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Abstract— The global description of a nonlinear system
through the linear Koopman operator leads to an efficient
approach to global stability analysis. In the context of stability
analysis, not much attention has been paid to the use of spectral
properties of the operator. This paper provides new results on
the relationship between the global stability properties of the
system and the spectral properties of the Koopman operator. In
particular, the results show that specific eigenfunctions capture
the system stability and can be used to recover known notions of
classical stability theory (e.g. Lyapunov functions, contracting
metrics). Finally, a numerical method is proposed for the global
stability analysis of a fixed point and is illustrated with several
examples.

I. I NTRODUCTION

The operator-theoretic approach to dynamical systems
provides a powerful insight into stability theory. As an
illustration, the duality between Lyapunov functions and
densities, discovered only some years ago in [14], is directly
derived from the duality, known for decades, between two
adjoint operators describing the system—namely, the Koop-
man operator and the Perron-Frobenius operator. Also, the
operator-theoretic approach considers the system as a whole,
since one iteration of the (infinite-dimensional) operatoris
equivalent to an iteration alongall the system trajectories.
The framework is therefore well-suited toglobal stability
analysis.

The development of an operator-theoretic framework for
stability analysis is still in its infancy. The main contributions
can be found in [13], [15] and focus almost exclusively on the
Perron-Frobenius operator. Since the (Koopman and Perron-
Frobenius) operators are linear, it is also natural to consider
their spectral properties. However, while these properties
were successfully used to capture the system behavior on the
attractor (see e.g. [8], [10]), they have never been exploited
in the context of stability theory.

In this paper, we set the basis of a novel stability theory
based onspectraloperator-theoretic methods. In particular,
we focus on the spectral properties of the Koopman operator
and we establish a relationship between global stability
and the existence of specific eigenfunctions. Beyond their
relationship to stability, the eigenfunctions are relatedto
important geometric properties of the dynamics (derivation of
special Lyapunov functions and contracting metrics, global
linearization [6], isostables [9], etc.). This analysis mirrors
the spectral approach to stability in linear systems.
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Although most of the results are general and make no
assumption on the nature of the attractor, we consider with
more details the case of stable fixed points. In this situation,
we propose a numerical method for computing smooth
eigenfunctions. Without computing the system trajectories,
this method is used to investigate the stability of the fixed
point and to estimate the size of its basin of attraction.

The paper is organized as follows. In Section II, we
introduce the Koopman operator framework and briefly dis-
cuss the duality with the Perron-Frobenius operator. The
relationship between classical Lyapunov stability and the
properties of the Koopman operator is presented in Section
III. Section IV develops our main results, deriving global
stability results from the spectral properties of the operator.
The numerical method is developed in Section V and is used
to investigate the stability properties of several dynamical
systems with globally stable fixed points. Finally, we give
some concluding remarks in Section VI.

II. A N OPERATOR-THEORETIC FRAMEWORK

In this section, we give an overview of the existing
operator-theoretic framework for the analysis of the dynam-
ical system

ẋ = F (x) , x ∈ R
n . (1)

We denote byϕ(t, x) : R × R
n → R

n, or equivalently
ϕt(x), the flow induced by the system, i.e.ϕt(x) is the
solution of (1) associated with the initial conditionx ∈ R

n.
Unless otherwise specified, we only require existence and
uniqueness of the flowϕt. (The vector fieldF is assumed
to be Lipschitz continuous, but could also be replaced by a
well-defined hybrid system.)

A. The Koopman operator

Consider a compact setX ⊂ R
n which is forward

invariant underϕt(·). (Note that many of the following
results also hold whenX = R

n or whenX is a general
compact metric space.) The Koopman operator describes the
evolution of observablesf : X → C along the trajectories
of (1).

Definition 1 (Koopman operator):For a given spaceF of
observables, the Koopman (semi)group of operatorsU t :
F → F associated with (1) is defined by

U tf = f ◦ ϕt . (2)
While the system (1) may be nonlinear, the Koopman oper-
ator (2) is always linear. Iff andF are continuously differ-
entiable,f(t, x) = U tf0(x) satisfies the partial differential
equation (see e.g. [7])

∂f

∂t
= F · ∇f , LUf (3)



with the initial condition f(0, x) = f0(x). The symbol
∇ denotes the gradient and· is the inner product inRn.
The operatorLU is the infinitesimal generator ofU t, i.e.
LUf = limt→0(U

tf−f)/t. Note that no boundary condition
is needed with (3) sinceX is forward invariant.

At this point, we can already point out a relationship
between the Koopman operator and stability theory. If (1)
admits a stable fixed pointx∗ ∈ X, a Lyapunov function
for the system is interpreted as a (nonnegative) observable
that satisfiesLt

UV(x) < 0 ∀x 6= x∗. It is therefore clear that
stability is closely related to the properties of the Koopman
operator.

B. Remark on duality

The Koopman operator has a counterpart which describes
the transport of densitiesρ : X → C along the trajectories
of (1). This dual operator is the Perron-Frobenius operator
P t : F† → F†, which can be defined as the adjoint of the
Koopman operator, that is

〈U tf, ρ〉 = 〈f, P tρ〉 , ∀f ∈ F , ∀ρ ∈ F†

with the inner product

〈f, ρ〉 =

∫

X

f(x) ρc(x) dx ,

whereρc denotes the complex conjugate ofρ.
If ρ andF are continuously differentiable, one can show

that ρ(t, x) = P tρ0(x) satisfies the transport equation (see
e.g. [7])

∂ρ

∂t
= −∇ · (Fρ) , LP ρ (4)

with the initial conditionρ(0, x) = ρ0(x).
The Koopman and Perron-Frobenius operators provide two

dual descriptions of the system (i.e. point-wise or set-wise
description). Also, they naturally yield two dual methods
for stability analysis. In the case of a fixed pointx∗,
while a Lyapunov function decreases under the action of
U t, a Lyapunov density(or Lyapunov measure) decreases
(almost everywhere) under the action ofP t [15]. The Lya-
punov density was initially introduced in [14] as a function
C1(X \ {x∗}) that satisfies∇ · (Fρ) > 0, a property which
precisely corresponds to the action of the Perron-Frobenius
infinitesimal generatorLP ρ < 0, according to (4) (see also
[13]).

The main interest of the Perron-Frobenius approach is that
it leads to the weaker notion of almost everywhere stability
(in contrast to classical stability). However, the Koopman
approach is more suited to the spectral method that we
propose here. In the remaining of the paper, we therefore
focus on the Koopman operator framework.

III. R ELATIONSHIP TO STABILITY

We assume that (1) admits an attractorA ⊂ X and
we study the stability ofA through the Koopman operator
framework. The results are general since they make no
assumption on the type of attractor. For instance,A can even
be a set of attractors (e.g. several stable fixed points).

Consider the subspaceFAc
⊆ F of functions with support

on Ac = X \A, i.e.

FAc
= {f ∈ F|f(x) = 0∀x ∈ A} .

For x ∈ A, one hasϕt(x) ∈ A for all t ∈ R, so thatU tf =
f ◦ ϕt(x) = 0 if f ∈ FAc

. It follows thatFAc
is invariant

underU t, and we denote byU t
Ac

the restriction ofU t to
FAc

. Similarly, one can also consider the Koopman operator
U t
A which is related to the flow on the attractor and which

acts on observables restricted toA, i.e. f |A : A → C. The
operatorU t

A is rigorously defined byU t
A(f |A) = (U tf)|A.

The stability of (1) is directly related to the properties of
the restrictionU t

Ac
.

Proposition 1 (Transience):The attractorA of (1) is glob-
ally asymptotically stable inX, i.e. the limit set of every
trajectory is contained inA, if and only if

lim
t→∞

U t
Ac

f = 0 ∀f ∈ FAc
, (5)

with F = C0(X).
Proof: Sufficiency.Consider the distance function

f(x) = min
y∈A

‖x− y‖ , x ∈ X .

The function is continuous and has zero value onA. Then,
it follows from (5) thatA is globally asymptotically stable.
Necessity.For f ∈ FAc

, we have

lim
t→∞

U t
Ac

f(x) = lim
t→∞

f ◦ ϕt(x) = f ◦ lim
t→∞

ϕt(x) ,

sincef is continuous. The limit set ofϕt(x) is in A, so that
one getslimt→∞ U t

Ac
f(x) = 0 for all x ∈ X.

In the case of exponential stability, the following propo-
sition shows a similar relationship to the properties of
the Koopman operator, in the space Lip(X) of Lipschitz
continuous functions.

Proposition 2 (Geometric decay):Consider the mapπ :
X → A defined by

π(x) = argmin
y∈A

‖x− y‖ .

The attractor is exponentially stable inX, i.e. there exist
positive constantsC andσ such that

‖ϕt(x)− π(ϕt(x))‖ ≤ Ce−σt‖x− π(x)‖ ∀x ∈ X ,

if and only if there exist positive constantsC and σ such
that

|U t
Ac

f | ≤ C
K1

K2
e−σt|f | ∀f ∈ FAc

, (6)

for all F = {f ∈ Lip(X)|∀x, y ∈ X , |f(x) − f(y)| ≤
K1‖x−y‖, |f(x)−f(π(x))| ≥ K2‖x−π(x)‖, K1,K2 > 0}.

Proof: Sufficiency.The distance function

f(x) = ‖x− π(x)‖ = min
y∈A

‖x− y‖, x ∈ X

is a Lipschitz continuous function ofFAc
with K1 = K2 =

1. Then, it follows from (6) thatA is exponentially stable.



Necessity.If f ∈ FAc
, exponential stability implies

|U t
Ac

f(x)| = |U t
Ac

f(x)− U t
Ac

f(π(x))|

≤ K1 ‖ϕ
t(x)− π(ϕt(x))‖

≤ CK1 e
−σt‖x− π(x)‖

≤ C
K1

K2
e−σt|f(x)− f(π(x))|

= C
K1

K2
e−σt|f(x)| ,

where we usedf(π(x)) = 0.
Remark 1 (Lyapunov function):WhenA is a fixed point

x∗, the existence of a Lyapunov functionV ∈ FAc
di-

rectly implies (5) ∀f ∈ C1(X). Indeed, for everyf ∈
FAc

∩ C1(X), there exists a constantC such thatf(x) ≤
C V(x) ∀x ∈ X. Therefore, one haslimt→∞ f(ϕt(x)) ≤
C limt→∞ V(ϕt(x)) = 0 for all x ∈ X. Also, when the
fixed point is exponentially stable, a Lyapunov function is
given by

V(x) =

∫ ∞

0

Uτ
Ac

f(x) dτ . (7)

If f ∈ FAc
is a nonnegative function of the spaceF

considered in Proposition 2 (e.g.f(x) = ‖x−x∗‖), it follows
from (6) that (7) is integrable. Then, one easily verifies that

d

dt
V(ϕt(x)) = −

∫ ∞

0

d

dt
f(ϕt+τ (x))dτ = −f(ϕt(x)) < 0 .

(Note that we haveV = −L−1
U f .) This result can be seen as

the continuous equivalent of a converse Lyapunov theorem
proved in [15].

IV. SPECTRAL ANALYSIS

The results described in the previous section are difficult
to use in practice for the stability analysis of the system.
However, since the Koopman operator is linear, it is natural
to exploit its spectral properties. In this section, we show
that these spectral properties are related to the stabilityof
the system.

Studying the point spectrum alone is sufficient for our
purpose, so that the continuous and residual parts of the
spectrum are not considered here. They are either empty
with most of the types of attractors (fixed point, limit cycle,
quasiperiodic tori, see e.g. [3], [4], [6], [9]) in well-chosen
spaces of observables, or they correspond to the asymptotic
ergodic dynamics on (strange) attractors, therefore carrying
no information on stability.

A. Eigenfunctions of the Koopman operator

The point spectrum of the Koopman operator is the set of
valuesλ ∈ C such that

U tφλ = eλtφλ (8)

for a functionφλ ∈ F 6= 0. The valuesλ are the Koopman
eigenvalues and the associated functionsφλ are the Koopman
eigenfunctions. IfF ∈ C1(X), the eigenvalue equation can
also be expressed, according to (3), as

LUφλ = F · ∇φλ = λφλ . (9)

It can be shown that ifφλ1
and φλ2

are two eigenfunc-
tions, thenφk1

λ1
φk2

λ2
is an eigenfunction associated with the

eigenvaluek1λ1+k2λ2 (see e.g. [11]). Also, it is noticeable
that the Koopman eigenfunctions can be smooth, while the
Perron-Frobenius eigenfunctions admit a singularity on the
attractor.

The eigenfunctions are directly related to the dynamics of
the system. For example, consider an eigenfunction atλ = 0.
It follows from (8) that this eigenfunction is constant along
the trajectories, so that its level sets partition the statespace
into invariant regions. If one considers the non-degenerate
intersections of the level sets ofn − 1 such (independent)
eigenfunctions, we obtain a family of one-dimensional sets
that correspond to the orbits of the system.

Remark 2:The spectral operator-theoretic framework pre-
sented in this paper yields an efficient method to compute
all the orbits of the system, as an alternative to numeri-
cal integration. For instance,C1 eigenfunctionsφλi

, with
i = 1, . . . , n, can be computed with the numerical method
presented in Section V (whenA is a fixed point). Independent
eigenfunctions associated with the eigenvalue0 are obtained
through the productsφki

λi
φ
kj

λj
, with ki = λj and kj = −λi.

The intersection of their level sets are the orbits of the
system.

B. Koopman eigenfunctions and stability

The stability of the system is now investigated through the
Koopman eigenfunctions. In Section III, we showed that the
stability of the system is only related to the restrictionU t

Ac
.

Similarly, the following properties show that only a subset
of the eigenfunctions is related to the stability property.

Property 1: If φλ ∈ FAc
is an eigenfunction ofU t, then

φλ is also an eigenfunction of the restrictionU t
Ac

, associated
with the same eigenvalue. Moreover, ifφλ ∈ C0(X) and if
the attractorA is globally stable, thenℜ{λ} < 0.

Proof: The first part is trivial, sinceAc is invariant
underU t. The second part follows from Proposition 1.

Property 2: If φλ /∈ FAc
is an eigenfunction ofU t,

then the restrictionφλ|A of φλ to A is an eigenfunction
of U t

A, associated with the same eigenvalue. Moreover, if
φλ ∈ C0(X), thenℜ{λ} = 0.

Proof: One has

U t
A(φλ|A) = (U tφλ)|A = eλtφλ|A .

In addition, suppose thatℜ{λ} 6= 0. If ℜ{λ} > 0, then
the eigenfunction is not bounded onA. If ℜ{λ} < 0, one
haslimt→∞ φλ(ϕ

t(x)) = 0 ∀x. In this case, consider a point
xω ∈ A which belongs to the limit set ofϕt(x). There exists
a sequencetn such thattn → ∞ and ϕtn(x) → xω as
n → ∞. Then, it follows from the continuity ofφλ that

φλ(xω) = φλ

(

lim
n→∞

ϕtn(x)
)

= lim
n→∞

φλ(ϕ
tn(x)) = 0 .

(10)
In both cases, there is a contradiction with the fact thatφλ

is continuous and has nonzero value for some points of the
attractor, which concludes the proof.



The properties imply that the eigenfunctions relevant for
the stability analysis—i.e. related toU t

Ac
—lie in FAc

and
are characterized byℜ{λ} < 0. The other eigenfunctions,
associated with purely imaginary eigenvalues, provide no in-
formation on stability but are related to asymptotic properties
of the trajectories on the attractor. For instance, they can
be used to compute periodic invariant sets on the attractor
[10] or to compute the so-called isochrons of (quasi)periodic
attractors [8].

The following proposition provides a general result draw-
ing the link between the eigenfunctions inFAc

and the global
stability of the system.

Proposition 3: Suppose that the Koopman operator admits
the eigenfunctionsφλi

∈ C0(X) with the eigenvalues
ℜ{λi} < 0, i = 1, . . . ,m. Then, the set

M =
m
⋂

i=1

{x ∈ X|φλi
(x) = 0} ⊇ A

is globally asymptotically stable.
Proof: Sinceℜ{λi} < 0, the equality (8) implies that

limt→∞ φλi
(ϕt(x)) = 0 ∀x. Sinceφλi

is continuous, (10)
holds so that the limit set of every trajectory is contained in
the zero level set ofφλi

. This concludes the proof.
The proof is inspired from the proof of the Krasovskii-
LaSalle principle (see e.g. [5]). However, the differentiability
of the eigenfunctions is not required here since we knowa
priori that these eigenfunctions are decreasing (and asymp-
totically converge to zero) along the trajectories.

Remark 3: If A is an invariant set, but not an attractor,
the set corresponding to the intersections of the zero level
sets of eigenfunctionsφλi

∈ FAc
, with ℜ{λi} ≥ 0, is the

stable set ofA.

C. The case of a fixed point

In this section, we develop the framework for the particular
case of a stable fixed pointx∗ ∈ X. We assume that the
vector fieldF ∈ C1(X) and that the Jacobian matrixJ of F
atx∗ hasn eigenvaluesλ∗

i with ℜ{λ∗
i } < 0. We also suppose

that the corresponding eigenvectorsvi are independent.
Proposition 4: Assume thatX is a connected set. If, for

all λ∗
i , the Koopman operator admits an eigenfunctionφλ∗

i
∈

C1(X), with ∇φλ∗

i
(x∗) 6= 0, thenx∗ is globally stable in

X.
Proof: Consider the first order Taylor approximations

φλ∗

i
(x) = ∇φλ∗

i
(x∗)(x− x∗) + o(‖x− x∗‖)

(where we used the relationshipφλ∗

i
(x∗) = 0 that rigorously

follows from the contraposition of Property 2) and

F (x) = J(x− x∗) + o(‖x− x∗‖) .

Injecting these two approximations into (8) yields

J
T∇φλ∗

i
(x∗) = λ∗

i∇φλ∗

i
(x∗) , (11)

so that∇φλ∗

i
(x∗) is equal (up to a multiplicative constant)

to the left eigenvector̃vi of J. In particular,ℜ{∇φλ∗

i
(x∗)}

and ℑ{∇φλ∗

i
(x∗)} (when λ∗

i is complex) are respectively

parallel toℜ{ṽi} andℑ{ṽi}. In a small neighborhoodV of
x∗, the zero level sets ofℜ{φλ∗

i
} andℑ{φλ∗

i
} are tangent to

a hyperplane whose normal isℜ{ṽi} andℑ{ṽi}, respectively.
Since then (non-zero) eigenvectorsℜ{ṽi} and ℑ{ṽi} are
independent, the intersection inV of the zero level sets of the
n different functionsℜ{φλ∗

i
} andℑ{φλ∗

i
}—or equivalently

of the eigenfunctionsφλ∗

i
—can only bex∗.

Next, we show that the zero level sets cannot have another
intersection inX. Suppose that there is another intersection.
This defines another invariant set which is not connected to
the fixed point. Therefore, the boundaryδΩ of the basin of
attractionΩ of x∗ has a non empty intersection withX,
sinceX is a connected set. Moreover, sinceX is forward
invariant,δΩ ∩X is also forward invariant and contains the
limit sets of its trajectories. Consider a pointxω ∈ δΩ ∩X
that belongs to a limit set. By definition and continuity of the
eigenfunctions, we haveφλ∗

i
(xω) = 0 ∀i (see (10)). Also,

for any arbitrarily small neighborhoodVǫ of xω and for all
xǫ ∈ Vǫ ∩ Ω, there exist a pointxV ∈ V with xV 6= x∗

and a constantT > 0 such thatϕ−T (xV ) = xǫ. There is at
least one eigenfunction that satisfies|φλ∗

i
(xV )| = C > 0, or

equivalently|φλ∗

i
(xǫ)| = C exp(−ℜ{λ∗

i }T ) > 0. Therefore,
φλ∗

i
is not continuous inVǫ ⊂ X, which is a contradiction.

Finally, the result follows from Proposition 3, withM =
{x∗}.
This result can be seen as the global equivalent of the
well-known local stability result for a fixed point. While
local stability is implied by stable eigenvalues ofJ, global
stability is implied byC1 eigenfunctions ofU t (with the
same eigenvalues). Also, global stability relies more on the
continuous differentiability of the eigenfunctions than on the
existence of the eigenfunctions themselves.

1) Lyapunov functions and contracting metrics:(See also
[9].) Continuously differentiable Koopman eigenfunctions
are intimately related to Lyapunov functions and contracting
metrics. Under the assumption of Proposition 4, the eigen-
functions yield for instance the special Lyapunov functions

V(x) =

(

n
∑

i=1

|φλ∗

i
(x)|p

)1/p

with the integerp ≥ 1. According to (8), they satisfy
V(ϕt(x)) ≤ exp(ℜ{λ∗

1}t)V(x) for x ∈ X, where λ∗
1 is

the eigenvalue closest to the imaginary axis. Note that these
Lyapunov functions are not necessarily smooth. In addition,
the eigenfunctions define the metrics

M(x, y) =

(

n
∑

i=1

|φλ∗

i
(x)− φλ∗

i
(y)|

)1/p

which are exponentially contracting onX, since
M(ϕt(x), ϕt(y)) ≤ exp(ℜ{λ∗

1}t)M(x, y). These metrics
are non-quadratic and could be considered through the
differential framework recently developed in [2].

2) Other properties of the eigenfunctions:In contrast with
a Lyapunov function, the Koopman eigenfunctions provide
additional information than mere stability. For instance,they
define new coordinateszi = φλ∗

i
(x) associated with linear



dynamicsżi = λ∗
i zi [6] and are therefore related to the rate

of convergence of the trajectories. In particular, the level
sets of the eigenfunctionφλ∗

1
correspond to the notion of

isostablesdefined in [9]: they are the sets of points that
converge “synchronously” toward the fixed point.

V. NUMERICAL COMPUTATION

In the case of fixed points, Koopman eigenfunctions can
be computed through Laplace averages evaluated along the
trajectories of the system [9], [11]. Here, we propose a nu-
merical method for computing smooth Koopman eigenfunc-
tions, whichdoes not requirethe integration of trajectories.
Exploiting the result of Proposition 4, this method can be
used in a systematic way to establish global stability on a
given subset of the state space or to estimate the basin of
attraction of the fixed point.

A. The method

When the vector fieldF is analytic (and provided that
the eigenvaluesλ∗

i are nonresonant), the Koopman eigen-
functions are also analytic (at least in a neighborhood of the
fixed point), as a consequence of the Poincaré linearization
theorem (see e.g. [3]). In this case, it is natural to consider
the Taylor decomposition

φλ(x) =

∞
∑

k1=0

· · ·

∞
∑

kn=0

φ
(k1,...,kn)
λ (x1−x∗

1)
k1 · · · (xn−x∗

n)
kn

with

φ
(k1,...,kn)
λ =

1

k1! · · · kn!

∂k1+···+knφλ

∂xk1

1 · · · ∂xkn
n

∣

∣

∣

∣

∣

x∗

and with x = (x1, . . . , xn). Note that this polynomial
approximation resembles the sum of squares (SOS) method
used for the computation of Lyapunov functions [12].

One can also compute a Taylor expansion forF (x) =
(F1(x), . . . , Fn(x)), with the coefficients

F
(k1,...,kn)
l =

1

k1! · · · kn!

∂k1+···+knFl

∂xk1

1 · · · ∂xkn
n

∣

∣

∣

∣

∣

x∗

.

Then, by injecting the Taylor expansions ofφλ andF into
the eigenvalue equation (9) and by identifying the terms in
(x1 − x∗

1)
k1 · · · (xn − x∗

n)
kn , we obtain the relationship

k1
∑

j1=0

· · ·

kn
∑

jn=0

n
∑

l=1

(kl − jl + 1)F
(j1,··· ,jn)
l

× φ
(k1−j1,...,kl−1−jl−1,kl−jl+1,kl+1−jl+1,...,kn−jn)
λ

= λφ
(k1,...,kn)
λ ∀(k1, . . . , kn) ∈ N

n .

(12)

For each s ≥ 1 ∈ N, consider a vectorΦ(s)
λ whose

components are the coefficientsφ(k1,··· ,kn)
λ , with

∑

j kj = s.
In the cases = 1, (12) is rewritten as

J
TΦ

(1)
λ = λΦ

(1)
λ

and we recover the equality (11). This implies thatλ must
be one of the eigenvaluesλ∗

i of J and thatΦ(1)
λ∗

i
= ∇φλ∗

i
(x∗)

is the corresponding left eigenvectorṽi.

For s > 1, (12) is expressed as

H
(s)Φ

(s)
λ∗

i
= λ∗

iΦ
(s)
λ∗

i
+G

(s)(Φ
(1)
λ∗

i
, . . . ,Φ

(s−1)
λ∗

i
) (13)

whereH(s) is a matrix andG(s) is a (vector-valued) linear
function. All the coefficients can be computed by solving
(13), for the successives values. (Note that (13) resembles
the method of Carleman embedding [1].)

It is important to note that the above method could be
adapted to study the stability of other types of attractors.
For instance, the case of limit cycles could be considered
by combining a Taylor expansion in the direction transversal
to the attractor with a Fourier expansion in the direction
tangential to the attractor. The only caveat is that ana priori
knowledge of the attractor is required in that case. Otherwise,
the eigenfunctions of the Koopman operator might also be
obtained—without integration of the trajectories—through
other methods similar to those developed in [15] (e.g. dis-
cretization method, convex linear programming methods).

B. Examples

1) Example 1:To illustrate the numerical method, we first
consider the dynamics

ẋ1 = −x1 − x2
1x2 − x3

2 .

ẋ2 = −x2 + x1x
2
2 + x3

1 .

In polar coordinates, the dynamics areṙ = −r, θ̇ = r2, so
that the origin is globally stable inR2. This is coherent with
the fact that our numerical method shows that there exist
two (independent) Koopman eigenfunctions, both associated
with the eigenvalueλ∗

1 = λ∗
2 = −1 (Fig. 1).
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Fig. 1. In Example 1, the existence of smooth eigenfunctions implies global
stability of the fixed point (here in a square[−2.5, 2.5]× [−2.5, 2.5]). Left.
Color plot of the eigenfunctionφλ∗

1
. Right.Level sets of the eigenfunction

φλ∗

2
. (The eigenfunctions are computed with a Taylor expansion tothe40th

order.)

2) Example 2:The Van der Pol dynamics

ẋ1 = −x2

ẋ2 = x1 − x2 + x2
1x2

admit a stable fixed point at the origin, with a basin of
attraction delimited by an unstable limit cycle. The two
(complex) eigenfunctions computed through the method tend
to infinity as they come close to the limit cycle. They
therefore provide an accurate evaluation of the basin of
attraction of the fixed point (Fig. 2).
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Fig. 2. For the Van der Pol dynamics, the level sets of|φ∗

λ1
| concentrate

near the unstable limit cycle (black curve). The basin of attraction of the
fixed point is therefore well-approximated by the method. (Theeigenfunc-
tions are computed with a Taylor expansion to the100th order.)

3) Example 3:Consider the dynamics (slightly modified
from [14])

ẋ1 = −2x1 + x2
1 − x2

2 .

ẋ2 = −2.5x2 + 2x1x2 .

While the origin is globally stable onR2 \ {(x1, x2)|x1 ≥
2, x2 = 0}, our numerical method shows the existence of
analytic eigenfunctions only on a disk of radius2, and
therefore proves global stability only on that region (Fig.3).
This is actually in accordance with the Poincaré linearization
theorem, which implies that the eigenfunctions are analytical
on the larger disk (centered at the stable fixed point) that does
not contain another fixed point. In this present case, there is
precisely an unstable fixed point that creates a singularity
at (2, 0). Note that the eigenfunctions can still be obtained
in the entire basin of attraction through the computation of
Laplace averages [11].
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Fig. 3. For the dynamics of Example 3, the numerical method implies
global stability on a disk of radius2. Outside this disk, the Koopman
eigenfunctions are not analytic and admit a singularity at the unstable fixed
point (2, 0). Left.Level sets of the eigenfunctionφλ∗

1
with λ∗

1
= −2. Right.

Level sets of the eigenfunctionφλ∗

2
with λ∗

2
= −2.5.(The eigenfunctions

are computed with a Taylor expansion to the100th order.)

VI. CONCLUSION

We have developed a new approach to global stability
analysis, based on the spectral properties of the Koopman
operator. We have shown that a specific restriction of this op-
erator captures the stability properties of the attractor.More
importantly, a strong connection has been established be-
tween global stability and the existence of continuously dif-
ferentiable Koopman eigenfunctions. The results are closely

related to the notions of Lyapunov function and contracting
metrics, but also pave the way for an alternative to classical
stability theory.

In the case of a stable fixed point, a method is proposed
to compute smooth Koopman eigenfunctions. This method
is based on Taylor approximations and does not require the
computation of the system trajectories. It yields an efficient
numerical scheme that can be used to investigate the global
stability properties of the fixed point (e.g. size of the basin
of attraction).

A key point of the operator-theoretic framework is that it
is general enough to encompass a broad class of attractors.
Therefore, we envision that our results could be extended
to stable limit cycles and possibly to more complex at-
tractors (e.g. strange attractors). However, other numerical
methods—which still need to be developed—might be re-
quired. Another promising direction is to adapt the frame-
work to the stability analysis of non-autonomous systems
and input-output systems.
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