Definition of vocal pitch accuracy in a melodic context

Pauline Larrouy-Maestri

pauline.larrouy@ulg.ac.be

March 28th 2014

In tune?

Musical errors

Interval error

Tonality error

Musical errors

□ Young age

- Categorisation of contour errors: 10 months (Ferland & Mendelson, 1989)
- Discrimination of tonality and intervals (Hannon & Trainor, 2007; Gooding & Stanley, 2001; Plantinga & Trainor, 2005; Stalinski et al., 2008)

Errors perceived by adults

Dowling & Fujitani, 1970; Edworthy, 1985; Stalinski et al., 2008; Trainor & Trehub, 1992

Method

Computer assisted method

Quantification of errors

Excel (Microsoft)

FO information

AudioSculpt and

OpenMusic (Ircam)

Manual segmentation

AudioSculpt (Ircam)

Larrouy-Maestri, P., & Morsomme, D. (in press). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics Phoniatrics Vocology.

Participants

	Experts	Non experts
n	18	18
Gender	8 women	8 women
Age	M = 29.89; SD = 14.47	M = 33.06; $SD = 9.57$
Expertise	5 professional musicians 5 professional singers 4 music students 4 speech therapists	
Musical or vocal practice	OK	
Audiometry		ОК
MBEA (Peretz et al., 2003)		ОК
Production task « Happy Birthday »		ОК

Results

	Non experts	Experts
Model	F(3,165) = 104.44; p < .01	F(3,165) = 231.51; p < .01
% variance	66%	81%
Criteria	Interval deviation	Interval deviation Tonality modulations

Definition

□ Musical errors

Intevals are important in the definition of vocal pitch accuracy in a melodic context

□ But ...

Pitch categories

For now

Pitch discrimination

- http://www.musicianbrain.com/pitchtest/
- http://tonometric.com/adaptivepitch/

□ In a melodic context

- Semitone (100 cents) Berkowska & Dalla Bella, 2009 ; Dalla Bella et al., 2007, 2009a, 2009b ; Pfordresher & al., 2007, 2009, 2010
- Quartertone (50 cents) Hutchins & Peretz; 2012; Hutchins, Roquet, & Peretz, 2012; Pfordresher & Mantell, 2014

Which threshold in a melodic context?

- → Effect of familiarity? Yes (Kinney, 2009) No (Warrier & Zatorre, 2002)
- → Effect of the direction of the error?

Material

□ Two melodies

□ Familiarity ?

- Online questionnaire
- 399 participants from 13 to 70 years old (M = 29.81)
- *t*(398) = 20.92, *p* < .001

Material

Material

Participants and procedure

□ 30 non musicians (M = 21.33 years; SD = 2.45) □ Two times with 8 to 15 days in between

17

Good intra-judges and inter-judges reliability

- ✓ No effect of familiarity
 - Familiar : *t* = -4.94, *p* < .001
 - Non Familiar : t = -3.27, p = .003

Threshold depends on the direction of the error

Definition

□ Musical errors

Intevals are important in the definition of vocal pitch accuracy in a melodic context

□ Pitch categories

quarter-tone, depend on the direction of the error, whatever the melody

□ But ...

Pitch fluctuations

For now

- □ Complex signal (Sundberg, 2013)
- □ Effects of pitch fluctuation on pitch perception (Castellengo, 1994; d'Alessandro & Castellengo, 1994; Hutchins et al., 2012; van Besouw et al., 2008)
- □ The case of operatic voices (Larrouy-Maestri, Magis, & Morsomme, 2014, in press a, in press b)
- What is a "normal" voice?
 Perception of "non ideal" sung performances ?

Descriptive model of pitch fluctuation

21

- Modification of the temporal adaptation model of Large, Fink & Kelso (2002)
- Not a cognitive model ... just designed to get relevant summary statistics for pitch fluctuations

Pitch at time t Comes from "start" fluctuations and "end" fluctuations influencing an *asym*ptote

$$Pitch_t = Y_{s_t} + Y_{e_t} + asym$$

Descriptive model of pitch fluctuation

- -Time values mirror reversed
- -New and adjusted parameters

23

Starting fluctuations: magnitude (A) and rate of approach (b)

Oscillation around approach (f)

March 28th, 2014

Starting and ending fluctuations: A_s (and A_e), b_s (and b_e)

□ Fitted parameters

- **Rate of approach:** b_s , b_e
- Oscillation around target: $f_{s'}$, f_{e}

Parameters from data

- asym: from middle portion of tone (median)
- A_s values from difference of beginning to asym
- A_e values from difference of end to asym
- θ is effectively a 'toggle'

How the model fits the datas

Database

- Pfordresher & Mantell (2014)
- 12 "poor" and 17 "good" singers
- Imitation of accurate singers
- Melodies of 4 notes
- 1902 tones to analyse

□ **Distribution** (Shapiro-Wilk p<.001)

Not different depending on the quality of the singer
 t(1459) = .473; p = .637

n

Comparison poor/good singers

	Poor M (SE)	Good M (SE)	Difference
bs	5.03 (.64)	6.02 (.57)	ns
be	5.55 (.41)	5.16 (.37)	p = .003
fs	1.11 (.32)	.68 (.30)	ns
fe	41 (.19)	35 (.11)	ns
As above	86.41 (5.40)	60.53 (2.55)	p < .001
As under	-113.90 (6.01)	-76.11 (3.66)	p < .001
Ae above	113.81 (10.38)	77.04 (8.39)	p < .01
Ae under	-148.96 (5.93)	-115.86 (3.34)	p < .001

Focus on As and Ae

Perception of pitch fluctuation

Creation of melodies

- Mean As and Ae in a particular context
- Pitch deviations on the 3rd note : O; +/- 50 cents
- Insertion of pitch fluctuation (As and Ae)
- Different combinations of As and Ae

Pairwise comparison

- Ranking: 1 point if "more in tune", 0 point for the other, 0.5 point if similar
- □ Exp 1:
 - Task 1: modification of As OR Ae, with and without pitch deviation
 - Task 2: modification of As AND Ae, without pitch deviation

March 28th, 2014

□ Exp 2:

Same as Exp 1 but in an other melodic context

□ Exp 3:

- Threshold / tolerance
- Magnitude of As and Ae
- Combination

□ Questions

- Effect of the direction of the attack/ending ?
- Effect of the size of the attack/ending ?

Pitch accuracy perception of natural voices

Definition

□ Musical errors

Intevals are important in the definition of vocal pitch accuracy in a melodic context

□ Pitch categories

- quarter-tone, depend on the direction of the error, whatever the melody
- □ Pitch fluctuation
 - Coming soon ☺

Conclusion

Perception of pitch accuracy

Musical errors, pitch categories, pitch fluctuation

□ Evaluation

Is Marilyn in tune?

Tools to evaluate singer quality

Tease apart good and poor pitch singers

□ Representation of melodic accuracy

Toward speaking accuracy

Conservatoires Royaux de Belgique Centre Henri Pousseur Ellen Blanckaert Virginie Roig-Sanchis Malak Sharif Paul Kovacs Michael Wright Manon Beeken Laura Gosselin Marion Nowak Céline Clijsters Eugénia Pinheiro Eliane Boulonnais

March 28th 2014

Definition of vocal pitch accuracy in a melodic context

Thank you!

March 28th

- Berkowska, M., & Dalla Bella, S. (2009). Reducing linguistic information enhances singing proficiency in occasional singers. Annals of the New York Academy of Sciences, 1169, 108-111.
- Castellengo, M. (1994). La perception auditive des sons musicaux. In A. Zenatti (Ed.),
 Psychologie de la musique (pp.55-86). Paris: Presses Universitaires de France.
- d'Alessandro C., Castellengo M. (1994), The pitch of short-duration vibrato tones. JASA., 95(3)
- Dalla Bella, S., & Berkowska, M. (2009). Singing Proficiency in the Majority. Annals of the New York Academy of Sciences, 1169(1), 99-107.
- Dalla Bella, S., Giguère, J. -F., & Peretz, I. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182-1189.
- Dalla Bella, S., Giguère, J.-F., & Peretz, I. (2009). Singing in congenital amusia. The Journal of the Acoustical Society of America, 126(1), 414.
- Dowling, W. J, & Fujitani, D. S. (1970). Contour, interval, and pitch recognition in memory for melodies. *Journal of the Acoustical Society of America*, 49, 524-531.
- Edworthy. J. (1985). Interval and contour in melody processing. *Music Perception*, 2, 375-388.

- Ferland, M. B., & Mendelson, M. J. (1989). Infants' categorization of melodic contour. Infant Behaviour Development, 12, 341-355.
- Gooding, L., & Standley, J. M. (2011). Musical development and learning characteristics of students: A compilation of key points from the research literature organized by age. National Association for Music Education, 30(1), 32-45.
- Hannon, E. E., & Trainor, L. J. (2007). Music acquisition : effects of enculturation and formal training on development. *Trends in Cognitive Sciences*, 11(11), 466-472.
- Hutchins, S., & Peretz, I. (2012). A frog in your throat or in your ear? Searching for the causes of poor singing. Journal of Experimental Psychology: General, 141, 76–97.
- Hutchins, S., Roquet, C., & Peretz, I. (2012). The Vocal Generosity Effect: How Bad Can Your Singing Be? Music Perception, 30(2), 147-159.
- Kinney, D. W. (2009). Internal Consistency of Performance Evaluations as a Function of Music Expertise and Excerpt Familiarity. Journal of Research in Music Education, 56(4), 322-337.
- Large, E. W., Fink, P., & Kelso, J. A. S. (2002). Tracking simple and complex sequences.
 Psychological Research, 66, 3-17.
- Larrouy-Maestri, P., & Morsomme, D. (in press). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics Phoniatrics Vocology.

- Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013) The evaluation of singing voice accuracy: a comparison between subjective and objective methods. *Journal of Voice*. 27(2), 259.e251-e255.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (in press a). The effect of melody and technique on the singing voice accuracy of trained singers. Logopedics Phoniatrics Vocology.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (in press b). The evaluation of vocal accuracy: The case of operatic singing voices. *Music perception*.
- Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
- Plantinga, J., & Trainor, L. (2005). Memory for melody: infants use a relative pitch code.
 Cognition, 98(1), 1-11.
- Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of "tone deafness".
 Music Perception, 25(2), 95-115.
- Pfordresher, P. Q., & Brown, S. (2009). Enhanced production and perception of musical pitch in tone language speakers. Attention, Perception & Psychophysics, 71(6), 1385-1398.

- Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182-2190.
- Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182-2190.
- Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: Evidence for an inverse modeling account of poor-pitch singing.
- Stalinski, S. M., Schellenberg, E. G., & Trehub, S. E. (2008). Developmental changes in the perception of pitch contour. Distinguishing up from down. *Journal of the Acoustical Society of America*, 124, 1759-1763.
- Sundberg, J. (2013). Perception of Singing. In D. Deutsch (Ed.), The psychology of music (pp. 69-105). San Diego, CA: Academic Press.
- Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants' and adults' sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.
- van Besouw, R. M. V., Brereton, J. S., & Howard, D. M. (2008). Range of tuning for tones with and without vibrato. Music Perception, 26(2), 145-155.
- Warrier, C. M., & Zatorre, R. J. (2002). Influence of tonal context and timbral variation on perception of pitch. Perception & Psychophysics, 64(2), 198-207.