How do we perceive vocal pitch accuracy during singing?

Pauline Larrouy-Maestri & Peter Q Pfordresher

In tune?

In tune?

Definition

- □ Singing (a melody)
 - ➔ Perception of musical errors
- Between the tones
 - ➔ Perception of pitch categories
- □ Within the tones
 - → Acoustic description of pitch fluctuations
 - → Effect on pitch accuracy perception

Perception of musical errors

Error types

Interval error

Tonality error

Error types

□ Young age

- Categorisation of contour errors: 10 months (Ferland & Mendelson, 1989)
- Discrimination of tonality and intervals (Hannon & Trainor, 2007; Gooding & Stanley, 2001; Plantinga & Trainor, 2005; Stalinski et al., 2008)

Errors perceived by adults

Dowling & Fujitani, 1970; Edworthy, 1985; Stalinski et al., 2008; Trainor & Trehub, 1992

March 3rd 2014

Method

Computer assisted method

Quantification of errors

Excel (Microsoft)

F0 information

AudioSculpt and OpenMusic (Ircam)

Manual segmentation

AudioSculpt (Ircam)

Larrouy-Maestri, P., & Morsomme, D. (in press). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics Phoniatrics Vocology.

Participants

	Experts	Non experts
n	18	18
Gender	8 women	8 women
Age	M = 29.89; SD = 14.47	M = 33.06; $SD = 9.57$
Expertise	5 professional musicians 5 professional singers 4 music students 4 speech therapists	
Musical or vocal practice	OK	
Audiometry		OK
MBEA (Peretz et al., 2003)		OK
Production task « Happy Birthday »		OK

10

	Non experts	Experts
Model	F(3,165) = 104.44; p < .01	F(3,165) = 231.51; p < .01
% variance	66%	81%
Criteria	Interval deviation	Interval deviation Tonality modulations
	$O_{1} = 0$	Our of judges

Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of Voice*.

Larrouy-Maestri & Pfordresher March 3rd 2014

Conclusions

11

Perception of pitch accuracy based on

- interval errors for all
- + tonality for music experts
- □ Better evaluation for small deviation

Between the tones

For now

Pitch discrimination

- http://www.musicianbrain.com/pitchtest/
- http://tonometric.com/adaptivepitch/

In a melodic context

- Semitone (100 cents) Berkowska & Dalla Bella, 2009 ; Dalla Bella et al., 2007, 2009a, 2009b ; Pfordresher & al., 2007, 2009, 2010
- Quartertone (50 cents) Hutchins & Peretz; 2012; Hutchins, Roquet, & Peretz, 2012; Pfordresher & Mantell, 2014

Which threshold in a melodic context?

- → Effect of familiarity? Yes (Kinney, 2009) No (Warrier & Zatorre, 2002)
- → Effect of the direction of the error?

Material

Two melodies

□ Familiarity ?

- Online questionnaire
- 399 participants from 13 to 70 years old (M = 29.81)
- *t*(398) = 20.92, *p* < .001

Material

Material

Participants and procedure

17

□ 30 non musicians (M = 21.33 years; SD = 2.45)

□ Two times with 8 to 15 days in between

Comparison test-retest

		Test M(SE)	Retest M(SE)	R Pearson	Comparison
	Enlargement	15.43 (1.24)	17.33 (1.12)	.69**	T(29) = 2.04, ns
Familiar	Compression	26.07 (1.98)	23.40 (1.66)	.82**	T(29) = 2.36*
melody	Tolerance	41.50 (2.50)	40.73 (1.89)	.82**	T(29) = 0.54, ns
		Test M(SE)	Retest M(SE)	R Pearson	Comparison
Non familiar	Enlargement	17.20 (1.33)	17.80 (1.12)	.68**	T(29) = 0.60, ns
melody	Compression	25.30 (1.84)	22.23 (1.46)	.84**	T(29) = 3.03**
	Tolerance	42.50 (2.05)	40.03 (1.95)	.80**	T(29) = 1.93, ns

Good intra-judges reliability

→ Learning effect?

Correlation matrix between the judges

(% of significant r (0.8 to 1) between the judges)

	Familiar	Non Familiar
Test	66.44	71.03
Retest	72.64	71.72

- Good inter-judges reliability
- → Learning effect?

Non Familiar : t = -3.27, p = .003

Threshold depends on the direction of the error

Larrouy-Maestri, P., Blanckaert, E., & Morsomme, D. (in preparation). How tolerant are we when evaluating melodies ?

Conclusions

Between the tones

□ Less tolerant than what we thought

- quarter-tone
- Particularly for enlarged intervals
 - Effect of the error direction
- □ Whatever the melody
 - No effect of familiarity

Within the tones

For now

- □ Complex signal (Sundberg, 2013)
- □ Effects of pitch fluctuation on pitch perception (Castellengo, 1994; d'Alessandro & Castellengo, 1994; Hutchins et al., 2012; van Besouw et al., 2008)
- □ The case of operatic voices (Larrouy-Maestri, Magis, & Morsomme, 2014, in press a, in press b)
- What is a "normal" voice?
 Perception of "non ideal" sung performances ?

Descriptive model of pitch fluctuation

Modification of the temporal adaptation model

(Large, Fink & Kelso, 2002)

- Too many parameters to be taken seriously as a cognitive model!
- Image: initial content of the second seco

Descriptive model of pitch fluctuation

- -Time values mirror reversed
- -New and adjusted parameters

A (comforting?) note on parameters

26

The only fitted parameters are

- **Rate of approach:** b_s , b_e
- Oscillation around target: $f_{s'}$, f_{e}

Others come from data

- asym: from middle portion of tone (median)
- A values from difference of beginning to asym
- A_e values from difference of end to asym
- heta is effectively a 'toggle'

What the model does

27

Starting fluctuations: magnitude (A) and rate of approach (b)

Larrouy-Maestri & Pfordresher March 3rd 2014

What the model does

Oscillation around approach (f = 10)

What the model does

Starting and ending fluctuations: A_s (and A_e), b_s (and b_e)

Larrouy-Maestri & Pfordresher March 3rd 2014

How the model fits the datas

Database

- Pfordresher & Mantell (2014)
- 12 "poor" and 17 "good" singers
- Imitation of accurate singers
- Melodies of 4 notes
- 1902 tones to analyse

□ **Distribution** (Shapiro-Wilk p<.001)

n

Comparison poor/good singers for **pitch deviation**

	Poor M (SE)	Good M (SE)	Dif
Above	143.74	76.21	p < .001
pitch	(13.68)	(5.45)	
Under	-143.13	-47.75	p < .001
pitch	(7.15)	(2.58)	

Comparison poor/good singers for **b**_s, **b**_e, **f**_s, **f**_e

	Poor M (SE)	Good M (SE)	Difference
b	5.03 (.64)	6.02 (.57)	ns
b2	5.55 (.41)	5.16 (.37)	p = .003
f	1.11 (.32)	.68 (.30)	ns
f2	41 (.19)	35 (.11)	ns

Comparison poor/good singers for Ae

cents

Methods

Creation of melodies

- Pitch deviations on the 3rd note
- Different sizes of As and Ae
- Different combinations of As and Ae
- Pairwise comparison

Ranking: 1 point if "more in tune", 0 point for the other, 0.5 point if similar

Questions

- Effect of the direction of the attack/ending ?
- Effect of the size of the attack/ending ?

Pitch accuracy perception of natural voices

Conclusions

Within the tones

□ Acoustical description of vocal tones

- Successful modelisation
- Beginning and end vary according to the "quality" of the singer

□ Pitch accuracy perception

■ Coming soon ☺

Conclusions

□ Is Marilyn in tune?

Perception of pitch accuracy

Perception of musical errors

Between the tones: pitch categories

Within the tones: pitch fluctuation

- Definition/representation of singing accuracy
- □ ... and speaking accuracy?

How do we perceive vocal pitch accuracy during singing?

Conservatoires Royaux de Belgique Centre Henri Pousseur Ellen Blanckaert Virginie Roig-Sanchis

How do we perceive vocal pitch accuracy during singing?

Thank you!

- Berkowska, M., & Dalla Bella, S. (2009). Reducing linguistic information enhances singing proficiency in occasional singers. Annals of the New York Academy of Sciences, 1169, 108-111.
- Castellengo, M. (1994). La perception auditive des sons musicaux. In A. Zenatti (Ed.),
 Psychologie de la musique (pp.55-86). Paris: Presses Universitaires de France.
- d'Alessandro C., Castellengo M. (1994), The pitch of short-duration vibrato tones. JASA., 95(3)
- Dalla Bella, S., & Berkowska, M. (2009). Singing Proficiency in the Majority. Annals of the New York Academy of Sciences, 1169(1), 99-107.
- Dalla Bella, S., Giguère, J. -F., & Peretz, I. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182-1189.
- Dalla Bella, S., Giguère, J.-F., & Peretz, I. (2009). Singing in congenital amusia. The Journal of the Acoustical Society of America, 126(1), 414.
- Dowling, W. J, & Fujitani, D. S. (1970). Contour, interval, and pitch recognition in memory for melodies. *Journal of the Acoustical Society of America*, 49, 524-531.
- Edworthy. J. (1985). Interval and contour in melody processing. *Music Perception*, 2, 375-388.

- Ferland, M. B., & Mendelson, M. J. (1989). Infants' categorization of melodic contour. Infant Behaviour Development, 12, 341-355.
- Gooding, L., & Standley, J. M. (2011). Musical development and learning characteristics of students: A compilation of key points from the research literature organized by age. National Association for Music Education, 30(1), 32-45.
- Hannon, E. E., & Trainor, L. J. (2007). Music acquisition : effects of enculturation and formal training on development. *Trends in Cognitive Sciences*, 11(11), 466-472.
- Hutchins, S., & Peretz, I. (2012). A frog in your throat or in your ear? Searching for the causes of poor singing. Journal of Experimental Psychology: General, 141, 76–97.
- Hutchins, S., Roquet, C., & Peretz, I. (2012). The Vocal Generosity Effect: How Bad Can Your Singing Be? Music Perception, 30(2), 147-159.
- Kinney, D. W. (2009). Internal Consistency of Performance Evaluations as a Function of Music Expertise and Excerpt Familiarity. Journal of Research in Music Education, 56(4), 322-337.
- Large, E. W., Fink, P., & Kelso, J. A. S. (2002). Tracking simple and complex sequences.
 Psychological Research, 66, 3-17.
- Larrouy-Maestri, P., & Morsomme, D. (in press). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics Phoniatrics Vocology.

- Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013) The evaluation of singing voice accuracy: a comparison between subjective and objective methods. *Journal of Voice*. 27(2), 259.e251-e255.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (in press a). The effect of melody and technique on the singing voice accuracy of trained singers. Logopedics Phoniatrics Vocology.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (in press b). The evaluation of vocal accuracy: The case of operatic singing voices. *Music perception*.
- Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
- Plantinga, J., & Trainor, L. (2005). Memory for melody: infants use a relative pitch code.
 Cognition, 98(1), 1-11.
- Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of "tone deafness". *Music Perception*, 25(2), 95-115.
- Pfordresher, P. Q., & Brown, S. (2009). Enhanced production and perception of musical pitch in tone language speakers. Attention, Perception & Psychophysics, 71(6), 1385-1398.

- Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182-2190.
- Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182-2190.
- Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: Evidence for an inverse modeling account of poor-pitch singing.
- Stalinski, S. M., Schellenberg, E. G., & Trehub, S. E. (2008). Developmental changes in the perception of pitch contour. Distinguishing up from down. *Journal of the Acoustical Society of America*, 124, 1759-1763.
- Sundberg, J. (2013). Perception of Singing. In D. Deutsch (Ed.), The psychology of music (pp. 69-105). San Diego, CA: Academic Press.
- Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants' and adults' sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.
- van Besouw, R. M. V., Brereton, J. S., & Howard, D. M. (2008). Range of tuning for tones with and without vibrato. Music Perception, 26(2), 145-155.
- Warrier, C. M., & Zatorre, R. J. (2002). Influence of tonal context and timbral variation on perception of pitch. Perception & Psychophysics, 64(2), 198-207.