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Abstract—We consider a class of optimal power flow (OPF)
applications where some loads offer a modulation service in
exchange for an activation fee. These applications can be modeled
as multi-period formulations of the OPF with discrete variables
that define mixed-integer non-convex mathematical programs.
We propose two types of relaxations to tackle these problems.
One is based on a Lagrangian relaxation and the other is based
on a network flow relaxation. Both relaxations are tested on
several benchmarks and, although they provide a comparable
dual bound, it appears that the constraints in the solutions
derived from the network flow relaxation are significantly less
violated.

Index Terms—Multi-period optimal power flow; relaxation
schemes; mixed integer non-linear programming.

I. INTRODUCTION

Many power system applications that require solving an
optimal power flow (OPF) problem share two features. Firstly,
these applications are multi-period because of the evolution of
market prices, of the ramping limits of generation units and
of the behavior of static and flexible loads. Secondly, they
contain integer decision variables to model the acceptance or
the rejection of bids, or the start up of some generation units.
As a first example, the day-ahead energy market in Europe
computes spot prices based on supply and demand offers. This
application has a multi-period and discrete nature because of
the “block bids”, and because of some ramping constraints.
Active power flows are constrained by a simple network flow
model. Operational constraints on reactive power, voltage and
current are aggregated in the arc capacities of the network
flows. More realistic (so called “flow based” [1]) network
models are emerging, but they are still a linear approximation
of the set of feasible flows around a foreseen operation point.
As a second example, new applications arising in distribution
networks such as operational planning aim at avoiding the con-
gestion of network elements and minimizing the curtailment
of renewable energy sources. To benefit from the flexibility
of customers, it is necessary to account for the time-coupled
nature of the problem, and integer variables can be used to
model the reservation of that flexibility. Because the physical
characteristics of distribution networks are different from those
of transmission systems, DC power flow approximations can
hardly be used.

Hence depending on the complexity of the primary goal of
the application and its scale, it is often mandatory to resort
to a relaxation of the non-convex network constraints so as to

devise a robust and fast algorithm. Also, a common character-
istic of these applications is that the main decision variables
are the power injections, and especially active power flows
as they underlie most of the financial transactions. The other
variables (voltage, current) can be viewed as consequences
of the power flows in the network, and we must ensure that
they stay within the operational limits. These observations
motivate the relaxation algorithms studied in this paper. We
focus on relaxations that decompose the problem into one
subproblem that works exclusively with active and reactive
power flows but encompasses the multi-period and discrete
aspects, and subproblems that assert that for each time step
those flows do not violate voltage and other technical limits.
After the precise statement of the discrete multi-period optimal
power flow we are targeting in Section II and a review of the
recent literature on these topics in Section III, we propose
two relaxations achieving these goals in Section IV. The first
relaxation is a straightforward generalization of the Lagrangian
relaxation (LR) of [2] to this problem. The downside of
this LR scheme is that the power related subproblem lacks
information on the network topology. The second relaxation
builds on a network flow reformulation of the original problem
by introducing link-flow variables. It is then relaxed into a
convex problem by substituting non-linear terms with their
convex envelopes. Small semidefinite programming (SDP)
relaxations are used to translate operational limits into bounds
of voltage and link-flow variables. Section V-D compares the
two proposed approaches on several test systems, whereas
Section VI concludes and gives directions of further research.

II. GENERAL PROBLEM STATEMENT

We consider the problem of finding the optimal operation
of a set D of devices (i.e. loads and generators) over a certain
time horizon while maintaining the network and the devices
within operational limits. The network is defined as a set
L of links, that is lines, cables or transformers that define
pairwise connections between elements of the set B of buses.
Several devices can be connected to a single bus. The time
horizon is modeled by a set T of periods. We denote by
F ⊂ D the flexible loads. The consumption of a flexible load
can be modulated around a baseline profile. In particular, we
use the flexibility model presented in [3], where the right to
modulate a flexible load is conditioned to the payment of an
availability fee. The operational constraints associated to these



loads are upward and downward modulation limits as well
as an energy constraint, stating that any modulation should
consume the same amount of energy than the baseline profile.
We use the following notations throughout this paper, where
the superscript (t) refers to period t:

• P (t) ∈ R|D|, the active power injections of devices (pos-
itive when power flows from the device to the network);

• Q(t) ∈ R|D|, the reactive power injections of devices
(same sign convention as P (t));

• d ∈ {0, 1}|F|, the availability indicators of flexible loads;
• cf ∈ R|F|+ , the availability costs of the flexible loads;
• P bl(t) ∈ R|F|, the active power injections of flexible

loads when operating at their baseline;
• P

(t)
and P (t) ∈ R|B|, the bounds on active power

injection of devices;
• A ∈ RNc×2|D| and a ∈ RNc , matrix and vector modeling

the P-Q capability of the devices (with Nc the total
number of linear constraints between P (t) and Q(t));

• M ∈ {0, 1}B×D, mapping from devices to buses (Mi,j =
1 if device j is connected to bus i and 0 otherwise);

• e(t) ∈ R|B|, the real part of the voltage at buses;
• f (t) ∈ R|B|, the imaginary part of the voltage at buses;
• V and V ∈ R|B|, the limits on the voltage magnitudes;
• gij the conductance of link (i, j) ∈ L;
• bij the susceptance of link (i, j) ∈ L.

The decision variables are the subset of the active and reactive
power injections for which the bounds P

(t)

k and P
(t)
k are not

equal (k ∈ D), the voltage at all buses, and the discrete
decision variables d. The notion of optimal operation is
defined by a generic cost function f(P ) (linear or a convex
quadratic) that we want to minimize together with cf · d,
the availability fees of flexible loads. The whole problem is
modeled in (1-10) where we use the notation P , Q, e and
f to denote the concatenation of, respectively, the vectors Pt,
Qt, et and ft for all t ∈ T .

min
P ,Q
d,e,f

f(P ) + cf · d (1)

s.t. d ∈ {0, 1}|F| (2)
∀ t ∈ T :

P (t) ≤ P (t) ≤ P (t)
(3)

A
(
P (t)

Q(t)

)
≤ a (4)

∀k ∈ F :∑
t∈T

(
P

(t)
k − P bl

k

(t)
)
= 0 (5)

∀(t, k) ∈ T × F :

P
(t)
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bl
k

(t)
+ dkP

(t)
k (6)

P
(t)
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bl
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(t)
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k (7)
∀(t, i) ∈ T × B :

(M P (t))i =
∑

j∈N (i)

(
gij(e

(t)

i

2
+ f (t)

i

2 − e(t)

i e(t)

j

− f (t)

i f (t)

j ) + bij(e
(t)

i f (t)

j − f (t)

i e(t)

j )
)

(8)

(M Q(t))i =
∑

j∈N (i)

(
bij(e

(t)

i e(t)

j + f (t)

i f (t)

j − e(t)

i
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V 2
i ≤ e(t)

i

2
+ f (t)

i

2 ≤ V
2

i (10)

This is a mixed-integer non-convex mathematical program
where the non-convexity comes from constraints (8-10). In
addition, the electrical variables (i.e. powers and voltages) are
coupled over the set T of periods because of the time-coupling
constraints (5-7) that model the flexible loads.

III. LITERATURE REVIEW

We first review the methods designed to solve ”static” OPF
problems, in the sense that the problem has no temporal aspect.
We then review the literature on multi-period OPF, which
is a scale up of a static problem caused by time coupling
constraints on power variables. Finally, we review the literature
on works where some discrete variables have been introduced
in the OPF problem to model the ability to act on power
injections or withdrawals, that is, problems comparable to the
problem introduced in Section II.

Optimal power flow problems, although non-convex, have
been for long solved using local non-linear optimization meth-
ods. Interior-point methods are probably the most widespread
class of methods dedicated to this problem [4]. If the solution
they provide has no guarantee to be globally optimal, they
have been made popular by their convergence speed and their
ability to solve fairly efficiently problems of large dimension.

Recently, SDP was successfully applied as a convex re-
laxation to the OPF problem [5]. The OPF is formulated
over all the degree 2 monomials of the real and imaginary
parts of the voltage variables. Dropping the rank 1 constraint
of the corresponding matrix yields the SDP relaxation. For
technical reasons, the dual of this SDP relaxation is solved
(strong duality holds). When the duality gap is zero, a primal
feasible optimal solution to the original OPF problem can be
recovered from the solution of the dual SDP. The authors
report no duality gap on some standard meshed test systems
and randomized versions of these test systems. The zero
duality gap property was thus observed experimentally on
standard test systems, and further research resulted in sufficient
conditions. This is the case, for example, if the objective
function is convex and monotonically increasing with the
active power generation, and the network has a radial topology
[6, 7]. Another approach aiming at global optimality relies on
LR [2], which is further explained in Section IV-A. The author
also describes a spatial branch and bound (B&B) algorithm to
close the gap, should it exist one. The ability of both SDP and
LR to decrease the optimality gap within a B&B framework
was evaluated in [8]. If SDP appeared to be computationally
more attractive, it showed that it could be very challenging to



reach a significant gap reduction within reasonable time limits,
even for small test systems.

Multi-period applications related to energy storage are in-
vestigated in [9], where the SDP relaxation of [5] is success-
fully applied, as their particular application met the conditions
for having no duality gap. The authors of [10] argue that
extending [8] to a multi-period setting yields a SDP too large
for current solvers to be solved efficiently and suggest to relax
the time-coupling constraints using LR. However, it ended up
being computationally too heavy to make the B&B approach
worthwhile.

Many papers consider the unit commitment problem over
an AC network, which is an instance of a multi-period OPF
with discrete variables. For instance in [11], a generalized
Benders decomposition divides the problem in a linear master
problem with discrete variables and non-linear multi-period
subproblems. Benders cut are generated from the subproblems
to tighten the MIP master problem.

IV. RELAXATIONS DESCRIPTION

We are looking for a computationally affordable relaxation
of the problem stated in Section II that would offer both a
narrow optimality gap and a solution close to be feasible. The
main complexity sources of problem (1)-(10) are the discrete
decision variables (2) and the non-convexity of (8)-(10).
Furthermore the problem is large scale because of the time-
coupling constraints (5)-(7). If the set of constraints (8)-(10)
could be addressed independently, finding an optimal solution
of (1)-(10) would result in solving less complex subproblems.
This decomposition is particularly attractive because:
• the large time-coupled problem is now a mixed-integer

quadratic program (MIQP) or a mixed-integer linear
program (MILP) which are much easier to solve than
a MINLP of comparable size;

• every constraint of (8)-(10) only involves period-specific
variables and this non-convex program (NLP) can thus
be split in |T | smaller independent problems.

However, these two sets of constraints share the power injec-
tion variables appearing in (5)-(7) and in the left-hand sides of
(8)-(9). Thus some coordination between those subproblems is
required to obtain a solution to (1)-(10).

Such a decomposition has already been proposed in [2]
for single-period continuous OPFs, where the coordination
between the power and voltage subproblems was performed
using LR. The extension of this work to the considered
problem statement is presented in Section IV-A. In addition,
we introduce in Section IV-B a novel flow-based relaxation
for this class of multi-period mixed-integer OPFs. The main
idea behind this relaxation is that the power flow equations
(8)-(9) can be formulated as a network flow with losses.

A. Lagrangian relaxation

As previously discussed, the author of [2] proposes a
Lagrangian Relaxation (LR) scheme in which the constraints
(8)-(10) are dualized. He proves that this leads to two in-
dependent subproblems: a problem involving the active and

reactive power injections, and a quadratic problem involving
the voltage variables. If we apply the same idea to the problem
presented in Section II, we obtain the Lagrangian L as

L(P ,Q,d, e,f ,λ,γ,α,β)

= f(P ) + cf · d

+
∑

(t,i)∈N×T

λ
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i f (t)

j ) + bij(e
(t)

i f (t)
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2
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i

2 − V
2
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)

where λ, γ ∈ R|T ||N | and α, β ∈ R|T ||N |+ are the Lagrange
multipliers for the relaxed constraints.

Any value of the dual function g defined as

g(λ,γ,α,β) = min
P ,Q
d,e,f

L(P ,Q,d, e,f ,λ,γ,α,β) (11)

s.t. (2)-(7) (12)

provides a lower bound on the optimal value of the original
problem. The Lagrangian dual bound is obtained by maximiz-
ing g, which is known to be a concave function. Still following
the approach of [2], the relaxation is tightened by introducing,
∀t ∈ T , the constraints∑

i∈N
V 2

i ≤
∑
i∈N

(e(t)

i

2
+ f (t)

i

2
) ≤

∑
i∈N

V
2

i (13)

If they are redundant in the original problem, they are not in
(11)-(12) because (10) has been relaxed.

More specifically we can rewrite the problem as

max
λ,γ
α,β

g(λ,γ,α,β) (14)

= max
λ,γ
α,β

{
L∗P (λ,γ) + L∗V (λ,γ,α,β)

+
∑

(t,i)∈N×T

(α
(t)
i V 2

i − β
(t)
i V

2

i )
}

where the power subproblem LP (λ,γ) is defined as

L∗P (λ,γ) =min
P ,Q
d

f(P ) + cf · d

+
∑

(t,i)∈N×T

λ
(t)
i (MP (t))i

+
∑

(t,i)∈N×T

γ
(t)
i (MQ(t))i

s.t. (2)-(7)



and requires solving a MIQP (or MILP). The voltage subprob-
lem LV (λ,γ,α,β) is on the other hand defined as

L∗V (λ,γ,α, β)

=
∑
t∈T

{
min

e(t),f(t)
−
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i∈N

λ
(t)
i

∑
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s.t. (13)
}

and consists in solving |T | independent problems that, even
though they are non-convex, can be reformulated as trust-
region subproblems and solved efficiently in polynomial time.

The convex problem (14) belongs to the class of non-smooth
(i.e. non-differentiable) optimization. If subgradient algorithms
[12] are frequently use to solve these problems, they have
shown serious convergence issues for our particular application
in the presence of a nonzero duality gap [8]. For this reason,
we suggest to use a bundle method algorithm [13] to solve
(14).

B. Network flow relaxation

In the LR scheme presented in Section IV-A, no informa-
tion on the topology of the network is used in the power
subproblem LP . Here we present a relaxation that uses the
topological information by coupling the original problem with
a network flow. As the network flow formulation is a linear
relaxation of the power flow equations, it does not account
for their non-convexities. In particular it can be observed that
in a linear network flow, the total amount of power produced
is equal to the total amount of power consumed, which is
rarely the case in our application. It is therefore important to
tighten the formulation by adding some new constraints that
account for these losses in the lines. In particular, we rely on a
reformulation-linearization technique (RLT) approach [14] that
yields a convex envelope of the quadratic constraints coming
from the power flow. As a prerequisite for the network flow
formulation, we first introduce some notations:
• P

(t)
ij is the active power injected in link (i, j) ∈ L at bus

i, positive when power is withdrawn from bus i;
• Q

(t)
ij is the reactive power injected in link (i, j) ∈ L at

bus i, positive when power is withdrawn from bus i;
• P loss

ij
(t) is the active power losses in link (i, j) ∈ L.

Using these variables, the conservation of the power flows
through links, taking the losses into account, can be written
as, ∀(i, j) ∈ L:

P
(t)
ij + P

(t)
ji = P loss

ij

(t)
(15)

Q
(t)
ij +Q

(t)
ji = − bij

gij
P loss
ij

(t)(
= Qloss

ij

(t))
(16)

and the flow conservation at bus i ∈ B as:

(M P (t))i =
∑

j∈N (i)

P
(t)
ij (17)

(M Q(t))i =
∑

j∈N (i)

Q
(t)
ij (18)

A connection between these flow variables and the voltage
variables e and f is achieved through the following equations:
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Q
(t)
ij = bij(e

(t)
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)

+gij(e
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i f (t)
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P loss
ij

(t)
= gij(e

(t)
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2
+ e(t)

j

2
+ f (t)
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2
+ f (t)

j

2

−2e(t)

i e(t)

j − 2f (t)

i f (t)
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which are used together with (15)-(18) to obtain a reformula-
tion of the original problem:

min
P ,Q
d,e,f

f(P ) + cf · d (22)

s.t. (2)-(7)
∀(t, i) ∈ T × B :

(10), (17)-(18)
∀(t, (i, j)) ∈ T × L :

(15)-(16), (19)-(21)

This problem is a mixed-integer quadratically constrained
quadratic program (MIQCP), which is non-convex just as the
original problem. It is important to note that there are redun-
dant constraints in this formulation. For example, removing
(15)-(16) and (21) would produce an equivalent mathematical
program. However, it does not mean that the relaxed counter-
parts of these constraints will also be redundant. It has indeed
been shown in [15] that such redundancy helps generating
tighter relaxations.

Such a problem can be relaxed by replacing bilinear (i.e
xixj) and quadratic (i.e. x2

i ) terms by their McCormick
envelopes, which can be generated by following the procedure
described in Table I. However, before doing so, it is impor-

Let xi ∈ [li, ui] and xj ∈ [lj , uj ]

then xixj → wij

with wij ≥ uixj + ujxi − uiuj

wij ≥ lixj + ljxi − lilj

wij ≤ uixj + ljxi − uilj

wij ≤ lixj + ujxi − liuj

TABLE I: Procedure to replace a bilinear term by its convex
envelope.

tant to observe that such a relaxation converges towards the
original problem as the variable domain is getting smaller,



i.e. max (xixj − wij) converges to zero as (xi − xi) and
(xj − xj) tends to zero too. In other words, the closer the
bounds are, the tighter is the relaxation. Unfortunately, the
bounds of e and f are initially quite loose: e(t)

i and f (t)

i belong
to [−

√
V i,+

√
V i], ∀(i, t) ∈ T × B. In order to tighten the

relaxed problem, it would be interesting to refine these bounds
given the set S of feasible solutions of (1)-(10). Because
computing such bounds in the original problem would result in
the same time-complexity as the original problem, we rely on a
subset of period-specific constraints of (2)-(10) to approximate
S . For each time period t ∈ T , some constraints are removed
from the original problem to obtain an approximated set S̃t
such that St ⊂ S̃t with St the projection of the original set of
feasible solutions to the set of period-t-specific variables. In
other words, the resulting bounds of e and f deduced from
sets S̃t are guaranteed not to remove any feasible solution
from the original problem. In particular, the set S̃t is defined
as:

{ (P (t),Q(t), e(t),f (t)) | (3)-(4),(8)-(10) are not violated }

and finding the upper and lower bounds of a voltage variable
v (i.e. e(t)

i or f (t)

i , ∀(i, t) ∈ B × T ) is equivalent to solving
the following problem:

v/v = max /min
P (t),Q(t)

e(t),f(t)

v (23)

s.t. (P (t),Q(t), e(t),f (t)) ∈ S̃t (24)

Even if this problem is much smaller than the original one, it
is still non-convex. For this reason, the bounds on e and f are
finally computed by solving an SDP relaxation [16] of (23)-
(24). These are the bounds used to build the RLT relaxation
of (22).

The last tightening step that we perform is to bound the
variables P

(t)
ij , P

(t)
ji , Q

(t)
ij , Q

(t)
ji and P loss

ij
(t) by solving the

SDP relaxation of (23)-(24) with as objective function their
expression in equations (19)-(21).

V. QUANTITATIVE ANALYSIS

A. OPF applications

In order to benchmark the relaxations presented in Sec-
tion IV, we focus on two applications of the OPF. The first
one is the common minimization of generation costs, where
we define the cost function f(P ) as

fgen(P ) =
∑
t∈T

∑
g∈G

(
a(t)

g P (t)

g
2
+ b(t)g P (t)

g + c(t)g

)
with G the set of generators. In particular, we consider that
the generation costs can vary over time. This is modeled by
using time-varying parameters {a(t)

g , b(t)g , c(t)g }. In this context,
flexible load can be worthwhile to shift the demand when
generation costs are low.

The second application is a curtailment minimization and is
an extension of the deterministic version of [3]. In this case,

the cost function f(P ) is defined as

fcurt(P ) =
∑
t∈T

[
ccurt

∑
g∈G

(
P

(t)

g − P (t)

g

)
+ closses

∑
d∈D

P (t)

d

]
where the first term represents the curtailment costs and the
second term expresses the cost of network losses. Such a cost
function is representative of the objective of a distribution
system operator that operates a network with distributed gen-
erators. Flexible loads can be profitable if their consumption
is shifted when production from distributed generators is high,
e.g. to avoid congestions or over-voltages without relying too
much on curtailment. For both applications, the term cf · d
must be added to the cost function in order to account for
availability fees.

B. Implementation details
The test program is written in C++ and uses several solver

libraries. For LR, a continuous relaxation of the original
problem is first solved using IPOPT [17] to initialize Lagrange
multipliers and solving the non-smooth problem is done
with ConicBundle [18]. The subproblem LP is solved with
MOSEK [19] while LV , after being casted into a minimal
eigenvalue problem, is addressed using Eigen [20]. For the
network flow relaxation (NFR), all SDP relaxations as well as
the final convex relaxation are solved with MOSEK.

The primal solutions, computed to evaluate the optimality
gap of the relaxed solutions, were obtained using SCIP [21]
configured with IPOPT as NLP solver.

C. Instances
An instance is defined by a cost function, a network and a

number of periods. Table II presents the different networks
used in the test case (if the original test contains shunt
admittances, they are ignored).

|B| |G| |F| Source
(A) 6 3 3 [22]
(B) 9 3 3 [23]
(C) 14 5 4 [24]
(D) 6 2 2 [3]

TABLE II: Networks used for the benchmark.

The cost function fgen is tested on (A)-(C) and fcurt on
(A)-(D). For the curtailment application on networks (A)-(C),
one of the generator (the slack bus) is modified to model a
connection with another network. The power injection at the
corresponding bus can, within some limits, be either positive
or negative.

The test instances are finally generated by considering these
7 (network, cost function) pairs over 4 and 8 periods to obtain
a total of 14 instances.

D. Numerical results
Numerical results on the 14 instances are presented in

Table III-(a) and Table III-(b). The relative optimality gap is
computed as follow:

gap =
ub∗ − lb

lb



LR NFR
Case gap (%) time (s) gap (%) time (s)

(A)gen 2.37 203.7 4.27 11.1
(B)gen 0.00 1.2 2.24 12.7
(C)gen 0.11 143.0 5.16 84.2
(A)curt 79.69 45.0 225.72 16.0
(B)curt 9.07 20.1 12.53 23.5
(C)curt 648.64 140.1 593.58 163.3
(D)curt 60.90 40.9 60.99 11.3

(a) Numerical results for |T | = 4.

LR NFR
Case gap (%) time (s) gap (%) time (s)

(A)gen 2.51 2905.2 4.50 38.7
(B)gen 0.00 4.1 2.20 40.7
(C)gen 0.24 780.5 5.07 254.7
(A)curt 124.86 83.9 255.16 82.7
(B)curt 11.90 60.9 13.22 111.0
(C)curt 879.68 414.8 649.43 1207.9
(D)curt 65.10 112.5 60.09 64.1

(b) Numerical results for |T | = 8.

|T | = 4 |T | = 8
Case LR NFR LR NFR

(A)gen 6.02 0.02 8.72 0.05
(B)gen 70.87 99.33 141.50 196.21
(C)gen 1.24 1.72 1.86 3.58
(A)curt 86.75 6.78 163.28 13.46
(B)curt 179.86 152.51 142.72 162.40
(C)curt 456.88 6.91 57.57 16.35
(D)curt 854.16 0.10 1564.37 0.19

(c) Sum of squared infeasibilities of relaxed solutions
for constraints (8)-(10).

TABLE III: Results for the 14 instances.

where lb is the optimal solution of the relaxed problem (i.e.
a lower bound) which can vary for every relaxation used and
ub∗ is the best primal solution known, and is a fixed number.
For each instance, the reported time is the duration of the
program before termination, running on a 2.6 GHz processor
and limited to a single core. We observe that both relaxations
have similar performances for the optimality gap, in the sense
that they are always within the same order of magnitude.
Concerning the running time performance, there is not an
approach that outperforms the other as both relaxations show
very diverse results.

We are also interested in evaluating another feature of these
relaxations: the level of infeasibility of their solutions in the
original problem. This feature can indeed affect the efficiency
of a relaxation within a spatial B&B framework [25] when
seeking for a globally optimal solution of Problem (1)-(10).
Relaxed solutions that are closer to feasibility can speed up
the discovery of feasible solutions and at the same time
provide upper bounds to the objective function earlier in
the space exploration procedure. Obtaining upper bounds is
critical for these approaches as it helps pruning nodes and
reduces the computational budget required before termination.
Table III-(c) presents the sum of squared infeasibilities for the
set of constraints (8)-(10) (i.e. those relaxed in LR and NFR).
We observe that NFR shows less infeasibility than LR on 9 out
of 14 instances. For some cases, NFR produces solutions that

are very close to be feasible (e.g. (A)gen and (D)curt) while LR
does not exhibit similar performances even when it is able to
close the gap (e.g. (B)gen). In addition, some of the solutions
of LR are affected with a very high level of infeasibility (e.g.
(C)curt and (D)curt), which is orders of magnitude worse than
NFR.

VI. CONCLUSION

In this paper, we presented a novel relaxation for multi-
period OPF with discrete variables that is based on a network-
flow reformulation. While the lower bounds it produces are
comparable with the Lagrangian relaxation, the infeasibility
of the relaxed solutions is reduced. This feature suggests that
it is worthwhile to evaluate NFR beside the current state-of-
the-art relaxations (i.e. [2] and [5]) within a B&B framework.

On the other hand, this relaxation should still be improved
on two aspects. The first one is the quality of lower bounds,
especially for curtailment applications. We believe that a
special care should be taken concerning the upper bounds of
the active losses in links. We observed that the SDP relaxation
used to compute these bounds is not very informative and it
penalizes the tightness of the overall relaxation. The second
aspect to improve is on the computational side. For this
purpose, we would like to consider subnetworks instead of the
whole network to infer the bounds on the voltage and link-
flow variables. If it would reduce the size of SDP problems
and speed up their convergence, it could also reduce the value
of the resulting bounds. For this reason, an iterative approach
that would increase the size of specific subproblems to narrow
the most useful bounds is not to put aside.

Following the observations of this work, we think that
another interesting research direction would be to merge the
two relaxations considered in this paper. Tightening the power
subproblem of a Lagrangian relaxation with a network-flow
relaxation could both improve the convergence of the non-
smooth problem of LR thanks to a tighter subproblem and
reduce the infeasibility of produced solutions.
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