustic

(resp. critical) curve vanishes. At most,
we have 3 lensed images

Fig. 3.12 0.38 1
Fig. 3.13 0.47 0 Since we have ρc >

√
f /(1 + f ), the caustic

(resp. critical) curves no longer exist

3.8 Illustration of the NSIE lens mapping

In the present section, we illustrate the gravitational lensing deformation due to the NSIE

model for several values of the lens parameters. To this end, we have chosen the same source

as the one already used for the case of the SIE model, i.e. the Homer Simpson picture (see

Section 1.11). In all the figures, the green lines correspond respectively to the caustic curves

(left panel) and their associated critical lines (right panel). Of course, all these curves have

been analytically derived from Eqs. (33), (34), (35) and Table 2 (from Paper IV). The axis

ratio f of the elliptical iso-density contours is fixed to f = 0.4 and the dimensionless core

radius ρc is set equal to the following values ρc = [0, 0.03, 0.08, 0.13, 0.23, 0.38, 0.47] (see

Table 3.3).

For the case ρc = 0 (see Fig. 3.7), we retrieve of course the SIE lens model with only one

non-degenerate caustic curve, the tangential one, and its associated critical curve. For the

case ρc > 0, the presence of the fifth lensed image becomes more obvious as the core radius

increases (see Figs. 3.8, 3.9, 3.10). For the case ρc ≥ f 3/2/(1 + f ) ' 0.1807, one of the

caustic curves vanishes, as well as its associated critical one (see Figs. 3.11 and 3.12). As a

consequence, any parts of the source surrounded by the remaining caustic curve produce only

three lensed images, while the others produce a unique lensed image. While the core radius

continues to increase, the cross section of the second caustic curve decreases. For the case

ρc ≥
√

f /(1 + f ) ' 0.4517, the caustic curves no longer exist, as well as the corresponding
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critical ones (see Fig. 3.13). For such a case, any parts of the source produce one and only

one lensed image, even though the resulting lensed image plane is still altered. For the case

of large values of the core radius in comparison with the impact parameter, the NSIE lens

model tends first towards the uniform disk lens model, and finally, towards the infinite sheet

with a constant surface mass density.
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Figure 3.7: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical ones (green lines, right panel),
for the case of the NSIE with f = 0.4 and ρc = 0
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Figure 3.8: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical ones (green lines, right panel),
for the case of the NSIE with f = 0.4 and ρc = 0.03
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Figure 3.9: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical ones (green lines, right panel),
for the case of the NSIE with f = 0.4 and ρc = 0.08
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Figure 3.10: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical ones (green lines, right panel),
for the case of the NSIE with f = 0.4 and ρc = 0.13
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Figure 3.11: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical curves (green lines, right
panel), for the case of the NSIE with f = 0.4 and ρc = 0.23
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Figure 3.12: Illustration of the source, the lensed images, the caustic curves (green lines, left panel) and their associated critical curves (green lines, right
panel), for the case of the NSIE with f = 0.4 and ρc = 0.38



S
e
c
t
io
n

3.8
143

Figure 3.13: Illustration of the source and the lensed images, the caustic curves and their associated critical ones do not exist, for the case of the NSIE with
f = 0.4 and ρc = 0.47





4
Conclusions

“The probability that nebulae which act as gravitational lenses will be found becomes practi-

cally a certainty."

Fritz Zwicky, 1937.

Since its publication by A. Einstein in 1916, General Relativity has been the incubator of

many elegant theories, the modern GL theory being one of them. During almost half a century,

no well-established observational evidence was spotted, until 1979, year of the discovery of

the first lensing effect outside our solar system. From that moment, the GL phenomenon

has become a key actor in cosmology. Along with observational investigations, theoretical

in-depth studies have been the source of significant prospects. To cite but one example, let

us mention the work of S. Refsdal on the possibility of deriving the value of the Hubble

parameter H0 from the time delays based on the light curves observed between multiple

lensed images of a distant source (Refsdal 1964a, b). Due to the need of realistic models

to characterize the mass distribution behind the lensing effects, theoretical investigations

of the lens mapping have always been the center of major interests. Although much has

been achieved, there always exists a way to contribute. It is with this in mind that we have

decided to investigate two sides of the GL theory : the determination of the value of H0, and,

analytical methods in order to derive the expression of the deflection angle.

In Chapter 2, we have investigated the possibility of determining H0 irrespective of the lens

models. Let us consider what we mean by “lens models”. Mass distribution of the deflector

can be apprehended according to two different ways : the non-parametric lens models or

the parametric ones. The parametric family of models, often constructed from physical

considerations, allows to describe the mass distributions making use of simple analytical

functions depending on several parameters. A given family of models may include a large

(or infinite) number of distinct models, all characterized by a unique canonical function

for the mass distribution and a few parameters. For instance, the SIS family of models,

which is appropriate to describe mass distributions with flat galaxy rotation curves, leads to
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a unique model only for a given set of parameters. Therefore, there exist two levels of model

independence : the one relative to the models defined within a given family, and, the global

one in relation with the family of models. In Chapter 2, we referred to the first one.

To this end, the case of a small misalignment between the source, the deflector and the

observer turns out to be particularly appropriate. Indeed, for such a case, the lensed image

positions are very close to the ones obtained in the case of a perfect alignment. For the case

of a power-law axially symmetric mass distribution characterized by M(≤ |x|) = |x|ε and

affected by an external shear, the so-called ε−γ family of models, the lensed image positions

have been analytically derived in the case of perfect alignment. As a consequence, making

use of the perturbative theory, we have analytically derived an approximate expression for

H0 based only on observable quantities, and which is valid irrespective of the ε − γ models

and to first order for a small misalignment between the source, the deflector and the observer.

Of course, such a result can only be applied for a symmetric lens system which can be

adequately modeled by the ε− γ family of models. In order to straightforwardly test whether

such a family of models is appropriate, we have demonstrated the possibility of expressing all

the model parameters as a function of the lensed image positions only. As a consequence, we

can retrieve, to first order, all these parameters without any numerical simulations. The major

results of this study have been summarized in the paper entitled “Asymptotic solutions for

the case of nearly symmetric gravitational lens systems" and published in the peer reviewed

journal MNRAS 424, 1543-1555, 2012.

In order to expand the possibilities proposed by such an approach, we have investigated the

singular isothermal ellipsoid (SIE) family of models. For the case of a small misalignment

between the source, the deflector and the observer, we have once again demonstrated the

possibility of determining H0 irrespective of the models. Furthermore, we have also derived

expressions which link the model parameters to the lensed image positions only. The next

step naturally consisted in applying these results to a real gravitational lens system which

fulfilled the required conditions : Q2237+0305. Making use of the analytical expressions

of the model parameters in terms of astrometry, we have concluded that the SIE family of

models was more appropriate than the ε−γ one. Indeed, while the obtained ε−γ parameters

led to unphysical values of some parameters, e.g. a negative shear intensity, the SIE ones

allowed to constrain the lensed image positions with a mean precision < ∆x >= 0.0134

arcsec, without any numerical simulations. In order to test the validity of these results

obtained to first order, we have performed precise numerical fitting of the deflector using the

ε − γ, SIE and non-singular isothermal ellipsoid (NSIE) + shear lens models. On one hand,

the astrometric constraints obtained with the ε − γ family of models are of less good quality
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than the ones obtained with the SIE to first order. On the other hand, the model parameters

derived for the SIE and NSIE + shear are in very good agreement with the SIE first order

ones. Since the time delays for Q2237+0305 are, up to now, not very well constrained, we

have been unable to propose an estimate for H0. Consequently, after having adopted the

value of H0 recently proposed by the PLANCK collaboration, we have deduced the expected

values of the time delays between pairs of lensed images. The major results of this study

have been summarized in the paper entitled "Asymptotic solutions for the case of SIE lens

models and application to the quadruply imaged quasar Q2237+0305", recently submitted

to the peer reviewed journal MNRAS for publication.

Different perspectives can be considered. On one hand, we may test the first order equations

for a large sample of well-known gravitational lens systems, both for the ε − γ and SIE

lens models. For those which succeed to be represented by one of these lens models, we

could directly estimate the value of H0. For those gravitational lens systems having no well

constrained time delays, alike Q2237+0305, we shall adopt the best actual determination

of H0 in agreement with recent works and deduce the expected values of those time delays

between pairs of lensed images. Depending on the symmetry of the considered gravitational

lens systems, the associated time delays can be very small. As a consequence, it should

be of great interest to observe these systems, not during long periods but with a very good

time sampling. On the other hand, we may investigate, to first order, other lens models, for

instance the NSIE lens models. Since the first order approach provides interesting results for

the case of the ε − γ and S IE lens models, we can reasonably assume that such a method

should also be promising for other families of models.

In Chapter 3, we have presented a new approach in order to determine the explicit expression

of the deflection angle based on the well-known fact that the latter can be expressed as a

convolution product between the dimensionless surface mass density and the simple kernel

x/|x|2. Although this property has already found some utility in numerical applications, it

has never been adopted, as far as we know, to model strong gravitational lensing. Of course,

the Fourier approach allows to retrieve expressions of the deflection angle for the case of

well-known deflectors such as axially symmetric lens models. In addition, we are convinced

that such a method constitutes a real alternative to the complex formalism introduced by

Bourassa & Kantowski (1973, 1975), corrected by Bray (1984). In order to test the interest of

this method, we have considered the case of homoeoidal symmetric mass distributions which

englobe a large variety of already known deflector models. Contrary to Bourassa & Kantowki

(1975), we have succeeded to separately derive the expressions of both components of the

deflection angle. In that, the Fourier approach constitutes a real progress. The latter result
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has been summarized in the paper entitled “Use of the Fourier transform to derive simple

expressions for the gravitational lens deflection angle" and published in the peer reviewed

journal MNRAS 437, 1051-1055, 2014 (advance access publication 2013 November 26).

A particular case of homoeoidal symmetric lenses lies among the NSIE models. Such a

family of models has first been investigated by Kovner (1987), Kormann & al. (1994) and

improved by Keeton & Kochanek (1998). These studies were limited to the determination

of the expressions for the deflection angle and the deflection potential. Making use of the

Fourier approach, we have derived different but equivalent expressions for these quantities.

In addition, we have proposed a complete analytical study of the caustic curves and their

corresponding critical ones. Such analytical results should achieve real relevance in the

framework of statistical studies of the gravitational lensing phenomena. Indeed, the prob-

ability for a quasar to be multiply imaged requires the determination of the cross-section

associated to a lens model, which is directly correlated with the shape of the caustic and

critical curves. Having analytical expressions for these curves constitutes of course a real

advantage. The latter results have been summarized in the paper entitled "The non-singular

isothermal ellipsoid lens model : a complete analytical solution" and submitted to the peer

reviewed journal MNRAS on 3rd of February, 2014.

The usefulness of the Fourier approach also appears in the treatment of non-parametric lens

models. To this end, we have derived the expression of the deflection angle for the case of

a mass distribution represented by a tessellated plane with square pixels characterized by

a constant surface mass density. The obtained expressions may be easily generalized for

an adaptive grid of different size pixels. In principle, this non-parametric lens model has

the ability to represent any mass distribution, without any preconception. We have tested

the analytical expressions of the deflection angle for the case of the pixellated non-singular

isothermal sphere (NSIS) and compared the lensed images with those provided by the ones

produced by the analytical NSIS family of models. Even for the case of a rough grid,

the positions of the lensed images are found to be in good agreement with the analytical

models. The real interest in such a modeling method lies, among others, in the deflector

reconstruction. Indeed, for a given gravitational lens system, it turns out to be possible to

retrieve the mass distribution which causes the formation of lensed images by combining the

use of an adaptive grid as described and numerical techniques. We may also consider such a

method for cluster lensing which requires numerical treatments. Finally, let us recall that all

these modeling methods aim at constraining the cosmological parameters of the Universe.

To conclude this work, let us mention the fact that the gravitational lensing theory has still a

lot to offer. It is up to us to disclose all its secrets.
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