
ABSTRACT: The point-like quasi-steady aerodynamic loading in a turbulent flow is formally expressed as a function of the 

squared relative velocity between the fluid and the investigated structure.  The three major terms governing the low-order 

statistics of the response are known to be related to the average loading, the linear turbulent loading and the aerodynamic 

damping. The three other terms in the loading, namely the quadratic turbulence term, the parametric velocity feedback term and 

the squared velocity term, may significantly affect the higher order statistical cumulants of the response. These latter two 

sources of fluid-structure interaction are usually disregarded, by lack of efficient simulation tools, except a Monte Carlo 

simulation of the nonlinear equation. In this paper, we provide a formal analysis of the complete nonlinear model, including thus 

all six terms, but mainly focusing on the importance of the two nonlinear coupling terms of the loading. Closed form solutions 

of the response are derived for a second-order Volterra model of this problem, under the assumption of different timescales in 

the loading and in the structural behavior. Two major outcomes of the analysis are, on the one hand, that the squared structural 

velocity term has no influence on the cumulants of the response up to order 4 and, on the other hand, that the parametric velocity 

feedback acts as a reduction of the non Gaussianity of the response.  

KEY WORDS: Volterra model; Multiple Timescale Spectral Analysis; squared velocity feedback; parametric; turbulence. 

1 INTRODUCTION 

The response of civil engineering structures to the wind 

turbulence is a multiple timescale process. Indeed, in a linear 

context, the structural response to very low frequency 

turbulence excitation may be approached by a sum of two 

components, a background component associated with the 

slow dynamics of the excitation and a fast resonant 

component associated with the structural timescale [1]. 

The stochastic structural analysis of a linear structure 

subject to a stationary excitation, such as the wind turbulence, 

is usually performed with a spectral approach. While offering 

a clear understanding of the structural behavior and the 

dispatching of energy in the different timescales, this 

approach also sidesteps the heavy generation of the wind 

velocity or pressure time histories. The stochastic approach is 

a useful tool to determine the Gaussian, but also non-

Gaussian, response of a linear system. One drawback perhaps 

is that the evaluation of high-order statistics requires a multi-

dimensional integration of spectral densities in spaces whose 

dimension increases with the order of the cumulants of the 

response under investigation. The application of the method in 

the context of non-Gaussian responses thus turns out to be 

challenging, from a computational viewpoint. This drawback 

is partly circumvented by considering the existence of the 

different timescales in the response. Doing so, the multiplicity 

of the integrals to be computed is decreased by one, which 

substantially speeds up the computation [2]. 

In this paper, the concept described above is extended to the 

study of a linear oscillator whose excitation is defined as a 

quadratic function of the wind-structure relative velocity. The 

analysis still relies on a spectral approach and the structural 

system is modeled as a Volterra system [e.g. 3]. 

Developments are limited to the second-order Volterra 

operator which is shown to be accurate enough for the 

statistics up to order 4. The efficiency of the method is 

discussed with the determination of the first four cumulants of 

the response. The quality of the result is assessed in terms of 

accuracy with respect to a reference solution obtained through 

Monte Carlo simulation.  

2 GOVERNING EQUATIONS 

Under the quasi-steady assumption, the response of a point-

like single degree-of-freedom structure subject to a 1-

dimensional wind turbulence is governed by the nonlinear 

second order differential equation 
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dmx cx kx C A U u x       (1) 

where x(t) is the structural displacement, m, c and k are mass, 

viscosity and stiffness, respectively, U is the mean wind 

velocity and u(t) a Gaussian zero-mean random process 

representing the wind velocity fluctuation; , A and Cd are, 

respectively, the air density, the area of the structure exposed 

to the wind and the aerodynamic drag coefficient. The 

overhead dot denotes differentiation with respect to time t. 

The nonlinearity of this equation results from the squared 

structural velocity 2 ( )x t  and the parametric excitation 

2 ( ) ( )x t u t  terms obtained in the right-hand side after 

expansion. 

The zero-mean Gaussian turbulence process u(t) is fully 

described by its power spectral density Su(). Following 

Kolmogorov’s energy cascade, typical models for the 

turbulence decrease as 
-5/3

 in the high-frequency range. This 

non Markovian behavior makes any stochastic method based 
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on the FPK equation and moment equation rather intricate 

since a proper approximation with a Markovian process has to 

be formulated. This argument drove the solution procedure of 

the considered problem toward spectral methods. It is thus 

possible to handle realistic power spectral densities of the 

wind turbulence such as 
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in which L represents the integral length scale and u the 

standard deviation of the turbulence velocity. 

This problem might be formulated in a dimensionless manner 

leading to the governing equation 
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where the following dimensionless quantities are used 
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and where a prime  denotes differentiation with respect to the 

nondimensional time t . The power spectral density ( ; )uS    

of the dimensionless turbulence velocity u  is a function of the 

dimensionless frequency   and of the small parameter , 

which is the ratio of the characteristic turbulence frequency 

U/L and the structural natural frequency 0. The two 

coefficients s and a represent the structural and aerodynamic 

damping coefficients. 

This formulation indicates that the solution of the problem 

at hand may evolve in different regimes, depending on the 

relative smallness of s, a and . These three numbers are 

typically in the range [10
-3

; 10
-1

]. A fourth small parameter of 

the problem is the turbulence intensity Iu, usually in the range 

[10%; 30%], which scales the quadratic turbulence term and 

the nonlinear feedback terms on the right hand side of Eq. (3). 

The dimensionless version of the governing equation readily 

shows that the quadratic velocity term x² is one order of 

magnitude smaller than its left neighbor ux, the parametric 

excitation term, which presumably indicates that the former 

one would yield negligible contribution to the response. This 

is to be proved with a more formal derivation. Although the 

dimensionless version of the governing equation is definitely 

more convenient to identify the leading physics and its 

limiting cases, the paper is mainly developed with physical 

quantities, so as to provide a simpler understanding.  

3 SECOND ORDER VOLTERRA MODEL 

3.1 The Volterra Frequency Response Functions 

Inspired by former works [4], it is chosen to model the 

response of this nonlinear problem with a second order 

Volterra model. This choice is validated in Section 5, with the 

typical orders of magnitude of the parameters encountered in 

wind engineering applications. 

In this framework, the response x(t) is expressed as  

    1 2( ) ox t x x t x t    (5) 

where x1(t), respectively x2(t), is defined as the first (resp. 

second) order convolution of the zero-mean Gaussian input 

u(t) with the Volterra kernel h1(t), respectively h2(t). In a 

stationary setting, this definition is advantageously translated 

into the frequency domain with the symmetrical Volterra 

frequency response functions H1() and H2(). 

These functions need to be established for the specific 

nonlinearity of the problem under consideration. This may be 

achieved with the harmonic probing technique [5] or with the 

systematic procedure presented in [4]. The same procedure as 

that developed in the later one is being followed next. In the 

block diagrams of Figure 1, the differential operator 

[x]= kxxcxm    actually corresponds to the forcing term 

(including the feedback) such that f= [x], and the operator  

represents the assembled I/O relationship, such that x= [u]. It 

results f= [ [u]] or again, by definition of the operator  

f= [u]. 

Applying the construction rules in [4], the frequency 

response functions of [.]= [ [.]] are thus expressed in 

terms of those of  and  as  
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where   2D m j c k       . 

This sort of feedback is particularly well suited to the 

unwrapping of the system, in which case the forcing term f 

may also be expressed as in the second block diagram, as the 

amplification of the square of the output of operator , in 

which case 
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Operator  is nothing but the addition of three terms, so that 
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on account that A0=0 as a result of the differential nature of 

operator . Plugging these expressions backwards until 

Equation (6), and solving for H0, H1 and H2 yields  
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Figure 1. Block diagram of the considered problem. 

These frequency response functions are sketched in Figures 

2 and 3. The first one corresponds to the classical frequency 

response function of a linear oscillator, with additional 

aerodynamic damping. The second represents the interaction 

between the different harmonics in the response, especially 

the filtering of pairs of harmonics (1, 2) that fall out of the 

band 
1 2 o   . 

 

Figure 2. First-order frequency response function. 

3.2 Cumulants of the Stationary Response 

In a second-order Volterra model, the total response is 

expressed as the sum in Eq. (5) involving the 0
th

-order 

constant term x0, together with the fluctuating terms x1(t) and 

x2(t). When the input u(t) is a stationary random process, the 

statistical properties of the total response x(t) may be 

expressed in terms of its cumulants, which in turn can be 

written as functions of the cumulants of x1(t) and x2(t). Using 

some classical developments in the theory of probability [6] 

under the hypothesis that u(t) is Gaussian distributed, we 

obtain 
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where [ ]k   represents (when used with a single argument) 

the k
th

-order cumulant of the argument and [ ,..., ]k     

represents the k
th

-order cross-cumulant associated with the 

product of the arguments. 

 

Figure 3. Second-order frequency response function. 



An analysis of the orders of magnitude of the two terms that 

compose each cumulant of the response reveals that the 

second terms in the expressions given in (10) are negligible in 

front of the first terms, at least for the small realistic values of 

the aerodynamic damping a encountered in typical wind 

engineering applications. The formal demonstration of this 

statement goes beyond the scope of this paper but is available 

in [7] together with a deeper investigation of this problem. 

Intuitively however, the second order response x2(t) is one 

or several orders of magnitude smaller than the first order 

response x1(t). The ratio of these two actually scales with the 

aerodynamic damping a. As a consequence, in (10), the 

cross-cumulant, involving more factors in x1(t) than the 

unilateral cumulants of x2(t) are expected to be leading. 

3.3 The Associated Linear Equations 

Alternatively to the frequency domain approach, it is 

interesting to regard a Volterra model with its associated 

linear equations, which are linear ordinary differential 

equations describing the dynamics of each term in the 

expansion (5). For some sorts of nonlinearities, such as the 

polynomial nonlinearity of the problem at hand, the n
th

-order 

response xn(t)  might be expressed, with the associated linear 

equations, as a function of the forcing term and of lower order 

responses [8]. For the considered problem, these equations 

read: 
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These equations confirm that x2(t) is well one or two orders 

of magnitude smaller than x1(t). These equations will be used 

later in a Monte Carlo simulation, in order to validate the 

truncation of the Volterra series to the second order. 

3.4 Power Spectral Density and Higher Order Spectra of 

the Response 

The power spectral density of the total response x(t) of a 

second-order Volterra model reads 
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where Su() is the power spectral density of the turbulence, 

while H1 and H2 represent the Volterra frequency response 

functions, as given in (9). 

The integration of the power spectral density Sx() provides 

the second cumulant of the total response 

    2 dxx S
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Substitution of (12) into (13) indicates that the cumulant of 

the response is composed of two terms, as hinted by (10) 

anyway. The first one, involving |H1()|, is responsible for the 

linear counterpart of the response 2[x1], while the second 

term, involving the second-order frequency response function 

|H2(1,2)| provides the second contribution 2[x2] to the total 

cumulant, after integration along the real axis. Following the 

former observation that the second terms in (10) are 

negligible, the second term in the power spectral density of 

the total response is dropped. 

It finally turns out that the second order response is that of a 

linear system whose total damping is represented by the sum 

of the structural and aerodynamic dampings. In this context, 

there exists a classical way to bypass the numerical integration 

of Sx() in (13). It is based on the background/resonant 

decomposition of the response, a two-timescale approximation 

of the response usually attributed to the pioneering works of 

A. Davenport [1]. In this method, the variance of the response 

is simply expressed as the sum of a background and a resonant 

component as 
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where 
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are readily interpreted as the background response and the 

resonant-to-background ratio. 

One major advantage of this two-timescale method is that it 

sidesteps any integration and offers an approximate solution 

of the problem at no computational costs. Extension of this 

method to higher-order statistics was the key motivation for 

the consideration of this problem as a Volterra model. 

Similarly to the power spectral density, the bispectrum of 

the total response x(t) is composed of two terms, among which 

only the first one is retained in the analysis, as it is responsible 

for the contribution 33[x1, x1, x2] to the third cumulant. The 

bispectrum of the response is thus approximated as  
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and the third cumulant of the response is approximated by 
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Similarly again, the trispectrum of the total response x(t) is 

composed of two terms, among which only the first one is 

considered. In this simplified version, it reads 
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where the summation is performed on all six possible 

permutations of the indexes , ,  = 1, 2, 3. The fourth 

cumulant of the response is thus approximated by  
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The purpose of the rest of the paper is to provide simple 

expressions for the integrals in (17) and (19). 

4 MULTIPLE SCALE SPECTRAL ANALYSIS & 

ANALYSIS OF THE MODEL 

4.1 Cumulants of the response 

The multiple timescale spectral analysis is a recent technique 

that allows decreasing by one (at least) the order of integration 

in the determination of the cumulants of the response. It 

hinges on the timescales separation between the loading and 

the structure and is able to deal with linear/nonlinear 

structures, stationary/evolutionary problems, SDOF/MDOF 

problems, and is fundamentally not limited regarding the 

statistical order [2]. The method is elaborated in the frequency 

domain and is not contingent upon the markovianity of the 

loading process; it thus deals with any complex analytical 

expression of the power spectral density of the loading –such 

as those that characterize the wind turbulence– without any 

artifact. The technique actually generalizes the 

background/resonant decomposition of the variance [1] and 

the background/biresonant decomposition of the third 

cumulant [9] of the response of a single degree-of-freedom 

linear system subject to slow stochastic loading. 

Application of the general method requires the 

identification, in the response spectra, of the different 

components to the response. Among them the background 

component is easily identified. Its trivial subtraction from the 

initial response spectra leaves us with resonant and mixed 

background/resonant terms. Examples of applications in [2] 

give some hints on how to determine and approximate these 

components. 

 

Figure 4. Sketch of the bispectrum of the response, (16). 

At third order, the bispectrum of the response is expressed 

by (16) at leading order. This function is represented in Figure 

4 which illustrates the background component as a central 

peak of the frequency space as well as six peaks, coined as 

biresonance peaks as they correspond to resonance in two 

factors out of three in the each term of Bx(1,2). These peaks 

are located at (1,2)= (±o), (0,±o) and (±oo). 

 

The background contribution to the integral in (17) is 

obtained by replacing the frequency response functions H1 

and H2 by their local behavior in (16), i.e. H1()=CdAU/k  

and H2(1,2)=CdA/2k, which yields 

 

3

3, 3 d u

B u

C AU
I

k

  
   

 
 (20) 

Applying the procedure recommended in the multiple 

timescale spectral analysis, the additional contribution of the 

biresonance peaks is obtained after introduction of stretched 

coordinates whose purpose is to formally focus on one of 

these peaks, namely 
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then to approximate locally the integrand, especially the 

power spectral density of the wind turbulence velocity to 

finally obtain 
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with  r the second-order resonant-to-background ratio 

introduced in (15) and 
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and where the shorter notation  = s + a is used. The total 

cumulant of the response is finally written as the sum of the 

background and biresonant components, 3,B + 3,R. 

The appreciable outcome of the method is that the order of 

integration to determine the third cumulant of the response has 

dropped from 2, in (17), to 1 in (22), as a result of the 

timescales separation. 

A graphical representation of the trispectrum of the 

response (18) is a bit more involved as it concerns a function 

of three parameters. However the generic procedure 

developed at the third order may be replicated. It reveals the 

existence of four types of peaks, namely (i) a background 

peak located at the origin, as usual, (ii) four A-type mixed 

background-resonant peaks located in 

(1,2,3)=±() and (1,2,3)=(,±), (iii) two 

B-type mixed background-resonant peaks located at 

(1,2,3)=±(0,and (iv) four (purely) resonant 

peaks located at (1,2,3)=±(and 

(1,2,3)=±(. 

The natures of these peaks are different because they each 

maximize different factors in the expression of the 

trispectrum. To keep it simple, the background peak 

corresponds to the only possible value of (1, 2, 3) that 

maximizes the factors in Su, while the four resonant peaks 

correspond to the four possible combinations of (1, 2, 3) 

that maximize three out of the four factors in H1 or H2. Mixed 



A- and B-type peaks maximize one (or two) factors in H1 or 

H2 and two (resp. one) factors in Su. 

Resorting again to the basic principles of the multiple 

timescale spectral analysis [2], one may identify a background 

contribution 
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with the same local approximation for H1 and H2 and the 

various (eventually mixed) resonant contributions. Each of 

these latter ones are obtained with an adequate rescaling of the 

problem, that aims at sequentially focusing on each kind of 

peak (and sort of bring to problem to the right timescale), 

providing a local approximation of the response at that 

timescale and finally return to the physical frequency space 

with a much simpler expression. After some involved but 

noteworthy calculus, the resulting expressions for those 

contributions read  
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with 
2 ( ( ); ; )u oS     and 

3( ( ); ; )u oS     are defined as 
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Similarly to the third order, we observe that the fourth 

cumulant of the response is simply expressed as the sum of 

four components, 4,B + 4,BRI
 + 4,BRII

 + 4,R, instead of the 

more complex triple-fold integral in (19). 

In our formulation, integrals are hidden in the coefficients 

1, 2 and 3, but the dimensionality of the integrals is 

limited to 2, or even to 1 when mixed background-resonant 

components are dropped (which unfortunately degrades the 

quality of the result, see [10]).  

4.2 Skewness and Excess Coefficients 

The skewness and excess coefficients of the response are 

readily obtained from the corresponding cumulant. With the 

multiple timescale approximation, they read 
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What this model offers is a simple and attractive procedure 

for the computation of the skewness and excess coefficients of 

the nonlinear response of the considered problem. These 

coefficients are simply expressed as a function of the 

resonant-to-background ratio denoted by r, the damping 

coefficients, structural and aerodynamic, as well as the 

coefficients 1, 2 and 3 which holds the remaining 

computational issues. 

Interestingly enough, these latter coefficients have closed-

form asymptotic expressions, for large and small values of the 

total damping coefficient. The relative smallness has to be 

assessed by comparison with the ratio of the characteristic 

frequency of the wind velocity turbulence and that natural 

frequency of the structure,  introduced in (2).  For instance, 

one may observe that all three factors tend to 1 when ≫. 

This makes the estimation of the skewness and excess 

coefficients of the response promptly accessible. 

The amplitude of the nonlinearity scales with the magnitude 

of the aerodynamic damping, see (2). For small values of that 

parameter, the response is still non-Gaussian as a result of the 

square transformation of the wind velocity turbulence u². In 

the limit case, the structural behavior is linear and the current 

formulation degenerates into existing approximation based on 

the multiple timescale spectral analysis too [9]. What mainly 

matters here is that the non-Gaussianity of the response 

(measured by the magnitude of the skewness and excess 

coefficients) decreases as some nonlinear feedback is injected 

into the structure. This is readily observed by substituting a 

by 0 in (27) and (28); the coefficients of 1, 2 and 3 are 

systematically decreased. This validates the following 

statement. The differentiation in the feedback loop acts as a 

highpass filter of the structural response. It is well known that 

the non-Gaussianity of the response mainly results from the 

low-frequency content while the resonant component of the 

response is simply Gaussian. Consequently the correction to 

the open-loop system is more or less Gaussian and this tends 

to diminish the non-Gaussianity of the loading. The model 

described in this paper is a simple tool to quantify this return 

to the Gaussian distribution. 

The few details that were communicated in this paper are 

not really sufficient to understand that the local 

approximations of the kernel, that allowed the derivation of 

the low-dimensional integral solutions, are actually not 

affected by the presence of the square velocity feedback. In 

other words, the squared structural velocity )(2 tx  term is 

definitely negligible in front of the parametric excitation 

2 ( ) ( )x t u t  term, no matter the values and relative smallness 

of the parameters of this problem. The only limitation on this 

observation is that the timescales remain well separated. 

At last but not least, another interesting case is that of a 

small dynamic amplification, in the second-order sense, i.e. 

r≪. In that case, both the mixed and resonant contributions 

vanish and the skewness and excess coefficients of the 

response match those of the quadratic transformation of the 

Gaussian wind velocity turbulence, i.e. 3=3Iu and e=12Iu². 



5 NUMERICAL APPLICATION 

A Monte Carlo simulation of the three associated linear 

equations (11), solved sequentially, provides realizations of 

the total response x(t) as a sum of the deterministic 0
th

-order 

response x0 and of the realizations of the stochastic processes 

x1(t) and x2(t). With the help of an online averaging method, 

the raw moments of x(t), x1(t), x2(t) are readily obtained. They 

are finally translated into cumulants, as they offer a more 

convenient understanding. They are represented in Figure 4, 

which shows in dashed lines the standard deviation, the 

skewness and excess coefficients of the total response x(t). 

In a similar manner, the cumulants of the original system 

are obtained with a statistical processing of the Monte Carlo 

response of the full nonlinear equation (3), in its 

dimensionless version. They are reported in Figure 4 with 

solid lines. 

They virtually correspond for the standard deviation and the 

skewness coefficient, while the agreement is respectable for 

the excess coefficient. Actually, concerning this latter one, a 

third-order Volterra model globally would have offered an 

accuracy similar to that we have for the second and third 

cumulants with the second-order model, but this option was 

not retained in this study. Notice secondarily that the 

inaccuracy of the second-order model grows, as expected, 

with the aerodynamic damping a, i.e. with the magnitude of 

the nonlinearity. 

The results obtained with the analytical model are 

represented by dots and labeled “Analytical model”. Despite 

the obvious simplification in the computation of the third- and 

fourth-order cumulants, there is a remarkable agreement 

between the exact result of the complete problem, including 

all sorts of nonlinearity, and this much simpler model. 

The discrepancy on the skewness coefficient 3 features the 

same order of magnitude as that on the standard deviation, 

which is represented in the upper plot. As the traditional 

background/resonant decomposition is now part of every wind 

engineer’s toolbox, we should agree that the slight 

discrepancy on the estimation of the skewness coefficient is 

thus also acceptable. 

The discrepancy on the excess coefficient is a bit larger, 

especially for small structural damping coefficient. The 

discrepancy is similar, in magnitude, to the error in the results 

of the Volterra model, as compared to the full nonlinear 

problem. Thus, should one consider the second order Volterra 

model as reliable, the result of the analytical model, which is 

obtained at a fraction of the cost of the results of alternative 

options, should also be accepted. 

As far as the computational efficiency is concerned, it 

should be emphasized that the analytical solution is extremely 

convenient when the two timescales involved in the problem 

are very different from each other, i.e.  is small. In this case, 

indeed, the Monte Carlo simulation requires the integration of 

very long time series using a small time step. The computation 

of the results shown in Figure 4 (80 points of the parameters 

space, 4 values of s and 20 for a) required about one minute 

for the analytical solution and about 500 hours CPU time for 

the Monte Carlo simulation (mostly used for the solution of 

the full nonlinear system). 

 

 

Figure 4. The cumulants of the response of the nonlinear 

system (1), solid lines, agree rather well with the cumulants of 

the response of the second-order Volterra model, dashed lines 

(obtained from the solution of the associated linear equations). 

Dots represent the approximation of the cumulants obtained 

with the analytical solution developed in Section 4. The 

standard deviation is scaled by a characteristic response.  



 

6 CONCLUSIONS 

There are two main contributions in this paper. The first one 

concerns the derivation of the very general solution, expressed 

as accurate approximations though, of the stochastic response 

of a second-order Volterra model. Equations presented in this 

paper are rather general and might be applied in other fields or 

problems, as long as the timescales separation hypothesis 

holds. 

The second contribution concerns the application the a 

classical problem of wind engineering, namely the influence 

of the nonlinear quadratic velocity and parametric loading 

terms arising in a quasi-steady aerodynamic loading. 

Although not given with full details, the derivation 

demonstrates that the parametric loading term is mainly 

responsible for the non-Gaussianity of the response, while the 

squared structural velocity term has very few influence. As an 

interesting outcome too, it is demonstrated that the nonlinear 

quadratic velocity feedback systematically reduces the 

skewness and excess coefficients of the loading. 
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