Faecal carriage of ESBL-producing Enterobacteriaceae in the community

Liège - Belgium

Cécile Meex Medical Microbiology (Prof. De Mol) CHU Liège - Belgium

Introduction

Infections due to ESBL-producing Enterobacteriaceae (ESBL-E)

- acute-care hospitals
- other healthcare facilities (nursing homes...)
- community
- □ Global programme related to appropriate use of antibiotics in the community in Belgium
 → Prevalence of ESBL-E colonizing the digestive tract

Introduction

□ Aim of the study:

- To determine the carriage rate of ESBL-E in community patients' faecal flora.
- To characterize the detected ESBLs

Materials and Methods

Samples

- 6 general practitioners from 10 independent surgeries
- 284 patients chosen at random without relation to the reason of their consultation
- \rightarrow Collection of faecal specimens and filling of a case report form.

Inoculation

□ Faecal suspension in 1 ml sterile saline

- 50 µl onto 3 different selective culture media:
 - ChromID ESBL agar (bioMérieux)
 - Bi-plate media (AES Chemunex): MacConkey agar with ceftazidime and Drigalski agar with cefotaxime

Identification and detection of ESBL-E

- Identification of all the Enterobacteriaceae performed by Vitek2 (bioMérieux)
- ESBL production screened by the combined double disk synergy method
- Antibiotic susceptibility testings of the ESBL-E performed by Vitek2 (bioMérieux)

Genotypic characterization (1)

DNA extraction for each ESBL-E with the QIAamp DNA mini kit (Qiagen)

 Molecular detection of *bla*TEM, *bla*SHV and *bla*CTX-M
but also of beta-lactamase of type BEL, VEB, GES or OXA 1/2/10

Genotypic characterization (2)

When a PCR was positive:

- Purification of the amplified DNA
- Sequencing
- Analysis of the nucleotid sequence

Genotypic characterization (3)

 Deduced amino-acid sequence compared to that present in public database or in the Lahey website (<u>www.lahey.org/studies</u>).

Identification of the beta-lactamase

Results

Phenotypic results

284 faecal samples

53 Enterobacteriaceae isolated from 46 samples

25 of these:
phenotypically
characterized as
ESBL producers

The 25 ESBL-E originated from 20 patients (7.04%)

Genotypic results (1)

Results of PCR and sequencing:

Species (Number of isolates)	Type of beta-lactamase				
	TEM	СТХ-М	TEM and CTX- M	SHV, BEL, VEB, GES or OXA 1/2/10	
<i>E.coli</i> (19)	TEM-1 (7)	CTX-M-1 (4)	TEM-1 and CTX- M-1 (1)	/	
	TEM-19 (1)				
	TEM-52 (4)	CTX-M-15 (2)			
E.aerogenes (1)	TEM-52 (1)	/	/	/	
P.mirabilis (3)	TEM-24 (3)	/	/	/	
S. fonticola (1)	/	/	/	/	

Antibiotic susceptibility profiles

	Resistance to:				
	Trimethoprim- sulfamethoxazole	Quinolones	Aminoglycosides		
E. coli (20)	15 (75%)	6 (30%)	5 (25%)		
P. mirabilis (3)	3 (100%)	3 (100%)	0 (0%)		
E. aerogenes (1)	0 (0%)	0 (0%)	0 (0%)		
S. fonticola (1)	0 (0%)	0 (0%)	0 (0%)		

Expected risk factors for ESBL-E carriage

Expected risk factors for ESBL-E carriage	Among ESBL-E carriers (n=20)	Among ESBL-E negative carriers (n=264)	Fischer test
Recent consumption of antibiotics	4	74	p > 0.05
Recent hospitalization	2	15	p > 0.05
Recent trip abroad	1	43	p > 0.05
Pets at home	11	135	p > 0.05
Mean age	57	50	

Discussion and conclusions

Prevalence rate (1)

Liège, Belgium (2007): Unrelated outpatients: 6.7%

- Rodriguez-Baño et al., Spain (2008): Unrelated nonhospitalized persons: 7.4%
- Tian et al., China (2008): elderly people in community settings: 7%
- Valverde *et al.*, Spain (2003): Outpatients: 5.5%

Prevalence rate (2)

Kinshasa, Congo (2006):

- Hospitalized patients: 33.1%
- Non hospitalized persons: 13.1%

Isolated ESBL-E

- E.coli accounted for the majority of ESBL-E isolates
- Various ESBL genes were identified
 - TEM- and CTX-M-derived enzymes predominant
- 36 % of the phenotypically characterized ESBL-E did not possess any ESBL of type:
 - TEM, SHV, CTX-M, BEL, VEB, GES or OXA 1/2/10

Antibiotic susceptibility testings

High level of sulfamethoxazoletrimethoprim resistance among the isolated ESBL-E (72%)

All the CTX-M producing Enterobacteriaceae were sulfamethoxazole-trimethoprim resistant.

Co-resistance with quinolones observed for 9 Enterobacteriaceae (36%)

Conclusions

- ESBL-related antimicrobial resistance mechanism(s) among Enterobacteriaceae in the community is a reality.
- High prevalence of ESBL-E faecal carriage among the non hospitalized population should be taken into account in treatment recommendations in ambulatory medicine.
 - Modification of the empiric antibiotherapy?
 - Patients screening before hospitalization?
- Efforts of vigilance should be made to identify and control spread from these community reservoirs.