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■ We will be meeting in building B4 room A204 at the following dates:

1 2 3 4 5 6 D

18/03 25/03 01/04 22/04 29/04 06/05 13/05

introductory lecture Q&A Q&A Q&A Q&A Q&A defense

A+X+H X+H X+H A+X+H A+X+H A+X+H A+X+H

■ Your presence is mandatory for the introductory lecture:

◆ Tuesday March 18, 10h45–12h45.

■ If you should need some help, please attend the Q&A sessions or contact M. Arnst, J. Xhardez, or
V. Hoang Truong by email to ask a question by email or schedule an appointment.

■ Please send the first and last names of all the group members (2 or 3 people), as well as their email
addresses, by email to M. Arnst before/on Monday March 24, 2014.

■ The project report must be sent in PDF format by email to M. Arnst before/on Wednesday May 7.

■ Project presentations will be scheduled on Tuesday May 13 at a time and location to be set later.
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■ Maarten Arnst
Chargé de cours
Aérospatiale et Mécanique
Office: B52 0/419
Email: maarten.arnst@ulg.ac.be

■ Jérémy Xhardez
Doctorant
Aérospatiale et Mécanique
Office: B52 2/541
Email: jxhardez@ulg.ac.be

■ Vinh Hoang Truong
Doctorant
Aérospatiale et Mécanique
Office: B52 2/547
Email: v.hoangtruong@ulg.ac.be
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Gecko lizzards can climb stones, plants, and other steep natural surfaces.
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A complex hierarchical lamellae structure on their feet allows gecko lizzards
to exploit intermolecular adhesion forces at micrometer length scales to stick to natural surfaces.
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Smartphones have micrometer scale gyroscopes that allow them to sense rotation.

Shocks can bring freely moving parts close to the enclosure, where intermolecular adhesion forces
can cause these freely moving parts to stick to this enclosure, thus leading to failure.
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Silicon surfaces are rough at micrometer and nanometer length scales.

Roughness significantly affects adhesion between surfaces.
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Atomistic modeling.
blanc

Continuum modeling
using finite elements.

Analytical modeling.
blanc

We will carry out an analytical study of rough surface adhesion,
whereby we will represent surface roughness using stochastic processes.
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If two rough surfaces, or a rough surface and a smooth surface, are placed in contact, actual contact
between the surfaces will occur only wherever “hills” of one surface touch the “hills” of the other surface.

These “hills,” also called “asperities ,” are located around local maxima .
They play a key role in rough surface adhesion.
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Experimental data
Atomic Force Microscopy

→

Random field model
of surface roughness

→

Equivalent model
as random collection of spheres

Adhesive contact
of spheres

To facilitate analytical calculations, we will replace the model of the rough surface as a random field
with an “equivalent” model of the rough surface as a random collection o f spheres .

Locally, the contact of each sphere will be treated by means of analytical models from elasticity theory.
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■ Agenda.

■ Contact.

■ Motivation.

■ Methodology.

■ Plan.

■ Adhesive contact of spheres.

■ Random field model of surface roughness.

■ Random collection of spheres.

■ From data to random field.

■ Conclusion.

■ References.
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■ Deformation of elastic spherical punch pressing the surface of an elastic halfspace:

z

ρ

z

f

a

ρ

δ

Linear elasticity equations (with Young modulus y1 and Poisson coefficient ν1) are imposed in the
sphere. Contact develops over a contact zone bounded by a circle of radius a, where it is imposed
that there be no penetration, adhesion (with surface energy γ), only pressure/ traction where
contact, and no friction. Linear elasticity equations (y2, ν2) are imposed in the halfspace.

■ An analytical solution exists for this problem: the vertical displacement δ of the center of the sphere
is related to the contact force f as

δ =
1

3

a2

ρ
+

2

3

f

κa
,

where 1
κ = 3

4

(
1−ν2

1

y1
+

1−ν2
2

y2

)
, and the radius a of the circle that bounds the contact zone satisfies

a3 =
ρ

κ

(
f + 3γπρ+

√
6γπρf + (3γπρ)2

)
.
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■ Force-radius relationship:

f
3
2γπρ

a
3
√

3γπρ2

2κ

adhesive contact
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•(fad, aad)

Here, the solid line corresponds to stable equilibrium configurations (determined by Eqns. on
previous slide); conversely, the dashed line corresponds to unstable equilibrium configurations.

This adhesive-contact-of-spheres model indicates that in a force-controlled experiment, upon
decreasing the contact force f , separation will occur when this contact force f is equal to the

so-called adhesion force fad = − 3
2γπρ. The radius at separation is equal to aad =

3

√
3γπρ2

2κ .
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■ Force-displacement relationship:

δ
3
√

π2γ2ρ

12κ2

f
3
2γπρ

adhesive contact

−1 0 1 2 3 4 5

−1

1

2

•
(δad, fad)

The displacement corresponding to the adhesion force fad =− 3
2γπρ is equal to δad =− 3

√
π2γ2ρ
12κ2 .
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■ Matlab code used to generate these figures:

f1=[-1:0.01:2];
a1=((f1+2)+2*sqrt(f1+1)).ˆ(1/3);

f2=[-1:0.01:0];
a2=((f2+2)-2*sqrt(f2+1)).ˆ(1/3);

figure;hold on;

plot(f1,a1,’b-’);

plot(f2,a2,’b- -’);

set(gca,’XLim’,[-2 6]);
set(gca,’YLim’,[0 4]);

f1=[-1:0.01:2];
d1=((f1+2)+2*sqrt(f1+1)).ˆ(2/3)+8ˆ(1/3)*f1.*((f1+2)+2*sqrt(f1+1)).ˆ(-1/3);

f2=[-1:0.01:0];
d2=((f2+2)-2*sqrt(f2+1)).ˆ(2/3)+8ˆ(1/3)*f2.*((f2+2)-2*sqrt(f2+1)).ˆ(-1/3);

figure;hold on;

plot(-d1,f1,’b-’);

plot(-d2,f2,’b- -’);

set(gca,’YLim’,[-1.5 1.5]);
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More details: The four forces of nature

■ There are four distinct forces in nature:

◆ strong nuclear force.

◆ electromagnetic force.

◆ weak nuclear force.

◆ gravitation force.
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More details: Intermolecular forces

■ Intermolecular forces are attraction and repulsion forces acting between atoms or molecules.

■ Intermolecular forces can be subdivided into the following types:

◆ ionic (Coulomb attraction between ions of opposite charge).

◆ covalent (sharing one or more pairs of electrons to form molecules).

◆ metallic (due to electrons moving freely between positive ions).

◆ hydrogen bond (linking molecules through a hydrogen atom belonging to one of them).

◆ Van der Waals forces.

■ These intermolecular forces are all electromagnetic.
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More details: Van der Waals forces between molecules

■ Three types of intermolecular force are collectively referred to as Van der Waals forces:

◆ forces between permanent dipoles (Keesom orientation forces).

◆ forces between permanent and induced dipoles (Debye induction).

◆ attraction forces between nonpolar molecules (London dispersion).

■ Intermolecular forces can be adequately modeled as conservative forces. Thus, one can always find
an intermolecular potential, from which the intermolecular forces can be obtained by differentiation.

■ The Lennard-Jones potential, the simplest example of such an intermolecular potential, models the
potential energy φ(r) between two molecules as a function of the distance r between them as

φ(r) = 4φ0

((r0
r

)12
−
(r0
r

)6)
;

here, φ0 and r0 are parameters

that can be fitted to experimental data.

■ Alternative, but more complicated, expressions for intermolecular potentials have been proposed in
the literature, which can often reproduce experimental data more accurately.
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More details: Van der Waals forces between molecules

■ The Lennard-Jones potential consists of a repulsive potential (repulsion when electronic clouds
begin to overlap) and an attractive potential (Van der Waals forces). The repulsive potential varies
with 1/r12, corresponding to a repulsive force that varies with 1/r13, and the attractive potential
varies with 1/r6, corresponding to an attractive force that varies with 1/r7.

r/r0

φ/φ0

1 2

−2

−1

0

1

6
√
2

φ(r) = 4φ0

((r0
r

)12
−
(r0
r

)6)
.

r/r0

fr/max(|fr|)

1 2

−2

−1

0

1

6
√
2

fr(r) = −dφ

dr
(r) = 4φ0

(
12

r120
r13

− 6
r60
r7

)
.

■ In fact, the more general relation f = −∇Φ simplifies here to f = frir with fr(r) = −dφ
dr (r)

because of the spherical symmetry of the Lennard-Jones potential.
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More details: Attractive Van der Waals forces between two molec ules

■ Taking into account only the attractive part of the aforementioned Lennard-Jones potential, we can
model the attractive potential energy between two molecules separated by a distance r as

φ(r) = − c

r6
with c = 4φ0r

6
0,

which corresponds to an attractive force given by

fr(r) = −dφ

dr
(r) = −6c

r7
;

here, the coefficient c in the attractive potential is sometimes called the London constant.

■ Assuming that Van der Waals forces are additive, we can use this formula to determine the resultant
Van der Waals force between a molecule and a halfspace, between a sphere and a halfspace, and
between two halfspaces, as shown next.
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More details: Attractive Van der Waals forces between a molecul e and a halfspace

■ Consider a molecule at a distance d from a halfspace with n molecules per unit volume.

•

z

d

molecule

halfspace with n molecules per unit volume
D

■ Then, by integration, the attractive force between the molecule and the halfspace is given by

f =

∫∫

D
−∇φ · izndV =

πnc

2d4
,

as proved on the next slide.
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Proof: Attractive Van der Waals forces between a molecule and a halfspace

•

z

d

molecule

halfspace with n molecules per unit volume•

r
θ

D

■ The vertical component of the attractive force between the molecule and a molecule located at a
distance r in the plane of ordinate z is given by 6c cos(θ)/r7.

■ By integration, followed by a change of variables to spherical coordinates with jacobian r2 sin(θ)
and with r = z/ cos(θ), the attractive force between the molecule and the half space is obtained as

f =

∫∫

D
−∇φ · izndV =

∫ +∞

d

∫ π/2

0

6c cos(θ)

r7
n2πz2

sin(θ)

(cos(θ))3
dθdz

= 12πnc

∫ +∞

d

dz

z5

∫ π/2

0

(cos(θ))5 sin(θ)dθ

=
πnc

2d4
.
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More details: Attractive Van der Waals force between a sphere an d a halfspace

■ Consider a sphere of radius ρ at a distance d from a halfspace with n molecules per unit volume.

z

d
sphere with n molecules per unit volume

halfspace with n molecules per unit volume

D

■ Then, by integration, the attractive force between the sphere and the halfspace is given by

f =

∫∫

D

πnc

2z4
ndV =

∫ d+ρ

d−ρ

πnc

2z4
nπ
(
ρ2 − (d+ ρ− z)2

)
dz

ρ≫d≈ hρ

6d2
;

here, the coefficient h = π2n2c in the attractive force is sometimes called the Hamaker constant.
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More details: Attractive Van der Waals force per unit area betwe en two halfspaces

■ Consider two halfspaces at a distance d from each other, both with n molecules per unit volume.

z

d
halfspace with n molecules per unit volume

halfspace with n molecules per unit volume

■ Then, by integration, the attractive force per unit area between the halfspaces is given by

t =

∫ +∞

d

πnc

2z4
ndz =

h

6πd3
;

here, the coefficient h = π2n2c in the attractive force is still the Hamaker constant.
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More details: Surface energy density

■ The surface energy density γ of a solid determines the energy γdS needed to create (reversibly
and isothermally) an elementary area dS of new surface.

■ If we imagine cutting a solid along a plane and separating the two surfaces, work must be done to
overcome the attractive forces which provide the cohesion of the solid. The work thus required to
create a unit area of new surface is the surface energy density.

z/z0

φ/(2γ)
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−1
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4

3
2γ

(
1

4

(z0
z

)8

−
(z0
z

)2
)
.

z/z0

t/max(|t|)

1 2
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0

1

t(z) =
3
√
3

2
max(|t|)

((z0
z

)9
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(z0
z
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)
.
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More details: Surface energy density

■ After calculating the repulsive force per unit area between two hafspaces in a manner analogous to
that for the attractive one, we find that the force per unit area between two Lennard-Jones
halfspaces at a distance d from each other, both with n atoms per unit volume, is given by

t(z) =
b

z9
− h

6πz3
.

■ With z0 the equilibrium distance such that t(z0) = 0, we obtain b =
hz6

0

6π and thus

t(z) =
h

6πz30

((z0
z

)9
−
(z0
z

)3)
.

■ The surface energy density is obtained as

2γ = −
∫ +∞

z0

t(z)dz = −
∫ +∞

z0

−dφ

dz
dz = φ(+∞)− φ(z0) = −φ(z0),

where φ(z) = h
12πz2

0

(
1
4

(
z0
z

)8 −
(
z0
z

)2)
is the potential such that t(z) = −dφ

dz (z), and thus

2γ = − h

12πz20

(
1

4
− 1

)
=

h

16πz20
.



Adhesive contact of spheres

ULg, Liège, Belgium MATH0488 – Lecture 28 / 84

More details: Boussinesq model

■ Deformation of an elastic halfspace due to a rigid and circular flat punch pressing the surface:

z

f

a

Linear elasticity equations in halfspace:

divσ = 0, in R
2 × R

+
0 (equilibrium eqn.),

σ = λtr(ǫ)I + 2µǫ, in R
2 × R

+
0 (constitutive eqn.),

ǫ =
1

2

(
Du+ DuT

)
in R

2 × R
+
0 (strain-displacement),

σ(−iz) = (σ(−iz) · iz)iz, in {0 ≤ r ≤ a} × {z = 0}
u · iz = δ in {0 ≤ r ≤ a} × {z = 0} (b.c.).

σ(−iz) = 0 on {r > a} × {z = 0}
■ Boussinesq deduced for this problem an analytical solution; he found that the vertical displace-

ment δ of the rigid and circular flat punch is related to the contact force f as follows:

δ =
1− ν2

2y

f

a
,

{
y: Young’s modulus,

ν: Poisson coefficient,

and he found that the pressure exerted by the rigid and circular flat punch on the halfspace reads as

σ(iz) · iz =
f

2πa2
1√

1− r2
on {0 ≤ r ≤ a} × {z = 0}.
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More details: Hertz nonadhesive contact model

■ Deformation of an elastic halfspace and an elastic spherical punch pressing the surface:

z

f

a

ρ

δ

Linear elasticity eqns. (y1, ν1) in the sphere. Contact develops over a contact zone bounded by a
circle of radius a, where it is imposed that there be no penetration, no adhesion, only pressure
where contact, and no friction. Linear elasticity eqns. (y2, ν2) in the halfspace.

■ Hertz deduced for this problem an analytical solution; he found that the vertical displacement δ of
the center of the sphere is related to the contact force f as

δ = 3

√
f2

κ2ρ
(vertical displacement δ varies with f2/3),

where 1
κ = 3

4

(
1−ν2

1

y1
+

1−ν2
2

y2

)
, and the radius a of the circle that bounds the contact zone satisfies

a3 =
ρ

κ
f (radius a varies with f1/3).
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More details: Johnson-Kendall-Roberts adhesive contact mod el

■ Deformation of an elastic halfspace and an elastic spherical punch pressing the surface:

z

ρ

z

f

a

ρ

δ

Linear elasticity eqns. (y1, ν1) in the sphere. Contact develops over a contact zone bounded by a
circle of radius a, where it is imposed that there be no penetration, adhesion (γ), only pressure/
traction where contact, and no friction. Linear elasticity eqns. (y2, ν2) in the halfspace.

■ Johnson, Kendall, and Roberts deduced for this problem an analytical solution; they found that the
vertical displacement δ of the center of the sphere is related to the contact force f as

δ =
1

3

a2

ρ
+

2

3

f

κa
,

where 1
κ = 3

4

(
1−ν2

1

y1
+

1−ν2
2

y2

)
, and the radius a of the circle that bounds the contact zone satisfies

a3 =
ρ

κ

(
f + 3γπρ+

√
6γπρf + (3γπρ)2

)
.
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Proof: Johnson-Kendall-Roberts adhesive contact model

■ The deformed configuration is determined by using the principle of minimum total energy: the
deformed configuration is the one that minimizes the total energy

uT = uE + uM + uS,





uE: stored elastic energy,

uM: potential energy of the contact force,

uS: surface energy.

■ The stored elastic energy is obtained by considering the deformed configuration to be the superpo-
sition of a Hertz loading to a radius a corresponding to an contact force g such that a3 = ρg

κ and a
Boussinesq unloading at constant radius a from the contact force g to the contact force f :

uE =

∫ g

0

h
2/3
z

κ2/3ρ1/3
dhz −

∫ g

f

2

3

hz

κa
dhz

=
2

5

g5/3

κ2/3ρ1/3
− 1

3κa
(g2 − f2)

=
1

κ2/3ρ1/3

(
1

15
g5/3 +

1

3
f2g−1/3

)
.
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Proof: Johnson-Kendall-Roberts adhesive contact model

■ The potential energy of the contact force reads as

uM = −f

(
g2/3

κ2/3ρ1/3
− 2

3

g − f

κa

)
= − f

κ2/3ρ1/3

(
1

3
g2/3 +

2

3
fg−1/3

)
.

■ The surface energy reads as

uS = −γπa2 = −γπ
(ρg
κ

)2/3
.

■ Stationarity of the total energy reads as duT

da = 0, which is equivalent to duT

dg = 0, that is,

duT

dg
=

g−4/3

9κ2/3ρ2/3
(
g2 − f2 − 2fg + 2f2 − 6γπρg

)
= 0;

therefore,
g = (f + 3γπρ)±

√
(f + 3γπρ)2 − f2.

By examining the second derivative of the total energy, it can be shown that the positive sign
corresponds to a stable equilibrium (solid line on Slides 12 and 13) whereas the negative sign
corresponds to an unstable equilibrium (dashed line on Slides 12 and 13). Inserting the expression
for the stable equilibrium in a3 = ρg

κ , we obtain the asserted expressions.
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More details: Conclusion

■ On the basis of a simple model of the force exerted between two molecules, we obtained by
integration the force exerted between a molecule and a halfspace, between a sphere and a
halfspace, and between two halfspaces.

This allowed us to understand the notion of surface energy density, which we defined as the work
that must be done to overcome attractive forces to create a unit area of new surface.

■ We considered the contact between a sphere and a halfspace, first without adhesion (Hertz), then
with adhesion (JKR). In the JKR case, adhesion is taken into account through the notion of surface
energy density. For both the Hertz case and the JKR case, relationships were obtained which link
the contact force to the displacement of the sphere center and to the radius of the contact zone.

■ The force-radius relationship and the force-displacement relationship are important in designing
devices that can fail due to adhesion, such as MicroElectroMechanical Systems (MEMS).
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■ We model the surface roughness as a Gaussian random field (=2D stochastic process).

■ Specifically, we model the surface roughness as a random field {Z(x), x ∈ R
2} indexed by R2,

with values in R, of the second order, mean-square (=wide-sense) stationary, Gaussian, zero-mean,
and of autocorrelation function rZ with corresponding power spectral density function sZ .

■ A Gaussian random field is fully defined once its mean function and either its autocorrelation
function or the corresponding power spectral density function have been specified. Here, only the
specification of either the autocorrelation function or the corresponding power spectral density
function is required because the Gaussian random field has zero mean.

Later, we will see how the power spectral density function can be estimated from experimental data.
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More details: Notations and conventions

■ A lowercase letter, for example, x, is a real deterministic variable.

■ A boldface lowercase letter, for example, x = [x1, . . . , xd]
T, is a real deterministic column vector.

■ An uppercase letter, for example, X , is a real random variable.
Exceptions: E (mathematical expectation) and P (probability).

■ A boldface uppercase letter, for example, X = [X1, . . . , Xd]
T, is a real random column vector.

■ An uppercase letter between square brackets, for example, [A], is a real deterministic matrix.

■ A boldface uppercase letter between square brackets, for example, [A], is a real random matrix.
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More details: Notations and conventions

■ Let f : R → R be an integrable function , that is,
∫
R
|f(t)|dt < +∞. Then, the Fourier

transform f̂ of f is the bounded, continuous function f̂ from R into C such that

f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt.

The Fourier transform of an integrable function is not necessarily integrable itself.

■ Let f : R → R be a square-integrable function , that is,
∫
R
|f(t)|2dt < +∞. Then, the Fourier

transform f̂ of f is the square-integrable function f̂ from R into C such that





f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt,

f(t) = F−1f̂(t) =
1

2π

∫

R

exp(iωt)f̂(ω)dω.

■ These definitions indicate that one cannot take the Fourier transform of any function: these
definitions provide the Fourier transform only for integrable and square-integrable functions.

■ We include the minus sign in the forward transform and the factor 1
2π in the inverse transform.
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More details: Outlook

■ Random variables (samples are scalars, vectors, matrices,. . . ):

■ Stochastic processes (samples are functions of one variable):

t

Z(t)

t

Z(t)

t

Z(t)

■ Random fields (samples are functions of two or more variables):
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More details: Random variables

■ The probability distribution PZ of a random variable Z with values in R is the function that
associates to any meaningful subset B of R the probability that the value taken by Z is in B, that is,

PZ(B) = P (Z ∈ B).

■ The probability density function ρZ of a probability distribution PZ with respect to dz, if it exists,
is the function from R into R

+ such that for any meaningful subset B of R, we have

PZ(B) =
∫

B
ρZ(z)dz.

The probability density function is normalized in that PZ(R) =
∫
R
ρZ(z)dz = 1.

■ A random variable Z with values in R is a Gaussian random variable with mean z and variance σ2
Z

if it admits the probability density function

ρZ(z) =
1√
2πσZ

exp

(
− (z − z)2

2σ2
Z

)
.
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More details: Random variables

■ A random variable Z with values in R is of the second order if

E(Z2) =

∫

R

z2ρZ(z)dz < +∞.

■ The mean z of a second-order random variable Z with values in R is defined by

z = E(Z) =

∫

R

zρZ(z)dz.

■ The variance σ2
Z of a second-order random variable Z with values in R is defined by

σ2
Z = E

(
(Z − z)2

)
=

∫

R

(z − z)2ρZ(z)dz.

■ Please note that σ2
Z = E

(
(Z − z)2

)
= E(Z2)− z2.



Random field model of surface roughness

ULg, Liège, Belgium MATH0488 – Lecture 41 / 84

More details: Stochastic processes

■ A stochastic process {Z(t), t ∈ T } indexed by a subset T of R and with values in R is a
collection of random variables Z(t) with values in R indexed by t in T .

■ For any nonempty finite subset {t1, . . . , tm} of T , where m denotes the number of elements in
this subset, the joint probability distribution P(Z(t1),...,Z(tm)) of (Z(t1), . . . , Z(tm)) is called a
(m-th order) marginal probability distribution of the stochastic process {Z(t), t ∈ T }.

The collection of all the marginal probability distributions of a stochastic process is called the
system of marginal probability distributions .

■ A stochastic process {Z(t), t ∈ T } indexed by T and with values in R is Gaussian if each
probability distribution in its system of marginal probability distributions is Gaussian.
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More details: Stochastic processes
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More details: Stochastic processes

■ A stochastic process {Z(t), t ∈ T } indexed by T with values in R is of the second order if

E
(
Z(t)2

)
=

∫

R

z2ρZ(t)(z)dz < +∞, ∀t ∈ T .

■ The mean function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with
values in R is the function z from T into R such that

z(t) = E
(
Z(t)

)
=

∫

R

zρZ(t)(z)dz.

■ The autocorrelation function of a second-order stochastic process {Z(t), t ∈ T } indexed by T
with values in R is the function rZ from T × T into R such that

rZ(t, t̃) = E
(
Z(t)Z(t̃)

)
=

∫

R×R

zz̃ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ The covariance function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with
values in R is the function cZ from T × T into R such that

cZ(t, t̃) = E
((

Z(t)−z(t)
)(
Z(t̃)−z(t̃)

))
=

∫

R×R

(
z−z(t)

)(
z̃−z(t̃)

)
ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ Please note that cZ(t, t̃) = E
((

Z(t)− z(t)
)(
Z(t̃)− z(t̃)

))
= rZ(t, t̃)− z(t)z(t̃).
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More details: Stochastic processes

■ A second-order stochastic process {Z(t), t ∈ R} indexed by R with values in R is mean-square
stationary if z(t) = z is independent of t and rZ(t, t̃) = rZ(t− t̃) depends on only t− t̃.

■ The power spectral density function of a zero-mean, mean-square stationary, second-order
stochastic process {Z(t), t ∈ R} indexed by R with values in R, if it exists, is the function sZ
from R into R

+ such that

rZ(t− t̃) =
1

2π

∫

R

sZ(ω) exp
(
iω(t− t̃)

)
dω.

The power spectral density function sZ has the following properties:

◆ it is even because of the evenness of rZ ,
◆ it is positive owing to Bochner’s theorem,
◆ it is integrable because E

(
Z(t)2

)
= rZ(0) =

1
2π

∫
R
sZ(ω)dω < +∞.

■ If α is an integer, the spectral moment of order α, denoted by mα, if it exists, is the integral

mα =
1

2π

∫

R

ωαsZ(ω)dω.
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More details: Stochastic processes

t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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More details: Stochastic processes

t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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More details: Stochastic processes

■ The mean-square derivative of a second-order stochastic process {Z(t), t ∈ T } indexed by T
with values in R, if it exists, is the second-order stochastic process {Ż(t), t ∈ T } such that

Ż(t) = lim
τ→0

Z(t+ τ)− Z(t)

τ
, ∀t ∈ T ,

where the limit is defined in the sense of the mean-square convergence of second-order r. v.

Provided that all the derivatives in the expressions to follow exist, the second-order statistical
descriptors of {Ż(t), t ∈ T } are related to those of {Z(t), t ∈ T } as follows:

ż(t) = E
(
Ż(t)

)
= ż(t), rŻ(t, t̃) = E

(
Ż(t)Ż(t̃)

)
=

∂2rZ

∂t∂t̃
(t, t̃).

■ In the case of a zero-mean, mean-square stationary, second-order stochastic process {Z(t),
t ∈ R}, and provided that all the derivatives in the expressions to follow exist, the second-order
statistical descriptors of {Ż(t), t ∈ R} are related to those of {Z(t), t ∈ R} as follows:

ż = 0, rŻ(t− t̃) = − d2rZ

d(t− t̃)2
(t− t̃),

sŻ(ω) = ω2sZ(ω), E
(
Ż(t)2

)
= rŻ(0) =

1

2π

∫

R

ω2sZ(ω)dω = m2.
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Proof: Second-order statistical descriptors of mean-square derivative

■ Because of the triangle inequality and the Cauchy-Schwartz inequality, we have

∣∣∣∣E
(
Ż(t)Ż(t̃)− Z(t+ τ)− Z(t)

τ

Z(t̃+ τ̃)− Z(t̃)

τ̃

)∣∣∣∣

≤

√√√√E

((
Ż(t)− Z(t+ τ)− Z(t)

τ

)2
)√

E
(
Ż(t̃)2

)

+

√√√√E

((
Z(t+ τ)− Z(t)

τ

)2
)√√√√E

((
Ż(t̃)− Z(t̃+ τ̃)− Z(t̃)

τ̃

)2
)
.

■ Because the right-hand side tends to 0 as a whole when τ and τ̃ tend to 0, we have

rŻ(t, t̃) = lim
τ,τ̃→0

E

(
Z(t+ τ)− Z(t)

τ

Z(t̃+ τ̃)− Z(t̃)

τ̃

)

= lim
τ,τ̃→0

rZ(t+ τ, t̃+ τ̃)− rZ(t+ τ, τ̃)− rZ(t, t̃+ τ̃) + rZ(t, t̃)

τ τ̃
.

■ If rZ is twice continuously differentiable, then the limit equals rŻ(t, t̃) =
∂2rZ
∂t∂t̃

(t, t̃), as asserted.
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More details: Stochastic processes

■ In the case of a zero-mean, mean-square stationary, second-order stochastic process {Z(t),
t ∈ R}, the spectral moment m2α, if it exists, provides the variance of the α-th mean-square
derivative of this stochastic process, that is,

σ2
dαZ
dtα

=E

((
dαZ

dtα
(t)−dαz

dtα︸︷︷︸
=0

)2
)
=E

((
dαZ

dtα
(t)

)2
)
= r dαZ

dtα
(0)=

1

2π

∫

R

ω2αsZ(ω)dω=m2α.

■ For example, the spectral moments m0, m2, and m4, if they exist, provide the variances of a
zero-mean, mean-square stationary, second-order stochastic process {Z(t), t ∈ R}, its first
mean-square derivative, and its second mean-square derivative:

σ2
Z = E

((
Z(t)− z︸︷︷︸

=0

)2)
= E

((
Z(t)

)2)
= rZ(0) =

1

2π

∫

R

sZ(ω)dω = m0,

σ2
Ż
= E

((
Ż(t)− ż︸︷︷︸

=0

)2)
= E

((
Ż(t)

)2)
= rŻ(0) =

1

2π

∫

R

ω2sZ(ω)dω = m2,

σ2
Z̈
= E

((
Z̈(t)− z̈︸︷︷︸

=0

)2)
= E

((
Z̈(t)

)2)
= rZ̈(0) =

1

2π

∫

R

ω4sZ(ω)dω = m4.
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More details: Random fields

■ For d ≥ 2, a random field {Z(x), x ∈ D} indexed by a subset D of Rd and with values in R is a
collection of random variables Z(x) with values in R indexed by x in D.

■ For any nonempty finite subset {x1, . . . ,xm} of D, where m denotes the number of elements in
this subset, the joint probability distribution P(Z(x1),...,Z(xm)) of (Z(x1), . . . , Z(xm)) is called a
(m-th order) marginal probability distribution of the random field {Z(x), x ∈ D}.

The collection of all the marginal probability distributions of a random field is called the system of
marginal probability distributions .

■ A random field {Z(x), x ∈ D} indexed by D and with values in R is Gaussian if each probability
distribution in its system of marginal probability distributions is Gaussian.



Random field model of surface roughness

ULg, Liège, Belgium MATH0488 – Lecture 51 / 84

More details: Random fields

■ A random field {Z(x), x ∈ D} indexed by D with values in R is of the second order if

E
(
Z(x)2

)
=

∫

R

z2ρZ(x)(z)dz < +∞, ∀x ∈ D.

■ The mean function of a second-order random field {Z(x), x ∈ D} indexed by D with values in
R is the function z from D into R such that

z(x) = E
(
Z(x)

)
=

∫

R

zρZ(x)(z)dz.

■ The autocorrelation function of a second-order random field {Z(x), x ∈ D} indexed by D with
values in R is the function rZ from D ×D into R such that

rZ(x, x̃) = E
(
Z(x)Z(x̃)

)
=

∫

R×R

zz̃ρ(Z(x),Z(x̃))(z, z̃)dzdz̃.

■ The covariance function of a second-order random field {Z(x), x ∈ D} indexed by D with
values in R is the function cZ from D ×D into R such that

cZ(x, x̃)=E
((

Z(x)−z(x)
)(
Z(x̃)−z(x̃)

))
=

∫

R×R

(
z−z(x)

)(
z̃−z(x̃)

)
ρ(Z(x),Z(x̃))(z, z̃)dzdz̃.

■ Please note that cZ(x, x̃) = E
((

Z(x)− z(x)
)(
Z(x̃)− z(x̃)

))
= rZ(x, x̃)− z(x)z(x̃).
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More details: Random fields

■ A second-order random field {Z(x), x ∈ R
d} indexed by Rd with values in R is mean-square

stationary if z(x) = z is independ of x and rZ(x, x̃) = rZ(x− x̃) depends on only x− x̃.

■ The power spectral density function of a zero-mean, mean-square stationary, second-order
random field {Z(x), x ∈ R

d} indexed by Rd with values in R, if it exists, is the function sZ from
R

d into R
+ such that

rZ(x− x̃) =
1

(2π)d

∫

Rd

sZ(ξ) exp
(
iξ · (x− x̃)

)
dξ.

The power spectral density function sZ has the following properties:

◆ it is even because of the evenness of rZ ,
◆ it is positive owing to Bochner’s theorem,
◆ it is integrable because E

(
Z(x)2

)
= rZ(0) =

1
(2π)d

∫
Rd sZ(ξ)dξ < +∞.

■ For α in N
d, the spectral moment of order α, denoted by mα, if it exists, is the integral

mα =
1

(2π)d

∫

Rd

ξαsZ(ξ)dξ, where ξα = ξα1
1 × . . .× ξαd

d .
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More details: Random fields

■ The mean-square partial derivative with respect to xk of a second-order random field
{Z(x), x ∈ D} indexed by D ⊂ R

d with values in R, where 1 ≤ k ≤ d, if it exists, is the
second-order stochastic process { ∂Z

∂xk
(x), x ∈ D} such that

∂Z

∂xk
(x) = lim

h→0

Z(x+ hik)− Z(x)

h
, ∀x ∈ D,

where the limit is defined in the sense of the mean-square convergence of second-order r. v.

Provided that all the derivatives in the expressions to follow exist, the second-order statistical
descriptors of { ∂Z

∂xk
(x), x ∈ D} are related to those of {Z(x), x ∈ D} as follows:

∂Z

∂xk
(x) =

∂z

∂xk
(x), r ∂Z

∂xk

(x, x̃) =
∂2rZ

∂xk∂x̃k
(x, x̃).

■ In the case of a zero-mean, mean-square stationary, second-order random field {Z(x), x ∈ R
d},

and provided that all the derivatives in the expressions to follow exist, the second-order statistical
descriptors of { ∂Z

∂xk
(x), x ∈ R

d} are related to those of {Z(x), x ∈ R
d} as follows:

∂Z

∂xk
= 0, r ∂Z

∂xk

(x− x̃) = − d2rZ

d(xk − x̃k)2
(x− x̃),

s ∂Z
∂xk

(ξ) = ξ
2
ksZ(ξ), E

(( ∂Z

∂xk
(x)

)2)
= r ∂Z

∂xk

(0) =
1

(2π)d

∫

Rd

ξ
2
ksZ(ξ)dξ = m(0, . . . , 0︸ ︷︷ ︸

k − 1 zeros

,2,0, . . . , 0︸ ︷︷ ︸
d − k zeros

).
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More details: Random fields

■ In the case of a zero-mean, mean-square stationary, second-order random field {Z(x), x ∈ R
d},

the spectral moment m2α, if it exists, provides the variance of the α-th mean-square derivative of
this random field, that is,

σ2
∂αZ
∂xα

=E

((
∂αZ

∂xα
(x)− ∂αz

∂xα︸ ︷︷ ︸
=0

)2
)
=E

((
∂αZ

∂xα
(x)

)2
)
= r ∂αZ

∂xα
(0)=

1

(2π)2

∫

Rd

ξ2αsZ(ξ)dξ=m2α.

■ For example, the spectral moments m(0,0) and m(2,0), if they exist, provide the variances of a
zero-mean, mean-square stationary, second-order two-dimensional random field {Z(x), x ∈ R

2}
and its first mean-square derivative:

σ2
Z =E

((
Z(x)− z︸︷︷︸

=0

)2)
=E
((

Z(x)
)2)

= rZ(0)=
1

(2π)2

∫

Rd

sZ(ξ)dξ=m(0,0),

σ2
∂Z
∂x1

=E

((
∂Z

∂x1
(x)− ∂z

∂x1︸︷︷︸
=0

)2
)
=E

((
∂Z

∂x1
(x)

)2
)
= r ∂Z

∂x1

(0)=
1

(2π)2

∫

R2

ξ21sZ(ξ)dξ=m(2,0).
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■ To facilitate analytical calculations, we will replace the model of the rough surface as a random field
with an “equivalent” model of the rough surface as a random collection o f spheres .

Random field model
of surface roughness

→

Equivalent model
as random collection of spheres

Adhesive contact
of spheres

■ Locally, we will treat the contact of each sphere by means of analytical models from elasticity theory.
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■ If two rough surfaces, or a rough surface and a smooth surface, are placed in contact, actual
contact will occur only wherever “hills” of one surface touch the “hills” of the other surface:

■ These “hills,” also called “asperities ,” are located around local maxima .

■ Thus, to replace the model of the rough surface as a random field with an “equivalent” model of the
rough surface as a random collection of spheres, we will strive to mimic the properties of the
local maxima of the random field (the number of local maxima per unit area, the local structure of
the local maxima, . . . ) in the properties of the spheres in the random collection of spheres.

■ Consequently, in preparation of our construction of the “equivalent” model of the rough surface as a
random collection of spheres, we will first study properties of local maxima of random fields.

■ Interestingly, for zero-mean, isotropic, mean-square stationary, Gaussian two-dimensional random
fields, statistical descriptors (mean number per unit area, local structure,. . . ) of the local maxima
can be deduced from only the first few spectral moments, as shown next.
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■ A mean-square stationary second-order random field {Z(x), x ∈ R
d} is isotropic if its

autocorrelation function is circularly symmetric, that is, (x− x̃) 7→ rZ(x− x̃) = rZ(‖x− x̃‖)
depends on only ‖x− x̃‖. Circular symmetry of the autocorrelation function implies circular
symmetry of the p.s.d., if it exists, that is, ξ 7→ sZ(ξ) = sZ(‖ξ‖) depends on only ‖ξ‖.

x
1
 [−]x

2
 [−]

r Z
(x

1,x
2) 

[−
]

■ For zero-mean, isotropic, mean-square stationary, second-order two-dimensional random fields,
many spectral moments vanish and simple relations exist between the remaining ones, if they exist:

◆ m(2,0) = m(0,2) ≡ µ2.
◆ m(1,1) = m(1,3) = m(3,1) = 0. (These relations are proved
◆ m(0,0) ≡ µ0. later on Slide 62).
◆ 3m(2,2) = m(4,0) = m(0,4) ≡ µ4.
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■ For zero-mean, isotropic, mean-square stationary, Gaussian two-dimensional random fields,
statistical descriptors of the local maxima can be deduced from µ0, µ2, and µ4, if they exist:

◆ the mean number of local maxima per unit area is given by

n =
1

6π
√
3

µ4

µ2
,

◆ the mean of the height of a local maximum is given by

h =
4√
πα

,

◆ the variance of the height of a local maximum is given by

σ2
H =

(
1− 0.8968

α

)
µ0,

◆ the mean of the radius of curvature of a local maximum is given by

ρ =
3

8

√
π

µ4
,

where α = µ0µ4/µ
2
2. Because local maxima appear wherever the first derivatives vanish and the

matrix made up of the second derivatives is negative definite, the interpretation of spectral moments
in terms of variances of derivatives intuitively explains the appearance of spectral moments in these
relations, which we will prove more rigorously later on Slides 63–67.
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■ To replace the model of the rough surface as a random field with an “equivalent” model of the rough
surface as a random collection of spheres, we strive to mimic the properties of the local maxima
of the random field (the number of local maxima per unit area, the local structure of the local
maxima, . . . ) in the properties of the spheres in the random collection of spheres.

ρreference plane

in rough surface

z

0

ǫ
σ2
H

n spheres per unit area

We follow the work of Greenwood and Williamson and of McCool in assuming that there are n
spheres per unit area, that the spheres all have the same radius equal to ρ, and that the heights of
the sphere summits admit a Gaussian p.d.f. with variance σ2

H .
■ The distance ǫ is the distance between the smooth surface and the reference plane in the rough

surface that is located at the mean height of a local maximum. In the literature, this distance ǫ is
sometimes also referred to as the interference ǫ.

■ Locally, we treat the contact of each sphere by means of analytical models from elasticity theory.
Specifically, we use the Johnson-Kendall-Roberts adhesive contact model.
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■ Assuming that a large number of asperities is involved in the contact, we can then obtain an
approximation of the average contact force per unit area as follows

ρreference plane

in rough surface

z

0

ǫ
σ2
H

n spheres per unit area

∫ +∞

δad

t(ǫ)

∫ +∞

δad︸ ︷︷ ︸
average contact force

per unit area

≈
∫ +∞

δad

n

∫ +∞

δad︸ ︷︷ ︸
average number of spheres

per unit area

∫ +∞

δad

f(z; ρ)
1√

2πσH

exp

(
− (z − ǫ)2

2σ2
H

)
dz

︸ ︷︷ ︸
average contact force

per sphere

.

■ Here, f(z; ρ) is determined by means of the Johnson-Kendall-Roberts model, that is, by solving



z =
1

3

a2

ρ
+

2

3

f(z; ρ)

κa
,

a3 =
ρ

κ

(
f(z; ρ) + 3γπρ+

√
6γπρf(z; ρ) + (3γπρ)2

)
.
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■ Traction-distance relationship:

ǫ
δad

t
nfad

σH/δad = 0.5

σH/δad = 1

−2 −1 0 1 2 3 4 5

−1

1

2

Here, fad = − 3
2γπρ and δad = − 3

√
π2γ2ρ
12κ2 are the adhesion force and the displacement

corresponding to the adhesion force for ρ, respectively.
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■ Matlab code used to generate this figure:

sigma=0.5;

f=[-1:0.01:10];
d=((f+2)+2*sqrt(f+1)).ˆ(2/3)+8ˆ(1/3)*f.*((f+2)+2*sqrt(f+1)).ˆ(-1/3);

epsilon=[-2.5:0.1:5];
t=zeros(length(epsilon),1);

for m1=1:length(epsilon)

t(m1)=quad(@(z)interp1(d,f,z).*normpdf(z,epsilon(m1),sigma),-1,epsilon(m1)+3*sigma);

end

figure;

plot(epsilon,t,’b-’);
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Proof: Relationships between spectral moments:

■ The first three relationships on Slide 56 follow trivially from the circular symmetry of the p.s.d.

■ In order to prove the fourth relationship on Slide 56, let us introduce a function r̃Z from R into R

such that rZ(x) = rZ(‖x‖) = r̃Z(‖x‖2). Then, the spectral moments can be easily obtained by
evaluating derivatives of r̃Z at the origin. In fact,

∂4rZ
∂x4

1

(x) = 12¨̃rZ(‖x‖2) + 48x2
1

...
r̃Z(‖x‖2) + 16x4

1

....
r̃ Z(‖x‖2),

∂4rZ
∂x2

1∂x
2
2

(x) = 4¨̃rZ(‖x‖2) + 8x2
1

...
r̃Z(‖x‖2) + 8x2

1

...
r̃Z(‖x‖2) + 16x2

1x
2
2

....
r̃ Z(‖x‖2),

so that

m(4,0) =
∂4rZ
∂x4

1

(0) = 12¨̃rZ(0),

m(2,2) =
∂4rZ

∂x2
1∂x

2
2

(0) = 4¨̃rZ(0);

hence, 3m(2,2) = m(4,0) = m(0,4), as asserted.



Random collection of spheres

ULg, Liège, Belgium MATH0488 – Lecture 65 / 84

Proof: Statistical descriptors of local maxima:

■ The proof of the expression for the mean number of local maxima per unit area is based on writing
this number of local maxima per unit area in an integral form more amenable to analytical
calculation. The proofs of the expressions for the mean of the height, the variance of the height, and
the mean of the radius of curvature of a local maximum are based on a study of the behavior of the
random field near a local maximum by using notions of conditional probability and ergodicity.

■ These proofs are quite technical. You may find details in the following references:

◆ R. Adler. The geometry of random fields. John Wiley & Sons, 1981. Chapter 6.

◆ R. Adler and J. Taylor. Random fields and geometry. Springer, 2007. Chapter 11.

■ We will limit ourselves here to the proof of the expression for the mean number of local maxima per
unit area. We will omit all technicalities and provide only the main ideas.
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Proof: Statistical descriptors of local maxima (continued):

■ The proof is based on writing the number of local maxima per unit area in an integral form more
amenable to analytical calculation. We will deduce this integral form for the simpler case of a
stochastic process and then generalize to the case of a random field.

t

Z(t)

t

Ż(t)

t

Z̈(t)

t

2ǫ

N =
1

|T |

∫

T

∣∣Z̈(t)
∣∣

︸ ︷︷ ︸
jacobian

1
R

−
0

(
Z̈(t)

) 1

2ǫ
1]−ǫ,ǫ[

(
Ż(t)

)
dt.

Here, T is a finite interval, |T | the length of T , N the number of local maxima per unit length in T ,
and for a set B, the function 1B is equal to 1 if the argument is in B and 0 otherwise.
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Proof: Statistical descriptors of local maxima (continued):

■ Because the left-hand side of the previous equation is independent of ǫ, we can take the limit as ǫ
tends to zero to obtain

N = lim
ǫ→0

1

|T |

∫

T

∣∣Z̈(t)
∣∣ 1

R
−
0

(
Z̈(t)

) 1

2ǫ
1]−ǫ,ǫ[

(
Ż(t)

)
dt.

■ Taking the mathematical expectation, we find the mean number of local maxima per unit length

n = E(N) = E

(
lim
ǫ→0

1

|T |

∫

T

∣∣Z̈(t)
∣∣ 1

R
−
0

(
Z̈(t)

) 1

2ǫ
1]−ǫ,ǫ[

(
Ż(t)

)
dt

)
.

■ Assuming that integrals and limits can be interchanged (the justification is quite technical), we obtain

n =
1

|T |

∫

T

∫

R

∫

R

|v|1
R

−
0
(v) lim

ǫ→0

∫

R

1]−ǫ,ǫ[(y)ρ(Z(t),Ż(t),Z̈(t)
)(z, y, v)dydzdvdt.

■ Evaluating the limit and using the fact that if {Z(t), t ∈ R} is a mean-square stationary Gaussian
stochastic process, then ρ(

Z(t),Ż(t),Z̈(t)
), if it exists, is independent of t, we obtain

n =

∫

R

∫

R
−
0

|v|ρ(
Z(t),Ż(t),Z̈(t)

)(z, 0, v)dzdv.
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Proof: Statistical descriptors of local maxima (continued):

■ We now turn our attention to the case of a zero-mean, isotropic, mean-square stationary, Gaussian
two-dimensional random field {Z(x), x ∈ R

2}.

■ We introduce the following shorthand notation:

G1 = Z(x), G4 =
∂2Z

∂x2
1

(x),

G2 =
∂Z

∂x1
(x), G5 =

∂2Z

∂x1∂x2
(x),

G3 =
∂Z

∂x2
(x), G6 =

∂2Z

∂x2
2

(x).

■ Then, extending the previously obtained expression to the case of a random field, we find the mean
number of local maxima per unit area

n =

∫

R

∫

V
|g4g6 − g25 |ρ(G1,G2,G3,G4,G5,G6)(g1, 0, 0, g4, g5, g6)dg1dg4dg5dg6,

where V = {(g4, g5, g6) : g4 < 0, g6 < 0, and g4g6 − g25 > 0}.
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Proof: Statistical descriptors of local maxima (continued):

■ Because of the relationships that exist between the statistical descriptors of {Z(x), x ∈ R
2} and

those of its mean-square partial derivatives, if they exist, the mean g = E(G) and the covariance
matrix [CG] = E((G− g)(G− g)T) of G = (G1, G2, G3, G4, G5, G6) read as

g = 0 and [CG] =




µ0 0 0 −µ2 0 −µ2

0 µ2 0 0 0 0
0 0 µ2 0 0 0

−µ2 0 0 µ4 0 µ4/3
0 0 0 0 µ4/3 0

−µ2 0 0 µ4/3 0 µ4



.

■ If {Z(x), x ∈ R
2} is a Gaussian random field, then {Z(x), x ∈ R

2} and its mean-square
partial derivatives, if they exist, are jointly Gaussian random fields. This property follows from the
fact that mean-square convergence of random variables implies convergence in distribution. Hence,
the joint probability distribution of G = (G1, G2, G3, G4, G5, G6) reads as:

ρG(g) =
1√

(2π)6det([CG])
exp

(
−1

2
gT[CG]−1g

)
.

■ After inserting this expression for ρG into the expression for n and after a tedious analytical
calculation of the integral (see Nayak, 1971), we obtain n = 1

6π
√
3

µ4

µ2
, as asserted.
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More details: Conclusion

■ The theory of stochastic processes affords a natural extension to random fields. As for stochastic
processes, various statistical descriptors can be defined for random fields, such as the mean
function, the autocorrelation function, the power spectral density function, and spectral moments.

■ For zero-mean, isotropic, mean-square stationary, Gaussian two-dimensional random fields,
statistical descriptors (mean number per unit area, local structure,. . . ) of the local maxima can be
deduced from only the first few spectral moments.

■ Greenwood/Williamson and McCool use these statistical descriptors of the local maxima to replace
a given representation of a rough surface as a random field with an “equivalent” representation of
the rough surface as a random collection of spheres, thus allowing an average contact force per unit
area to be calculated by using analytical contact theories for the contact of spheres.

■ The traction-distance curve and other relationships are important in designing devices, involving
rough surfaces, which can fail due to adhesion, such as MicroElectroMechanical Systems (MEMS).
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■ Now, we will see how the power spectral density function can be estimated from experimental data:

Experimental data
Atomic Force Microscopy

→

Random field model
of surface roughness

■ A Gaussian random field is fully defined once its mean function and either its autocorrelation
function or the corresponding power spectral density function have been specified. Here, only either
the autocorrelation function or the corresponding power spectral density function is required
because we model the surface roughness as a Gaussian random field that has zero mean.
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■ Context :
Let {Z(x), x ∈ R

2} be a zero-mean, mean-square stationary, second-order random field indexed
by R2 with values in R. Let {Z(x), x ∈ R

2} admit a power spectral density function sZ that is
continuous and has a bounded support supp(sZ) = [−ξL, ξL]× [−ξL, ξL].

■ Available information :
Let ν realizations {z(j)(x), −χ

2 ≤ x1, x2 ≤ χ
2 } with domain [−χ

2 ,
χ
2 ]× [−χ

2 ,
χ
2 ] be available:

{z(1)(x),−
χ
2

≤ x1, x2 ≤
χ
2

}. {z(2)(x),−
χ
2

≤ x1, x2 ≤
χ
2

}.

. . .

{z(ν)(x),−
χ
2

≤ x1, x2 ≤
χ
2

}.

■ Objective of the estimation :
We will consider the inference of an estimate sχ,νZ of the power spectral density function sZ from
the available information

{
{z(j)(x), −χ

2 ≤ x1, x2 ≤ χ
2 }, 1 ≤ j ≤ ν

}
.

■ Available estimation methods :

◆ Indirect method: estimate first the autocorrelation and then the p.s.d. function therefrom.
◆ Direct method: let’s look at this method in more detail!



From data to random field

ULg, Liège, Belgium MATH0488 – Lecture 74 / 84

■ Step 1 : Transform each realization into the wavenumber domain by using the FT, assuming that this
realization vanishes outside of the domain [−χ

2 ,
χ
2 ]× [−χ

2 ,
χ
2 ]:

↓FT ↓FT
. . . ↓FT

■ Step 2 : Compute the estimate sχ,νZ of sZ as follows:

sZ(ξ) ≈ sχ,νZ (ξ) =
1

χ2

1

ν

ν∑

j=1

|ẑ(j)(ξ)|2, ∀ξ ∈ R
2,

■ Here, the FT can be approximated by DFT (see Slides 79–80).
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■ What if the available information consists of only a single realization?

■ Step 0 : Split the realization into ν subrealizations of equal domain:

→

■ Step 1 : Transform each subrealization into the wavenumber domain by using the FT.

■ Step 2 : Compute the estimate sχ,νZ of sZ using the equation mentioned previously.

■ Determine ν and χ such that a suitable bias/variance tradeoff is achieved (see Slides 75–78). As a
rule of thumb, a splitting into ν = 8× 8 subrealizations is often used.
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■ Matlab code used to generate the previous figures:

% simulation of one realization of Gaussian random field with triangular p.s.d.

a=0.1; % spatial correlation length along one dimension

mu=1024; % number of discretization points along one dimension

chi=50; % size of spatial domain along one dimension

xiL=pi*mu/chi;

Dxi=2*xiL/mu;

xi=-xiL+([0:mu-1]+0.5)*Dxi;

Dx=chi/mu;

z=sqrt(2*Dxiˆ2)*real(muˆ2*(exp(i*pi*(mu-1))*exp(i*[0:mu-1]’*pi*(-1+1/mu))*...
exp(i*[0:mu-1]*pi*(-1+1/mu))).*ifft2(sqrt((a/pi)ˆ2*tripuls(xi’*a/pi/2)*tripuls(xi*a/pi/2)/(2*pi)ˆ2).*...
(exp(i*[0:mu-1]’*(-pi))*exp(i*[0:mu-1]*(-pi))).*sqrt(-log(rand(mu,mu))).*exp(i*2*pi*rand(mu,mu))));

% estimation of power spectral density function given z and Dx

mu=length(z);

nutilde=8; % number of subrealizations along one dimension

sZ=zeros(mu/nutilde,mu/nutilde);

for m1=1:nutilde

for m2=1:nutilde

zmuhat=Dxˆ2*fft2(z((m1-1)*mu/nutilde+1:m1*mu/nutilde,(m2-1)*mu/nutilde+1:m2*mu/nutilde).*...

(exp(i*[-mu/nutilde/2:mu/nutilde/2-1]’*pi)*exp(i*[-mu/nutilde/2:mu/nutilde/2-1]*pi)))./...

(exp(-i*[0:mu/nutilde-1]’*pi)*exp(-i*[0:mu/nutilde-1]*pi));

sZ=sZ+(1/nutilde)ˆ2*(nutilde/mu/Dx)ˆ2*abs(zmuhat).ˆ2;

end

end

figure;surf([-pi/Dx:2*pi/mu/Dx*nutilde:pi/Dx-2*pi/mu/Dx*nutilde],[-pi/Dx:2*pi/mu/Dx*nutilde:pi/Dx-2*pi/mu/Dx*nutilde],abs(zmuhat));

figure;surf([-pi/Dx:2*pi/mu/Dx*nutilde:pi/Dx-2*pi/mu/Dx*nutilde],[-pi/Dx:2*pi/mu/Dx*nutilde:pi/Dx-2*pi/mu/Dx*nutilde],sZ);
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More details: Bias and variance of estimators of mean and variance

■ Let us recall the following elements from statistics...

■ Let Z be a second-order r.v. with values in R. Its mean z and variance σ2
Z are given by

z =

∫

R

zρZ(z)dz and σ2
Z =

∫

R

zρZ(z − z)2dz.

■ Let z(1), . . . , z(ν) be ν independent realizations of Z . Their sample mean zν and sample
variance (sνZ)

2 are given by

zν =
1

ν

ν∑

j=1

z(j) and (sνZ)
2 =

1

ν − 1

ν∑

j=1

(
z(j) − zν

)2
.

■ To show the adequacy of these statistical estimates, we can study the bias and variance of the
corresponding estimators. Given ν independent and identically distributed copies Z(1), . . . , Z(ν)

of Z , the estimators Z and (Sν
Z)

2 of the mean and the variance of Z , respectively, are given by

Zν =
1

ν

ν∑

j=1

Z(j) and (Sν
Z)

2 =
1

ν − 1

ν∑

j=1

(
Z(j) − Zν

)2
.
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More details: Bias and variance of estimators of mean and variance (continued)

■ It can be easily shown that the estimators X and (Sν
X)2 are unbiased, that is,

E
(
Zν
)
= z and E

(
Sν
Z)

2 = σ2
Z ,

and that the variance of the the estimators X and (Sν
X)2 decreases with the square root of ν:

E
((

Zν − z
)2)

=
σ2
Z

ν
and E

((
Sν
Z)

2 − σ2
Z

)2) ≈ E
(
(Z − z)4

)
− σ4

Z

ν
.

■ Hence, provided that E
(
(Z − z)4

)
< +∞, the accuracy of statistical estimates of the mean and

variance improves with the square root of the number of samples ν.

■ More generally, to show the adequacy of statistical estimates, we can study the bias and variance of
the corresponding estimators. We will do this for the aforementioned estimator of the p.s.d. next.
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More details: Bias and variance of estimator of p.s.d.

■ The mean of the estimator of the power spectral density function reads as follows:

E
(
S

χ,ν
Z (ξ)

)
=

1

χ2
E
(
|Ẑ(ξ)|2

)
, where Ẑ(ξ) =

∫

R2

1[−χ
2
,χ
2
]×[−χ

2
,χ
2
](x)Z(x) exp(−iξ · x)dx.

■ Elaborating and then using the expression for the autocorrelation function, we obtain

E
(
S
χ,ν
Z

(ξ)
)
=

1

χ2

∫

R2

∫

R2
1
[−

χ
2

,
χ
2

]×[−
χ
2

,
χ
2

]
(x)1

[−
χ
2

,
χ
2

]×[−
χ
2

,
χ
2

]
(x̃)rZ (x − x̃) exp

(
− iξ · (x − x̃)

)
dxdx̃,

=
1

χ2

∫

R2

∫

R2
1
[−

χ
2

,
χ
2

]×[−
χ
2

,
χ
2

]
(x)1

[−
χ
2

,
χ
2

]×[−
χ
2

,
χ
2

]

(
(x − x̃) − x

)
rZ (x − x̃) exp

(
− iξ · (x − x̃)

)
dxd(x − x̃).

■ Using the relationships between the convolution, product, and Fourier transform, we obtain

E
(
S

χ,ν
Z (ξ)

)
=

1

χ2

(
1

(2π)2
|1̂[−χ

2
,χ
2
]×[−χ

2
,χ
2
]|
2
⋆ sZ

)
(ξ).

In the limit as the domain size χ of the realizations increases to infinity, we obtain

lim
χ→+∞

1

χ2

1

(2π)2
|1̂[−χ

2
,χ
2
]×[−χ

2
,χ
2
]|
2 = δ0, hence, lim

χ→+∞

E
(
S

χ,ν
Z (ξ)

)
= sZ(ξ).

Thus, for finite domain size χ, there is leakage , that is, local averaging of wavenumber components.
As the domain size χ increases, leakage decreases. The estimator is asymptotically unbiased.

■ We conclude that the wavenumber resolution improves with increasing domain size χ.
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More details: Bias and variance of estimator of p.s.d. (continu ed)

■ The variance of the estimator of the power spectral density function reads as follows:

E
(
Sχ,ν
Z (ξ)− E

(
Sχ,ν
Z (ξ)

)2)
= E

(
|Sχ,ν

Z (ξ)|2
)
−
(
E
(
Sχ,ν
Z (ξ)

))2
.

■ Using S
χ,ν
Z

(ξ) = 1
χ2

1
ν

∑ν
j=1 |Ẑ(j)(ξ)|2, where Ẑ(j)(ξ) =

∫
R2

1
[−

χ
2

,
χ
2

]×[−
χ
2

,
χ
2

]
(x)Z(j)(x) exp(−iξ · x)dx,

E
(
Sχ,ν
Z (ξ)− E

(
Sχ,ν
Z (ξ)

)2)
=

1

χ4

1

ν

(
E
(
|Ẑ(ξ)|4

)
−
∣∣E
(∣∣Ẑ(ξ)

∣∣2)∣∣2
)
.

Thus, provided that the additional condition that E
(
|Ẑ(ξ)|4

)
< +∞ is fulfilled, the error introduced

by the use of only a finite number of realizations decreases with increasing number of realizations ν.

■ We conclude that the error introduced by the use of only a finite number of realization s
decreases with increasing number of realizations ν.
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More details: Computation of Fourier transform by using the DFT

■ The Fourier transform can be approximated numerically by using the DFT as follows.

■ Let us consider a smooth function z from R
2 into R whose Fourier transform ẑ vanishes outside a

bounded interval [−ξL, ξL]× [−ξL, ξL].

■ To numerically approximate the Fourier transform ẑ of z by using the DFT, we require corresponding
samplings of the spatial domain and the wavenumber domain, respectively:
{

x(k1,k2) =

(

(

k1 −
µ

2
− 1

)

∆x,
(

k2 −
µ

2
− 1

)

∆x

)

, 1 ≤ k1, k2 ≤ µ

}

with space step ∆x,

{

ξ(ℓ1,ℓ2) =
(

− ξL + (ℓ1 − 1)∆ξ,−ξL + (ℓ2 − 1)∆ξ
)

, 1 ≤ ℓ1, ℓ2 ≤ µ
}

with wavenumber step ∆ξ = 2ξL/µ.

We say that these samplings of the spatial domain and the wavenumber domain correspond if the
spatial step is chosen as ∆x = π/ξL (Nyquist criterion). We then obtain

ẑ(ξ(ℓ1,ℓ2
)) ≈ exp

(
iπ(ℓ1−1)+iπ(ℓ2−1)

) µ∑

k1=1

µ∑

k2=1

z̃(k1,k2) exp
(
− i(k1 − 1)

2π

µ
(ℓ1 − 1) − i(k2 − 1)

2π

µ
(ℓ2 − 1)

)

︸ ︷︷ ︸
DFT

,

where
z̃(k1,k2) = ∆x2z

(

x(k1,k2)

)

exp

(

i
(

k1 −
µ

2
− 1

)

π + i
(

k2 −
µ

2
− 1

)

π

)

.

■ If µ is a power of 2, this can be implemented efficiently by using the fast Fourier transform (FFT).



From data to random field

ULg, Liège, Belgium MATH0488 – Lecture 82 / 84

More details: Computation of Fourier transform by using the DFT (c ontinued)

■ In summary, we consider the following samplings of the spatial and wavenumber domains:

spatial domain
size of sampled portion µ∆x

step ∆x

∆x = µ∆x
µ

xk =
(
k − µ

2 − 1
)
∆x, 1 ≤ k ≤ µ.

wavenumber domain
size of sampled portion 2ξL

step ∆ξ

∆ξ = 2ξL

µ

ξℓ = −ξL + (ℓ− 1)∆ξ, 1 ≤ k ≤ µ.

■ These samplings of the spatial domain and the wavenumber domain correspond in that

∆x =
π

ξL
=

2π

2ξL
,

µ∆x =
µπ

ξL
=

2π

∆ξ
.

■ This correspondence indicates that the step ∆x in the spatial domain is inversely proportional to the
size 2ξL of the sampled portion of the wavenumber domain and that the size µ∆x of the sampled
portion of the spatial domain is inversely proportional to the step ∆ξ in the wavenumber domain.
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Proof: Computation of Fourier transform by using the DFT

■ We begin by representing the Fourier transform using the Shannon/Poisson formula

ẑ(ξ) = 1[−ξL,ξL]×[−ξL,ξL](ξ)∆x2
+∞
∑

k̃1=−∞

+∞
∑

k̃2=−∞

f(k̃1∆x, k̃2∆x) exp(−ik̃1∆xξ1 − ik̃2∆xξ2),

which we approximate by

ẑµ(ξ) = 1[−ξL,ξL]×[−ξL,ξL](ξ)∆x2
µ/2−1
∑

k̃1=−µ/2

µ/2−1
∑

k̃2=−µ/2

f(k̃1∆x, k̃2∆x) exp(−ik̃1∆xξ1 − ik̃2∆xξ2).

■ At the sampling points in the wavenumber domain, we obtain

ẑ
µ
(ξ(ℓ1,ℓ2)) = ∆x

2
µ/2−1∑

k̃1=−µ/2

µ/2−1∑

k̃2=−µ/2

f(k̃1∆x, k̃2∆x) exp
(
−ik̃1∆x

(
−ξL+(ℓ1−1)∆ξ

)
−ik̃2∆x

(
−ξL+(ℓ1−1)∆ξ

))
.

■ Because ∆xξL = π and therefore ∆x∆ξ = 2π/µ, we obtain

ẑ
µ
(ξ(ℓ1,ℓ2)) =

µ/2−1∑

k̃1=−µ/2

µ/2−1∑

k̃2=−µ/2

∆x
2
f(k̃1∆x, k̃2∆x) exp(ik̃1π+ik̃2π) exp

(
−ik̃1

2π

µ
(ℓ1−1)−ik̃2

2π

µ
(ℓ2−1)

)
.

■ Finally, by the changes of variables k1 = k̃1 + µ/2 + 1 and k2 = k̃2 + µ/2 + 1, we find the
asserted equation.
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