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Stable uudds pentaquarks in the constituent quark model
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The stability of strange pentaquarks uudds is studied in a constituent quark model
based on a flavor-spin hyperfine interaction between quarks. With this interaction model,
which schematically represents the Goldstone boson exchange interaction between con-
stituent quarks, the lowest lying strange pentaquark is a p−shell state with positive parity.
The flavor-spin interaction lowers the energy of the lowest p−shell state below that of the
lowest s−shell state, which has negative parity because of the negative parity of the
strange antiquark. It is found that the strange pentaquark can be stable against strong
decay provided that the strange antiquark interacts by a fairly strong spin-spin interaction
with u and d quarks. This interaction has a form that corresponds to η meson exchange.
Its strength may be inferred from the π0 decay width of D∗s mesons.

Renewed interest in the existence of pentaquarks [1,2] has been raised by the recent
observation of an S = 1 baryon resonance, referred to as Z+ or Θ+(1540), in photo-
production of kaon pairs on neutrons: γn → K+K−n [3]. This resonance has a peak at
1.54 ± 0.01 GeV/c2 and a width, which is less than 25 MeV/c2. It has been confirmed
in photon deuteron collision experiments [4], in K+-Xe collisions [5] and most recently in
the γp reaction [6]. The latter experiment indicates that the Θ+(1540) has isospin I = 0.
The method for detecting pentaquarks has been discussed in [7]. The Θ+(1540) may be
interpreted as a strange meson-baryon resonance or as a pentaquark of the form uudds.

The expectation has been that stable pentaquarks should be likely to exist in the heavy
flavor sectors [1,2,8,9], but experimental searches have remained inconclusive [10,11]. A
constituent quark model study of pentaquark states of the form qqqqs̄, indicates that
such states are unstable against strong decay if the only interaction between the strange
antiquark and the light flavor quarks is the confining interaction [12]. The prediction
of a narrow strange pentaquark with positive parity at an energy close to that of the
empirically found resonance was first made with a chiral soliton model, in which it was
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classified as the lowest state of an SU(3) antidecuplet [13]. Here it is shown that once
an attractive spin dependent hyperfine interaction between the light flavor quarks and
the strange antiquark is introduced, stable or narrow positive parity strange pentaquarks
may also be accomodated within the constituent quark model. A constituent quark model
can in fact accomodate the antidecuplet of Ref. [13] plus other SU(3) mutiplets. If one
constructs a pentaquark from a q3 (baryon) and a qq (meson) subsystems both being
SU(3) flavor octets, one gets

(8)F × (8)F = (27)F + (10)F + (10)F + 2(8)F + (1)F , (1)

thus the antidecuplet appears in this Clebsch-Gordan series.
The originally proposed pentaquarks, which were introduced in the context of the con-

ventional one-gluon exchange model for the hyperfine interaction between constituent
quarks, had negative parity, as they represented states with all the light flavor quarks
as well as the strange antiquark in their lowest s−states. Once the chromomagnetic in-
teraction is replaced by a spin and flavor dependent interaction, with the form, which
corresponds to a Goldstone boson exchange (GBE) interaction between quarks, [14,15]
the lowest lying pentaquarks will, however, have positive rather than negative parity [9].

The parity of the pentaquark is given by P = (−)L + 1. Here, we take L = 1 and
analyze the case where the subsystem of two u and two d quarks is in a state of orbital
symmetry [31]O, which thus carries the angular momentum L = 1. Although the kinetic
energy of such a state is higher than that of the orbitally symmetric state [4]O, an estimate
based on a schematic interaction model [9] shows that the [31]O symmetry should be the
most favourable from the point of view of stability against strong decays. In Ref. [9] the
antiquark was assumed to have heavy c or b flavor, and accordingly the interaction between
a light quark and the heavy antiquark was neglected, which is justified in the heavy quark
limit. As the constituent mass of the strange quark is not much larger than that of the
light flavor quarks, that approximation cannot be invoked for strange pentaquarks. Below
it is in fact shown that stable low lying strange pentaquarks only appear if an interaction
between s and the light quarks is included explicitly in the constituent quark model.

We shall employ the following schematic flavor-spin interaction between light quarks
[14]:

Vχ = − Cχ
4∑

i < j

λFi · λFj ~σi · ~σj. (2)

Here λFi are Gell-Mann matrices for flavor SU(3), and ~σi are the Pauli spin matrices. The
constant Cχ may be determined from the ∆-N splitting to be Cχ ∼= 30 MeV [14]. The
interaction (2) is the simplest model for the hyperfine interaction between quarks, which
can describe the empirical baryon spectrum in the constituent quark model [14]. It may
be interpreted as arising from pion and (mainly) two-pion exchange, or more generally
from exchange of the octet of light pseudoscalar mesons (“Goldstone bosons”) and vector
mesons between the constituent quarks [15,16]. The flavor-spin dependent interaction
may also be interpreted as a quark interchange interaction.

The pion decay D∗s → Dsπ
0 implies, by π0− η mixing, that η mesons couple to strange

quarks and antiquarks [17]. It is then natural to assume that there is an η meson exchange
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interaction between s̄ antiquarks and light flavor quarks. While this interaction does not
admit a similar quark interchange interpretation as the interaction (2), it should lead to
a spin-dependent interaction between the strange antiquark and the 4 light flavor quarks,
which is similar to (2). This may be schematically be represented by the interaction:

Vη = V0
4∑
i

~σi · ~σs. (3)

Here V0 is a constant, which should correspond to the ground state matrix element of
the spin-spin part of the η exchange interaction, but which here will be taken to be a
phenomenological constant. The total hyperfine interaction is then

V = Vχ + Vη. (4)

The quark model values for the pseudovector coupling constant between light flavor
and η mesons and strange constituent quarks and η mesons are

fηqq =
mη

2
√

3fη
gqA, fηss = − mη√

3fη
gqA. (5)

These expressions suggest that fηqq falls within the range 1.25 – 1.4 and that fηss falls in
the range -2.5 and -2.8. Here fη = 112 MeV is the η meson decay constant and gqA is the
axial coupling constant of the quark. The value of the latter is expected to fall within the
range 0.75 – 1.0 [18].

The strength of the coupling between η mesons and strange constituent quarks may be
derived from the known empirical π0 decay width of Ds mesons, which is mediated by η
mesons. This suggests that fηss ∼ −1.66 [17].

For pseudoscalar mesons the coupling to antiquarks has the same sign as that of quarks.
Because of the negative sign of the coupling of strange quarks to η mesons and the positive
sign of the coupling of strange quarks to light flavor constituent quarks, the potential
coefficient V0 is expected to be positive.

An estimate of the η meson exchange contribution to the strength of Vη may be obtained
from the expectation value of the radial part of the η meson exchange interaction,

V0(r) =
fηqqfηss

12π
{e
−mηr

r
− 4π

δ(~r)

m2
η

}, (6)

in the ground state of a quark-antiquark pair described by a harmonic oscillator wave
function

ϕ(~r) = (
α2

π
)3/4e−α

2r2/2, (7)

where the parameter α may be adjusted to correspond to a realistic wave function model.
This gives:

〈V0〉 = mη
fηqqfηss
3π
√
π

(
α

mη

)3{
m2
η

2α2
−
√
π
m3
η

4α3
em

2
η/4α

2

erfc(
mη

2α
)− 1}. (8)

With the values of the η−quark couplings above, this expression yields values for 〈V0〉,
which are of the same order of magnitude as that of Cχ, when the baryon wavefunctions
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are compact, with matter radii less than 1/mη. This condition is fullfilled for example
by the model in [20], for which the ground state wavefunction may be approximated by
a product of two oscillator functions of the form (7) of the two Jacobi coordinates, with
α ' 650 MeV [19]. With that value, and with fηqq = 1.3 and fηss = - 1.66, eqn.(8) yields
〈V0〉 ∼ 90 MeV. This number would be somewhat reduced by the contribution from singlet
pseudoscalar exchange mechanisms like η′-meson exchange [20].

For the construction of the wave functions for the pentaquark it is convenient to first
consider the light quark q4 subsystem. For this the Pauli principle allows for the following
two totally antisymmetric states with [31]O symmetry, written in the flavour-spin (FS)
coupling scheme [9,21]:

|1〉 =
(
[31]O[211]C

[
14
]
OC

; [22]F [22]S[4]FS

)
, (9)

|2〉 =
(
[31]O[211]C

[
14
]
OC

; [31]F [31]S[4]FS

)
. (10)

Asymptotically, a ground state baryon and a meson, into which a pentaquark can split,
would give [3]O × [2]O = [5]O + [41]O + [32]O. By removing the antiquark, one
can make the reduction [41]O → [31]O × [1]O or [32]O → [31]O × [1]O. Thus, the
symmetry [31]O of the light quark subsystem is compatible with an L = 1 asymptotically
separated baryon plus meson system.

Each one of these two states, (9) or (10), has to be coupled to the antiquark state. The

total angular momentum ~J = ~L + ~S + ~sq, where ~L and ~S are the angular momentum
and spin of the light flavor subsystem respectively and ~sq the spin of the antiquark s, takes
the values J = 1

2
or 3

2
. The resulting pentaquark states mix through the quark-antiquark

spin-spin interaction (3). Here we study the lowest case, J = 1
2
.

For the stability problem the relevant quantity is

∆E = E(q4q)− E(q3)− E(qq), (11)

where E(q4q), E(q3) and E(qq) are the masses of the pentaquark, of the ground state
baryon and of the meson into which the pentaquark decays, respectively. The multiquark
system Hamiltonian used to calculate E is formed of a kinetic energy term, a confining
interaction and the hyperfine interaction (4).

Consider first the contribution of (2) only. In the q4 subsystem the expectation value of
(2) is −28 Cχ for |1〉 and −64/3 Cχ for |2〉 . Thus |1〉 is the lowest state. For the ground
state q3 system (the nucleon) the contribution is −14 Cχ. There is no such interaction in
the qq pair. For the moment, we assume that the confinement energy roughly cancels out
in ∆E. This is a simplifying assumption, which will be abandoned in the more realistic
estimate given below. Then, the kinetic energy contribution to ∆E is ∆KE = 5/4 h̄ω
in a harmonic oscillator model. It follows that for the state |1〉 the GBE contribution is
∆Vχ = −14 Cχ. With h̄ω ≈ 250 MeV, determined from the N(1440) - N splitting [14],
this would give

∆E =
5

4
h̄ω − 14 Cχ = − 107.5 MeV (12)

i.e. a substantial binding [9]. This is to be contrasted with the negative parity pentaquarks
studied in Ref. [22] within the same model, but where the lowest state has the orbital
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symmetry [4]O so that one has ∆E = 3/4 h̄ω − 2 Cχ = 127.5 MeV, i.e. instability,
in agreement with the detailed study made in [22].

The estimate (12) is a consequence of the flavor dependence of the chiral interaction
(2). For a specific spin state [f ]S, a schematic color-spin interaction of type Vc m =
− Cc m

∑
λci · λcj ~σi · ~σj, which may represent the one gluon exchange interaction, does

not make a distinction between [4]O and [31]O. Consequently, the [31]O state would appear
to lie above the state [4]O, because of the kinetic energy term. The flavor-spin interaction
(2) overcomes the excess of kinetic contribution in [31]O and generates a lower expectation
value for [31]O than for [4]O.

Consider now the more realistic model [23], that was used in Ref. [9] to describe the
baryon spectrum, where in the coordinate space, instead of a constant, one has a specific
radial form for a given meson γ = π,K, η or η′

Vγ(r) =
g2γ
4π

1

12mimj

{θ(r − r0)µ2
γ

e−µγr

r
− 4√

π
α3 exp(−α2(r − r0)2)} (13)

with the parameters:

g2πq
4π

=
g2ηq
4π

=
g2Kq
4π

= 0.67,
g2η′q
4π

= 1.206, r0 = 0.43 fm,

α = 2.91 fm−1,mu,d = 340 MeV, ms = 440 MeV. (14)

We have performed a variational calculation similar to that of Ref. [9] with s in the
place of c or b. As in the case of heavy antiquarks the quark-antiquark interaction was
ignored here. The radial part of the pentaquark wave function is given by Eqs. (15)-(17)
of Ref. [9]. For the uudds pentaquark described by the state (9) the expectation value of
the total Hamiltonian contains the following contributions: 〈KE〉 = 1848 MeV, 〈Vconf〉
= 461 MeV, 〈Vχ〉 = - 2059 MeV. In units of Cχ = 30 MeV this means that 〈Vχ〉 = -68.3
Cχ, i. e. a much stronger attraction than in the schematic model where 〈Vχ〉 = - 28 Cχ.
The two variational parameters in the pentaquark wave function take the values a = 0.11
GeV2, similar to the heavy quark limit case, and b = 0.019 GeV2, which is two to three
times smaller than in the heavy quark limit, which indicates that the light pentaquark is
less compact. In estimation of the threshold energy E(q3) +E(qq) we use E(q3) = E(N)
= 969 MeV i.e. the nucleon mass calculated variationally and E(qq) = 793.6 MeV, i. e.
the average mass (M + 3 M∗)/4 of the pseudoscalar K-meson mass M = 495 MeV and
the vector K-meson mass M∗ = 893.1 MeV. This gives ∆E= 287 MeV, i. e. the system
is unbound.

We now turn to the total hyperfine interaction (4) where Vχ is again described by
the schematic model (2). The matrix elements of Vη of (3) are calculated with the five
particle wave functions ψ1 and ψ2 given in the Appendix and obtained by coupling the
antiquark s to the q4 subsystem. The interaction (4) now leads to the following matrix
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to be diagonalized:

〈ψ1|ψ1〉 〈ψ2|ψ2〉

〈ψ1|ψ1〉 −28Cχ
8√
2
V0

〈ψ2|ψ2〉 8√
2
V0 −64

3
Cχ − 4V0

(15)

Note that the contribution of Vη cancels out for the state ψ1 derived from (9). Taking Cχ
= 30 MeV, as mentioned above, the eigenvalues of this matrix become

〈V 〉 = −(740 + 2V0)± [10, 000− 400V0 + 36V 2
0 ]1/2. (16)

When V0 = 0, the lowest solution gives 〈V 〉 = 〈Vχ〉 = - 840 MeV, consistent with Ref. [9].
In Fig. 1 the energy of the lowest solution (16) is plotted as a function of the strength

V0. One can see that for a value of V0 = Cχ the energy E(q4q) can be lowered by about
130 MeV with respect to the case V0 = 0. This implies a decrease by the same amount
in ∆E of (11) and hence a substantial increase in the stability of the system uudds. To
obtain a negative ∆E one needs V0 ≈ 50 MeV, i. e. V0 ≈ 5/3 Cχ, as one can see from
Fig. 1. As inferred from above, this may be sufficient for ensuring stability in a realistic
calculation.

The estimate obtained from Eq.(6) above suggests that such strength of the spin-spin
interaction between the light flavor quarks and the strange antiquark is quite plausible.
While η meson exchange is the most obvious source of such an interaction, other mecha-
nisms as two-kaon exchange and η′ exchange should also contribute.

The antidecuplet to which Θ+ belongs contains two other pure pentaquark states,
uussd and ddssu, located at the other two corners of the weight diagram. In the SU(3)
symmetry limit represented by the matrix (15) all antidecuplet states are degenerate.
However in a realistic model with broken SU(3) symmetry and radial dependence for
the meson exchange as e.g. that of Eq. (13) the degeneracy is lifted. In particular the
pure pentaquark states, uussd and ddssu acquire larger masses than that of Θ+ and are
less likely to be bound. Their masses become larger due to two effects: 1) the presence
of two strange quarks instead of one antiquark, like in Θ+, and 2) a weaker attraction
because the qq short range hyperfine interaction is inversely proportional to the product
of the interacting quark masses. The other members of the antidecuplet are of interest
in baryon spectroscopy as ordinary baryons may contain significant admixtures of such
exotic configurations. This deserves a separate study especially in connection with decay
modes, as described in Ref. [13].

The conclusion is that the stable strange pentaquarks with positive parity can be acco-
modated by the constituent quark model, provided that: 10 there is a flavor-spin depen-
dent hyperfine interaction between the 4 light flavor quarks, which is sufficiently strong
for reversing the order of the lowest states in the s− and p−shells and that 20 there is an
at least as strong spin-spin interaction between the light flavor and the strange antiquark.
Recently the question of whether the hyperfine chromomagnetic interaction between the
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quarks can lead to a similar inversion of the parity ordering for pentaquarks has been
considered in [24]. A possibility for inversion, although weaker than for the flavor-spin
interaction was found for the p−state uudd multiplet with color spin symmetry [31]CS
combined with the s̄ antiquark. While the presence of a strongly flavor dependent hyper-
fine interaction between constituent quarks originally was suggested by phenomenological
arguments alone [14], and in particular by the requirement of reversal of normal ordering
of the states in the constituent quark model with 3 valence quarks, it has received fur-
ther indirect support by recent QCD lattice calculations, which show the same reversal
of normal ordering for small quark mass values [25].
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Appendix
To calculate the matrix elements of the interaction (3) first one has to couple the

antiquark to the subsystem q4. Then one has to decouple a qs pair from the pentaquark
system. One can work separately in the orbital, flavor, spin and color spaces. But as the
interaction (3) concerns only the spin degree of freedom, the task is quite easy because
in the spin space the antiquark is on the same footing with the quarks and the problem
reduces to the usual recoupling, via Racah coefficients. The only care must be taken of is
the symmetry properties of the states. Here we construct explicitly the flavor-spin part
of the wave functions of the pentaquark.

Let us denote by [fq4 ], [fq3 ], [fq2 ] and [f ] the partitions corresponding to the q4, q3, qs
and q4s respectively. The corresponding spins are denoted by Jq, j1, S and J . For the two
states (9) and (10) one has [fq4 ] = [22], Jq = 0 and [fq4 ] = [31], Jq = 1 respectively. The
coupling to the antiquark spin must therefore lead to the only common case [f ] = [32],
J = 1/2. The qs pair can have of course [fq2 ] = [2], S = 1 or [fq2 ] = [11], S = 0. Then
the spin part of the wave function of the pentaquark reads

[χ
[fq4 ]

Jq χ
[1]
1/2]

[f ]
JM =

∑
S

[(2S + 1)(2Jq + 1)]1/2W (j1
1

2
J

1

2
; JqS) [χ

[fq3 ]

j1 χ
[fq2 ]

S ]
[f ]
JM . (17)

In the recoupling one has however to keep track of the flavor-spin symmetry of the sub-
system of 4 identical quark. This part of the wave function is symmetric, both in (9) and
(10). The flavor part of the wave function of q4 should be specified but the recoupling
with the antiquark does not have to be explicit, inasmuch as the interaction (3) is flavor
independent. However the coupling to the antiquark must give the same quantum num-
bers (λµ) = (02) in the flavor space, in both cases, otherwise the scalar product cancels.
The SU(3) irreducible representation (λµ) = (02) corresponds to the antidecuplet of ref.
[13]. It allows Y = 2 as the hypercharge of the uudds̄ system.

The two independent pentaquark flavor states associated with (9) are



8

φ1 = (
1 2
3 4

× φs)(02), (18)

φ2 = (
1 3
2 4

× φs)(02), (19)

where φs is the flavor antiquark state. Replacing the corresponding Racah coefficients in
the relation (17) the flavor-spin wave function of the pentaquark becomes

|ψ1〉 = |[22][1]; [32]〉1/2M〉 =
1√
2
{φ1 [−1

2
[χ

[21]
1/2χ

[11]
0 ]

[32]
1/2M +

√
3

2
[χ

[21]
1/2χ

[2]
1 ]

[32]
1/2M ] (20)

+φ2 [−1

2
[χ

[21]
1/2χ

[2]
1 ]

[32]
1/2M +

√
3

2
[χ

[21]
1/2χ

[2]
1 ]

[32]
1/2M ]},

where in each row χ
[21]
1/2 is associated with a different Young tableau.

The flavor-spin pentaquark state constructed from (10) contains the following three
independent flavor states

φ3 = (
1 2 3
4

× φs)(02), (21)

φ4 = (
1 2 4
3

× φs)(02), (22)

φ5 = (
1 3 4
2

× φs)(02). (23)

Then using these states and the recoupling (17) with corresponding Racah coefficients we
obtain the pentaquark flavor-spin state

|ψ2〉 = |[31][1]; [32]〉1/2M =
1√
3
{φ3 [χ

[3]
3/2χ

[2]
1 ]

[32]
1/2M (24)

+φ4[
1

2
[χ

[21]
1/2χ

[2]
1 ]

[32]
1/2M +

√
3

2
[χ

[21]
1/2χ

[11]
0 ]

[32]
1/2M ]

+φ5[
1

2
[χ

[21]
1/2χ

[2]
1 ]

[32]
1/2M +

√
3

2
[χ

[21]
1/2χ

[11]
0 ]

[32]
1/2M ] }.

Again, in each row the function χ
[21]
1/2 has a distinct Young tableau. The explicit form of

q3 and q4 flavor or spin states associated with every Young tableau above can be found
for example in Ref. [21].

The wave functions |ψ1〉 and |ψ2〉 are used to calculate the matrix elements of the
interaction (3).
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Figure 1. The lowest solution of (16) as a function of the parameter V0.


