Ultimate limit state design technology for aluminum multi-hull ship structures (Conference Paper)


Abstract

The present paper is a summary of recent research and developments related to some core ultimate limit state (ULS) technologies for design and strength assessment of aluminum multi-hull ship structures, jointly undertaken by Pusan National University, Virginia Tech, U.S. Naval Surface Warfare Center and Alcan Marine. An extensive study on the subject has been undertaken by the authors theoretically, numerically and experimentally. Methods to analyze hull girder loads I load effects, stiffened panel ultimate strength and hull girder ultimate strength of aluminum multi-hull ship structures are developed in the present study. Application examples of the methodologies for the ULS structural design and strength assessment of a hypothetical 120m long all aluminum catamaran fast ship structure are presented. Important insights and conclusions developed from the present study are summarized. Some of the comparisons have shown that 5383 called Sealium (a patented Alcan Marine alloy) is superior to the standard aluminum alloy 5083 in terms of material properties, ULS characteristics and welding performance. It is our hope that the methods developed from the present study will be useful for ULS design and strength assessment of aluminum multi-hull ship structures.

Indexed keywords

Engineering controlled terms: Aluminum castings; Beams and girders; Hulls (ship); Machine design; Marine engineering; Naval architecture; Research and development management; Welding

Engineering uncontrolled terms: Design technology; Material properties; Multi-hull ship structures; Ultimate limit state (ULS)

Engineering main heading: Shipbuilding

ISSN: 08111661
ISBN: 093577349X;978-093577349-7
CODEN: SNAMA
Source Type: Journal
Original language: English
Document Type: Conference Paper

References (22)

Proteus Engineering, Stevensonville, MD 21666, USA

Proteus Engineering, Stevensonville, MD 21666, USA

Washington, D.C.

Det Norske Veritas, Norway


Cited by 7 documents since 1996

Ultimate strength of a plate accounting for shake-down effect and corrosion degradation

Application of artificial neural networks to the evaluation of the ultimate strength of uniaxially compressed welded stiffened aluminium plates

Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure

Ultimate strength of aluminum plates and stiffened panels for marine applications

Mechanical collapse testing on aluminum stiffened plate structures for marine applications

Ultimate strength of aluminum plates and stiffened panels for marine applications

View all related documents based on references
Find more related documents in Scopus based on:
Authors | Keywords
EN 13195-1. European Standard: French Standard, Association Francaise de Normalisation (ANFOSI)

7. Fallin, O.M., Hoff, J.R., Kvalsvold, J., Zhao, R.
Newcastle, England

8. Hughes, O.F.
Sydney, Australia, July

Ouranoupolis, Greece, May 21-23


11. Mazzolani, P.M.
Pitman Advanced Publishing Program, London

12. Moan, T.

13. Paik, J.K.
A guide for the ultimate longitudinal strength assessment of ships

14. Paik, J.K., Duran, A.
Ultimate strength of aluminum plates and stiffened panels for marine applications

15. Paik, J.K., Seo, J.K.
27-29 June, Oslo, Norway

John Wiley Sons, Chichester, U.K.

17. Paik, J.K., Thayamballi, A.K., Lee, J.M.
Effect of Initial Deflection Shape on the Ultimate Strength Behavior of Welded Steel Plates Under Biaxial Compressive loads

Paik, J.K., Van Der Veen, S., Duran, A., Collette, M.
Raynaud, G.M.

Business Victoria, Melbourne, Australia

Smith, C.S., Davidson, P.C., Chapman, J.C., Dowling, P.J.


Richir, T., Toderan, C., Paik, J.J., Rigo, P.

Rome, September

Rigo, P., Sarghiuda, R., Estefen, S., Lehmann, E., Otelea, S.C., Pasuaño, I., Simonsen, B.C., (...), Yao, T.

Sensitivity analysis on ultimate strength of aluminium stiffened panels

Copyright 2008 Elsevier B.V., All rights reserved.