SP-P5: Estimating daily yield and content of major fatty acids from single milking

V. M.-R. Arnould^{1,2,*}, R. Romain¹, C. Delvaux¹, J. Bormann³, A. Gillon⁴, C. Bertrozzi⁴, N. Gengler² and H. Soyeurt² vis, Herdbuch Service Élevage et génétique, Ettelbruck, Luxembourg, ² Université de Liège, Gembloux Agro Bio-Tech, Animal Science Unit, Gembloux Belgium, ³ Administration des Services Techniques de l'Agriculture ASTA. L - 1019 Luxembourg (Luxembourg). ⁵4Walloon Breeding Association (AWE), Ciney, Belgium,

* Supported by the National Research Fund, Luxembourg (AFR PHD-09-119RE)

Context Reducing the frequency of milk recording and the number of recorded samples per test-day could be a solution in order to reduce costs of official milk recording. Numerous studies aim to estimate daily yield of milk, protein, and fat from single milking (e.g. Delorenzo and Wiggans 1986 ; Liu et al., 2000; Berry et al., 2006;). Currently, all milk recording organizations develop an alternate milk recording scheme but this involves a loss of accuracy in the predicting daily yields. Further, the milking interval (MI) effect used in previous studies to estimate the daily yields of common production traits, are not often available and sometimes unreliable.

Objective 2

saturated

Objective 1

 \succ To develop and to propose an useful, robust and simple method for estimating accurate daily yields of milk, protein and fat from single milking without using the MI in the model.

> Hypothesis: the MI can be reflected by the changes of milk yield and composition.

Materials and Methods Database

Modeling database: 79,971 milk samples collected in Luxembourg between
 October 2007 and August 2013 by CONVIS s.c..

• Test database: 687 representative milk samples collected in Luxembourg between February 2012 and April 2012 by CONVIS s.c.

• External validation database: 22,526 milk samples collected in Wallonia een October 2007 and August 2012.

These milk samples were analyzed by MIR spectrometry by a Foss MilkoScan FT6000 (Hillerod, Denmark)

Prediction of FA content

FA content (g/dl of milk) were estimated using specific MIR calibration equations developed by the Walloon Research Centre.

 Only FA having a RPD parameter for the calibration equation (ratio of the standard deviation of reference fatty acid values to the standard error of cross-validation) greater than 5 were studied.

N=79,971).	inpuve sta	insucs of the	anaiyzeu ua						AN	I-PM	AM-DN	I PN	1-DM	combi	nation of dairy traits easily	
						-	Ν	∕lilk (L)	9	0.4	97.2	g	7.9	record	ler by the milk recording	
Variable		Mean	SD Min. Max. FA		FAT 78.		8.7	7 93.1	95.8		organi	ganizations such as milk yield, fat and				
Milk	AM	12.79	4.27	1.20	37.30		SFA		5	8.1	87.5	8	9.8	protein contents, classes of lactation stage,		
(kg/day)	PM	13.57	4.41	1.20	39.20		MUFA		6	37	88.3		2 1	month	of test and month of calving	
	Daily	26.36	8.33	2.40	/2.80		UFA		6	63.3		88.3 91.9 87.0 00.1		monun	non test, and month of calving	
FAT	AM	4.11	0.71	1.01	7.23			SCFA 57.9								
	PM	4.55	0.78	1.12	8.00					7.9	87.0 5	50.1				
C	Dally	4.34	0.75	1.07	7.67	_		IVICFA	6	0.8	88.3	g	0.6			
SAI	AIVI	2.76	0.56	0.51	6.95			LCFA	A 63.4 88.2 92.1		 Comparison of Model 8 (M8) 					
	PM	2.95	0.60	0.54	7.44		C1	.8:1 cis9	6	5.8	88.9	g	2.7		and Liu's model (Liu et al., 2008	
MONO	Dally	2.86	0.58	0.53	7.21		when Liu's model is an									
	DM	1.15	0.24	0.29	3.64	Table 3. (Table 3. Correlation (R) and root mean squared errors (VMSE) for each between calculated and estimated contents based on morning and ever						h studied tra	ndied traits used database a similar results		
	Deilu	1.30	0.25	0.33	4.30	Detween	between calculated and estimated contents based on morning and evening milkings. USECI Catabase → S									
INSAT	Dally	1.20	0.27	0.32	4.22	-			٩M	1 PM		РМ		Interesting correlation value		
	DM	1.54	0.27	0.37	4.23	Rv.		Mean o	σŷ	RMSE	Rv.ŷ	Mean	σŷ	RMSE	hotwoon coloulated and estimate	
	Daily	1.55	0.32	0.44	4.66		,,	error	•,		,,	error	•,		between calculated and estimated	
SCEA	AM	0.38	0.08	0.40	1.02	MILK	98.3	0.11	8.48	2.25	98.5	-1.20	8.22	2.38	contents.	
MCFA	PM	0.30	0.08	0.10	1.02	FAT	98.1	0.98	35.1	16.06	98.6	-3.32	35.2	12.47	Bally and well and have do a	
	Daily	0.39	0.08	0.10	1.00	CEA	07.0	0.90	24.94	11 20	09.7	1.09	24.74	0.05	 Daily estimations based or 	
	AM.	2.16	0.47	0.06	5.77		00.2	0.05	4 10.5	E 12	08.0	0.02	10.0	5 3.82	evening milkings (r from 98.5 to 99.0) are more accurate that these based on mornin	
	PM	2.29	0.50	0.06	6.11		50.5	0.14		5.15	50.5	-0.93	10.0			
	Daily	2.22	0.49	0.06	5.96	UFA	96.9	-0.05	11.88	5.81	98.9	-1.10	12.00	4.36		
LCFA	AM	1.58	0.35	0.31	5.47	SCFA	98.6	0.07	3.54	1.59	98.8	-0.26	3.51	1.30	ulose based on morning	
	PM	1.87	0.42	0.37	6.48	MCFA	98.3	0.99	19.59	8.91	98.7	-1.79	19.82	7.05	milkings (r from 96.9 to 98.5).	
	Daily	1.73	0.39	0.34	6.01	LCFA	98.4	-0.03	15.12	7.33	98.9	-1.03	15.14	5.58		
C18:1 cis9	AM	0.75	0.19	0.07	2.97	C18:1	98.5	-0.12	8.25	3.87	99.0	-0.30	9.99	2.78		
	PM	0.91	0.23	0.09	3.59	cis9										
	Deilu	0.83	0.21	0.08	3 30											

Conclusions • According to the used database, MI effect can be partially or totally replaced by a combination of ava - Because of their simplicity, proposed models and required available data are relatively easy to implement

First author acknowledges the financial support of AFR/FINR (Aide à la Formation Recherche / Fonds National de la Recherche Luxembourg) PhD grant (AFR PHD-09-119-RE). Nicclas Gengier and Hélère Soyeurt acknowledge the support of F.N.R.S. (National Fund for Scientific Research, Brussels, Belgium) (F-4552.05, 2 4507.02 F (2), 2.4823.08, and B127.11) Contact: varnould@ulg.ac.be

Estimating daily content from single milking

chain fatty acids (LCFA) and C18:1 cis9

 Study of correlation values → Development of practical and useful regressions

> No model is currently available for milk fatty acids (FA)

 $\rightarrow\,$ To propose a similar method for major FA such as

(SFA), mono-unsaturated unsaturated (UFA), medium-chain (MCFA) and long3 gembloux agro bio

cra-w

CONVIS

fnrs

(MUFA),

• Fixed effects: milk yield, protein and fat contents in each milking, lactation number, days in milk, season of calving, season of test, etc. (96 classes)

· Comparison with the reference method proposed by Liu et al. (2000).

Validation of developed models

Use of a test database and a validation database

- SAS procedure: PROC GMSELECT.
- Studied parameters: Ry,ŷ, Mean error, σŷ and RMSE