Introduction 000000	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	

Generalized pointwise Hölder spaces

D. Kreit & S. Nicolay

Nord-Pas de Calais/Belgium congress of Mathematics

October 28-31 2013

	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	The Hölder exponent 00
The idea				

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ if there exists a polynomial of degree at most s s.t.

$$\sup_{h|\leq 2^{-j}} |f(x_0+h) - P(h)| \leq C 2^{-js},$$

for *j* sufficiently large.

Is it possible to be sharper and replace the sequence $(2^{-js})_j$ with a more general sequence $\sigma = (\sigma_j)_j$: $f \in L^{\infty}_{\text{loc}}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ if there exists a polynomial of degree at most M s.t.

$$\sup_{h|\leq 2^{-j}}|f(x_0+h)-P(h)|\leq C\sigma_j,$$

for *j* sufficiently large.

	Independance of the polynomial from the scale	Alternative definitions	Wavelets	The Hölder exponent
Generalized Be				

Introduction	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	The Hölder exponent 00
Admissible sequ	lence			

A sequence of real positive numbers is called admissible if

 $\frac{\sigma_{j+1}}{\sigma_j}$

is bounded.

For such a sequence, we set

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\inf_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{j}$$

and

$$\overline{s}(\sigma) = \lim_{j} \frac{\log_2(\sup_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_j})}{j}.$$

Introduction ○○○●○○	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	The Hölder exponent 00
Notations				

- the open unit ball centered at the origin is denoted B,
- the set of polynomials of degree at most n is denoted $\mathbf{P}[n]$,

•
$$[s] = \sup\{n \in \mathbb{Z} : n \leq s\},$$

• if f is defined on \mathbb{R}^d ,

$$\Delta_h^1 f(x) = f(x+h) - f(x)$$

and

$$\Delta_h^{n+1}f(x) = \Delta_h^1 \Delta_h^n f(x),$$

for any $x, h \in \mathbb{R}^d$

Independance of the polynomial from the scale	Alternative definitions	Wavelets	The Hölder exponent
e generalized global Hölder spaces		000000	

Definition

Les s > 0 and σ an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\sup_{h|\leq 2^{-j}} \|\Delta_h^{[M]+1}f\|_{\infty} \leq C\sigma_j$$

Proposition

Les s > 0 and σ an admissible sequence; a function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,s}(\mathbb{R}^d)$ iff there exists C > 0 s.t.

$$\inf_{\mathsf{P}\in\mathbf{P}_{[M]}}\|f-P\|_{L^{\infty}(2^{-j}B+x_0)}\leq C\sigma_j,$$

for any $x_0 \in \mathbb{R}^d$ and any $j \in \mathbb{N}$.

	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	The Hölder exponent 00
The pointwise v	version			

Definition

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ iff there exists C > 0 and $J \in \mathbb{N}$ s.t.

$$\inf_{P\in\mathbf{P}[M]} \|f-P\|_{L^{\infty}(2^{-j}B+x_0)} \leq C\sigma_j,$$

for any $j \geq J$.

Definition

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^{\sigma,M}(x_0)$ iff there exists C > 0and $J \in \mathbb{N}$ s.t. for any $j \ge J$, there exists $P_j \in \mathbf{P}[M]$ for which

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P_j(x_0+h)|\leq C\sigma_j.$$

Introduction 000000	Independance of the polynomial from the scale $\bullet{\circ}{\circ}{\circ}{\circ}{\circ}{\circ}{\circ}$	Alternative definitions	Wavelets 000000	The Hölder exponent 00
What about th	e classical case			

A function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to $\Lambda^s(x_0)$ ($s \in \mathbb{R}$) iff there exists C > 0, a polynomial P of degree less than s and $J \in \mathbb{N}$ s.t. for any $j \ge J$,

$$\sup_{|h|<2^{-j}}|f(x_0+h)-P(x_0+h)|\leq C2^{-js}.$$

There is one polynomial, independant from the scale.

Introduction	Independance of the polynomial from the scale	Alternative definitions	Wavelets	The Hölder exponent
000000	○●○○○		000000	00
Two lemmata				

Lemma

If $M < \underline{s}(\sigma^{-1})$, the sequence of polynomials occuring in the definition of $\Lambda^{\sigma,M}(x_0)$ satisfies

$$\|D^{\beta}P_k - D^{\beta}P_j\|_{L^{\infty}(x_0+2^{-k}B)} \leq C2^{j|\beta|}\sigma_j,$$

for any multi-index β s.t. $|\beta| \leq M$ and $k \geq j \geq J$.

In particular, $(D^{\beta}P(x_0))_j$ is a Cauchy sequence.

Introduction 000000	Independance of the polynomial from the scale $\circ \circ \bullet \circ \circ$	Alternative definitions	Wavelets 000000	The Hölder exponent 00
Two lemmata				

Lemma

If $M < \underline{s}(\sigma^{-1})$, and $(P_j)_j$ is a sequence of polynomials in the definition of $\Lambda^{\sigma,M}(x_0)$, for any multi-index β s.t. $|\beta| \leq M$, the limit

$$f_{\beta}(x_0) = \lim_{j} D^{\beta} P_j(x_0)$$

is independant of the chosen sequence $(P_j)_j$.

 $f_{\beta}(x_0)$ is the Peano derivative of order β of f at x_0 .

Introduction 000000	Independance of the polynomial from the scale $\circ \circ \circ \circ \circ$	Alternative definitions	Wavelets 000000	The Hölder exponent 00
There can be o	only one			

Theorem

If $M < \underline{s}(\sigma^{-1})$, then $f \in \Lambda^{\sigma,M}(x_0)$ iff there exist C > 0 and a polynomial $P \in \mathbf{P}[M]$ s.t.

$$\|f-P\|_{L^{\infty}(x_0+2^{-j}B)}\leq C\sigma_j,$$

for j sufficiently large. The polynomial is unique.

One has

$$P(x) = \sum_{|\beta| \leq M} f_{\beta}(x_0) \frac{(x-x_0)^{\beta}}{|\beta|!}.$$

Introduction	Independance of the polynomial from the scale	Alternative definitions	Wavelets	The Hölder exponent
	00000			
The classical ca	ise			

For
$$s \in (0, \infty)$$
, let
• $\sigma_j = 2^{-js}$
• $M = [\underline{s}(\sigma^{-1})] = [s]$ if $s \notin \mathbb{N}$
• $M = s - 1$ if $s \in \mathbb{N}$

We have

$$\Lambda^{s}(x_{0}) = \Lambda^{\sigma,M}(x_{0}).$$

Corollary

If $M < \underline{s}(\sigma^{-1})$, one has

$$\Lambda^{\sigma,M}(x_0)\subset \Lambda^M(x_0).$$

	Independance of the polynomial from the scale	Alternative definitions ●○○	Wavelets 000000	The Hölder exponent 00
Finite difference	es			

Let

$$B_h^M(x_0,j) = \{x : [x, x + (M+1)h] \subset x_0 + 2^{-j}B\}.$$

Proposition

Let $f \in L^{\infty}_{loc}(\mathbb{R}^d)$; one has $f \in \Lambda^{\sigma,M}(x_0)$ iff there exist C, J > 0 s.t. $\sup_{h \in B_j} \|\Delta_h^{M+1} f\|_{L^{\infty}(B_h^M(x_0,j))} \leq C\sigma_j,$ for any j > J.

Introduction	Independance	of the	polynomial	the	

Alternative definitions

Wavelets Th 000000 00

The Hölder exponent

Convolutions

Let ρ a radial function s.t. $\rho \in C_c^{\infty}(B)$, $\rho(B) \subset [0,1]$ and $\|\rho\|_1 = 1$. One sets, for any $j \in \mathbb{N}_0$,

$$\rho_j = 2^{-jd} \rho(\cdot/2^j)$$

Lemma

Let $N \in \mathbb{N}_0$; if $f \in L^1_{\mathrm{loc}}(\mathbb{R}^d)$ satisfies

$$\sup_{k\geq j} \|f*\rho_k-f\|_{L^{\infty}(x_0+2^{-j}B)} \leq C\sigma_j,$$

for $j \geq J$, then, for any multi-index β s.t. $|\beta| \leq N$, one has

$$\|D^{eta}(f*
ho_{j}-f*
ho_{j-1})\|_{L^{\infty}(x_{0}+2^{-j}B)}\leq C2^{jN}\sigma_{j},$$

for any $j \geq J$.

Introduction	Independance of the polynomial from the scale	Alternative definitions	Wavelets	The Hölder exponent
000000		○○●	000000	00
Convolutions				

Proposition

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists $\Phi \in C^\infty_c(\mathbb{R}^d)$ s.t.

$$\sup_{k\geq j}\|f-f*\Phi_k\|_{L^{\infty}(x_0+2^{-j}B)}\leq C\sigma_j,$$

for *j* sufficiently large. Conversely, if $\sigma \to 0$, $f \in \Lambda^{\epsilon}(\mathbb{R}^d)$ for some $\epsilon > 0$ and *f* satisfies the previous relation for some function $\Phi \in C_c^{\infty}(\mathbb{R}^d)$, then $f \in \Lambda^{\sigma,M}(x_0)$ for any *M* s.t. $M + 1 > \overline{s}(\sigma^{-1})$.

	Independance of the polynomial from the scale	Alternative definitions	Wavelets ●00000	The Hölder exponent 00
Definitions				

Under some general conditions, there exist a function ϕ and $2^d - 1$ functions $\psi^{(i)}$ called wavelets s.t.

$$\{\phi(\cdot - k) : k \in \mathbb{Z}^d\} \bigcup \{\psi^{(i)}(2^j \cdot - k) : k \in \mathbb{Z}^d, j \in \mathbb{N}_0\}$$

forms an orthogonal basis of $L^2(\mathbb{R}^d)$. Any function $f \in L^2(\mathbb{R}^d)$ can be decomposed as follows,

$$f(x) = \sum_{k \in \mathbb{Z}^d} C_k \phi(x-k) + \sum_{j \ge 0, k \in \mathbb{Z}^d, 1 \le i < 2^d} c_{j,k}^{(i)} \psi^{(i)}(2^j x - k),$$

with

$$C_k = \int f(x)\phi(x-k) \, dx, \quad c_{j,k}^{(i)} = 2^{dj} \int f(x)\psi^{(i)}(2^jx-k) \, dx.$$

Introduction 000000	Independance of the polynomial from the scale	Alternative definitions	Wavelets ○●○○○○	The Hölder exponent 00
Definitions				

We assume

- $\phi, \psi^{(i)} \in C^n(\mathbb{R}^d)$ with n > M,
- $D^eta \phi$, $D^eta \psi^{(i)}$ ($|eta| \leq n$) have fast decay,
- $\operatorname{supp}(\psi^{(i)}) \subset 2^{-j_0}B$ for some j_0 .

Introduction 000000	Independance of the polynomial from the scale	Alternative definitions	Wavelets 00●000	The Hölder exponent 00
Definitions				

We set

•
$$\lambda = \lambda(i, j, k) = \frac{k}{2^j} + \frac{i}{2^{j+1}} + [0, \frac{1}{2^{j+1}})^d$$

• $c_\lambda = c_{j,k}^{(i)}$
• $\psi_\lambda = \psi^{(i)}(2^j \cdot -k).$

Introduction 000000	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000●00	The Hölder exponent 00
Definitions				

The wavelet leaders are defined by

$$d_\lambda = \sup_{\lambda' \subset \lambda} |c_{\lambda'}|$$

If 3λ denotes the 3^d dyadic cubes adjacent to λ and $\lambda_j(x_0)$ the dyadic cube of length 2^{-j} containing x_0 , one sets

$$d_j(x_0) = \sup_{\lambda \subset 3\lambda_j(x_0)} d_\lambda$$

	Independance of the polynomial from the scale	Alternative definitions	Wavelets 0000●0	The Hölder exponent 00
Definitions				

j

k

	Independance of the polynomial from the scale	Alternative definitions	Wavelets ○○○○●	The Hölder exponent 00
The caracteriza	ition			

Theorem

If $f \in \Lambda^{\sigma,M}(x_0)$, then there exists C > 0 s.t.

$$d_j(x_0) \leq C\sigma_j,$$

for *j* sufficiently large. Conversely, if $\sigma \to 0$, $f \in \Lambda^{\epsilon}(\mathbb{R}^d)$ for some $\epsilon > 0$ and *f* satisfies the previous relation, then $f \in \Lambda^{\tau,M}(x_0)$, where

- τ is the sequence defined by $\tau_j = \sigma_j |\log_2 \sigma_j|$,
- *M* is any number satisfying $M + 1 > \overline{s}(\sigma^{-1})$.

Introduction 000000	Independance of the polynomial from the scale	Alternative definitions	Wavelets 000000	The Hölder exponent ●○
Definitions				

If, for any s > 0, $\sigma^{(s)}$ is an admissible sequence, the application

 $\sigma^{(\cdot)}: \mathbf{s} > \mathbf{0} \mapsto \sigma^{(\mathbf{s})}$

is called a family of admissible sequences. A family of admissible sequences is decreasing for x_0 if

$$s < t \Rightarrow \Lambda^{\sigma^{(t)},[t]}(x_0) \subset \Lambda^{\sigma^{(s)},[s]}(x_0).$$

Let $\sigma^{(\cdot)}$ a family of decreasing sequences for x_0 and $f \in L^{\infty}_{loc}(\mathbb{R}^d)$; the Hölder exponent of f at x_0 for $\sigma^{(\cdot)}$ is

$$h_f^{\sigma^{(\cdot)}}(x_0) = \sup\{s > 0 : f \in \Lambda^{\sigma^{(s)},[s]}(x_0)\}.$$

Introduction	Independance	the	polynomial	the	

Alternative definitions

Wavelets Th

The Hölder exponent

How to check if a family of admissible sequences is decreasing?

Let

$$\overline{\Theta}^{(m)} = \sup_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}}, \quad \underline{\Theta}^{(m)} = \inf_{k \in \mathbb{N}} \frac{\sigma_{k+1}^{(m)}}{\sigma_k^{(m)}},$$

Proposition

A family of admissible sequences is decreasing for x_0 if it satisfies the following conditions :

• if $m \leq s < t < m+1$ with $m \in \mathbb{N}_0$, $\sigma_j^{(t)} \leq C \sigma_j^{(s)}$ for j sufficiently large

• for any $m \in \mathbb{N}$, at least one of the following conditions is satisfied : there exists $\epsilon_0 > 0$ s.t. for any $\epsilon \in (0, \epsilon_0)$, $\sigma_j^{(m)} \leq C\sigma_j^{(m-\epsilon)}$ if $1 < 2^m \overline{\Theta}^{(m)} : (\overline{\Theta}^{(m)})^j \leq C\sigma_j^{(m-\epsilon)}$ if $1 > 2^m \overline{\Theta}^{(m)} : 2^{-jm} \leq C\sigma_j^{(m-\epsilon)}$ if $1 = 2^m \overline{\Theta}^{(m)} : j2^{-jm} \leq C\sigma_j^{(m-\epsilon)}$ if $1 = 2^m \overline{\Theta}^{(m)} : j2^{-jm} \leq C\sigma_j^{(m-\epsilon)}$ if $1 = 2^m \overline{\Theta}^{(m)} : j2^{-jm} \leq C\sigma_j^{(m-\epsilon)}$