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INTRODUCTION 

Recent events such as natural catastrophes or terrorism attacks have highlighted the necessity to 
ensure the structural integrity of buildings under an exceptional event. According to Eurocodes and 
some other national design codes, the structural integrity of civil engineering structures should be 
guaranteed through appropriate measures and one way to guarantee it is to ensure an appropriate 
robustness of the structure, which may be defined as the ability of a structure to remain globally 
stable in case of exceptional event leading to local damages. However, although global design 
approaches are provided in modern codes and standards, no easy-to-apply practical guidelines are 
provided. The present paper reflects recent researches realised at the University of Liege with the 
scope of proposing such practical guidelines for the activation of alternative load path in the 
structure, design strategy generally leading to the most economical solutions.  

1 BACKGROUND 

At the University of Liege, the exceptional event “loss of a column” in steel and composite plane 
frames is under investigation since several years, using experimental, numerical and analytical 
approaches. The general philosophy adopted at the University of Liege is to observe the 
redistribution of the loads in damaged structures through the activation of alternative load paths and 
to develop analytical methods to predict this redistribution of loads. Knowing how the loads 
redistribute, it is possible to estimate whether or not the remaining elements are able to sustain the 
additional loads coming from this redistribution, without causing a progressive collapse of the 
entire frame.  

 
Fig. 1.  N-u curve ([1] and [2]) 

When a frame is submitted to a column loss, two parts can be identified in the structure: the directly 
affected part and the indirectly affected one (Fig. 1). The directly affected part contains all the 
beams, columns and beam-to-column joints located just above the lost column. The rest of the 
structure (i.e the lateral parts and the storeys under the lost column) is defined as the indirectly 
affected part. For a frame that losses one of its columns (column AB in Fig. 1), the evolution of the 
compression force NAB in this element VS the vertical displacement (u) at the top of this column is 
divided in 3 phases as illustrated in Fig. 1. During phase 1 (from (1) to (2)), the column is 
“normally” loaded (i.e. the column supports the loads coming from the upper storeys) and the load 
in the column before its disappearance is defined as equal to NABnormal. Phase 2 (from (2) to (4)) 
begins when the column starts to disappears. During phase 2, a plastic mechanism develops in the 



 

  

directly affected part. Each change of slope in the curve of Fig. 1 corresponds to the development of 
a new hinge in the directly affected part, until reaching a complete plastic mechanism (point (4)). 
Phase 3 (from (4) to (5)) starts when this plastic mechanism is formed: the vertical displacement at 
the top of the column increases significantly since there is no more first-order stiffness in the 
structure. Due to these large displacements, catenary actions are developing in the beams of the 
directly affected part, giving second-order stiffness to the structure. The role of the indirectly 
affected part during phase 3 is to provide a lateral anchorage to these catenary actions: the stiffer the 
indirectly affected part is, the more catenary action will develop in the directly affected part.  

 
Fig. 2.  Description of the phases 

The objective with the analytical method developed in Liege is to determine a curve P-u reflecting 
the behaviour of the structure during phase 2 and 3, to be able to estimate the redistribution of loads 
within the structures during these phases and to be able to finally check if the structure is able to 
reach point (5) of Fig. 1. Indeed, this point is reached only if there is enough resistance and ductility 
in the damaged structure to sustain these large displacements and additional forces coming from the 
activation of alternative load paths. Fig. 2 illustrates the 3 phases described here above. 
In Demonceau’s thesis [1], an analytical method has been developed that allows predicting the 
curve P-u during phase 3, for the case of a 2D structure losing statically one column. The method is 
focusing on phase 3, i.e. when second order effects are predominant, and is based on the study of a 
substructure that contains only the lower beams of the directly affected part (Fig. 3), identified as 
the beam where higher tension forces appear. The surrounding structure is simulated by a horizontal 
spring with a stiffness KH (Fig. 3). This KH has a constant value in the model, because the indirectly 
affected is assumed to remain elastic during phase 3.  

 
Fig. 3.  Demonceau’s substructure 

The input data’s of this method are the following: 
− L0 : initial length of the beam; 

− M-N resistance interaction curve for both hogging and sagging bending in the plastic hinge; 

− KH: stiffness of the horizontal spring; 

− KN: axial stiffness of a plastic hinge submitted to both bending and axial forces (linking N to the 
plastic elongation of the hinge δN).  

Within [1], KN had to be numerically computed or extracted from experimental results; there was no 
analytical method to determine this parameter. 
In the two next sections, it will be explained how this model has been improved through recent 
developments, in particular for the prediction of the KN and KH values. Then, the global analytical 
method able to predict the response of a 2D frame further to a column loss will be presented.  

2 LOCAL PARAMETER K N 

The KN parameter is defined as a local parameter, because it is linked to the behaviour of the 
yielded zones in the directly affected part. These yielded zones can occur in the beam cross section 



 

  

or in the beam-to-column joint if partial strength joints are used. The present section will focus on 
the case where the hinge develops in the beam cross section. However, a method founded on the 
same philosophy is also available for the case where the hinges develop in the beam-to-column 
joints. 
To define an analytical model for the prediction of KN, it is required to define a length for the 
plastic hinge. This hinge length L is defined according to [3] (Fig. 4).  

 
Then, the cross section is fictively divided into 6 parts: 2 parts represent the flanges and 4 parts the 
web (Fig. 5). Finally, the extremities of the beams of the directly affected part can be considered as 
6 springs in parallel submitted to M and N, assuming that the section at the extremities of these 
springs remains straight, using the Bernoulli assumption (Fig. 5). 
 
The force-displacement laws of each spring are elastic-perfectly plastic, without limitation of 
ductility and symmetric in tension and in compression. The resistance of each spring is simply 
equal to Frdi = Ai*f y and the stiffness Ki = E*Ai/L, where Ai represents the section of part “i” and E 
the Young modulus of the beam material. 
According to parametrical studies, the value of KN was strongly dependant on the value of the 
horizontal restraint KH. So, as there is a coupling between this local parameter KN and the global 
structure in which the hinge is developing, through the parameter KH, the local hinge model has to 
be implemented in the substructure of Demonceau (Fig. 6). 

 
Fig. 6.  New substructure model 

There is no need anymore to define a M-N resistance curve or to explicitly determine KN linking N 
to  δN, because these data are implicitly included in the definition of the stiffness’s and resistances 
of the springs simulating the hinges at the extremities of the beam.  

3 GLOBAL PARAMETER K H 

As previously said, the substructure defined by Demonceau to study phase 3 was composed only 
with the lower beam of the directly affected part, i.e. the beams just above lost column. The rest of 
the structure (i.e. the indirectly affected part) was represented by one horizontal spring (see Fig. 3). 
However, this substructure is only valid if the compression force in the column just above the lost 
one remains constant during the all duration of phase 3, which is not always the case, as it has been 
demonstrated in [4] and [5]. This can be understood by comparing the behaviour of two structures 
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Fig. 5.  Simulation of the plastic hinge Fig. 4.  Definition of the hinge length ([3]) 



 

  

as shown in Fig. 7. In the frame on the left, the indirectly affected part sags on the directly affected 
one, and the compression force in the column above the lost one can either increase or remain 
constant. In the frame on the right, no horizontal displacement is allowed, and the upper stories help 
the lower beam to support the loss of the column. In this case, the effort in the upper column may 
even go into tension. 

  
These considerations have brought into light important coupling effects between the stories of the 
directly affected part, and also between the directly affected part and the indirectly affected part. 
Actually, it is just as if a vertical spring was missing in the substructure defined by Demonceau, i.e. 
a spring that could simulate the effect of the upper stories of the directly affected part. 
A general approach has been developed for the determination of the parameter KH to take into 
account these coupling effects.  A first method is presented in [6] without taking into account the 
effects of KN on these couplings. The next paragraph will describe precisely the complete analytical 
method taking into account the effects of both KN and KH. 

4 COMPLETE ANALYTICAL MODEL 

The substructure defined by Demonceau is generalized for all the stories of the directly affected part 
(Fig. 8) and the effects of KN are added to this generalized substructure by considering the 
extremities of the beams with springs in parallel. On the other hand, the influence of the indirectly 
affected part is taken into account by considering horizontal springs at each extremities of the so-
defined substructure. 

 

 
These springs simulating the restraint of the indirectly affected part are defined by relations between 
the horizontal displacement δHi at the storey i when a horizontal force FHj is acting at the level j: δHi 

= ∑ sij FHj. The coefficients sij form the flexibility matrix of the indirectly affected part, sij being the 

Fig. 7.  Couplings between the stories of the directly affected part 
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Fig. 9.  Lateral stiffness matrix representing the indirectly affected part 

Fig. 8.  New generalized substructure 



 

  

horizontal displacement at the level i when a unitary horizontal force acts at the level j (Fig. 9). The 
flexibility matrix needs to be defined for both right and left parts of the substructure if the indirectly 
affected part is not symmetrical. The input data’s for the final analytical model are the following: 

Table 1. Input data’s of the analytical model 

Cross section’s characteristics of the beams and columns of the frame 

Material information E, fy 

Frame dimensions: 
L0: span of the beams 
H0: height of the columns 

Lost column localisation: 
nst = number of stories of the directly affected part (= # of beams above the lost column) 
n = # of stories under the lost column  
c = # of columns in the indirectly affected part (left and right if not symmetrical) 

Table 2. Unknowns and equations of the analytical model 

Unknowns Number  Equations Number 

u 1 u = input data’s 1 

θ nst sin(θ)=u/(L0-2L+ ΔL) nst 

δ nst cos(θ)=(L0-2L- δH-2δ) /(L0-2L+ ΔL) nst 

δH,g nst δH,g(nstx1)=Sg (nstxnst)*FH (nstx1) nst 

δH,d nst δH,d(nstx1)=Sd (nstxnst)*FH (nstx1) nst 

ΔL nst ΔL=FH(L0-2L)/(EA) nst 

M nst M = ∑Fi*h i nst 

FH nst FH = ∑Fi nst 

Fi (i=[1:6]) 6* nst Fi=f(δi) 6* nst 

δi (i=[1:6]) 6* nst δi =  δ+hi*θ 6* nst 

P nst -0.5*P*(L0-0.5*( δH,g+ δH,d))+FH*u+2*M = 0 nst 

Ptot 1 Ptot=∑P 1 

The validation of the proposed model has been validated through several comparison between 
numerical and analytical results obtained for the frame described in Fig. 10, in which the beam-to-
column joints are assumed to be full-strength and fully rigid. One example of such comparisons is 
given in Fig. 10. The numerical simulations were done using Finelg ([7]). 

 
       (a)                                          (b) 

Fig. 10.  Validation the complete analytical model through comparison to numerical results 

Note that the model is applicable also when the plastic hinge develops in a partially resisting joint. 
In this case, the simulation of the plastic hinge is still a set of horizontal springs in parallel, one 
spring by component row,  and the characteristics of these elastoplastic springs (stiffness and 
resistance) are determined using the component method, as recommended in the Eurocode ([8]). 
The springs are non symmetrical and are only active in tension or in compression. This model for 



 

  

the partially resisting joint has been validated through an experimental test conducted at Liege 
University in 2008, for a composite beams submitted to the loss of it central support (Fig. 11). For 
more details, refer to [9][10][11] 

 
Fig. 11.  Experimental test conducted in Liege (P-u curve) 

5 DISCUSSION AND CONCLUSION 

The fully analytical method presented in this paper allows predicting the response of a frame 
submitted to a column loss, what is a premiere. The developed method takes into account of the 
following phenomena: 
- the global interaction between the different parts of the structure; 
- the local phenomena happening in the yielded zones, submitted to both M and N. 
The method presented here deals with 2D frames, submitted to a static column loss. Also, it is 
assumed that the indirectly affected part remains elastic and so, the horizontal restrain brought by 
the indirectly affected part is constant during phase 3.  
Other research works have also been conducted in Liege to deal with aspects such as the 3D 
behaviour of structures, the possible dynamic effects associated to a column loss and the yielding of 
the indirectly affected part ([4], [12] and [5] respectively).  
The final aim of these developments is to be able to propose soon guidelines, design 
recommendations or easy-to-use software, founded on a good knowledge of the structural behaviour 
to help the practitioners in design offices with the robustness issues they can meet in practice.  
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