Convective Drying of Mixtures of Sewage Sludge and Sawdust in a Fixed Bed

J. Li, L. Fraikin, T. Salmon, L. Bennamoun, D. Toye, A. Léonard University of Liège, Belgium

Introduction

Increasing amount of wastewater sludge

Sludge valorization

Land application, composting, incineration Problem: moisture content is a critical parameter

* Drying

- Mass and volume reduction
- Stabilisation Hygienisation
- Texture improvement
- Increase of calorific value
- * Needs for other valorization options
- Idea = new renewable fuel by mixing sludge with sawdust
 - Could be used for gasification/pyrolysis
 - * Interest for pasty sludge, difficult to dry

EuroDrying 2013 2 Paris, 2-4 Octobe

- Study of the drying behaviour of sludge/sawdust mixtures
 - * Convective drying of fixed bed
 - * Raw sludge (before and after mixing)
 - Raw sludge + increasing sawdust addition
 - * Use of tomography to characterize the 3D bed structure

EuroDrying 2013 Donie 2-4 Octobe

Sludge and sawdust

Sludge

- From WWTP (Grosses Battes, Belgium)
- Moisture content (wet basis) = 85.5%

> Sawdust

- Pine (90% èpicèa and 10% douglas), from a wood pellet's factory (Industrie du Bois Vielsalm, IBV, Belgium)
- Moisture content (wet basis) = 30%
- Diameter=0~0.5 mm

Materials and methods

EuroDrying 2013 4 Paris, 2-4 October

Samples

> Original sludge

Sawdust/sludge mixtures

- Mass ratio (dry matter) of sawdust/sludge=1/9, 2/8, 3/7 and 4/6
- Mixing time: 30 s
- Mixing velocity: 40 rpm

>Mixed sludge

 The same protocol was used to mix the original sludge without any sawdust addition.

Kitchen machine (KM1000, PROline)

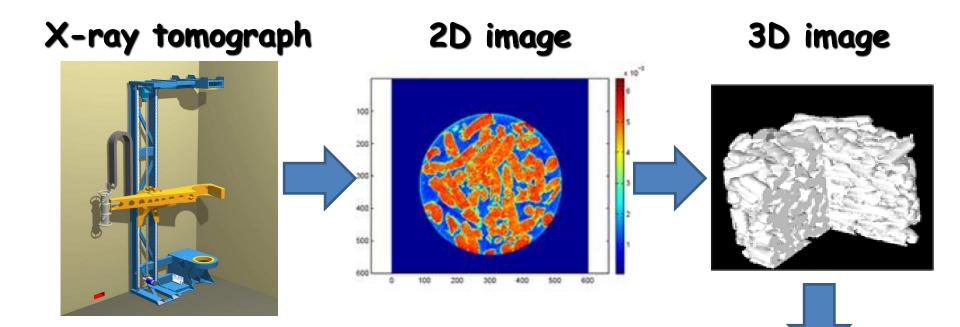
Beater

EuraDrying'2013 5 Paris, 2-4 October

Convective pilot scale dryer

6 0

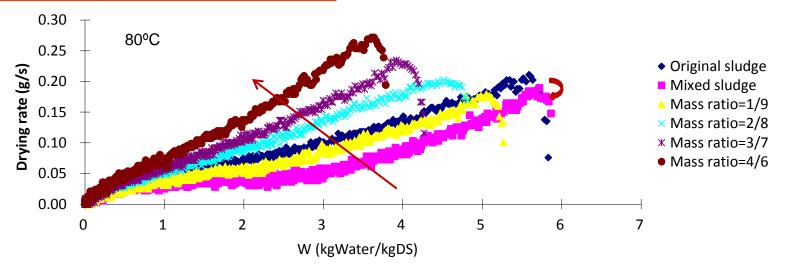
- o Diameter: 160 mmo Sample: 500 g
- Temperature: 50, 80 and 110 °C
- Air velocity: 2 m/s
- Humidity(ambient):~0.007 kg/kg


- Extrusion (Ø = 12 mm)
- > Fixed bed (cross flow)

Materials and methods

EuroDrying'2013 6 Paris, 2-4 October

X-ray tomography


- Non invasive imaging
- High energy (420 kV)
- Large-scale (0.45 m in diameter, 4 m in height)
- Image pixel size:
 0.359 mm
- Distance between two slices: 2.2 mm

- o Volume
- o Bed porosity
- o Total exchange surface

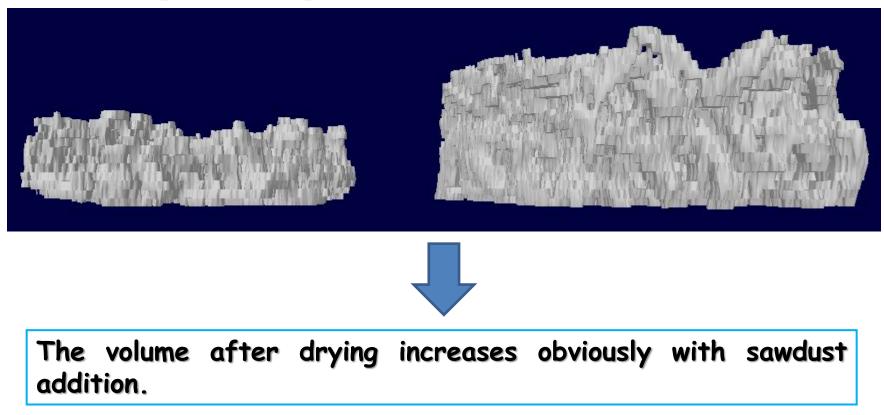
EuroDrying'2013 7 Paris, 2-4 October

Drying behaviour

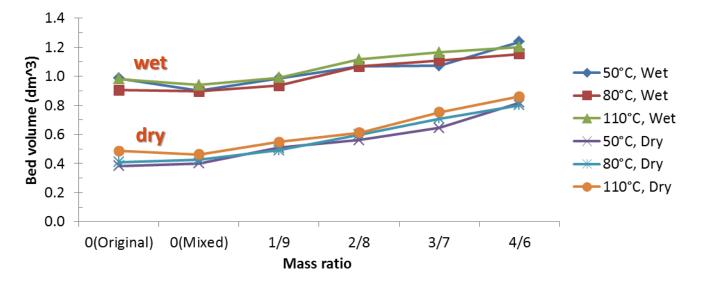
- Drying behaviour: A short preheating period + a short constant rate period + a long falling rate period
- o Original sludge \rightarrow Mixed sludge: Drying rate \downarrow
- o Sawdust addition

(1) Drying rate \uparrow

(2) From mass ratio of 2/8, the drying rate exceed the drying rate of original sludge. Sawdust addition has a positive impact on the drying process.

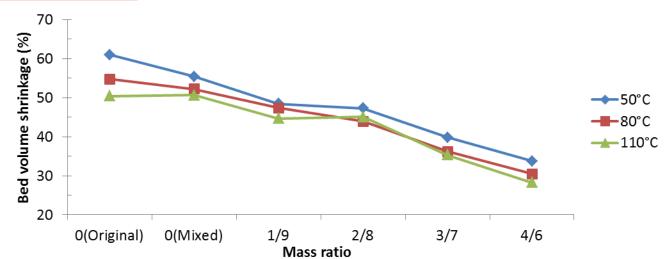


(a) Original sludge

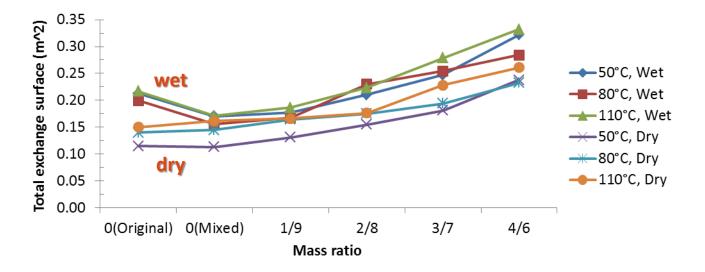

(b) Mass ratio=4/6

EuraDrying'2013 9 Paris, 2-4 October

Bed volume

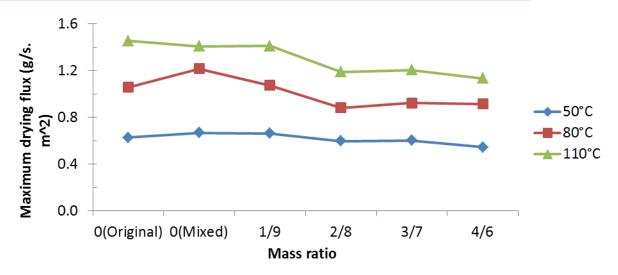


Original sludge → Mixed sludge
(1) Before drying: little decrease
(2) After drying: little change
Sawdust addition
(1) Before drying: volume ↑
(2) After drying: volume ↑



Original sludge → Mixed sludge
Volume shrinkage ↓
Sawdust addition
Volume shrinkage ↓
Temperature
Temperature ↑ → volume shrinkage ↓

Total exchange surface



Original sludge → Mixed sludge
(1) Before drying: surface ↓
(2) After drying: little change
Sawdust addition
(1) Before drying: surface ↑
(2) After drying: surface ↑

Constant drying rate period

Discussion

In constant drying rate period, the drying rate depends on the surface.

 $Maximum drying flux = \frac{Maxiumum drying rate}{Wet surface}$

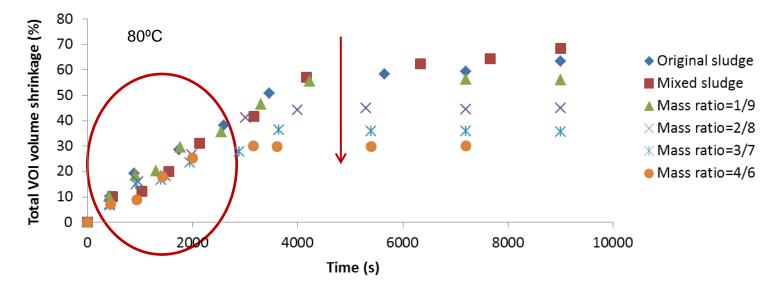
The drying flux is independent of the sludge nature but only depends on air temperature, velocity and humidity.

Falling drying rate period

(1) First decreasing zone:

- The evaporation happens at the solid surface
- External diffusion of liquid is controlling
- Drying rate is due to the surface
 - Mixing \rightarrow surface $\downarrow \rightarrow$ drying rate \downarrow
 - \checkmark Sawdust addition \rightarrow surface $\uparrow \rightarrow$ drying rate \uparrow

(2) Second decreasing zone:


- The evaporation happens within the solid structure
- Internal diffusion of liquid is controlling
- Drying rate isn't due to the surface
- Original sludge and mixed sludge: only the first decreasing zone
- Mixtures: first decreasing zone + second decreasing zone

Shrinkage process

- o Linear increase region: almost the same
- o Constant region: sawdust addition $\uparrow \rightarrow$ reaches earlier

The sawdust reinforces the texture of sludge and enhances the heat and mass transfer.

Conclusions

✓ The mixing step has a negative impact on the drying process. Nevertheless the sawdust addition is shown to have a positive impact on the drying process from mass ratio of 2/8.

✓ Further work will be done in order to characterize the pore texture and the pyrolysis behaviour of the sludges and mixtures.

Conclusions

Thank you for your attention !

