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Abstract—The global description of a nonlinear system Although most of the results are general and make no
through the linear Koopman operator leads to an efficient assumption on the nature of the attractor, we consider with
approach to global stability analysis. In the context of stability more details the case of stable fixed points. In this situatio

analysis, not much attention has been paid to the use of spectral ical thod f fi th
properties of the operator. This paper provides new results on We Propose a numerical method 1o computing - Smoo

the relationship between the global stability properties of the —€igenfunctions. Without computing the system trajec®rie
system and the spectral properties of the Koopman operator.i  this method is used to investigate the stability of the fixed

particular, the results show that specific eigenfunctions capture point and to estimate the size of its basin of attraction.
the system stability and can be used to recover known notions of * tha paper is organized as follows. In Section II, we
classical stability theory (e.g. Lyapunov functions, contracting . . .
metrics). Finally, a numerical method is proposed for the global introduce the Koopman operator framewo'rk and briefly dis-
stability analysis of a fixed point and is illustrated with several ~Cuss the duality with the Perron-Frobenius operator. The
examples. relationship between classical Lyapunov stability and the
properties of the Koopman operator is presented in Section
. INTRODUCTION lll. Section IV develops our main results, deriving global
) _ stability results from the spectral properties of the ommra
The operator-theoretic approach to dynamical systeMge numerical method is developed in Section V and is used
provides a powerful insight into stability theory. As antg jnvestigate the stability properties of several dynahic
illustration, the duality between Lyapunov functions an%ystems with globally stable fixed points. Finally, we give

densities, discovered only some years ago in [14], is dyrectgome concluding remarks in Section VI.
derived from the duality, known for decades, between two

adjoint operators describing the system—namely, the Koop- |- AN OPERATORTHEORETIC FRAMEWORK

man operator and the Perron-Frobenius operator. Also, theln this section, we give an overview of the existing
operator-theoretic approach considers the system as awhdglperator-theoretic framework for the analysis of the dynam
since one iteration of the (infinite-dimensional) operator ical system

equivalent to an iteration alongll the system trajectories. t=F(z), xzeR". 1)

The framework is therefore well-suited @lobal stability \ye genote byp(t,z) : R x R* — R, or equivalently

analysis. _ ©!(z), the flow induced by the system, i.e!(z) is the
The development of an operator-theoretic framework fogojution of (1) associated with the initial conditione R™.

stability analysis is still in its infancy. The main coniions  ynless otherwise specified, we only require existence and

can be found in [13], [15] and focus almost exclusively on th%niqueness of the flow". (The vector fieldF is assumed

Perron-Frobenius operator. Since the (Koopman and Perrqg-pe Lipschitz continuous, but could also be replaced by a
Frobenius) operators are linear, it is also natural to c®si \e|l-defined hybrid system.)

their spectral properties However, while these properties

were successfully used to capture the system behavior on tfiie "€ Koopman operator

attractor (see e.g. [8], [10]), they have never been exgoit Consider a compact sek C R" which is forward

in the context of stability theory. invariant underp!(-). (Note that many of the following
In this paper, we set the basis of a novel stability theor{esults also hold whetX’ = R™ or when X is a general

based onspectral operator-theoretic methods. In particular,compact metric space.) The Koopman operator describes the

we focus on the spectral properties of the Koopman operatgyolution of observablesf : X — C along the trajectories

and we establish a relationship between global stabilit9f (1).

and the existence of specific eigenfunctions. Beyond their Definition 1 (Koopman operator)For a given spacé of

relationship to stability, the eigenfunctions are related ©Observables, the Koopman (semi)group of operatsts:

important geometric properties of the dynamics (derivatib F — F associated with (1) is defined by

special Lyapunov functions and contracting metrics, dgloba Utf=foyl. )
linearization [6], isostables [9], etc.). This analysisrmois  \while the system (1) may be nonlinear, the Koopman oper-
the spectral approach to stability in linear systems. ator (2) is always linear. If and F are continuously differ-

. _ entiable, f(t,z) = U'fo(z) satisfies the partial differential
Méhanh{lczlfro}l;ngﬁ]liring, '\Lﬂlﬁiz\!/tersftl;e ofW Itgalifg]riia,DeS‘,);r:E?ae}gara,Of equation (see e.g. [7])
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with the initial condition f(0,2) = fo(z). The symbol Consider the subspadé,, C F of functions with support

V denotes the gradient andis the inner product irR”. onA.= X\ A4, i.e.

The operatorLy is the infinitesimal generator of?, i.e.

Ly f = lim_,o(U* f— f)/t. Note that no boundary condition Fa, ={f € F|f(x) =0Vx € A}.

is needed with (3) sinc& is forward invariant. =
At this point, we can already point out a relationship

between the Koopman operator and stability theory. If (1

admits a stable fixed point* € X, a Lyapunov function

for the system is interpreted as a (nhonnegative) observa

that satisfied !,V (x) < 0 Vz # z*. It is therefore clear that

stability is closely related to the properties of the Koopma

operator.

orz € A, one hasp!(z) € A for all t € R, so thatU! f =
opl(xz) =0if f € Fa,. It follows that F4, is invariant
nderU*, and we denote by/), the restriction ofU" to
Fa,. Similarly, one can also consider the Koopman operator

“ which is related to the flow on the attractor and which
acts on observables restricted &g i.e. f|4 : A — C. The
operatorU’ is rigorously defined by (f|a) = (U'f)]a.

The stability of (1) is directly related to the properties of
B. Remark on duality the restrictionU .

The Koopman operator has a counterpart which describeﬁprc’posmon.1 ﬁl’rans;nc'(re]);(r h.e attrr? ct?rA.of (1) 'Sf glob-
the transport of densities : X — C along the trajectories ally asymptotlca y stg'[; '.f ' Io.le. tl e.f Imit set of every
of (1). This dual operator is the Perron-Frobenius operaté';alecmry Is contained I, if and only |

Pt Ft — Ft which can be defined as the adjoint of the lim U4 f=0 VfeFa (5)
Koopman operator, that is t—oo TF °
{U'f.p)=(f.P'p)y, VfeF VpeF! with 7 = C°(X).

Proof: SufficiencyConsider the distance function
with the inner product

) = [ 1) (@) e,
X The function is continuous and has zero valueAnThen,
where p¢ denotes the complex conjugate @f it follows from (5) that A is globally asymptotically stable.
If p and F" are continuously differentiable, one can showNecessityFor f € F4_, we have
that p(t,z) = Pl'po(x) satisfies the transport equation (see

=minllz —yl|, r€X.
f(z) Iyrggllw yll, =

e.g. [7]) ) Jim U} f(z) = lim fog'(x) = fo lim ¢'(z),
P A
rrinin (Fp) = Lpp 4 sincef is continuous. The limit set af(z) is in 4, so that
: t —
with the initial conditionp(0, ) = po(z). one getsim, o U, f(z) =0 for all z € X. u

The Koopman and Perron-Frobenius operators provide two!n the case of exponential stability, the following propo-

dual descriptions of the system (i.e. point-wise or seewisSition shows a similar relationship to the properties of

description). Also, they naturally yield two dual methodsthe Koopman operator, in the space (i) of Lipschitz

for stability analysis. In the case of a fixed point, contlnuoqg functions. . .

while a Lyapunov function decreases under the action of ProPosition 2 (Geometric decay)Consider the mapr :

U', a Lyapunov densityor Lyapunov measure) decreases® — <1 defined by

(almost everywhere) under the action Bf [15]. The Lya-

punov density was initially introduced in [14] as a function

Cl()_(\{x*}) that satisfiesv - (F’_’) > 0, a property which . The attractor is exponentially stable i, i.e. there exist

precisely corresponds to the action of the Perron—Frolsr,em%Osmve constant§’ ando such that

infinitesimal generatol pp < 0, according to (4) (see also

[13D. l¢"(z) = m(¢" (@)l < Ce |z —m(2)]| Ve X,
The main interest of the Perron-Frobenius approach is that

it leads to the weaker notion of almost everywhere stabilitiff and only if there exist positive constants and o such

(in contrast to classical stability). However, the Koopmarhat

= argmi - .
m(z) = argmin ||z - y|

approach is more suited to the spectral method that we |Uﬁ1_f| < Cﬁe—otm VfeFa,, (6)
propose here. In the remaining of the paper, we therefore Ko
focus on the Koopman operator framework. for all 7 = {f € Lip(X)|Vr,y € X,|f(x) — f(y)| <

Killz—yl, [f(z)=f(x(2))] = Ks|lz—n(z)[|, K1, K3 > 0}

I1l. RELATIONSHIP TO STABILITY . . !
Proof: SufficiencyThe distance function

We assume that (1) admits an attractér C X and
we study the stability ofd through the Koopman operator f@)=|lzr —7(z)]| =min|z —yl, ze€X
framework. The results are general since they make no ved
assumption on the type of attractor. For instant&an even is a Lipschitz continuous function of4, with K1 = K5 =
be a set of attractors (e.g. several stable fixed points). 1. Then, it follows from (6) thatd is exponentially stable.



Necessitylf f € F4_, exponential stability implies It can be shown that i, and ¢,, are two eigenfunc-
¢ tions, theng}' ¢}2 is an eigenfunction associated with the
Uk S (@) = U4, f(x) = U, f(w(2)) eigenvalugk, A\, + k2o (see e.g. [11]). Also, it is noticeable

< Ki[l¢'(z) = m(¢' ()] that the Koopman eigenfunctions can be smooth, while the

< CKye 7z — ()| Perron-Frobenius eigenfunctions admit a singularity an th
o attractor.

< sz e 7| f(z) = f(m(2))] The eigenfunctions are directly related to the dynamics of
ot the system. For example, consider an eigenfunction=ato.

= CE e f (@)l It follows from (8) that this eigenfunction is constant ajon

the trajectories, so that its level sets partition the stptce
into invariant regions. If one considers the non-degeeerat
intersections of the level sets af — 1 such (independent)
eigenfunctions, we obtain a family of one-dimensional sets
that correspond to the orbits of the system.

. Remark 2: The spectral operator-theoretic framework pre-
CV(xz) ¥z € X. Therefore, one hakim;o f(¢*(2)) < sented in this papzr yieldspan efficient method to comppute

: i —
g(leglt%ﬁsjigwe(f)znnEnga:?r si!tbjfeea{. ;‘Iﬁﬁb\\/’v?fnncggﬁ ISaII the orbits of the system, as an alternative to numeri-
b P y ' yap al integration. For instance,! eigenfunctionsg,,, with

where we usedf (7 (z)) = 0. |

Remark 1 (Lyapunov function)Vhen A is a fixed point
z*, the existence of a Lyapunov function € F,_ di-
rectly implies (5)Vf € C'(X). Indeed, for everyf €
Fa, N CL(X), there exists a constadt such thatf(x) <

given by o0 i =1,...,n, can be computed with the numerical method
V(z) = / Ui, f(z)dr. ) presented in Section V (whetis a fixed point). Independent
0 eigenfunctions assomated with the eigenvalwre obtained
If f € Fa, is a nonnegative function of the spacde through the product% % ,with k; = A; andk; = —\;.

considered in Proposition 2 (e.§x) = [[z—=")), itfollows  he intersection of their level sets are the orbits of the
from (6) that (7) is integrable. Then, one easily verifies thasystem.

d o q
%V(wt(ﬂ?)) = —/0 %f(@“r (z))dr = —f(¢'(x)) <0. B. Koopman eigenfunctions and stability

(Note that we have’ = —Lglf.) This result can be seen as The stability of the system is now investigated through the

the continuous equivalent of a converse Lyapunov theoreﬁ{mpman eigenfunctions. In Section Ill, we showed that the
proved in [15]. stability of the system is only related to the restrlctidg

Similarly, the following properties show that only a subset
IV. SPECTRAL ANALYSIS of the eigenfunctions is related to the stability property.

The results described in the previous section are difficult Property 1: If ¢ € Fa4, is an eigenfunction ot/*, then
to use in practice for the stability analysis of the systempx is also an eigenfunction of the restrictiéf}, , associated
However, since the Koopman operator is linear, it is naturatith the same eigenvalue. Moreover,df € CO( ) and if
to exploit its spectral properties. In this section, we shoihe attractorA is globally stable, thefR{\} < 0.
that these spectral properties are related to the staloifity Proof: The first part is trivial, sinced. is invariant
the system. underU*. The second part follows from Proposition 1.m

Studying the point spectrum alone is sufficient for our Property 2:If ¢, ¢ F4, is an eigenfunction ofU?,
purpose, so that the continuous and residual parts of tileen the restrictionp,|4 of ¢, to A is an eigenfunction
spectrum are not considered here. They are either emmf U, associated with the same eigenvalue. Moreover, if
with most of the types of attractors (fixed point, limit cycle ¢ € C°(X), thenR{\} = 0.
quasiperiodic tori, see e.g. [3], [4], [6], [9]) in well-chen Proof: One has
spaces of observables, or they correspond to the asymptotic . o Y
ergodic dynamics on (strange) attractors, therefore wayry Ua(@rla) = (U dr)[a = e dala.

no information on stability. In addition, suppose thaR{\} # 0. If ®R{A} > 0, then
A. Eigenfunctions of the Koopman operator the eigenfunction is not bounded ot If £{\} < 0, one

The point spectrum of the Koopman operator is the set (SF‘ShmHOO oA(¢' () = 0 Va. In this caste consider a point
values) ¢ C such that » € A which belongs to the limit set g5’ (). There exists

a sequence&n such thatt, — oo and ¢'"(z) — =z, as
Ulpr = Mo (8) n — oco. Then, it follows from the continuity o, that

for a function¢, € F # 0. The values\ are the Koopman _ li tn -k tr, -0
eigenvalues and the associated functippsre the Koopman () %( g (x)) m_oxr(¢ (2)) ('10)

eigenfunctions. IfFF € C'(X), the eigenvalue equation can . - .
9 € C°(X) 9 q In both cases, there is a contradiction with the fact that

| Xpr rdin . . ;
also be expressed, according to (3), as is continuous and has nonzero value for some points of the
Lygy = F -Voy = Aoy . (9) attractor, which concludes the proof. [ ]

n—oo n—oo



The properties imply that the eigenfunctions relevant foparallel toR{7;} and<{%;}. In a small neighborhoo#" of

the stability analysis—i.e. related @}, —lie in 74, and z*, the zero level sets dk{¢,: } andI {4, } are tangent to

are characterized b{\} < 0. The other eigenfunctions, a hyperplane whose normal¥#; } and3{v;}, respectively.

associated with purely imaginary eigenvalues, providenro i Since then (non-zero) eigenvector®{v;} and {v;} are

formation on stability but are related to asymptotic proiesr independent, the intersectioninof the zero level sets of the

of the trajectories on the attractor. For instance, they candifferent functionsi{¢,: } and3{¢x: }—or equivalently

be used to compute periodic invariant sets on the attractof the eigenfunctiong,-—can only bez*.

[10] or to compute the so-called isochrons of (quasi)péciod Next, we show that the zero level sets cannot have another

attractors [8]. intersection inX. Suppose that there is another intersection.
The following proposition provides a general result drawThis defines another invariant set which is not connected to

ing the link between the eigenfunctionsfy_ and the global the fixed point. Therefore, the boundai§ of the basin of

stability of the system. attraction) of x* has a non empty intersection with,
Proposition 3: Suppose that the Koopman operator admitsince X is a connected set. Moreover, singeis forward

the eigenfunctionsp,, € C°(X) with the eigenvalues invariant,dQ N X is also forward invariant and contains the

R{\;} <0,i=1,...,m. Then, the set limit sets of its trajectories. Consider a point € 6Q N X
m that belongs to a limit set. By definition and continuity oéth
M= ﬂ{ﬂf € X|ox,(z) =0} D A eigenfunctions, we have,:(z,,) = 0 Vi (see (10)). Also,
i=1 for any arbitrarily small neighborhool; of z,, and for all

ze € V. NQ, there exist a pointey, € V with zy # z*

and a constant’ > 0 such thaty~7'(xy/) = z.. There is at
least one eigenfunction that satisfigs- (xv)| = C > 0, or
equivalently|g,: (z.)| = C exp(—R{A}T)) > 0. Therefore,

¢x: is not continuous iV, C X, which is a contradiction.
Finally, the result follows from Proposition 3, with/ =
{z*}. [ |
This result can be seen as the global equivalent of the
well-known local stability result for a fixed point. While

is globally asymptotically stable.

Proof: SinceR{\;} < 0, the equality (8) implies that
limy— 00 @, (¢! (z)) = 0 Vz. Sinceg,, is continuous, (10)
holds so that the limit set of every trajectory is contained i
the zero level set op,,. This concludes the proof. |
The proof is inspired from the proof of the Krasovskii-
LaSalle principle (see e.qg. [5]). However, the differebtiigy
of the eigenfunctions is not required here since we kiaow

priori that these eigenfunctions are decreasing (and asyn]géal stability is implied by stable eigenvalues &f global

totically converge to zero) along the trajectories, stability is implied by C' eigenfunctions ofU* (with the

Remark 3:If A is an invariant set, but not an attractor,S me eigenvalues). Also, global stability relies more an th
the set corresponding to the intersections of the zero leval 9 : ' 9 y

sets of eigenfunctions,, € Fa_, with R{\;} > 0, is the co_ntlnuous d|fferer_1t|abll|ty qf the eigenfunctions tham the
: e existence of the eigenfunctions themselves.
stable set ofA. : . .
1) Lyapunov functions and contracting metrig8ee also
C. The case of a fixed point [9].) Continuously differentiable Koopman eigenfuncton
In this section, we develop the framework for the particula?"lre |pt|mately related to Lyapunov funct|on's. and contr@tl
metrics. Under the assumption of Proposition 4, the eigen-

case of a stable fixed point* € X. We assume that the functi ield for inst h ial L funcsi
vector fieldF € C'(X) and that the Jacobian matiixof unctions yield for instance the special Lyapunov funcsion

atz* hasn eigenvalues\! with R{\*} < 0. We also suppose n 1/p
that the corresponding eigenvectarsare independent. V(x) = (Z |px (x)|p>
Proposition 4: Assume thatX is a connected set. If, for i=1
all A}, the Koopman operator admits an eigenfunctign €  with the integerp > 1. According to (8), they satisfy
C'(X), with Vo, (2*) # 0, thenz* is globally stable in  V(pf(z)) < exp(R{\;}t)V(z) for = € X, where X} is
X. the eigenvalue closest to the imaginary axis. Note thakthes
Proof: Consider the first order Taylor approximations Lyapunov functions are not necessarily smooth. In addition
~ (z) = Vo ()@ — ) + o[} — *|) the eigenfunctions define the metrics

n 1/p
(where we used the relationship- (z*) = 0 that rigorously M(z. 1) = () — D
follows from the contraposition of Property 2) and (z.9) ; 193 () = ;0]

F(z)=J(x—2*) +o(|z —z*|). which are exponentially contracting onX, since
Mot (x), ! (y)) < exp(R{\}}H)M(z,y). These metrics
Injecting these two approximations into (8) yields are non-quadratic and could be considered through the
ITV e (z%) = NiVy- (2) 1) differential framework recently developed in [2].

2) Other properties of the eigenfunctionist contrast with
so thatVe,: (z*) is equal (up to a multiplicative constant) a Lyapunov function, the Koopman eigenfunctions provide
to the left eigenvectof; of J. In particular, R{Ve,-(z*)}  additional information than mere stability. For instanttey
and 3{V¢x:(z*)} (when \} is complex) are respectively define new coordinates; = o+ () associated with linear



dynamicsz; = A}z; [6] and are therefore related to the rate Fors > 1, (12) is expressed as

of convergence of the trajectories. In particular, the lleve (5) 5) ) (s—1)

sets of the eigenfunctiop,; correspond to the notion of HOOY = Xof) + G2}, ..., e0)  (13)

isostablesdefined in [9]: they are the sets of points that _ ] ) )

converge “synchronously” toward the fixed point. whereH®) is a matrix gndG(S) is a (vector-valued) linear
function. All the coefficients can be computed by solving

V. NUMERICAL COMPUTATION (13), for the successive values. (Note that (13) resembles
In the case of fixed points, Koopman eigenfunctions cathe method of Carleman embedding [1].)

be computed through Laplace averages evaluated along thét is important to note that the above method could be
trajectories of the system [9], [11]. Here, we propose a nwadapted to study the stability of other types of attractors.
merical method for computing smooth Koopman eigenfund=or instance, the case of limit cycles could be considered
tions, whichdoes not requirdhe integration of trajectories. by combining a Taylor expansion in the direction transversa
Exploiting the result of Proposition 4, this method can be&o the attractor with a Fourier expansion in the direction
used in a systematic way to establish global stability on &angential to the attractor. The only caveat is thaagriori
given subset of the state space or to estimate the basin krfowledge of the attractor is required in that case. Othewi
attraction of the fixed point. the eigenfunctions of the Koopman operator might also be
A. The method obtained—without integration of the trajectories—through

i i i i other methods similar to those developed in [15] (e.g. dis-
When the vector fieldF is analytic (and provided that

cretization method, convex linear programming methods).
the eigenvalues\; are nonresonant), the Koopman eigen-

functions are also analytic (at least in a neighborhood ef thg Examples
fixed point), as a consequence of the Poincaré linearization le 1-To il h ical hod .
theorem (see e.g. [3]). In this case, it is natural to comside 1) Example LTo illustrate the numerical method, we first

the Taylor decomposition consider the dynamics

o] 00 . 2 3

(k1,..., kn) 3\ k1 “\ k rpT = —X1 —T1T2 — Ty.
oa(x) = D0 (1 —2D)" - () . 2o
klzzo kzzo A " Ty = —To+T125+ Y.
with In polar coordinates, the dynamics are= —r, § = r2, so

1 Gt thn gy that the origin is globally_stable iR2. This is coherent with .
il kol 92F - oehn the fact that our numerical method shows that there exist
Lm0ty T | g two (independent) Koopman eigenfunctions, both assatiate
and with z = (xq,...,2,). Note that this polynomial with the eigenvalue\j = \; = —1 (Fig. 1).
approximation resembles the sum of squares (SOS) method
used for the computation of Lyapunov functions [12].
One can also compute a Taylor expansion fofz) = 2
(Fi(x),..., Fu(x)), with the coefficients 1

girkn) =

L2 0 0
k) _ 1 gt
l kql--- k! ax*’lﬁ . axﬁn -1 »
z* 2 -2
Then, by injecting the Taylor expansions ©&f and F' into 2 oy 2
the eigenvalue equation (9) and by identifying the terms in
(v —a})k - (2, — 2%)F, we obtain the relationship Fig. 1. In Example 1, the existence of smooth eigenfunctiondiémglobal
stability of the fixed point (here in a square2.5, 2.5] x [—2.5, 2.5]). Left.
J ) G im) Color plot of the eigenfunction&kf. Right. Level sets of the eigenfunction
Z e Z Z(kl — i+ 1) FIIn é»=. (The eigenfunctions are computed with a Taylor expansidhed0th
Jj1=0 Jjn=01=1 (12) order.)

Xd)(kl —J1semki—1i—di—nki—ii+ 1L ki1 —Jig 1, kn—Jn) _
2) Example 2:The Van der Pol dynamics
= Ak (kL k) €N
T = —T2
For eachs > 1 € N, consider a vecto@(;) whose
components are the coefficierqﬁg“"” ’k"), with Ej k; =s.
In the cases = 1, (12) is rewritten as admit a stable fixed point at the origin, with a basin of
3T — yoW) attraction d_elimited by an unstable limit cycle. The two
A A (complex) eigenfunctions computed through the method tend
and we recover the equality (11). This implies thatust to infinity as they come close to the limit cycle. They
be one of the eigenvalueg of J and that<I>A* = V¢y:(x*) therefore provide an accurate evaluation of the basin of
is the corresponding left eigenvectoy. attraction of the fixed point (Fig. 2).

. 2
To = T — T+ Tix2



related to the notions of Lyapunov function and contracting
metrics, but also pave the way for an alternative to clabksica
stability theory.

In the case of a stable fixed point, a method is proposed
to compute smooth Koopman eigenfunctions. This method
is based on Taylor approximations and does not require the

ok N W A G O ~ ® ©

computation of the system trajectories. It yields an effitie
numerical scheme that can be used to investigate the global

stability properties of the fixed point (e.g. size of the basi

Fig. 2. For the Van der Pol dynamics, the level set$¢i§fl\ concentrate
near the unstable limit cycle (black curve). The basin ofaatton of the
fixed point is therefore well-approximated by the method. (€mgenfunc-
tions are computed with a Taylor expansion to ili®th order.)

of attraction).
A key point of the operator-theoretic framework is that it
is general enough to encompass a broad class of attractors.

Therefore, we envision that our results could be extended
_ _ _ _ to stable limit cycles and possibly to more complex at-
3) Example 3:Consider the dynamics (slightly modified tractors (e.g. strange attractors). However, other nuakeri

from [14])

1 —2xy + 23 — 22,

methods—which still need to be developed—might be re-
2 quired. Another promising direction is to adapt the frame-

work to the stability analysis of non-autonomous systems

x'2 = —2.5562 + 21‘1I2 .
While the origin is globally stable of? \ {(z1,x2)|r1 >
2,z9 = 0}, our numerical method shows the existence of

analytic eigenfunctions only on a disk of radi@ and

and input-output systems.
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This is actually in accordance with the Poincaré lineaidzat ©ON-
theorem, which implies that the eigenfunctions are arzti
on the larger disk (centered at the stable fixed point) thasdo o
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8 5 8 5 (4]
2 ",.ﬂ‘"'w"'""’ 2 T [5]
1 772 VO R
T20 {5 o C 0 20 é . . 0 [6]
Ay i BT [7]
N\ N,
-2 \“w._ .»-"/r/ -2 i el
-3 — -5 - -5 [8]
-2 ox; 2 S 2 0oxrT 2
Fig. 3. For the dynamics of Example 3, the numerical method implies[gl

global stability on a disk of radiu®. Outside this disk, the Koopman
eigenfunctions are not analytic and admit a singularity atuhstable fixed

point (2, 0). Left. Level sets of the eigenfunctiofy« with A7 = —2. Right. 0]
Level sets of the eigenfunctiop > with A\ = —2.5.(The eigenfunctions [11]
are computed with a Taylor expansion to th@dth order.)

(12]

VI. CONCLUSION

We have developed a new approach to global stabilitit3]
analysis, based on the spectral properties of the Koopman
operator. We have shown that a specific restriction of this op
erator captures the stability properties of the attradttmre  [14]
importantly, a strong connection has been established q?S]
tween global stability and the existence of continuousfy di
ferentiable Koopman eigenfunctions. The results are tlose
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