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Isotopic tracing of sediment components
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4Polyaquaculture Research Unit, IHSM, University of Toliara, 601 Toliara, Madagascar

Despite Holothuria scabra’s wide distribution and status as one of the best candidates for sustaining the development of trop-
ical sea cucumber aquaculture, very few data are available regarding the organic fraction it assimilates in practice. In this
study we report experimental results where H. scabra’s diet was supplemented with various 15N-labelled organic fractions
of sediment. We used juveniles weighing between 38 and 88 mg at the beginning of the experiment (ca 2 cm long and
30 days old). Their growth was measured over a four-week period and their 15N composition recorded. The results showed
that H. scabra juveniles assimilated all added organic components from both dissolved and particulate fractions of the sedi-
ment. Bacteria seem to be an important food source for juveniles, even more so than microphytobenthos (diatoms).

Keywords: holothuroids, Holothuria scabra, isotopic tracers, deposit-feeder, sediment
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I N T R O D U C T I O N

Aspidochirote holothuroids are amongst the most important
bioturbators of sediments in many marine ecosystems
(Massin, 1982). Aspidochirotes ingest the uppermost few
millimetres of surface sediment, include organic and inorganic
compounds, and reject the non-assimilated fraction in their
faeces (Uthicke, 1999). During transit through the digestive
tube, organic and inorganic fractions are digested, but
only a portion of the ingested molecules is assimilated
into the organisms’ tissues. It is now broadly accepted
that holothuroids assimilate carbon from bacteria and
diatoms, in addition to carbon made labile as a result of
microbial degradation (Yingst, 1976; Massin, 1982; Lopez &
Levinton, 1987). However, this understanding is based on a
very small number of direct and indirect observations, either
using labelled tracers or deduced from various experiments
on sea cucumbers, respectively. Amongst the direct observa-
tions, Yingst (1976) ably demonstrated that Parastichopus
parvimensis assimilates species of diatoms of the genus
Nitzschia and uptakes labelled carbon (14C) from bacteria.
Baird and Thistle (1986) demonstrated that exopolymers pro-
duced by the estuarine marine bacterium Pseudomonas atlan-
tica could be a source of nutrition for the deposit-feeding
holothuroid Isostichopus badionotus. Several studies exploring
sea cucumber assimilation include indirect observations
showing that their foregut contains more bacteria and

diatoms than either the surface sediment or the hindgut
(Taddei, 2006; Plotieau et al., 2013a). These studies suggest
that holothuroids select bacteria and diatoms in the sediment
and/or culture them in the foregut and then digest them.
Moreover, some species are able to make patch selectivity:
Stichopus chloronotus selects sediments with the highest
content of microalgae (Uthicke & Karez, 1999). In the
same way, Slater and Jeff (2010) demonstrated that
Australostichopus mollis displayed better growth when
higher microphytobenthic activity was recorded. Some
Mediterranean holothuroids ingest both coarse and fine sedi-
ment, while others select fine to very fine sediment (Mezali
and Soualili 2013). Belbachir et al. (in press Q2) also demon-
strated that Mediterranean holothuroids show selectivity for
organic matter: H. sanctori is the most selective species, fol-
lowed by H. forskali, H. poli and H. tubulosa. They attribute
these differences to the various micro-distribution of species
in the different habitats of Posidonia meadows.

Holothuria scabra occurs in areas of shallow sea in the
Indo-Pacific, featuring sandy–muddy bottoms and generally
colonized by seagrass beds. H. scabra is an important
member of these ecosystems (Wolkenhauer et al., 2010); it
has a diurnal cycle with adults that remain buried in the
upper layer of sediment during the day and move out to
forage at night (Mercier et al., 1999). Although H. scabra is
widely distributed and is one of the best candidates for the
development of a sustainable tropical sea cucumber aquacul-
ture, very little information is available on the fraction of
organic sediment it assimilates. In this study we tested
various 15N-labelled sediment components to better under-
stand what fractions of the sediment organic matter are incor-
porated into its tissues.
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M A T E R I A L S A N D M E T H O D S

Experiments were conducted at the Polyaquaculture Research
Unit of the Institut Halieutique et des Sciences Marines
(University of Toliara; Madagascar) (www.polyaquaculture.
mg) using H. scabra juveniles obtained from Madagascar
Holothurie S.A. (Eeckhaut et al., 2009). Larvae were raised
for 2 wk in hatchery tanks and, after metamorphosis, juveniles
of H. scabra were kept in the tanks for a further 2 wk.
Following this, they were used for the experiments (30 d
old, ca 2 cm long and from 38 to 88 mg; see Table 1).

In order to study which organic fractions from the sedi-
ments are assimilated by H. scabra, five treatments and
one control were conducted. In each of these treatments and
in the control, 32 H. scabra individuals (192 individuals in
total) were first acclimatized in the aquaria for 1 wk before
the beginning of the study and then reared for a further
3 wk in aerated 50 l aquaria containing a 5 cm layer of
sediment taken from natural seagrass beds (density of
150 ind m22).

All living individuals were weighed each week (at T0, T1,
T2 and T3) over the duration of the study. A weight record
was made by immersing individuals freshly collected from
the experiment tank in sterile seawater. Weights were mea-
sured three times for each individual (replaced in sterile sea
water for 10 min between each measurement) with a high pre-
cision balance (precision of 1 mg). With the exception of the
experiment with Clostridium (where a high mortality was
recorded) a minimum of 15 individuals from each experimen-
tal group were weighed each week. Mortality rates were also
recorded.

After the acclimatization period (T0), 1 wk later (T1) and at
the end of the treatment 3 wk later (T3), six juveniles from
each of the six aquaria were placed separately in a tank con-
taining only seawater for 48 h in order to eliminate gut
content and any labelled compounds not integrated in their
tissues. They were then oven-dried at 608C for 48 h, before
being crushed with a mortar and pestle to obtain a fine
powder. The powder was then acidified with 37% fuming
HCl in a bell jar for 48 h in order to remove skeleton carbo-
nates. Isotopic ratios and elemental content measurements
were performed with a mass spectrometer (VG Optima,
Isoprime, UK) coupled to a C–N–S elemental analyser
(Carlo Erba, Italy) for combustion and automated analysis.
Relative concentration of nitrogen is expressed as a percentage
relative to dry weight (N%DW). Isotopic ratios are presented
as d values (‰), expressed relative to atmospheric N2.
Reference materials were IAEA-N1 (d15N ¼ +0.4 + 0.2‰).
Experimental precision (based on the standard deviation of

replicates of an atropina standard) was 0.4‰. Atom% nota-
tion (15N atom%) was also used to calculate the quantity of
tracer assimilated by H. scabra over time at the end of the
experiment. This quantity was calculated according to:

15Nexcess = %15Nexcess × N%(DW) × final biomass

%15Nexcess was obtained by subtracting the natural abundance
of 15N in holothurian tissues (0.376 atom%) from the mea-
sured 15N abundance.

Because this quantity is dependent of the initial amount of
tracer added in the aquarium, we also calculated the integra-
tion percentage (i.e. the percentage of the initial quantity of
15N added to the experimental aquarium and effectively
assimilated in the holothurian tissues).

ANOVA were performed on the growth data in order to
compare mean weight, with significant differences determined
by Tukey’s HSD test (a: 0.05) (Statistica 7.0). To detect any
effects of treatments over time, an ANCOVA analysis was
realised with R 2.15.0. For isotope (15N values), non-
parametric Mann–Whitney U-tests were performed (a: 0.05)
(Statistica 7.0).

The control
The aquarium contained sediment, seawater and 32 indivi-
duals. Isotopic analyses were made on the individuals at
T0, T1 and T3 to determine 15N levels in standard rearing
conditions.

Treatments 1 and 2: assimilation of
compounds from 15N-labelled bacteria of the
genera Vibrio (closest strain in blast search:
JQ665337.1) and Clostridium (closest strain
in blast search JF836014.1)
These experiments investigated the potential of H. scabra to
assimilate organic components from Vibrio and Clostridium.
Vibrio is a genus commonly observed in seawater, marine
sediments and in the digestive tube of H. scabra (Plotieau
et al., 2013a). Clostridium is less common in marine environ-
ments and has not been recorded in the list of the 114 phylo-
types identified in the digestive tube of H. scabra (Plotieau
et al., 2013a). Bacteria were cultured in Petri dishes with LB
medium (tryptone (10 g l21), yeast extract (5 g l21) and
agar (15 g l21), NaCl (30 g l21), with MilliQ water containing
15N-alanine 98% (Eurisotop, France) (5 mg per petri dish

Table 1. Mortality rate, growth rate calculated at the end of the experiments and mean weight (+SD) of H. scabra juveniles. T0, T1, T2, T3 ¼ time at the
beginning, after 1, 2 and 3 wk of the experiments, respectively. Values in a same column sharing at least one symbol (a, b) did not differ significantly

(Tukey’s HSD test; a Q5¼ 0.05).

Mortality (%) Mean weight (g) Growth rate (mg j21)

T0 T1 T2 T3

Control 5 0.038 + 0.041a 0.030 + 0.026 0.020 + 0.026 0.022 + 0.021a 20.76
15N-labelled Vibrio 15 0.064 + 0.051a 0.087 + 0.066 0.146 + 0.121 0.181 + 0.176b 5.57
15N-labelled Clostridium 88 0.036 + 0.019a 0.032 + 0.022 0.031 + 0.012 0.040 + 0.019a 0.19
15N-alanine 3 0.043 + 0.037a 0.053 + 0.037 0.175 + 0.097 0.230 + 0.164b 8.90
15N-alanine + antibiotics 15 0.066 + 0.038a 0.084 + 0.057 0.075 + 0.066 0.097 + 0.090b 1.48
(15NH4)2SO4 + antibiotics 3 0.088 + 0.048a 0.108 + 0.163 0.107 + 0.109 0.112 + 0.069b 1.14
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containing 9 ml of LB medium). Alanine is an important
amino acid present in the bacterial wall (Schleifer & Kandler
1972). In order to check incorporation of 15N by cultured bac-
teria (Vibrio and Clostridium), three samples of each bacterial
strain were rinsed three times with 0.22 mm filtered seawater
and oven-dried at 608C for 48 h before measurements with
a mass spectrometer (see below).

Gram coloration was achieved in order to select one gram-
negative (Vibrio) and one gram-positive (Clostridium) bac-
teria from the sample groups of pure cultures (Adamse,
1970). For each bacterial strain, the content of three Petri
dishes (3 g w/w) was added once a week to the experimental
tanks. Before these additions, living bacteria were rinsed
three times with 0.22 mm filtered seawater in order to
remove non-integrated 15N-alanine.

In order to identify the two strains of bacteria in the cul-
tures and to check for any contamination that might occur
during the 4 wk duration of the study, three samples of each
bacterial culture were fixed in absolute ethanol (100%) at
the beginning of the experiment and again after 1, 2 and
3 wk. Bacterial DNA from 5–10 mg of fixed samples was
extracted using an Invisorb spin tissues minikit (Invitek)
and a 550 bp-long 16S rRNA gene fragment was then ampli-
fied by touchdown-PCR using the protocol developed by
Plotieau et al. (2013a). Generated sequences were submitted
to the BLAST database (http://www.ncbi.nlm.nih.gov/
BLAST) in order to identify the closest species, found in
each case to be Vibrio and Clostridium, respectively.

Treatments 3 and 4: assimilation of
15N-alanine in the presence or absence of
antibiotics
These experiments investigated the ability of H. scabra to
assimilate alanine dissolved in water and the role of bacteria
in this assimilation. Accordingly, in experiment 4,
15N-alanine (12 mg) was added to the aquarium each week
for 3 wk (concentration of 0.24 mg l21). In experiment 5,
15N-alanine (12 mg) and antibiotics (4 g ampicillin and 1 g
streptomycin according to Malmcrona-Friberg (1986) and
Mary et al. (1993)) were added each week over the duration
of the study in a separate experimental tank. The hypothesis
tested was that the following: if 15N-alanine was assimilated
directly from seawater by H. scabra, their tissues would
contain more 15N than juveniles in the control. Conversely,
if bacteria took part in the assimilation of 15N from alanine,
the concentration 15N in H. scabra’s tissues reared with
15N-alanine + antibiotics would prove to be less abundant
than the concentration in juveniles reared only with
15N-alanine.

Treatment 5: assimilation of organic
compounds from autotrophic microorganisms
Ammonium is the preferred nitrogen source for most auto-
trophic bacteria and other microautotrophs (Von Wirén &
Merrick, 2004). 15N-ammonium sulfate 99% (Eurisotope,
France) (300 mg) and antibiotics (4 g ampicillin and 1 g
streptomycin) were added to the aquarium each week for
the duration of the study. Antibiotics were added to
enhance the development of labelled non-bacterial microor-
ganisms. At the end of the experiment, if the 15N amount in

H. scabra’s tissues was found to be higher than in the
control, this would suggest that H. scabra was able to assimi-
late organic compounds from autotrophic microorganisms.

R E S U L T S

At the end of the experiment, the percentage of dead indivi-
duals in the control was of 5%. The mortality rates
after 4 wk varied significantly according to the treatment
applied (Table 1). More than 85% of juveniles died when
15N-alanine labelled Clostridium were added. Clostridium-
fed individuals did not grow during the study period: their
weight only progressed from 36 to 40 mg in 4 wk. Diseased
juveniles appeared 1 wk after Clostridium introduction, with
juveniles presenting spots on their tegument. A few days fol-
lowing this, the juveniles died and their bodies completely
deteriorated and liquefied. Juveniles that fed on 15N-alanine
labelled Vibrio and on sediments with 15N-alanine + antibio-
tics had a mortality rate between 155 and 22%. The lowest
mortality rates (less than 5%) were obtained when
15N-alanine or 15N-ammonium sulfate + antibiotics were
introduced to the aquaria.

The individuals undergoing all treatments grew more than
those in the control (Table 1), with recorded growth rates
varying between 1.14 and 8.90 mg j21. Juveniles in the
control did not grow well, with a recorded growth rate of
20.76 mg j21; as such, the average weight of control indivi-
duals at the end of the experiment that was not different
than that recorded at the beginning. The average weight of
juveniles undergoing the following four treatments differed
from that of the control at the end of the treatment: juveniles
reared with 15N-alanine labelled Vibrio, juveniles reared with
15N-alanine, those with 15N-alanine + antibiotics and those
with (15NH4)2SO4 + antibiotics (ANOVA plus Tukey; p ,

0.05) (Table 1). The highest growths were observed for juve-
niles reared with 15N-alanine (8.9 mg j21) and those feeding
on Vibrio (5.57 mg j21); the lowest growths were recorded
for individuals fed with Clostridium (0.19 mg j21).

There was no difference in d15N values over time for the
control individuals. d15N values at the end of the all treat-
ments differed significantly from the control, showing a sig-
nificant incorporation of 15N in all treatments (Mann–
Whitney U-tests; p . 0.05). Assimilation seems particularly
rapid in the ammonium sulphate treatment, as values of
d15N reached more than 2000‰ after 1 wk of experiment
(Figure 1).

Treatments conducted with Clostridium and Vibrio
showed a similar pattern of evolution for d15N, indicating
that in both cases there was an assimilation of 15N from
labelled bacteria into holothurian tissues: the d15N of holo-
thurian tissues passed from 14.2 to 47.0‰ in individuals fed
with Clostridium and from 15.6 to 115.5‰ in individuals
fed with Vibrio (Figure 1). Although the d15N values in the
tissues of individuals fed with Clostridium increased over
time (indicating that they had eaten these bacteria and assimi-
lated their components) the high mortality rate (88%; Table 1)
and the low growth (0.19 mg j21; Table 1) suggest that some of
these components were toxic for the holothuroids. The values
of d15N of juveniles reared with 15N alanine labelled Vibrio
(from +15.62‰ to +115.47‰) indicated that there was sig-
nificant assimilation of Vibrio during the study duration
(Figure 1). Moreover, growth (5.57 mg j21; Table 1) was
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significantly higher than that of the control individuals and
29 times higher than that of individuals fed with Clostridium
(p , 0.05).

H. scabra’s tissues showed a high 15N labelling when
15N-alanine was added, either alone or with antibiotics, to
the aquaria (Figure 1), demonstrating that bacteria is part of
H. scabra’s source of alanine, with the rest being derived dir-
ectly through uptake from sea water. Over the same period no
significant difference (p . 0.05) in d15N values was observed
between juveniles reared with alanine alone and those reared
with alanine and antibiotics (Figure 1). d15N values in juve-
niles reared in presence of 15N-ammonium sulfate and anti-
biotics were significantly different than values for juveniles
in the control (Figure 1).

As we did not add the same quantity of labelled substances
in each experimental tank, d values are not directly indicative
of the level of assimilation. For this reason we calculated a nor-
malized tracer assimilation rate where each 15N assimilated

quantity over the whole experiment time was normalized
with the quantity of labelled tracer added during this time
(Table 2). We found that only a small percentage of the
tracer was incorporated in the holothurian tissues (between
0.0015 and 6.43%). The percentage of assimilated tracer was,
however, higher in the alanine treatment than in either the
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Figure 1. Mean d15N values (+s.d.) in ‰ measured in Holothuria scabra tissues reared in aquaria in presence of different 15N-tracer treatments.

Table 2. Proportion of 15N assimilated over time relative to initial 15N
tracer added quantity according to the experimental treatment.

Isotopic tracer Normalized tracer
assimilation (%)

15N-labelled Vibrio 0.35
15N-labelled Clostridium 0.0015
15N-alanine 6.43
15N-alanine + antibiotics 2.56
15N ammonium sulfate + antibiotics 0.69
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alanine + antibiotic treatment, the ammonium sulfate treat-
ment, the 15N alanine labelled Vibrio treatment or the 15N
alanine labelled Clostridium treatment (Table 2).

D I S C U S S I O N

This study concerned 30 d old juveniles of Holothuria scabra
(15 d of larval development and 15 d of postmetamorphic
development). The use of these juveniles allowed the record-
ing of assimilated tracers in entire individuals, and also
created the opportunity to work with a high number of
holothuroids (192 individuals) treated with labelled tracers
in controlled conditions. The survival rate in the control indi-
viduals was similar (in fact slightly higher) to that of indivi-
duals reared by Madagascar Holothurie S.A.: the survival
rates of juveniles fed over 8 wk by Madagascar Holothurie
S.A. varied from 725 to 84% for the same population
density used here (150 ind m22) (Lavitra et al., 2009).
Lavitra et al. (2009) observed that the growth rate of freshly
metamorphosed juveniles of H. scabra is very slow at the
beginning of the post-metamorphic development phase, a
result also observed in the course of this study, where the
growth rates varied from 20.76 to 8.9 mg d21.

The main finding of this study is that the food sources for
H. scabra are varied and come from a combination of dis-
solved nutrients, heterotrophic bacteria and autotrophic
microorganisms: all the components tested here were assimi-
lated to some extent, although at different rates and with dif-
ferent effects on the growth of the holothuroids.

The four most abundant amino acids in the integument of
Apostichopus japonicus are alanine, lysine, glutamic acid and
aspartic acid (Gao et al., 2011). The three first amino acids
are also present in bacterial walls (Schleifer and Kandler,
1972). In the course of this study we observed that alanine
could be rapidly taken up by H. scabra in its dissolved form
(i.e. treatment with alanine + antibiotic). Free amino acids
are an important constituent of dissolved organic matter,
particularly in the seagrass sediments where H. scabra juve-
niles metamorphose. This could, therefore, represent an
easily accessible food source for young holothuroids.
Alanine incorporation may also be mediated by the microbial
biomass (i.e. treatment with alanine alone), though more
slowly. Bacterial consumption was also emphasised through
the use of Vibrio and Clostridium bacteria, which were evi-
dently assimilated by H. scabra. Nevertheless, Clostridium
probably involved the uptake of harmful toxic substances
into holothuroids, leading to a significant mortality rate.
Previous studies have already demonstrated the role of bac-
teria in the diet of the holothuroids P. parvimensis (Yingst,
1976) and I. badionotus (Baird & Thistle, 1986). The present
research team also recently demonstrated that bacterial con-
centration decreased significantly in substrates subject to
holothurian farming (Plotieau et al., 2013b). Vibrio are a
very common bacteria found in marine sediment (Baross &
Liston, 1970; Ward-Rainey et al., 1996) and in the sediment
transiting through H. scabra’s gut (Plotieau et al., 2013a).
Clostridium is a genus less common than Vibrio in marine
sediment (Yakimov et al., 2005) and it was not observed in
the 114 phylotypes revealed in H. scabra’s gut (Plotieau
et al., 2013a). Vibrio supplementation of the sediment had a
positive effect on the growth of H. scabra. Nevertheless, the
proportion of tracer assimilated during alanine treatment

tended to be higher than that in Vibrio treatment. This
could partly be explained by the results described in one of
our recent studies (Plotieau et al., 2013a) regarding the bacter-
ial composition of the sediment passed through the gut. We
found that the sediment bacterial community entering the
holothurian gut is very diverse and changes significantly
from the foregut to the hindgut: many bacterial strains dis-
appear, but Vibrio is the most represented genus in the gut
sediment (although this is not the case in the sediments on
which H. scabra feeds). This result suggests that Vibrio
are bacteria well adapted to resist the digestion process of
H. scabra.

Our treatment using ammonium sulphate also showed an
incorporation of the isotopic tracer. There is actually no evi-
dence that heterotroph marine animals take ammonium
from the seawater as a nitrogen source. Conversely, ammo-
nium is the preferred nitrogen source for most microauto-
trophs (Von Wirén and Merrick, 2004) and, therefore, the
15N ammonium sulfate was first integrated into microauto-
trophs before their eventual incorporation into H. scabra’s
tissues. As antibiotics were used, most ammonium served
the growth of microautotrophs other than bacteria, and (prob-
ably mostly for diatoms) as a major contributor in microphy-
tobenthos. Incorporation of the tracer in this experiment
showed lower tracer assimilation than during the treatments
using alanine (both with and without antibiotics) or Vibrio.
This suggests that dissolved organic matter and bacteria
are very important food sources for H. scabra juveniles in
comparison to microphytobenthos. Yingst (1976) showed
that Parastichopus parvimensis assimilates bacteria, diatoms
of the genus Nitzschia and photoautotroph flagellates
Dunaliella. She also observed that sea cucumbers do not
assimilate organic compounds from the green algae Ulva or
from the red algae Gelidium. The algae she used provided
little direct nutritive value to the sea cucumbers, but did
feed the bacteria attached to their surface. This is consistent
with various studies indicating that plant material does not
provide an important source of nutrients for many deposit
feeders (Newell 1965; Odum, 1971; Fenchel, 1972).

In conclusion, elements assimilated into the tissues of H.
scabra juveniles come from a mixture of dissolved nutrients,
heterotrophic bacteria and autotrophic microorganisms.
Therefore, the diet of this holothuroid is more complex than
generally assumed. These components found in the sediment
are all assimilated to some extent but at different rates and
with different effects on the growth of the holothuroids. As
H. scabra is a commercial species of high value, supplementa-
tion of sediment in aquaculture by bacteria or microauto-
trophs such as diatoms should be considered and analysed
further.
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