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Summary

This paper is devoted to the analysis of shells of revo- .
lution, using cylindrical components of the displacement. This
procedure, coupled with a Fourier expansion by respect of the
azimuth permits the gemeration: of finite elements in which ri-
gid body motions are represented exactly, even in the case of

_doubly curved shells,



15 INTRODUCTION

A particular feature of rotational solids is the fact that
nonaxisgmmetric motiofs may be treated by a Fourier expansion. In
this approach, the geometry is described by only giving the half-
meridional section 8= 0 . Considering a shell, the trace of its
middle surface in the half-plane @ = 0 is a curve which may be pa-
rametrized by a single variable, say g (see fig. 1). In practical
applications, however, this procedure is advantageous only if the
differentazimuﬁﬁalharmonics may be treated separarely, i.e. if

they are decoupled in energy. Under certain conditions. on the con-

stitutive laws, which are precised in /1/ and verified in most cases,

this fundamental property is true for linear elastostatics agnd li-
near elagtodynamics. It is also verified for linear buckling ana-
lysis, provided the initial stresses are axisymmetric. In more
general problems including nonlinear effects, all Fourier modes
may be coupled and a tridimensional analYSis‘using general shell
elements, seems easier to perform.

As a consequence, there is - at least from a numericist
view point - noreal need to develop rotational shell theories

whose genelality exceed the frame of moderate deflections. By

thege words, reference is made to the assumption that no displa=-
cement gradient is greater in magnitude than r'% ’ [ being the
order of magnitude of the strains. This simplification, also known
as "moderate rotations theory"/10/ (Koiter refers to it as "small
finite deflections" /9/), may be considered as a first approxi-
mation of geometrical nonlinearities and congtitutes a sufficient
bagis for buckling analysis.

As is well known, an exact representation of rigid body
motions ig of considerable importance in finite élement applica-
tions. When the displacements are decomposed in the classical
curvilinear basis of the shell, this condition cannot be fulfilled
unless the shell is conical. Cansequently, doubly curved shells
need another treatment,

The oldest solution, which was pioneered by GRAFTON and
STROME /5/ and subsequently followed by many authors /11,6/, con-
gits in approximating the actual geometry by conical frustra.

This procedure saves the representation of rigid body motions,
but at the price of a crude geometrical approximation which, in
particular, may be responsible for spurious bending stresses under

pressure loads.
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More accurate, but still of approximate nature, is the
guagi-conical shell theory developed by the author/3/ from the

concept of fictitious displacements. In this theory, the actual
shell is viewed as a geometrical perturbation from a set of co=~
nical frustra. Since the system of displacement components ig de=-
teimined by the reference cones, rigid body motions may be repre-
sented exactly by the uée of parametric elements.

Pursuing in this way of disconnection of the displacement
basis from the geometry, the ultimate step consists in the use
of'éxliﬁdrical components. This is in fact no new idea, a fini=-
te element based on this concept having been developed in 1975
by DELPAK /4,6/. Delpak's analysis, however, is restricted to
linear elasticity and axisymmetrical deformation. Fundamentally,
it makes use of the classical expressions of strains in terms
of locally directed displacements, a transformation into cylin-~

drical components being performed a pogteriori.

In this .paper, a more general approach ig developed, in
which the strains are directly expressed in terms of cylindrical
components of the displacements. In a first step, transverse shear
effects are takeny into account, and geometrical nonlinearities
are included. The second step is the intoduction of the moderate
deflectlans hypothesis. ‘At this stage, Kirchhoff~Love condltlons
are intoduced. Concerning the old problem . +to determlne whether
Kirchhoff-Love assumptlons have to be used or not, author's peint of
view is that it is a question of opportunity. On one hand, Kirch=-
hoff-Love assumptions result in a simpler theory, working even for
very thin shells for which the theory including transverse shear
effects may exhibit numerical degeneracies. On the other hand, in
gituations where the shell has to be connected with volume ele-
ments, 6e8e in the case of a shell filled w1th & solid propellant,
this connectlon is easier when shear effects are taken into account,
due to an exact correspondance of generalized displacements., Both
approaches have thus their own field of application and no uni-
versal answer does exist to the question whether one is better
than the other.

»uAs any finite element analysis implies the connection of
the elements at their common interfaces, conformity conditions
have to be settled. This is done in section 9, for both approaches,

it is to say with or without transverse shear effects.
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2. GEOMETRICAL DESCRIPTION

As mentioned in the introduction, the trace of the middle

surface of a rotational shell in the meridian half-plane 8= 0 is
a curve which may be parametrized by a single variable 5§ . The
shape of the shell depends upon the form of the applications
E=R(Z) and £+ 2(E). In what follows, it will be assumed

that $ is normalized in the sense that

2 .2 :
R,§+ z,g_ 1T . &D)

In practical applications, the functions R(E ) and Z(E ) are appro-
ximated by polynomialgs of some degree k whose coefficients are de-
termined with the aid of nodes, in the same mahner as in parametric
finite elements., Thig being done, the position vector g(g I x3)
of any point of the shell may be written in the following form

"' 3
Ss=Re,+Ze, +Xx “-Zee +R_e,) 2)
ReRegrleogrx (Zgeg+ Re oy (
In this expression, and throughout the present paper, eps € 5 €y
. ~ N N

are the three vectors forming the normed basis of cylindrical co=-

ordinates.

3. DISPLACEMENTS

FPor the displacement field, a linear structure along the

normal to the middle-surface will be considered, namely

3
v=ue,+ve +we, +x (e, +Pe +Y¥e.,) (3)
LRt TGt Yy 3P TG
where u, v, W, o/ , {_% 1 are functions of § and 8 . The finite
element model is constructed as follows. In a first step, the dis-

placements are expanded in Fourier series

1
nz=o %O unm(g) cos(nb + mjz—-)

u

8

v = 2 Vou(E) sin(n()-c-m-lté—)

n=0 n=

o

1
wWe =2 > w (*g)‘cos(n9+m'—“é-')

P
n=0 m=0 (4)
1
o= i m?o ol (B) cos(nb+m 'lté-)

1
P” z = an(‘g) siny 6 +m1c-2—=) -

n=0 m=0 ( system cohtinues)
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¥ = = = Xnm(g) cos(nf + m%—)

=0 m=0 :

Admitting on the moduli some restrictions which are ordi- .
narily verified /1/, this deéomposition ensures that harmonies
corresponding to different values of the couple(n,m) are energe-
tically decoupled. The second step consists in a polynomial appro-
ximation by finite elements of each harmonic in terms of T . The
rigid body displacements are contained in this model provided
u, v, w are at least polynomials of degree k and « , p oy at
least polynomials of degree (k = 1) in terms of § .

4. STRATIN EXPRESSIONS FOR LARGE DISPLACEMENTS

In the strained configuration, the position vector 5 of

a point of the shell is transformed in s* by the following rule

? .
8 _(R+1;t)eR+vee + (2 +w) e

) Z,
+ ;;3((--Z,g +0) ?5 + ,S i? + (R;g +Y ) ’e\%) (5)

Throughout the text, primes will be used to distinguish quantities
attached to the strained configuration. The base vectors g

of the unstrained shell are

= = 3-
ES i’g R'§%+Z;§f§+x(z’§§i2+R;g§ig)

- _ 3.
ie—-:s,e.-li‘re\q +X(Z§§i@) (6)
BTl s RN

The corresponding metric tensor has thus the following components

- 3. 3\2,.,2 2
[ ggg =1 + 2x ( R;g Z;gg + Z;g R;gj ) + (X ) (R’-gg + Z;gg )
- p2 _ o 3 3,2 .2
gee = R 2x R Z;g + (x7) z’.g
\ (7)
333 == 1
Lgﬁe"ggs"ges = 0

The Green strain tensor § is defined by
= 9 .
Yij = #8iy - &;y) (8)

To obtain a two-dimensional shell theory, an assumption is neces-

sary on the pinch 23’33. The simplest one consists to impose that

g g
g2 %+ &
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normals to the middle surface are not gtretched during the defor-

mation process, i.e.
2 2 2
g}3 = (-2 g +ot) +f 4 (Rg +¥ )" =1 (9)
or, equivalently,
;533=-z,§o< + Ry + 3(ot? +ﬁ2+2§2)=o, (10)

Using Greek letters for indices © and § , one has the

general relation

2 _.3 3,2
LIV SV prh + (x )%/* (11)

)
where b’h,kare the membrane gtrains and f’)‘/\)h the changes of cur-

vature. (It is for convenience that this name is used, thB‘ygh it is
abusive when shear effects are present). From general order of ma-
gnitude evaluations for shells, based on compatibility equations,
following a step pioneered by CHIEN /7/ for thin shells, it may

be proved /8/ that the term (xB)2 \lf)‘ is negligibly small. It
will therefore not be computed. After any calculationg, the mem~
brane straing and changes of curvature are found as follows

N 2 2 2
K?gi: R’,.g u,.g + Zag w:g + % (u'g + v;g * g )
= R(v;e +u) + %(u;e - 'v)2 + %(v’e + u)2 + %wfe
= R;g (u’e - ¥) + R v,.g + u’g (u’G -V) 4+ vsg (v,e + u)
TVe e
PR A R T I I
+u;g d;§+v;§ P;S +W;§ X,i

_%e = R( P’e +00) = Z;5 ('v,e +u) + (u’e --v)(OLs(5 —P)

+ (V,G + u)(P’B +A) + W.b 5,9 (12)

" 2Py =g (e Pt B e R Py i s
- Z,§‘§ (u,e -v) + R.gg we o+ u’,g (0(’e -P)
+ v’_g (B'e +00) + w,g X,é + c%g (u.’6 - V)

+[_7>’§ (v,6 +u) + ng*wgb .



Let us now turn to transverse sghear strains. They are of the

general form
g 3
¥as= ¥z * % Pas o
with

Pgs = ((Bg +8)(Bpg vl )+ B+ Ro+y)(Rge +¥ )

= g§3 ;g ’

and, similarly,

Pp3 = (Zgrado, +fp By + (R "5‘)7{,9 = Bl

Thus, due to condition (9), both strains are constant by respect
3

of x”. Their explicit expressions are

2 533 = R,EO( + Z’gx + R,_g w;g - Z,g u’_§ +0(u’g + Pv’g + b'w;g
(13)

N
=
<>
\eN)
[

= RP + R’S w,e - Z,.g (u'e -v) + A (u’e - v)
+IB(v’e + u) + b’wse

Up to now, tengorial components of the strains and changes
of curvature have been used. Physical components are prefered as
degign variables. To make the distinction, physical components will
be noted £ for the strains and K for the changes of curvature. The

correspondance is as follows

v L ¥ .y
£_§=ng 9 89 = R2 Xeg 9 6§e-— Rxgé
. 1 1,
P 0 KTl 0 st wfh
2
6g3=2§g3 ’ f3= & o3

5. CONSTITUTIVE LAWS
By similar arguments as those that KOITER /12/ used in the

frame of the Kirchhoff-Love hypothesis, the following expression

may be used for the energy by unit of middle surface area when

ghear effects are present /8/

o o (o}

~ T3 [e] ol@h ‘b3 o
v_%cpf“t K"‘P b&/“' +%CF’f" TZ_FdPF\/‘“ + 3 GdP"Ka{_o,XPﬁ (15)



This expression implies a relative error which does not exceed
t2 2
0( m) ’ 0( az 9

whichever of these quantities may be critical. Here, R is the

o(r) ,

order of magnitude of the radii of curvature, I is the "wave lenghh"
-]
of the deformation, and t ig the thickness of the shell. CNP\/”

3

(<]
and GdPare the moduli at x”= O, The following stress resultants

may be deduced by deri¥ation

Membrane resultants dp = CdP X’“ t X)‘

Moments P - Cdl&)r' (t3/12)F>‘l“' (16)
Shear resultants = Gd{B KP3

These are of course tensorial components. The physical ones will
be noted by capital letters and are related to the ‘pi‘ece‘gding ones by

the following relations

5% _ 2 08 . 6
Ng =n » N =R . Nge =Rn
: €E 2 06 £0
M = M = R M = 1
£ m ’ 5 . 20 R m (17)
Q,g = q‘f, ’ Qe_ = R qe

6. MODERATE DEFLECTIONS

The moderate deflection approximation isv characterized by

1
the fact that all displacement gradients are at most 0([T %), [ being
the order of magnitude of the strains. In the present case, this
hypothesis may be explicited as follows ' v
1 1 +
u ;v s =(u , - +u) s=w, 30l ;B 3 Lol *).
’g L ’.g 3 R( ,e 9 R ,e ? !/5 ’ K -~ r—(18)

In each strain and change of curvature, relative errors O([ %) are

90

admitted. Let us examine the simplifications which proceed from

this hypothesis.

6.1 - Membrane strains

One has
R g +0g Mg = E -} (ufg +§f§ +w~'§g)= e - o) = o(1)
(19)
Similarly,-
Jﬁ (V,G +u) = 0([) | (20)



and

(R;g /R)(u,e -v) + v +(z,§ /R)w = ofr‘) (21)

These results implie directly

EG =% (V,G +u) + A ((u”e - v)2 + wfe ) + O(rz). (22)
Concerning Eg’ note that
2 2 2
g—(u,_g + w.§ ) = %(R + Zs'% w,_§ ) IS %(Z;g u;g - R’_§ W’_g ) I

so that, from (19),

) + % v + 0(?)
(23)

13

" R;g U+ Z;g we + 3(z

=g ‘;g

In the expression of Zege appears the term

(v ot u) = o(f"3/2),

f§ R
which may be neglected., Now,
u”_g (u’g -v) + W,g W’e =
=RgU gt W )R Wy -V +2gw,)

+(Z;gu;§'R;gw;g )(;g(u "V)'R,-gw,e)

and, owing to relation (19), the first product of the right hand
side 1s 0( R ["3/2), so that, finally,

2 E’ge = (ng- /R)(u"e - v) + v . + "“(zg,g./R) “,-w’e

s€
1
PR g e~ ReW g (g =V =R wy)
+ o(37/2) (24)

6.2 - Changes of curvature

The linear terms -of the changes of curvaturé are:of the Follo-
wing orders of magnitude |

Cifn o, FER .
The nonlinear terms are of order [ /L and may therefore be ne-
glected as negligibly small in comparison of the linear ones. This

results in the following simplified expressions

9.



..K_gr.R’_g 0("§ +Z,§ X’g—z’gg u.»g "'R;ggw

2
= RB, +ot) - B B, +w  (25)
" 2Kgpm Rg /RN =B+ B+ (B /R Y
g /M) vy = lBgg Mag =) x (Rgg /B W

6.3 - Dransverse shear strains

Here, the'honlinear terms are visibly of order . and in
principle, no 31mp11f1cat10n may be done. This conclusion has to be
quaelified - - 7::, In many applications, the transverse shear terﬁg

of théfénergyiplay the role of a penalty functional for the Kirch-
hoff-love conditions /6/. As will be seen in the following section,
nonlinear terms may be neglected in these condition, at the same
error level as the rest of the theory. In this view, it is thus
perfectiy consistent to omit nonlinear terms of the transverse shear
straing in most applications. They will consequently be written

" in - . square brackets in the explicit expressions which follow

2 E =R _O 4+ Z + R

£3 " Y2 20 et tlgls

Ij+0(u ’Bv +5w;g:l

2€gy= B+ Ry MWy - /Ry =)

|:+0( (u’e - V) + ﬁ(v,e +u) + ZSW,&:I

6.4 = Pinch strain

The group (-3 g%+ Rgx ) is a priori of order r R
9 1

and the exact condition bf33= 0 may be written

2 2 2
-Z,_go( +R;§~6 =-%(o(+p+zf)=0(r').

Admitting a pelative error O(I"'Ji), this condition may be replaced
by its linearized form '

-2 ol + R = 0 (26)

g 1
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7. THE XTRCHHOFF-LOVE CONDITION IN THE FPRAME OF MODERATE DEFLECTIONS

The well~known Kirchhoff-ILove condition consists to neglect

transverse shear strains, i.e. to impose

EEB = 893 =0 (27)

Prom the vanishing of 893, it is found

P=-Rg RIwgy =+ (3¢ /R)(u g = v) +0(") (28)

The simultaneous vanishing of 515 and 833 leads to the follo-

wing system

{R.:E."‘ Y22 "R Ve tle Yz
ol + R = 0o(f™) ' (30)

+ o() (29)

;80
Owing to the general error level O(r"%) of the theory, quantities
0([™) appearing in.equations (28) to (30) are negligibly small as

compared to the displacement gradients composing the left sides

of these equations. Now, by virtue of the normalization condition (1),

oL and ¥y may be explicited from (27) and (28). This gives

{O(—-R_g 2 tReglsue (31)
X“"R,gz,gw;g"zfg“;g (32)

Results (28), (31), (32) could of course be introduced
directly in the changes of curvature. Such a direct step, howe-
ver, would be laborious, and a more effective step is as follows.
Pirstly, from (26),

"R TR % el Y e Ve T Pee Ve T

=-R_0

as® T %l R

£ Vee T lgVme

Noting that, from (29),

Reg® * Z2a8 = Rg Rag + 2 lgg J-R Wy 42 gug)

where appears the group

_ 2 2 _ .
ReBRge 282 =R g +25) , =0,

the following result is obtained

11.




12,

K

£ - Rs'g Wogg -2

e (33)
Concerning l<e , one first computes

/) B

=(R /R2) W,ee - (z,_g /Rz)(u,ee - v,e )

8

and

(cx /R) = = (R,g /R) Ve ¥ (R Z’.g /R) e s

5

from which

2 2
Kg = (R,g /R )w,ee + (z’_g /R )“,ee + (R’_g /R)(R,_g w;g - z’g u’_g )

+ (2g /B2 u (34)

The computation of K_ may be started by deducing from (29)

£
R’_g o(’e + Z,-_s, K’e = -R’_g W’_ge + Z,'g u,gg .

A differentiation of the following equivalent form of (28)

v) =0

Rﬁ+R"§w9Q --Z’_g (uge -

with respect to § leads
R Pﬁg * R,'gg ng - Zv'g'g (use - V) =7 Rs-g P - Rs'g Wige
| MR TR R

from which

-2 K§6= (1/R)( - 2 R’_g Wegy t 2 Z’_g Ugy = 2 R’.gﬁ -2 Z;g Vg )

and, finally,

Kep= (Rog /R gq = (Bg /RIugy

2
'(R;g /R )(R;g Ve = Z;g (u'e -v)) + (Z;g /R)v’.g (35)

~

8., ON THE CONFORMITY CONDITIONS FOR FINITE BLEMENTS BASED UPON
THE PRESENT THEORY

Two adjacent elements are commected on a nodal line,
whose trace on the meridian half-plane -is reduced to a single

point. The question now arises, to know what are the variables



to be connected on this nodal line. !

When transvers shear effects are taken into account, all
components of the displacement and the rotation have fto be trans-
mitted. However, an interrelation exists between o and y . In

fact, considering the vector

~~

w=0(i{+f5e~e +Xi§ R (36)

the condition

= - (04 R = 0
€33 = "Bz * RaY
may be interpreted as the vanishing of the normal component caB
of W . As a consequence, only f3 and the tang@ntial component
= ol
Wy = Rg® + Loy (37)

have to be connected. Let us mention here that the condition

e = may be obtained in practice by a penalty method /6/.

33

In the frame of the Kirchhoff-Love conditions, it follows
from (28) that P is automatically transmitted whenever the displa-
cements are connected on a nodal circle. Consequently, the only

rotatiof that has to be connected in this case is ‘Dt' Its expression,

taking account of (29) and (30), is
Wy ="Fg Vg * izl (38)

9. CONCLUSIONS

A general theory of rotational shells using cylindrical
components of the displacements has been developed. This approach
permits an exact representation of rigid body motions by finite
elements using a Fourier decomposition. Shear effects have been
congidered, but the Xirchhoff-Love hypothesis has also be exploited.
Finally, conformity conditions have been examired in both cases.

It ig interesting to note that the present theory is not signifi-
cantly more complex than the conical shell theory and rather sim-
pler than the quasi-conical shell theory. This fact, added to its

exactnegs make it very attractive for applications,
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