
Université de Liège
Faculté des Sciences Appliquées

Closed-Loop Learning of
Visual Control Policies

Année académique

2006 - 2007

Thèse de doctorat présentée par

Sébastien Jodogne

en vue de l’obtention du grade de
Docteur en Sciences (orientation Informatique)

ABSTRACT

In this dissertation, I introduce a general, flexible framework for learning direct
mappings from images to actions in an agent that interacts with its surrounding
environment. This work is motivated by the paradigm of purposive vision. The
original contributions consist in the design of reinforcement learning algorithms that
are applicable to visual spaces. Inspired by the paradigm of local-appearance vision,
these algorithms exploit specialized visual features that can be detected in the visual
signal.

Two different ways to use the visual features are described. Firstly, I introduce
adaptive-resolution methods for discretizing the visual space into a manageable num-
ber of perceptual classes. To this end, a percept classifier that tests the presence
or absence of few highly informative visual features is incrementally refined. New
discriminant visual features are selected in a sequence of attempts to remove percep-
tual aliasing. Any standard reinforcement learning algorithm can then be used to
extract an optimal visual control policy. The resulting algorithm is called Reinforce-
ment Learning of Visual Classes . Secondly, I propose to exploit the raw content of
the visual features, without ever considering an equivalence relation on the visual
feature space. Technically, feature regression models that associate visual features
with a real-valued utility are introduced within the Approximate Policy Iteration
architecture. This is done by means of a general, abstract version of Approximate
Policy Iteration. This results in the Visual Approximate Policy Iteration algorithm.

Another major contribution of this dissertation is the design of adaptive-resolu-
tion techniques that can be applied to complex, high-dimensional and/or continuous
action spaces, simultaneously to visual spaces. The Reinforcement Learning of Joint
Classes algorithm produces a non-uniform discretization of the joint space of per-
cepts and actions. This is a brand new, general approach to adaptive-resolution
methods in reinforcement learning that can deal with arbitrary, hybrid state-action
spaces.

Throughout this dissertation, emphasis is also put on the design of general al-
gorithms that can be used in non-visual (e.g. continuous) perceptual spaces. The
applicability of the proposed algorithms is demonstrated by solving several visual
navigation tasks.

iii

ACKNOWLEDGMENTS

Tout d’abord, je souhaite exprimer toute ma gratitude envers Monsieur J. Piater,
promoteur de cette thèse, qui m’a accueilli et m’a proposé un sujet riche et pas-
sionnant. Je lui suis notamment extrêmement reconnaissant pour toute la confiance
qu’il m’a témoignée en me donnant une grande liberté dans mes recherches. Qu’il
soit aussi remercié pour sa gentillesse, pour ses idées précieuses, pour son respect et
bien sûr pour l’encadrement scientifique apporté au cours de ces trois années.

Je remercie Messieurs V. Charvillat, R. Munos, L. Paletta, J. Verly et
L. Wehenkel, membres du jury, pour avoir accepté de consacrer du temps à la
lecture et à l’évaluation de ce document.

Je suis également extrêmement reconnaissant envers le FNRS et Monsieur P.-A.
de Marneffe pour m’avoir fourni le support financier nécessaire à la réalisation
de mon doctorat.

Un de mes plus proches amis mérite une place toute particulière dans ces remer-
ciements. Il s’agit de Cyril Briquet. Qu’il soit bien sûr remercié pour tout le temps
passé à la relecture de cette thèse, pour tous les précieux conseils prodigués et pour
notre publication commune. Mais en outre, je lui serai toujours reconnaissant pour
le coaching psychologique diablement efficace dont j’ai pu bénéficier. Merci aussi à
Elisabeth Spilman pour sa relecture de l’introduction, ce qui lui a donné plus de
consonances anglophones.

Je tiens également à remercier l’ensemble du personnel académique, scientifique,
technique et ouvrier de Montefiore qui m’a permis de construire mon doctorat dans
une ambiance conviviale et agréable. Je ne connais pas la moitié d’entre vous à
moitié autant que je le voudrais. Mes plus vifs remerciements vont notamment
à Olivier Barnich, Axel Bodart, Danielle Borsu, Christophe Burnotte, Re-
naud Dardenne, Fabien Defays, Gérard Dethier, Damien Ernst, Jean-Marc
François, Simon François, Christophe Germay, Pierre et Ibtissam Geurts,
Xavier Hainaut, Jean-Bernard Hayet, Frédéric Herbreteau, Benôıt Jaspart,
Axel Legay, Jean Lepropre, Raphaël Marée, Sylvain Martin, Fabien Scalzo,
Hugues Smeets, Guy-Bart Stan et Cédric Thiernesse. Chacun de vous a con-
tribué, sans doute sans s’en apercevoir, à bien des lignes de cette thèse, que ce soit

v

par votre aide, votre attention ou tout simplement votre sourire. Merci aussi à toute
l’équipe du service de vision par ordinateur. Je m’excuse par la présente auprès
de tous les étudiants de Montefiore pour les cycles CPU goulûment volés par mes
calculs distribués, ainsi qu’auprès des switches du SEGI pour les souffrances sans
nom qu’ils ont dû endurer par ma faute.

Durant ces cinq années, j’ai pu compter sur l’affection et l’attention de nombreux
amis. Je citerai notamment Raffaele et Amandine Brancaleoni, Manuel Gérard,
Pierre et Lisiane Holzemer, Fabian et Laurence Lapierre, Michel et Florence
Prégardien et Lara Vigneron. D’un point de vue personnel, le soutien et l’écoute
de l’équipe d’animation de Dalhem ont été capitaux dans certains moments plus
difficiles. Merci tout particulièrement à Céline Lambrecht, Dominique Olivier,
Maurice Simons et Benôıt Vanhulst. Je pense aussi à l’ensemble de notre équipe
de cheminement Amour et Engagement , ainsi qu’à l’équipe d’animation de Visé pour
la préparation au mariage. Merci à vous. . . et, bien sûr, merci à tous ceux que j’ai
oublié de remercier ! Qu’ils m’en excusent ;-)

Ce travail n’aurait pas non plus été possible sans la présence à mes côtés de ma
famille et de ma belle-famille. Je pense aujourd’hui tout particulièrement à mon
grand-père, qui m’a ouvert à la curiosité et au questionnement scientifiques et qui
m’a initié à l’informatique.

Enfin, tout mon amour et toute ma tendresse reviennent à mon épouse Delphine
pour ses encouragements, sa patience et sa présence tout au long de mes (longues)
études. Je t’aime !. . .

Lanaye, le 26 septembre 2006.

A la mémoire de Pépé

CONTENTS

Abstract iii

Acknowledgments v

Contents ix

List of Figures xiii

List of Algorithms xv

Abbreviations and Notation xvii

1 Introduction 1
1.1 Vision-for-Action . 1

1.1.1 Reconstructionist Vision . 2
1.1.2 Human Visual Learning . 3
1.1.3 Purposive Vision . 4

1.2 Objectives . 5
1.3 Closed-Loop Learning of Visual Policies 6

1.3.1 Motivation . 7
1.3.2 Related Work . 8
1.3.3 Extraction of Visual Features 9
1.3.4 Task-Driven Exploitation of Visual Features 10

1.4 Outline of the Dissertation . 11

2 Reinforcement Learning 15
2.1 Markov Decision Processes . 16

2.1.1 Dynamics of the Environment 16
2.1.2 Reinforcement Signal . 17
2.1.3 Histories and Returns . 17
2.1.4 Control Policies . 19
2.1.5 Value Functions . 20

2.2 Dynamic Programming . 21

ix

2.2.1 Markov Decision Problems . 21
2.2.2 Contraction Mappings . 22
2.2.3 State-Action Value Functions 24
2.2.4 Value Iteration . 26
2.2.5 Policy Iteration . 26

2.3 Generic Framework of Reinforcement Learning 29
2.4 Reinforcement Learning in Finite Domains 30

2.4.1 Model-Based Algorithms . 31
2.4.2 Q-Learning . 32
2.4.3 Survey of Other Algorithms 35

2.5 Successful Applications . 38
2.6 Summary . 39

3 Appearance-Based Vision 41
3.1 Mid-Level Representation of Images 41

3.1.1 Visual Feature Generators . 42
3.1.2 Appearance-Based Vision . 43

3.2 Global-Appearance Methods . 44
3.2.1 Normalized Images . 44
3.2.2 Eigen-Patches . 45
3.2.3 Histograms . 45

3.3 Local-Appearance Methods . 46
3.3.1 Harris Corner Detector . 47
3.3.2 Interest Point Detectors . 50
3.3.3 Local Descriptors . 59
3.3.4 Local-Appearance Feature Generators 63

3.4 Exploiting Visual Features . 63
3.5 Summary . 65

4 Reinforcement Learning of Visual Classes 67
4.1 Features in the Perceptual Space . 67

4.1.1 Visual Features Exhibited by Images 68
4.1.2 General Perceptual Features 68
4.1.3 Perceptual Feature Generators 70

4.2 Learning Architecture . 71
4.3 Related Work . 72

4.3.1 Factored Representations of MDPs 73
4.3.2 Perceptual Aliasing . 74
4.3.3 Adaptive Resolution in Finite Perceptual Spaces 74
4.3.4 Adaptive Resolution in Continuous Perceptual Spaces 76
4.3.5 Discussion . 77

4.4 Adaptive Discretization of the Perceptual Space 78
4.4.1 Mapping an MDP through a Percept Classifier 80
4.4.2 Measuring Aliasing . 81
4.4.3 Selecting Distinctive Perceptual Features 83

4.5 The Binary Gridworld Application 84
4.6 Visual Applications . 87

4.6.1 Details of Implementation . 87
4.6.2 Illustration on Visual Gridworld Tasks 89
4.6.3 Illustration on a Continuous Navigation Task 91

4.7 Summary . 94

5 Extensions to RLVC 97
5.1 Compacting the Percept Classifiers 97

5.1.1 Equivalence Relations in Markov Decision Processes 98
5.1.2 Decision Trees are not Expressive Enough 98
5.1.3 An Excursion into Computer-Aided Verification 99
5.1.4 Embedding BDDs inside RLVC 102
5.1.5 Navigation around Montefiore Institute 105
5.1.6 Discussion . 110

5.2 Learning Hierarchies of Visual Features 110
5.2.1 Related Work . 111
5.2.2 An Unbounded Hierarchy of Spatial Relationships 111
5.2.3 Closed-Loop Generation of Composite Components 113
5.2.4 Experimental Results . 115

5.3 Summary . 120

6 Function Approximators for Purposive Vision 121
6.1 Feature Vectors . 121
6.2 Related Work . 122

6.2.1 Linear Approximation Schemes 123
6.2.2 Non-Linear Approximation Schemes 124
6.2.3 Function Approximation in Reinforcement Learning 125

6.3 Approximate Policy Iteration . 128
6.3.1 Nonparametric Approximate Policy Iteration 129
6.3.2 Implicit Representation of the Generated Policies 131
6.3.3 Main Algorithm . 131
6.3.4 Modified Policy Evaluation in Nonparametric API 132

6.4 Extremely Randomized Trees . 134
6.4.1 Extra-Tree Induction . 134
6.4.2 Applications of Extra-Trees 135

6.5 Visual Approximate Policy Iteration 138
6.6 Distributed Implementation of Extra-Trees 140

6.6.1 Building Extra-Trees in a Cluster of Computers 141
6.6.2 The Database Distribution Problem 141

6.7 Experimental Results . 143
6.8 Summary . 143

7 Reinforcement Learning of Joint Classes 147
7.1 Adaptive Resolution in the Joint Space 148

7.2 Related Work . 148
7.3 Joint Features . 150

7.3.1 Features in the Action Space 150
7.3.2 Features for Continuous Action Spaces 150
7.3.3 Features for Cartesian Action Spaces 151
7.3.4 Joint Feature Detectors and Generators 151

7.4 Reinforcement Learning of Joint Classes 152
7.4.1 Learning Architecture . 152
7.4.2 Computing a Greedy Action 154
7.4.3 Reinforcement Learning through Joint Classifiers 157
7.4.4 Detecting and Removing Aliasing in the Joint Space 159

7.5 Experimental Results . 161
7.6 Summary . 163

8 Conclusions and Perspectives 167
8.1 Summary of the Contributions . 167
8.2 Future Work . 170

8.2.1 Non-Visual Control Problems 170
8.2.2 Implementation in Real Learning Robots 171
8.2.3 Enhancing the Proposed Algorithms 172
8.2.4 Towards Better Visual Features 172

Bibliography 175

A Proofs about Markov Decision Processes 207

LIST OF FIGURES

1.1 Synoptic view of this dissertation. 12

3.1 Basic idea of the Harris detector. 48
3.2 Analysis of cornerness in the Harris detector. 50
3.3 Commonly used support window spaces. 51
3.4 Example of interest point detection. 53
3.5 Hierarchical decomposition of an object at several scales. 55
3.6 Illustration of the computation of the intrinsic scale for blob features. 55
3.7 Two views of the same object under viewpoint changes. 57
3.8 The Gaussian derivatives up to second order. 60
3.9 Decompositions of the neighborhood used by SIFT and Shape Context. 61

4.1 Sketch of the learning architecture of RLVC. 72
4.2 A percept classifier and its effects on the perceptual space. 78
4.3 The different components of the RLVC algorithm. 79
4.4 The Binary Gridworld Application. 85
4.5 The percept classifier that is obtained at the end of the RLVC process. 86
4.6 Results of RLVC on the Binary Gridworld application. 87
4.7 Small visual Gridworld topology. 90
4.8 Resolution of the small visual Gridworld by RLVC. 90
4.9 Large visual Gridworld topology (with 47 empty cells). 91
4.10 A visual, continuous, noisy navigation task. 92
4.11 The resulting image-to-action mapping. 93
4.12 Representation of the optimal value function. 94
4.13 A navigation task with a real-world image. 95

5.1 A truth table that defines a mapping f : B4 7→ B. 100
5.2 The Shannon decomposition of a truth table. 100
5.3 Normalization of a Shannon decomposition, which produces a BDD. . 101
5.4 The Montefiore campus in Liège. 106
5.5 An optimal control policy for the Montefiore navigation task. 107
5.6 The percepts of the agent. 108
5.7 Statistics of RLVC as a function of the step counter k. 109
5.8 Statistics of the extended version of RLVC. 109

xiii

5.9 The car-on-the-hill control problem. 116
5.10 Percepts for the visual car-on-the-hill problem. 117
5.11 The optimal value function that is obtained by RLVC. 118
5.12 Two composite components that were generated. 118
5.13 Evolution of the number of times the goal was missed. 119
5.14 Evolution of the mean lengths of the successful trials. 119

6.1 Assigning a class to an image using a Classification Extra-Tree model. 137
6.2 Computing the state-action utility of a raw percept for a fixed action. 139
6.3 Software architecture for the distributed learning of Extra-Trees. . . . 142
6.4 The sequence of policies πk that are generated by V-API. 144
6.5 Error on the generated image-to-action mappings. 145

7.1 Illustration of the discretization process of (a) RLVC, and (b) RLJC. 148
7.2 The joint classes that are compatible with a given percept. 155
7.3 A path from the root node to an optimal compatible joint class. . . . 157
7.4 A visual, continuous, noisy navigation task with continuous actions. . 162
7.5 The resulting image-to-action mapping. 164
7.6 The optimal value functions. 165

LIST OF ALGORITHMS

4.1 General structure of RLVC . 81
4.2 Aliasing Criterion of RLVC . 83
4.3 Feature selection process . 84
5.1 Refining a BDD-based percept classifier 103
5.2 Compacting a BDD-based percept classifier 104
5.3 Detecting occurrences of visual components 113
5.4 Generation of composite components 114
6.1 Nonparametric Approximate Policy Iteration 131
6.2 Comparison of two state-action value function approximators 132
6.3 Evaluation of a greedy policy in Nonparametric API 133
6.4 General structure for Regression Extra-Tree learning 135
6.5 Recursive induction of a single subtree 135
6.6 Learning oracle for RETQ approximators 140
7.1 General structure of RLJC . 154
7.2 Computing the utility of a percept s ∈ S in RLJC 154
7.3 Computing the greedy action π[Q] (s) for some percept s ∈ S 156
7.4 Action seeker for continuous action spaces 158
7.5 Learning a state-action value function that is constrained by Jk . . . 160
7.6 Aliasing Criterion of RLJC . 160
7.7 Feature selection process of RLJC . 161

xv

ABBREVIATIONS AND NOTATION

Acronyms and abbreviations:

API Approximate Policy Iteration
BDD Binary Decision Diagram [Bry92]
DoG Difference of Gaussians (interest point detector) [Low99]
LSPI Least-Squares Policy Iteration [LP03]
MDP Markov Decision Process
FMDP Finite Markov Decision Process (state and action spaces are finite)
RL Reinforcement Learning [BT96, KLM96, SB98]
RLJC Reinforcement Learning of Joint Classes [JP06]
RLVC Reinforcement Learning of Visual Classes [JP05c]
SIFT Scale-Invariant Feature Transform (local descriptor) [Low04]
TD Temporal Difference [Sut88]
V-API Visual Approximate Policy Iteration [JBP06]
RETQ Raw Extra-Tree state-action value function approximator

General notation:

· 7→ Π(·) probabilistic relation
B = {true, false} set of Boolean numbers
G(µ, σ) Gaussian law of mean µ and standard deviation σ
P(·) power set
N set of positive integers
R set of real numbers
R+ set of positive real numbers
R+

0 set of positive, non-zero real numbers
x vector

xvii

Notation for reinforcement learning:

π : S 7→ Π(A) percept-to-action mapping (i.e. probabilistic,
Markovian, stationary control policy)

π∗ optimal percept-to-action mapping
A action space (also known as control space)
H Bellman backup operator (cf. Equation 2.26)
Hπ Bellman backup operator for control policy π
Qπ(s, a) : S × A 7→ R state-action value function of policy π
Q∗(s, a) : S × A 7→ R optimal state-action value function
R(s, a) : S × A 7→ R reinforcement signal
S state space, possibly a set of images
〈S, A, T ,R〉 Markov Decision Process
〈st, at, rt+1, st+1〉 interaction
T (s, a, s′) : S × A 7→ Π(S) probabilistic transition relation
T Bellman backup operator (cf. Equation 2.11)
T π Bellman backup operator for control policy π
V π(s) : S 7→ R value function of control policy π
V ∗(s) : S 7→ R optimal value function

Notation for computer vision:

d(x, y) metric over the visual feature space
DL : S 7→ P(R2 ×W) interest point detector (cf. Definition 3.3)
GL : S × (R2 ×W) 7→ V local descriptor generator (cf. Definition 3.5)
GV : S 7→ P(V) visual feature generator (cf. Definition 3.1)
Ix (resp. Iy) gradient over the x-axis (resp. y-axis)

of an image I smoothed by a Gaussian
Ixx, Ixy, Iyy second-order derivatives of a smoothed image
V visual feature space (usually corresponds to Rn)
W support window space (cf. Definition 3.3)

Notation for RLVC, V-API and RLJC:

∆t Bellman residual, also known as the
temporal difference at time t (cf. Equation 2.44)

A : P(FA)× P(FA) 7→ A action seeker (cf. Definition 7.8)
B

b
application of a BDD B to a vector of Booleans b

B(n) family of BDDs with n Boolean inputs

c
(k)
i perceptual or joint class induced by Ck or by Jk

Ck space of joint classes induced by Jk

Ck : S 7→ Sk percept classifier (cf. Definition 4.6)
D : (S × A)× F 7→ B joint feature detector
DA : A× FA 7→ B action feature detector (cf. Definition 7.1)
DV : S × V 7→ B visual feature detector (cf. Definition 4.3)
DS : S × FS 7→ B perceptual feature detector (cf. Definition 4.4)
F class of state-action value function approximators
F = FS ∪ FA joint feature space
FA action feature space
FS perceptual feature space
G : P(S × A) 7→ P(F) joint feature generator
GA : P(A) 7→ P(FA) action feature generator (cf. Definition 7.2)
GR : S 7→ P(Rn) raw feature generator (cf. Definition 6.1)
GS : P(S) 7→ P(FS) perceptual feature generator (cf. Definition 4.5)
Jk : S × A 7→ Jk joint classifier (cf. Definition 7.6)
L : P(S ×A× R) 7→ F learning oracle (cf. Definition 6.3)
Sk space of perceptual classes induced by Ck

CHAPTER

ONE

Introduction

Designing robotic controllers rapidly proves to be a challenging problem. Indeed,
such controllers (1) face a huge number of possible inputs that can be noisy, (2)
must select actions among a continuous set, and (3) should be able to automatically
adapt themselves to evolving or stochastic environmental conditions. Although a
real-world robotic task can often be solved by directly connecting the perceptual space
to the action space through a given computational mechanism, such mappings are
usually hard to derive by hand, especially when the perceptual space contains im-
ages. Thus, automatic methods for generating image-to-action mappings are highly
desirable because many robots are nowadays equipped with CCD sensors.

This class of problems is commonly referred to as vision-for-action. Living beings
face vision-for-action problems everyday and learn how to solve them effortlessly and
robustly. Despite roughly three decades of research, vision-for-action is still a major
challenge in both computer vision and artificial intelligence. A potentially fruitful
research path for learning visual control policies1 would therefore be to mimic natural
learning strategies. This dissertation introduces a general framework that is suitable
for building image-to-action mappings using fully automatic and flexible learning
protocols that resort to reinforcement learning.

1.1 Vision-for-Action

In this dissertation, I am interested in reactive systems that learn to couple visual
perceptions and actions inside a dynamic world so as to act reasonably. This coupling
is known as a visual (control) policy . This wide category of problems will be called
vision-for-action tasks (or simply visual tasks). Despite about fifty years years of
active research in artificial intelligence, robotic agents are still largely unable to solve
many real-world visuomotor tasks that are easily performed by humans and even
by animals. Such vision-for-action tasks notably include grasping, vision-guided
navigation and manipulation of objects so as to achieve a goal.

1The terms “visual control policy” and “image-to-action mapping” are used indistinctly.

1

2 Chapter 1 — Introduction

1.1.1 Reconstructionist Vision

The traditional reconstructionist approach to computer vision is often taken into
consideration when solving visual tasks. This paradigm consists in generating a
complete, detailed, symbolic 3D model of the surrounding environment [Mar82a].
According to this paradigm, originally proposed by Marr, a computer vision system
is a hierarchy of bottom-up processes. Each module in this hierarchy transforms
information from an abstraction level into information belonging to a higher ab-
straction level. Each abstraction level comes with its own representation system for
encoding the information. The bottom level (the primal sketch) takes raw pixels as
input, and generally consists either in the segmentation of the image into regions of
interest or in the extraction of visual features (cf. Chapter 3). The top level ulti-
mately uses the symbolic representation of the environment so as to choose how to
react.

Reconstructionist vision had and still has a great influence on research in com-
puter vision. However, it has also been the subject of important criticism:

1. In practice, it is impossible to reconstruct a fully elaborated representation of
a visual scene, notably because the projection of a 3D scene into a 2D image
causes information loss.

2. Reconstructionist vision systems are rigid, to wit, they are often limited by
design to one particular visual task. Moreover, most systems are designed to
operate on a fixed set of scenes or objects.

3. The performed task does not weigh in the way the high-level symbolic repre-
sentation is built. Thus, even when the model of the environment is computed,
a decision making process that may be complex is still needed to choose the
optimal reaction.

4. The tasks to be solved are explicitly coded inside the system. Such a task
specification is generally difficult to express formally and unambiguously.

5. Many reconstructionist systems are hard-wired and/or do not take lessons
from their prior history, making them unable to improve over time or to adapt
to novel situations that were not anticipated by their designers. Many sys-
tems also operate under highly controlled conditions and in a fixed context
(e.g. exclusively indoor or outdoor, with a known background, and/or without
clutter).

These criticisms have motivated the development of alternatives to the reconstruc-
tionist paradigm [CRS94]. These alternatives are based on a study of the neuropsy-
chological development of the human visual system. The development of sensory-
motor coordination of newborns, especially during the first year of life, is indeed a
fruitful starting point for biologically-inspired approaches to vision-for-action. Sev-
eral facts about this development are outlined in the next section.

Section 1.1 — Vision-for-Action 3

1.1.2 Human Visual Learning

An infant is not born perceiving the world as an adult would: The perceptual abilities
develop over time. During the first months of life, many cognitive components are
either non-functional or not yet fully developed. For example, the control of the ex-
tremities is still limited [KBTD95] and the neural growth is not completed [O’L92].
Now, strong neuropsychological evidence suggests that newborns learn to extract
useful information from visual data in an interactive fashion, without any external
supervisor [GS83]. By evaluating the consequences of their actions on the environ-
ment, infants learn to pay attention to visual cues that are behaviorally important
for solving their tasks. When they grasp objects, smile or try and reproduce heard
sounds, they become aware of the dynamics of the outside world and try to analyze
the effects of their reactions in order to improve their behavior.

To this end, the behavior of newborns is optimized for gathering new experi-
ences: It favors learning through the collection of data rather than the immediate
efficiency of the reactions. Such exploratory behaviors are notably supported by
reflexes [PW03]. Even noise can contribute to long-term performance by helping
newborns to focus on robust, highly discriminative visual cues. In this manner, as
they interact with the outside world, newborns gain more and more expertise on
commonplace tasks. Moreover, human visual skills do not remain rigid after child-
hood: The visual system continues to evolve throughout life so as to solve unseen
visual tasks, and continues to acquire expertise even on well-known tasks [TC03].
Thus, the human visual system is eminently general and adaptive.

Of course, getting representative data for acting efficiently can take a very long
time depending on how vast the state space is. This can be particularly problematic
in the case of visual tasks. Therefore, infants cannot settle for exploring the environ-
ment, but must at some point use the knowledge they have compiled to indeed solve
the task. This issue is generally called the exploration-exploitation trade-off [SB98].

Obviously, the process of learning to act in presence of a visual stimulus is task-
driven, since different visual tasks do not necessarily need to make the same dis-
tinctions [SR97]. As an example, consider the task of grasping objects. It has been
shown that, between about five to nine months of age, infants learn to pre-shape
their hands using their vision before they reach the object to grasp [MCA+01]. Once
the contact is made, the hand often occludes the observed object so that tactile feed-
back is used to locally optimize the grasp. In this context, it is clear that the haptic
and the visual sensory modalities ideally complement one another. For this grasp-
ing procedure to succeed, infants have to learn to distinguish between objects that
require different hand shapes. Thus, infants learn to recognize objects according to
the needs of the grasping task.

Churchland et al. provide further psychological, anatomical and neuropsycholog-
ical evidence for these properties of human visual learning [CRS94]. The lessons
above lead to several important conclusions about the criticisms of reconstructionist
vision that were drawn at the beginning of this section:

1. It is neither desirable, nor required, to generate inside the brain a fully elabo-

4 Chapter 1 — Introduction

rated high-level representation of the observed scene. Gathering only a subset
of this model might be sufficient for taking optimal decisions in a given visuo-
motor task. Human beings build a partial representation of the scene in which
only information that is relevant to the performed task is represented.

2. The human visual system is generic and versatile. Its capabilities are not lim-
ited by design, but they are generated and augmented as needed: Throughout
its entire life, the visual system evolves to acquire additional visual skills.

3. The human visual system is task-dependent , which means that it shortcuts
the visual interpretation process by delivering exactly the information that is
needed for solving a given task. In this way, the task directs what information
is embedded in the high-level symbolic representations in order to ease the
decision making process.

4. The goal of a living being is only implicitly defined (e.g. feeding, fleeing, fight-
ing, seeking novelty, experiencing discovery or the survival of the species). This
definition partly resorts to pain or pleasure signals that have been hard-wired
during the course of evolution.

5. The human visual system is robust and adaptive. These characteristics are
closely related to the versatility of human vision. Adaptivity means that ac-
quired visual skills are continuously tuned and improved through learning from
past experience. This contributes to the improvement of performance, even
on well-practiced tasks. This phenomenon is also responsible for the gain in
expertise of human vision [TC03]. Expertise rules the recognition of objects
at different levels of specificity based on previous experience (e.g. a biologist
is able to distinguish between a monkey and a macaque).

Furthermore, it has been argued that the following important properties are inher-
ently present in the human visual learning process:

• The learning is interactive, as the consequences of the reactions drive what is
learned.

• The learning is exploratory and faces the exploration-exploitation trade-off.

1.1.3 Purposive Vision
Following from the above discussion, a breakthrough in modern artificial intelligence
would be to design an artificial system that would acquire object or scene recognition
skills based only on its experience with the surrounding environment. To state it in
more general terms, an important research direction would be to design a robotic
agent that could autonomously acquire visual skills from its interactions with an
uncommitted environment in order to achieve some set of goals. Learning new visual
skills in a dynamic, task-driven fashion so as to complete an a priori unknown visual
task is known as the purposive vision paradigm [Alo90].

Section 1.2 — Objectives 5

Purposive vision is essentially orthogonal to reconstructionist vision. It empha-
sizes the fact that vision is task-oriented and that the performing agent should focus
its attention only on the parts of the environment that are relevant to its task.
For example, if an agent has to move across a maze, it only needs to spot several
interesting landmarks; It does not need to be able to recognize all the objects in
the environment [Deu04]. Therefore, it is not required to obtain a complete model
of the environment. Purposive vision stresses the dependency between action and
perception: Selecting actions becomes the inherent goal of the visual sensing pro-
cess. This paradigm often leads to the breakdown of the visual task into several
sub-problems that are managed by a supervision module that ultimately selects the
suitable reactions [Tso94].

The terminology “purposive vision” is somewhat confusing. Purposive vision is
indeed very close to active vision [AWB88, BY92, FA95], and these concepts are
sometimes used interchangeably. Just like purposive vision, active vision criticizes
the passive point of view of reconstructionist vision, and it argues that visual per-
ception is an exploratory activity. However, active vision is essentially interested in
experimental setups where the position of the visual sensors can be governed by the
effectors. This approach is evidently inspired by human vision, for which muscles
can orientate the head, the eyes and the pupils. By learning to control such effectors,
the agent can acquire better information and resolve ambiguities in the visual data,
for example by acquiring images of a scene from different viewpoints. Some ill-posed
problems in computer vision become well-posed by employing active vision. An in-
stance of an active vision paradigm is Westelius’ robotic arm [Wes95], which uses
a focus-of-attention mechanism based on stereo vision. Active vision has also been
used in visual navigation for a robot with a stereo active head [Dav98]. However,
the paradigm of active vision essentially confines interactivity to the positioning of
visual sensors. Thus, purposive vision is more general. Other related paradigms
include active perception [Baj88] and animate vision [BB92].

1.2 Objectives
This dissertation attempts to design a general computational framework for purpo-
sive vision. More precisely, given the discussion above, my aim is to design machine
learning algorithms that can cope with vision-for-action tasks, and that have the
following key properties:

• Closed-loop (interactive). The agent should autonomously learn its task by
interacting with the environment, without any help from an external teacher
or from a supervisory training signal. It should be able to predict the effects
of its actions, and to improve them with growing experience.

• Task-driven. The task to be solved should drive which visual skills are learned.

• Minimalist. The visual control policies that are learned should not use a
complete model of the environment as in reconstructionist vision, but should

6 Chapter 1 — Introduction

rather learn to select discriminative visual cues for the task.

• Integration of time. An action can have a long-term effect on the environment,
which must be taken into account when taking a decision. In other words,
dynamic environments are considered.

• Versatile. The algorithms should apply to a broad class of vision-for-action
problems, should not be tuned for one particular task, and should make few
prior assumptions about the tasks and the environment. The same algorithms
should be applicable in a variety of environments.

• Implicit formulation of the goal. The objective of the agent should not be hard
wired (e.g. in a programming language), but should instead be learned from
implicit environmental cues.

This research topic lies at the border between machine learning, computer vision
and artificial intelligence. As discussed in the previous section, it can also be mo-
tivated from observations of visual neuroscience. The objectives above follow from
Piater’s doctoral dissertation [Pia01]. Piater indeed writes:

“Autonomous robots that perform nontrivial sensorimotor tasks in
the real world must be able to learn in both sensory and motor do-
mains. A well-established research community is addressing issues in
motor learning, which has resulted in learning algorithms that allow an
artificial agent to improve its actions based on sensory feedback. Little
work is being conducted in sensory learning, here understood as the prob-
lem of improving an agent’s perceptual skills with growing experience.
The sophistication of perceptual capabilities must ultimately be mea-
sured in terms of their value to the agent in executing its task.” [Pia01]

However, Piater essentially focuses on environments in which an action does not
have an impact on the long term. Every time the agent has performed an action,
the system is reset, which leads to independent episodes that consists of single
decisions. This category of problems is referred to as evaluative feedback by Sutton
and Barto [SB98]. Moreover, Piater considers binary tasks, to wit, tasks in which a
decision is either correct or wrong. In the framework of this dissertation, there exists
a whole continuum in the appropriateness of actions, precisely because the dynamic
aspect of the environment is taken into account. Just like in a chess game, a decision
with immediate negative consequences (e.g. a sacrifice) may nonetheless later lead
to the exploration of highly advantageous parts of the reward space (e.g. winning
the game). This general problem that is inherent to dynamic environments is known
as the delayed reward problem [SB98].

1.3 Closed-Loop Learning of Visual Policies
One plausible framework to deal with vision-for-action tasks according to purpo-
sive vision is Reinforcement Learning (RL) [BT96, KLM96, SB98]. Reinforcement

Section 1.3 — Closed-Loop Learning of Visual Policies 7

learning is a biologically-inspired computational framework that can generate nearly
optimal control policies in an automatic way, by interacting with the environment2.
RL is founded on the analysis of a so-called reinforcement signal . Whenever the
agent takes a decision, it receives as feedback a real number that evaluates the
relevance of this decision. From a biological perspective, when this signal becomes
positive, the agent experiences pleasure, and we can talk about a reward . Conversely,
a negative reinforcement implies a sensation of pain, which corresponds to a punish-
ment . Now, RL algorithms are able to map every possible perception to an action
that maximizes the reinforcement signal over time. In this framework, the agent is
never told what the optimal action is when facing a given percept, nor whether one
of its decisions was optimal. Rather, the agent has to discover by itself what the
most promising actions are by constituting a representative database of interactions,
and by understanding the influence of its decisions on future reinforcements.

1.3.1 Motivation

Reinforcement learning is an especially attractive, well-suited paradigm for closed-
loop learning of visual control policies. It is fully automatic, and it fulfills all the six
objectives that were stated in Section 1.2 (interactivity, task-driven, minimalism,
integration of time, versatility and implicit goal).

Indeed, RL is by definition closed-loop as an optimal visual control policy can
be extracted only from a sequence of interactions. It is also task-driven because
the learned policy maximizes the reinforcement signal over time, and this signal is
of course task-dependent. The generated policies are minimalist as they directly
connect a percept to a suitable reaction. The dynamic aspect of the environments is
captured since RL does not maximize the immediate rewards, but rather balances
immediate rewards with long-term rewards. This is the delayed reward problem
that was mentioned at the end of Section 1.2. Reinforcement learning is also a
highly versatile paradigm, as it imposes weak constraints on the environment. It
can indeed cope with any problem that can be formulated in the framework of
Markov Decision Problems . This generic category of problems will be investigated
in detail in Chapter 2. Intuitively, it corresponds to dynamic environments in which
the probability of reaching a state after taking an action is independent of the entire
history of the system. Finally, the goal of the agent is only implicitly encoded as a
reinforcement signal that the agent struggles to maximize.

Theoretically, it seems natural to directly incorporate image information as the
perceptual information of a reinforcement learning algorithm. But this is a diffi-
cult task. Directly generating states from image results in huge state spaces, whose
size exponentially grows with the size of the perceived images. As a consequence,
even standard RL algorithms based on value function approximation (cf. Chapter 6)
cannot deal with them without making prior assumptions on the structure of the
images. Images also often contain noise and irrelevant data, which further com-

2As argued by Sutton [Sut04], the links between RL and Pavlovian conditioning are widely
acknowledged [SB90].

8 Chapter 1 — Introduction

plicates state construction. Furthermore, in such huge and noisy state spaces, the
reinforcement signal tends to dilute. Because the perceptual space can only be very
sparsely sampled, it indeed quickly becomes difficult to guess what is the property
of an image that leads to high or low reinforcement. This is the well-known Bellman
curse of dimensionality , which makes standard RL algorithms inapplicable to direct
closed-loop learning of visual control policies.

The key technical contribution of this dissertation consists in the introduction
of reinforcement learning algorithms that can be used when the perceptual space
contains images. The algorithms that are developed do not rely on a task-specific
pre-treatment. As a consequence, they can be used in any vision-for-action task that
can be formalized as a Markov Decision Problem.

It should be noted that in this research, I will take an approach that may seem
extremely minimalist. Indeed, no model of the environment will be built at all, and
the decisions will only be taken by analyzing the visual stimulus. Thus, the proposed
algorithms will learn image-to-action mappings that directly connect an image to
the appropriate reaction. This is a direct consequence of the reinforcement learning
framework.

1.3.2 Related Work

There exists a variety of work in RL about solving specific robotic problems in-
volving a perceptual space that contains images. For instance, Schaal uses visual
feedback for solving a pole-balancing task [Sch97]. RL has been used to control a
vision-guided underwater robotic vehicle [WGZ99]. More recently, Kwok and Fox
have demonstrated the applicability of RL for learning sensing strategies using Aibo
robots [KF04]. Paletta et al. learn sequential attention models through reinforcement
learning [PFS05]. I also mention the use of reinforcement learning in other vision-
guided tasks such as ball shooting [ANTH94], ball acquisition [TTA99], visual ser-
voing [GFZ00], robot docking [WWZ04, MMD05] and obstacle avoidance [MSN05].
Interestingly enough, RL is also used as a way to tune the high-level parameters of
image-processing applications. For example, Peng and Bhanu introduce RL algo-
rithms for image segmentation [PB98], whereas Yin proposes algorithms for multi-
level image thresholding, and uses entropy as a reinforcement signal [Yin02].

All of these applications preprocess the images to extract some high-level infor-
mation about the observed scene that is directly relevant to the task to be solved
and that feeds the RL algorithm. This requires making prior assumptions about the
images that will be perceived by the sensors of the agent. The preprocessing step
is task-specific and is performed by hand. This contrasts with my objectives, which
consist in introducing algorithms able to learn how to directly connect the visual
space to the action space, without using manually written code and without relying
on a priori knowledge about the task to be solved.

A noticeable exception is the work by Iida et al. who apply RL to seek and reach
targets [ISS02], and to push boxes [SI03] with real robots. In this work, raw visual
signals directly feed a neural network, and an actor-critic architecture is used to

Section 1.3 — Closed-Loop Learning of Visual Policies 9

train the neural network. In these examples, the visual signal is downscaled and
averaged into a monochrome (i.e. two-colors) image of 64 × 24 = 1536 pixels. The
output of four infrared sensors are also added to this perceptual input. While the
approach is effective for the specific tasks, this process can only be used in a highly
controlled environment. Real-world images are much richer and could not undergo
such a strong reduction in size. Trying to apply this approach to larger images would
be fruitless because of the Bellman curse of dimensionality.

In a similar spirit, Ernst et al. have very recently shown the applicability of a
novel reinforcement learning algorithm (Fitted Q Iteration [EGW05]) in conjunction
with a powerful supervised learning algorithm (Extra-Trees [GEW06]) for closed-loop
learning of visual policies when raw image pixels are directly used as the perceptual
input [EMW06]. In their experimental setup, an image contains 30 × 30 = 900
grayscale pixels. This method is very close to the algorithm Visual Approximate
Policy Iteration (V-API) that will be introduced in Chapter 6, but it has been
developed independently and almost simultaneously [JBP06]. Contrarily to V-API,
this experimental setup lacks an evaluation on real-world, full-sized images.

Another important, distinct step in the direction of my objectives was achieved
by Piater et al., who have considered the aforementioned task of grasping objects
by a dexterous manipulator [Pia01, CPG01, PG02]. Starting with the fact that
only few pieces of work in robotics combine haptic and visual feedback for grasp-
ing [All84, GL86], Piater et al. propose to insert a visual recognition system in front
of a grasp controller. This controller, which was initially designed by Coelho and
Grupen [CJG97], is purely local and minimizes the wrench residual. The visual
recognition system is aimed, given prior haptic experience, at planning an initial
grasp that is close enough to the optimal grasp. This initial grasp will be opti-
mized through the local controller. In other words, visual feedback ensures the
convergence towards an optimum in the space of possible finger configurations. The
mappings from images to successful finger configurations are learned through an on-
line, incremental protocol [Pia01, Chapter 6]. This process generates discriminative
combinations of basic visual features (edgels, texels and salient points), and each of
these combinations votes for one configuration of the hand. A Bayesian network is
trained to choose the best configuration from these votes. Unfortunately, as men-
tioned earlier, this algorithm is only applicable to tasks with two outcomes (the
grasp is either successful or not) and in which two successive actions are indepen-
dent. This application is therefore inherently closer to supervised learning than to
reinforcement learning.

1.3.3 Extraction of Visual Features

The proposed algorithms resort to the extraction of visual features as a way to
achieve more compact state spaces that can be used as an input to traditional RL
algorithms. Indeed, buried in the noise and in the confusion of visual cues, images
contain hints of regularity. Such regularities are captured by the important notion of
visual features . Loosely speaking, a visual feature is a representation of some aspect

10 Chapter 1 — Introduction

of local appearance, e.g. a corner formed by two intensity edges, a spatially localized
texture signature, or a color. Therefore, to analyze images, it is often sufficient for
a computer program to extract only useful information from the visual signal, by
focusing its attention on robust and highly informative patterns in the percepts.
The program should thereafter seek the characteristic appearance of the observed
scenes or objects.

This is actually the basic postulate behind appearance-based vision that has had
much success in computer vision applications such as image matching, image re-
trieval and object recognition [SM97, Low04]. Appearance-based vision relies on
the detection of stable discontinuities in the visual signal thanks to interest point
detectors [SMB00, MTS+05]. Similarities in images are thereafter identified using a
local description of the neighborhood around the interest points [MS03, MS05]. If
two images share a sufficient number of matching local descriptors, they are con-
sidered as belonging to the same visual class. Appearance-based vision is at the
same time powerful and flexible as it is robust to partial occlusions and does not
require segmentation or 3D models of the scenes. Mikolajczyk et al. provide a list
of successful applications of appearance-based vision [MS05].

Intuitively, appearance-based vision allows the extraction of a maximum amount
of relevant information from the images, while keeping the amount of data man-
ageable. Interestingly enough, Paletta et al. have also exploited visual features in
the context of reinforcement learning for optimizing sensorimotor behavior in the
context of active vision [PRB05, PFS05].

1.3.4 Task-Driven Exploitation of Visual Features

It seems therefore promising to use the visual feature space instead of the raw images
as the input to the reinforcement learning algorithms. Indeed, visual features are
vectors that are composed of about a hundred components, which contrasts with the
typical images that contain hundreds of thousands of pixels. Thus, reinforcement
learning seems easier to carry out in this visual feature space. Nevertheless, many
features can be extracted from a single image. In other words, the extraction of
visual features from an image is a one-to-many mapping . Thus, the main challenge
of the algorithms that will be developed is to determine which, among the many
visual features it perceives, are the ones relevant to the reward or punishment.

In this dissertation, two ways to deal with this abundance of visual features are
investigated. The first possibility is to select the visual features that are the most
discriminative for the performed task . This basic idea has already been investigated
by McCallum’s U Tree algorithm [McC96]. This algorithm will be adapted to visual
tasks in the Reinforcement Learning of Visual Classes algorithm. The name of the
algorithm comes from the fact that the visual space is discretized into a small set of
visual classes by testing the presence of those highly discriminative visual features.

The second possibility is to use the whole set of raw visual features, without
selecting the most discriminative ones. This is motivated by the fact that even
less discriminative features can have an impact on the optimal decisions. Instead

Section 1.4 — Outline of the Dissertation 11

of creating a set of visual classes, low-level vectors of real numbers that encode
the visual features are directly used. As visual data can be sampled only sparsely,
function approximators will be embedded inside the RL process. These ideas will
lead to the development of the Visual Approximate Policy Iteration algorithm.

It is important to realize that the visual feature space can be composed of raw
pixels. Indeed, the extraction of visual features can consist in the selection of infor-
mative patches in the image and in the description of each of those patches as the set
of raw pixels they contain. Furthermore, the extraction of visual features can gener-
ate a single visual feature for each image. Therefore, the introduced framework can
deal with the same perceptual spaces as those considered by Iida et al. [ISS02, SI03]
and Ernst et al. [EGW05] (cf. Section 1.3.2).

1.4 Outline of the Dissertation
This dissertation targets the development of algorithms that make reinforcement
learning computationally tractable on complex, high-dimensional visual tasks. In a
nutshell, the basic idea is to take advantage, in an automatic way, of visual features
that are borrowed from appearance-based vision. The results of this dissertation
unify those appearing in previous publications [JP04, JP05a, JP05b, JP05c, JP05d,
JP05e, JSP05, JBP06, JP07, JP06].

Each algorithm that will be introduced in the sequel comes from a practical
consideration that was guided by the experiments. Ideas from experiments and
programming influenced the theoretical development, and vice versa. This goal-
driven approach turned out to be very fruitful. The development of software in the
C and in the C++ programming languages forms a major part of my work. The main
developments were: (a) a core object-oriented library for reinforcement learning that
supports vision-for-action tasks and that is used throughout the experiments; (b)
a library for the learning of classification and regression trees, and notably Extra-
Trees [GEW06]; (c) a library for distributed computing of bag-of-tasks on a cluster
of computers; and (d) the data distribution of a database through the BitTorrent
protocol [Coh03].

This dissertation is organized as depicted in Figure 1.1. Because the topic of
this research work is at the crossroads of computer vision and machine learning, this
dissertation begins with two background chapters that present the state of the art
of the two main theoretical tools that will be used:

• In Chapter 2, the basic results from the theory of reinforcement learning are
presented. The formalism that is used throughout this dissertation is in-
troduced. Theoretical foundations of RL are discussed, as well as standard
algorithms. This chapter makes no assumptions abouth the state and ac-
tion spaces, except that they must both be finite. Visual state spaces are
not considered in this part of the dissertation. People from the computer vi-
sion community might find this an useful introduction to the vision-for-action
paradigm.

12 Chapter 1 — Introduction

Purposive vision
Vision-for-action

(Chapter 1)

Reinforcement learning
(Chapter 2)

Appearance-based vision
(Chapter 3)

Nonparametric Approximate
Policy Iteration
(Chapter 6.3)

Reinforcement Learning
of Visual Classes

(Chapter 4)

Visual Approximate
Policy Iteration
(Chapter 6.5)

Reinforcement Learning
of Joint Classes

(Chapter 7)

Function approximators
(Chapter 6.2)

Distributed implementation
of Extra-Trees

(Chapters 6.4 and 6.6)

 continuous actions

Closed-loop learning of
hierarchies of visual features

(Chapter 5.2)

Fighting overfitting
in RLVC

(Chapter 5.1)

Figure 1.1: Synoptic view of this dissertation. Arrows represent the dependencies
between the various concepts that are introduced in the chapters. My personal
contributions are highlighted in green. The Extra-Trees learning algorithms result
from research work by Geurts et al. [GEW06], but the distributed implementation
of Extra-Trees is a personal contribution.

Section 1.4 — Outline of the Dissertation 13

• Chapter 3 introduces appearance-based vision along with visual features. The
central notion of a visual feature generator is introduced. Then, global-ap-
pearance methods and local-appearance methods are both discussed, the latter
being defined as the conjunction of an interest point detector with a local
description generator . This introductory chapter concludes by showing how
visual features are used in typical computer vision applications. Some precise
insight on how visual features could be used when solving vision-for-action
tasks are also given. This discussion should be mostly helpful to people from
the machine learning community.

After these two background chapters, the remaining chapters constitute the heart
of this dissertation. These technical chapters share the same general structure: The
precise problem and the proposed solution are stated, the related work is discussed,
novel algorithms are formally derived, experimental results are presented, and a
discussion concludes. The validity of the proposed methods are demonstrated on
vision-guided navigation tasks. Here are the contributions that will be described:

• The Reinforcement Learning of Visual Classes (RLVC) algorithm is derived
in Chapter 4 by building on the visual feature space defined in the preceding
chapter. As mentioned earlier, this algorithm selects highly informative visual
features in an incremental process.

• Chapter 5 presents two extensions to RLVC. The first extension consists in
reducing the overfitting that is inherent to RLVC by resorting to techniques
borrowed from computer-aided verification. Although this process is more
resource consuming, it is useful to ensure better convergence properties. The
second extension is closely related to Scalzo’s research work [SP05, SP06], and
proposes algorithms to generate a hierarchy of spatial combinations of visual
features that are more and more discriminative. This process proves to be
useful when individual features are not informative enough to solve a vision-
for-action task. This is illustrated on a visual version of a classical control
problem (the car-on-the-hill task).

• The Visual Approximate Policy Iteration (V-API) algorithm is introduced in
Chapter 6. As mentioned earlier, this algorithm uses the raw visual features
through a function approximation scheme. This chapter notably introduces
the Nonparametric Approximate Policy Iteration algorithm, that is a generic
version of the Least-Squares Policy Iteration algorithm [LP03]. The supervised
learning of Extra-Trees [GEW06] is also described, as it is a main component of
V-API. This chapter also shows how to distribute the generation of Extra-trees
among a cluster of computers so as to dramatically reduce the computational
requirements.

• All the algorithms from the previous chapters are defined on finite action
spaces. Chapter 7 generalizes RLVC to continuous action spaces, leading to
the more general Reinforcement Learning of Joint Classes (RLJC) algorithm.

14 Chapter 1 — Introduction

This is useful, as robotic controllers often interact with their environment
through a set of continuously-valued actions (position, velocity, torque. . .).
RLJC adaptively discretizes the joint space of visual percepts and continuous
actions, which is in essence a novel approach.

Finally, Chapter 8 concludes this dissertation with a summary of the main con-
tributions and with a discussion of possible future directions.

CHAPTER

TWO

Reinforcement Learning

Reinforcement Learning (RL) is concerned with the closed-loop learning of a task
within an a priori unknown environment. The learning agent takes lessons from a
sequence of trial-and-error interactions with the surrounding environment. In RL,
the task to be solved is not directly specified. Instead, whenever the agent takes a
decision, it feels either pain or pleasure. This so-called reinforcement signal implicitly
defines the task. The goal of the agent is to learn to act rationally, that is, to learn
how to maximize its expected rewards over time. RL algorithms achieve this objective
by constructing control policies that directly connect the percepts of the agent to the
suitable reaction when facing these percepts.

The agent is never told the best reaction when facing a given situation, neither
whether it could reach better performance than the one it currently achieves. As
a consequence, RL schematically lies between supervised learning and unsupervised
learning. Indeed, in supervised learning, an external teacher always gives the correct
reaction to the agent and the agent has to learn to reproduce the given input-output
relation. On the other hand, the unsupervised learning protocol gives strictly no
clue about the goodness of the decisions: The agent has to structure its percepts
without getting feedback. The major advantages of the RL protocol are that it is
fully automatic, and that it imposes only weak constraints on the environment.

As a consequence, RL can be distinguished from other learning paradigms by three
main characteristics:

1. the implicit definition of a goal through reinforcements,

2. the temporal aspect of the task (a decision can have a long-term impact, both
on the system dynamics and on the earned rewards), and

3. the trial-and-error learning protocol (which contrasts with supervised and un-
supervised learning).

In this chapter, RL is introduced. Note that many textbooks present a more
thorough coverage of the fields of reinforcement learning and its relation to the theory
of dynamic programming [KLM96, BT96, SB98].

15

16 Chapter 2 — Reinforcement Learning

2.1 Markov Decision Processes
Reinforcement learning is traditionally defined in the framework of Markov Deci-
sion Processes (MDP). Bellman founded the theory of MDPs [Bel57a, Bel57b] by
unifying previous work about sequential analysis [Wal47], statistical decision func-
tions [Wal50], and two-person dynamic game models [Sha53].

The current section presents a self-contained introduction to finite Markov de-
cision processes. The theorems that are useful in reinforcement learning for finite
state-action spaces will be formally derived. The only statement that will not be
proved is the Bellman optimality theorem (Theorem 2.15). Our aim is to emphasize
how the main results about MDPs can be derived starting from the latter theorem.

The components that make up an MDP are rigorously defined in the subse-
quent sections. Notation that is similar, but not identical to that of Sutton and
Barto [SB98], will be used.

2.1.1 Dynamics of the Environment

A Markov decision process is a stochastic control system whose state changes over
time according to discrete-time dynamics, and whose evolution can be controlled
by taking a sequence of decisions. Therefore, the trajectory that is followed by the
system depends on the interactions between the “laws of motion” of the system and
the decisions that are chosen over time.

At any time t = 0, 1, . . ., the system can be observed and classified into one state
st of a set of states S. At any time t, the learning agent influences its environment
by taking one action at of a set of actions A, hereby controlling the system. The
laws of motion of the MDPs are assumed to be governed by a time-invariant set of
transition probabilities. The probability of reaching a state st+1 after applying the
action at in the state st does not depend on the entire history of the system, but
only on the current st and at:

P

st+1 = s | s0, a0, s1, a1, . . . , st, at︸ ︷︷ ︸
history of the system

 = P{st+1 = s | st, at}. (2.1)

This strong assumption on the system dynamics is generally known as the Markov
hypothesis . Thus, the dynamics of MDPs can be entirely specified by defining a
probabilistic relation T that links st, at and st+1:

T (s, a, s′) = P{st+1 = s′ | st = s, at = a}. (2.2)

Of course, the Markov hypothesis has many interesting implications that will be
investigated in the next sections. Note however that despite the Markov hypothesis,
an action can have a long-term impact on the trajectory of the system, and that the
outcome of a decision is generally not perfectly predictable, because of the stochastic
aspect of T .

Section 2.1 — Markov Decision Processes 17

2.1.2 Reinforcement Signal
In MDPs, the control law that has to be learned is not directly specified. Rather,
it is defined implicitly through a reinforcement signal that provides a quantitative
evaluation of the reactions of the learning agent. Every time it takes a decision, the
agent receives either a reward or a punishment, depending on its performance. So,
the reinforcement signal tells which task is to be solved, but not how to solve the
task. From a biological perspective, the reinforcement signal corresponds to pleasure
or pain feelings that living beings may perceive while learning to achieve a task.

Concretely, at each time stamp t, the agent receives a real number rt+1 =
R(st, at), that is called the reinforcement at time t + 1 and that depends on the
state st and on the action at that was performed in this state. In this framework,
costs can be encoded as negative rewards.

Markov Decision Processes can now be formally defined as the assembly of a
Markovian dynamics with a reinforcement signal:

Definition 2.1. A Markov Decision Process (MDP) is a quadruple 〈S, A, T ,R〉,
where:

• S is a set of states ,

• A is a set of actions ,

• T : S × A 7→ Π(S) is a probabilistic transition relation from the state-action
pairs to the states, and

• R : S × A 7→ R is the reinforcement signal that maps a state-action pair to a
real number.

Remark 2.2. In this definition, the notation R : E 7→ Π(F) is employed to desig-
nate a probabilistic relation R that maps a set E to a set F . Thus, R is a probability
density function over the Cartesian product E × F . 2

A very important subclass of Markov decision processes is constituted by those
MDPs whose set S of states and set A of actions are both finite:

Definition 2.3. A Finite Markov Decision Process (FMDP) is a Markov decision
process 〈S, A, T ,R〉 such that S and A are finite sets.

2.1.3 Histories and Returns
As the agent interacts with its environment, the MDP describes a trajectory in the
set of states. This trajectory depends on the actions that are chosen by the agent.
So, the whole history of an MDP is a sequence of state-action pairs that is composed
of the states that have been visited so far and of the previous actions that have been
chosen when facing these states:

18 Chapter 2 — Reinforcement Learning

Definition 2.4. The history of an MDP up to time stamp t ≥ 0 is a sequence
ht = (s0, a0, s1, a1, . . . , st−1, at−1, st). The set Ht of possible histories up to t is:

Ht = (S × A)t × S, (2.3)

and the set H of all possible histories is:

H =
⋃
t∈N

Ht =
⋃
t∈N

(S × A)t × S. (2.4)

To each history ht ∈ Ht corresponds a sequence r0, r1, . . . , rt−1 of earned rein-
forcements, where rk = R(sk, ak) for all k < t. Importantly, the immediate reward
or punishment can be the consequence of decisions that were made long before. In
other words, the reinforcements can be delayed . Therefore, the actions cannot be
viewed independently of each other, and the agent may face a dilemma: Taking a
less immediately attractive action can enable the agent to reach parts of the state
space of the MDP where it can get higher future reinforcements. This makes for
example particular sense when modeling two-person games such as chess, in which
sacrificing a piece might lead to an advantage later in the game, or when modeling
robotic tasks, in which each elapsed period of time induces a cost. Thus, the agent
must balance its propensity for acquiring high immediate reinforcements with the
possibility of earning higher rewards afterward.

Consequently, the concept of returns is introduced, that embodies this trade-off
the learning agent has to make between present and future reinforcements. Given
an infinite history h ∈ H∞ of the interactions of the agent with the MDP, the
corresponding return is the cumulative sum of reinforcements over time:

Definition 2.5. The (discounted) return R(h) that is collected during an infinite
history h ∈ H∞ is:

R(h) =
∞∑

t=0

γtR(st, at), (2.5)

where γ ∈ [0, 1[is the discount factor . Such a series always converges.

The temporal discount factor γ gives the current value of the future reinforcements.
From a financial point of view, γ corresponds to the time value money , that is one
of the basic concepts of finance: Money received today is more valuable than money
received in the future by the amount of revenues it could yield. As it is assumed that
γ < 1, the effect of distant future reinforcements becomes negligible. To intuitively
paraphrase this definition, as future decisions influence the benefits of the current
decision, the definition of discounted return stresses the short-term rewards, without
totally neglecting the long-term consequences.

Note that as γ tends to 1, the agent takes long-term consequences more strongly
into account. Conversely, if γ = 0, the agent is myopic and only tries to maximize
its immediate reinforcements1

1By convention, 00 = 1 and 0t = 0 if t is a non-zero positive integer.

Section 2.1 — Markov Decision Processes 19

2.1.4 Control Policies
The agent interacts with the MDP through its effectors by taking actions. Whenever
the agent faces some state, it must choose a suitable action according to the history
of the system. The internal process of choosing actions is captured by the notion of
decision rule:

Definition 2.6. A decision rule δ : H 7→ Π(A) is a probabilistic mapping from the
set of possible histories to the set of actions.

A decision rule δ(ht, at) tells the agent the probability with which it should choose
an action at ∈ A if the history of the system is ht ∈ Ht at a given time stamp t. To
control the system over time, a sequence of such decision rules must be used, one
for each time stamp:

Definition 2.7. A general control policy π is an infinite sequence of decision rules:
π = (δ0, δ1, . . . , δt, . . .).

The primary objective of the theory of MDPs is to find general control policies that
are optimal for a given MDP, in a sense that remains to be defined.

Three very important subclasses of general control policies are now discussed.
Firstly, a general control policy is Markovian if the decision rules do not depend on
the whole history of the system, but only on the current state st:

Definition 2.8. A general control policy π = (δ0, δ1, . . . , δt . . .) is Markovian (or
memoryless) if, for each time stamp t, there exists a probabilistic mapping δ′t : S 7→
Π(A) such that δt(h) = δ′t(st) for all h = (s0, a0, . . . , st) ∈ Ht.

Markovian control policies are particularly attractive, as the agent is not required
to memorize the entire history of its interactions with the environment to choose
the dictated action. Intuitively, it seems natural to only consider Markovian control
policies when solving MDPs because the dynamics of MDPs is itself Markovian.
This insight will be confirmed later.

Secondly, if the same decision rule is used at each time stamp, the general control
policy is called stationary:

Definition 2.9. A general control policy π = (δ0, δ1, . . . , δt, . . .) is stationary (or
time invariant) if δi = δj for all i, j ∈ N.

Evidently, any decision rule δ can be extended to a control policy π = (δ, δ, . . . , δ, . . .).
Finally, if each decision rule defines a single-valued transform from the states to

the actions, the general control policy is called deterministic:

Definition 2.10. A general control policy π = (δ0, δ1, . . . , δt . . .) is deterministic if,
for each time stamp t and each possible history ht ∈ Ht, there exists one action at

such that δt(ht, at) = 1.

As a shorthand, if π is deterministic, the notation δt(ht) will refer to the action that
is selected with probability 1 by the decision rule δt if faced with the history ht ∈ Ht.

20 Chapter 2 — Reinforcement Learning

Remark 2.11. If a policy π is at the same time Markovian and stationary, the
policy collapses to a probabilistic mapping S 7→ Π(A) from the states to the actions.
In such case, π(s, a) will designate the probability of choosing action a ∈ A when
facing some state s ∈ S. If π is moreover deterministic, π(s) will refer to the action
that is selected with probability 1. 2

2.1.5 Value Functions
Suppose that, starting in a particular state, actions are taken following a fixed control
policy. Then the expected sum of rewards over time is called the value function of
the policy that is followed. More precisely, each general control policy π is associated
with a value function V π(s), that gives for each state s ∈ S the expected discounted
return obtained when starting from state s and thereafter following the policy π:

Definition 2.12. The value function V π : S 7→ R of a general control policy π for
any state s ∈ S is:

V π(s) = Eπ {R(h) | s0 = s} = Eπ

{
∞∑

t=0

γtR(st, at) | s0 = s

}
, (2.6)

where Eπ denotes the expected value if the agent follows π, starting with an history
h0 that only contains s. V π(s) is called the utility or the value of the state s under
the policy π.

Evidently, the value function for a given general control policy is by definition
unique. It is now proved that value functions of Markovian, stationary control
policies satisfy a very specific recursive relation in finite MDPs. This property
expresses a relationship between the value of a state and the values of its successor
states:

Theorem 2.13 (Bellman equation). Let π be a Markovian, stationary control
policy for a finite MDP 〈S, A, T ,R〉. Using the notation from Remark 2.11, we get:

V π(s) =
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π(s′)

)
, for each s ∈ S. (2.7)

Proof. The proof is given in Appendix A. 2

If the considered policy is also deterministic, this theorem can be readily special-
ized as:

Corollary 2.14. If π is a Markovian, stationary, deterministic control policy in a
finite MDP, then:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′), for all s ∈ S. (2.8)

Section 2.2 — Dynamic Programming 21

2.2 Dynamic Programming
Any Markov decision process induces a problem of sequential decision making and of
stochastic control, that will be referred to as a Markov decision problem. Dynamic
Programming (DP) was introduced by Bellman [Bel57a] as a way to solve various
recursive problems that happen to include Markov decision problems. We now give
some important results from the theory of dynamic programming and investigate
the link between DP algorithms and MDPs.

Note that all the elements from the previous sections (system dynamics, returns,
control policies, value functions) can be defined even when the state space S and the
action space A are infinite. However, from this point on, the study will be restricted
to finite MDPs. A great deal of literature is devoted to such models [How60, Der70,
Whi93, Tij94, Ber95, Ber00]. Most of the following results also hold when considering
infinite state spaces and/or infinite action spaces, if some continuity conditions on
T and R are met [Hin70, HLL96, HLL99].

We conclude this introduction by mentioning work about continuous-time dy-
namics in the MDP literature. A noticeable extension of MDPs is that of continuous-
time MDPs [How60], in which the system evolution is described continuously in time,
and in which rewards are accumulated continuously in time. Such models can be con-
verted into discrete-time models through a discretization process that is nowadays
known as uniformization [Lip75, Ser79]. It is also possible to define Semi-Markov
Decision Processes [How71] that relax the assumption of actions with exponential
delay distributions that is embedded inside the definition of continuous-time MDPs.

2.2.1 Markov Decision Problems
Value functions lie at the heart of the theory of DP. Indeed, once a state s ∈ S is
fixed, they allow to rank the policies according to their utility for this state. DP
is interested in a more general problem, that is to compute policies that maximize
the utility of all the states of the MDP. Obviously, proving the existence of such
optimal policies is not immediate. This is precisely the topic of the following central
theorem that is attributed to Bellman:

Theorem 2.15 (Bellman optimality theorem). There exists at least one Mar-
kovian, stationary, deterministic control policy π∗ such that:

V π∗(s) = max
π

V π(s), for all s ∈ S. (2.9)

All general policies that satisfy this relation are called optimal policies . Furthermore,
all optimal policies share the same unique value function, that is denoted V ∗(s) and
that satisfies:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
, for all s ∈ S. (2.10)

V ∗ will be referred to as the optimal value function.

22 Chapter 2 — Reinforcement Learning

Proof. Derman provides a rigorous treatment of this result [Der70, Theorem 3.1].
Note that it is possible to prove that any general control policy can be converted into
an equivalent Markovian policy (i.e. that has the same value function), independently
of any optimality consideration [Whi93]. 2

Intuitively, Equation 2.10 expresses the fact that the utility of a state under an
optimal policy is equal to the expected return for taking the best action from that
state.

This theorem not only claims the existence of an optimal general control policy,
but also that it is always possible to find an optimal Markovian, stationary, deter-
ministic control policy. This result is pretty remarkable, as it implies that optimal
decisions can always be taken without taking care of time, neither of the history
of the system. The possibility of focusing on such a very simple class of policies
is mostly due to the Markovian assumption that is embedded inside the definition
of MDPs. This explains why introductory work about MDPs and reinforcement
learning generally focus on such a particular class of policies. This also motivates
the following definitions:

Definition 2.16. A percept-to-action mapping π : S 7→ A is defined as a Markovian,
stationary, deterministic control policy. For such policies, the shorthand π(s) will
designate the action that is deterministically selected by the control policy at any
time stamp when facing the state s ∈ S.

Definition 2.17. Given an MDP 〈S, A, T ,R〉 and a discount factor γ, the Markov
decision problem is defined as the computation of a percept-to-action mapping that
is optimal with respect to the MDP.

2.2.2 Contraction Mappings
Markov decision problems have just been formalized. Classical DP algorithms that
enable the solving of MDPs given the full knowledge of its structure 〈S, A, T ,R〉 are
now described. For this purpose, it is important to notice that Equations 2.7 and
2.10 share a similar recursive structure: They relate the utility of a state to that of
the successors of this state. Let π be a Markovian, stationary control policy. Two
convenient transforms (resp. called T π and T) are now introduced, that map a value
function V to another value function (resp. T πV and TV):

(T πV)(s) =
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
, and (2.11)

(TV)(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
, (2.12)

for all s ∈ S. Using these transforms, Equations 2.7 and 2.10 can be respectively
rewritten under a more compact form:

T πV π = V π, and (2.13)

TV ∗ = V ∗. (2.14)

Section 2.2 — Dynamic Programming 23

The mapping T is often referred to as the Bellman backup operator in the literature.
T π and T should not be understood as just a shorthand notation. Indeed, both

T π and T are contraction mappings, and such contraction mappings have many
interesting properties in the framework of dynamic programming.

Definition 2.18. Let || · || be a norm on Rn and γ be a scalar in [0, 1[. Let
C : Rn 7→ Rn be a mapping from vectors of real numbers to vectors of real numbers.
C is a contraction mapping if there exists a constant ρ ∈ [0, 1[such that:

||Cx− Cy|| ≤ ρ||x− y||, (2.15)

for all x, y ∈ Rn. ρ is called the contraction factor of C.

Theorem 2.19. T π and T are contraction mappings with respect to the maximum
norm ||V ||∞ = maxs∈S |V (s)|.2

Proof. The proof is postponed to Appendix A. 2

Contraction mappings play a crucial role in DP thanks to the following general
result:

Theorem 2.20 (Banach Fixed Point Theorem). Let C : Rn 7→ Rn be a con-
traction mapping. Then, (a) there exists a unique point x∗ ∈ X such that C(x∗) =
x∗ (i.e. C admits a unique fixed point), and (b) for every x0 ∈ X, the sequence:

x0, C(x0), C
2(x0), . . . , C

t(x0), . . .

converges to x∗ geometrically. In particular, the following holds for any t ∈ N:

||Ct(x0)− x∗|| ≤ ρt||x0 − x∗||. (2.16)

Proof. Bertsekas et al. provide a comprehensive proof of this result [BT89]. 2

Note that the Banach fixed point theorem immediately implies the uniqueness of
the optimal value function, which was already stated in Theorem 2.15. It will also
be used to prove the convergence of DP algorithms. Furthermore, it allows the use
of a simple procedure for extracting an optimal percept-to-action mapping π∗ from
the optimal value function V ∗:

Theorem 2.21. Let π∗ be a percept-to-action mapping defined as3:

π∗(s) = argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
, (2.17)

for all s ∈ S. Then, π∗ is an optimal policy.

2Here, we take some liberty with the notation. Strictly speaking, a value function is not a vector
of real numbers, and thus cannot be a contraction mapping as defined earlier. However, as S is
finite, each state s ∈ S can be uniquely associated with an index in {1, . . . , |S|}. Therefore, there
exists a bijection between value functions for a state space S, and vector of real numbers of R|S|.
So, we can talk indifferently about value functions and vectors of reals.

3Note that π∗ can be assumed deterministic: If more than one action reaches the maximum for
some state s ∈ S, then π∗ chooses one arbitrary, fixed action among this set.

24 Chapter 2 — Reinforcement Learning

Proof. The proof uses Banach fixed point theorem, see Appendix A. 2

Intuitively, this result shows that, once the optimal value function V ∗ has been
computed, an optimal percept-to-action mapping π∗ can be built taking a greedy
action with respect to V ∗. Therefore, the problem of computing an optimal policy
for an MDP is equivalent to the problem of computing the optimal value func-
tion. Indeed, if an optimal policy π∗ is given, it is possible to compute V ∗ through
Equation 2.7. Conversely, an optimal policy π∗ can be extracted from V ∗ through
Equation 2.17.

This fundamental result is at the basis of two well-known DP algorithms, Value
Iteration and Policy Iteration, that are described in the next sections. In Value
Iteration, the optimal value function V ∗ is first computed, then an optimal percept-
to-action mapping π∗ is extracted from V ∗, whereas in Policy Iteration, an optimal
percept-to-action mapping π∗ is directly computed. A third general approach exists,
but it will not be discussed further in this dissertation. It consists in formulating
the Markov decision problem as a linear programming problem [Man60]. The in-
terested reader can found more detail in Derman’s book [Der70], as well as in some
surveys [KLM96, SB98].

2.2.3 State-Action Value Functions

Before describing Value and Policy Iteration, a last important concept in the study
of Markov decision problems is introduced. We remark that extracting an optimal
policy π∗ through Equation 2.17 requires the knowledge of both R and T , even if
V ∗ is known. To put it in other words, the optimal value function does not embed
the stochastic aspect of the MDPs, but the knowledge of this aspect is necessary
to choose the best reaction. Clearly, this is a limitation of value functions, which
becomes a true liability in reinforcement learning. Indeed, RL algorithms do not
assume the knowledge of the underlying MDP, which contrasts with DP algorithms.

This motivates the introduction of state-action value functions4, that are a con-
venient way to embed, in a single framework, the dynamics of the environment
and the value functions. State-action value functions became an important part
of reinforcement learning with the introduction of Q-learning (cf. Section 2.4.2) by
Watkins [Wat89, WD92]. Whereas in reinforcement learning state-action value func-
tions are standard, they are not often considered explicitly in the literature about
Markov decision processes and dynamic programming.

Given a general control policy π, the state-action value function gives the ex-
pected discounted return obtained by starting from some state s ∈ S, taking some
action a ∈ A, and thereafter following π:

Definition 2.22. The state-action value function Qπ : S × A 7→ R of a general

4In the RL literature, state-action value functions are often referred to as Q-functions or quality
functions. Sutton provides a discussion of this terminology [Sut04] and why it should be avoided.

Section 2.2 — Dynamic Programming 25

control policy π for any state s ∈ S and any action a ∈ A is:

Qπ(s, a) = Eπ

{
∞∑

t=0

γtR(st, at) | s0 = s, a0 = a

}
. (2.18)

As a direct consequence of the definitions, the following equations relate the value
function and the state-action value function of a Markovian, stationary policy π:

V π(s) =
∑
a∈A

π(s, a)Qπ(s, a), and (2.19)

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′), (2.20)

for all s ∈ S and a ∈ A. Likewise, the Bellman equation 2.13 can be adapted as:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Qπ(s′, a′). (2.21)

The counterpart of Bellman optimality theorem for state-action value functions
states that all the optimal policies share the same unique state-action value function,
that is denoted Q∗(s, a) and that satisfies:

Q∗(s, a) = max
π

Qπ(s, a), and (2.22)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′). (2.23)

Q∗ will be referred to as the optimal state-action value function. Finally, once the
optimal state-action value function Q∗ is known, it is possible to extract an optimal
percept-to-action mapping π∗ along with the optimal value function V ∗:

π∗(s) = argmax
a∈A

Q∗(s, a), and (2.24)

V ∗(s) = max
a∈A

Q∗(s, a), (2.25)

for all s ∈ S. Indeed, Theorem 2.21 has shown that an optimal percept-to-action
mapping π∗ takes a greedy action with respect to Q∗. Very importantly, these two
equations do not require the knowledge of the transition relation T . This contrasts
with the optimal value function V ∗.

We conclude this section by introducing two additional Bellman backup opera-
tors, denoted Hπ and H, that map a state-action value function to another state-
action value function. These transforms play the same role as T π and T for value
functions. Given a Markovian, stationary control policy π, they are defined as:

(HπQ)(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Q(s′, a′), and (2.26)

(HQ)(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q(s′, a′), (2.27)

26 Chapter 2 — Reinforcement Learning

for all s ∈ S and a ∈ A. Similarly than for value functions, Bellman equation and
Bellman optimal equation can be shortened as:

HπQπ = Qπ, and (2.28)

HQ∗ = Q∗. (2.29)

2.2.4 Value Iteration
Value Iteration is a DP algorithm that is due to Bellman [Bel57a]. It computes the
optimal state-action value function Q∗ by constructing a sequence of state-action
value functions Q0, Q1, . . . , Qi, . . . through the following iterative rule:

Qi+1 = HQi, (2.30)

starting with an arbitrary state-action value function Q0 (generally, Q0(s) = 0 for
all states s ∈ S). A stopping criterion that is commonly used for this update rule
is to terminate when ||Qi+1 − Qi||∞ drops below a fixed threshold ε. Convergence
of this process to Q∗ is guaranteed thanks to the Banach fixed point theorem and
to the fact that H is a contraction mapping (cf. Theorem A.3 of Appendix A). An
optimal percept-to-action mapping π∗ is thereafter deduced by taking the greedy
action with respect to Q∗ through Equation 2.24.

A more algorithmic description of Value Iteration was given by Sutton and
Barto [SB98]. The version of Value Iteration we have presented is Jacobi-like: Two
separate state-action value functions Qi+1 and Qi are used. It is worth pointing out
that a Gauss-Seidel variant of Value Iteration exists. In this setup, the updated
components of equation Qi+1 = HQi are used as soon as they become available.
The latter version also converges. For a discussion of asynchronous value iteration
in general we refer to Bertsekas and Tsitsiklis [BT96].

Remark 2.23. Value Iteration is generally presented as an iterative algorithm
that computes the optimal value function V ∗ by applying the update rule Vi+1 =
TVi. As discussed in Section 2.2.2, this process also converges, because T is a
contraction mapping. This differs from the version of Value Iteration we have just
presented that targets the optimal state-action value function Q∗. This choice is
mostly conventional: It will smooth the transition between dynamic programming
and reinforcement learning. Furthermore, it will facilitate the description of the
Visual Approximate Policy Iteration algorithm in Chapter 6. 2

2.2.5 Policy Iteration
The Policy Iteration algorithm is a second important DP algorithm that is usually
attributed to Howard [How60]. Rather than learning the V ∗ or the Q∗ optimal
functions as in Value Iteration, Policy Iteration directly learns an optimal control

Section 2.2 — Dynamic Programming 27

policy. Starting with an initial, arbitrary percept-to-action mapping π0, Policy Iter-
ation constructs successive improved policies π1, π2, . . . by relying on two interleaved
learning components that are described below: Policy Evaluation and Policy Im-
provement.

Policy Evaluation

The Policy Evaluation component computes the state-action value function Qπk(s, a)
of the current policy πk. A possible way of computing Qπk(s, a) is to solve Equa-
tions 2.7 for obtaining V πk(s) then to extract Qπk(s, a) through Equation 2.20, or,
equivalently, to directly solve Equations 2.21. These are indeed simple systems of
respectively |S| and |S| × |A| linear equations that can be solved using an algo-
rithm as simple as Gauss-Seidel elimination. An in-depth discussion can be found
in Howard [How60, pp. 34–37,81–83].

The main weakness of this approach is that the dimension of the system depends
on the number of states, which causes performance issues when the state space is
large. This problem can be overcome to some extent if distributed computation
among a cluster of computers is used [BT89]. However, a more commonly used
approach for Policy Evaluation is to deal with this problem in a way that is very
similar to the Value Iteration algorithm. Indeed, the Hπk mapping is also a con-
traction mapping (cf. Theorem A.4 of Appendix A), so an iterative algorithm that
is almost identical to Value Iteration can be used. The only difference with Value
Iteration is that H is replaced by Hπk in the update rule. Concretely, this version
of Policy Evaluation starts with a Q0 state-action value function that is taken equal
to Qπk−1 , then generates a sequence of state-action value functions Q1, . . . , Qi, . . .
through the following iterative rule:

Qi+1 = HπkQi. (2.31)

The algorithm stops when the difference between Qi+1 and Qi in the maximum
norm drops below a threshold. This process is often referred to as Modified Policy
Evaluation [PS78]. One must be aware that Modified Policy Evaluation generally
leads to an approximation of Qπk , whereas solving of the system of linear equations
produces the exact result. The insight is that an exactly evaluated policy is not
required in order to improve it. The choice of Q0 = Qπk−1 as a starting point
reduces the number of iterations before convergence, because the policy πk generally
shares common decisions with πk−1.

Policy Improvement

The Policy Improvement step consists in improving the current policy πk by choosing
a strictly improving action in as many states as possible. This step uses the Qπk

that was computed by the Policy Evaluation step to generate an improved policy
πk+1. This improved policy πk+1 is usually chosen so as to be the greedy policy with
respect to Qπk , i.e. so as to maximize the state-action value function Qπk :

πk+1(s) = argmax
a∈A

Qπk(s, a), (2.32)

28 Chapter 2 — Reinforcement Learning

for all s ∈ S. The soundness of this approach is proved by showing that the value
function of πk+1 is everywhere at least as good as the value function of πk:

Theorem 2.24 (Policy Improvement theorem). Let π and π̃ be two Marko-
vian, stationary control policies. Assume that π̃ is such that:∑

a∈A

π̃(s, a)Qπ(s, a) ≥ V π(s), for all s ∈ S. (2.33)

Then, we have:
V π̃(s) ≥ V π(s), for all s ∈ S. (2.34)

Proof. An intuitive proof of this theorem is provided in Sutton and Barto [SB98].
An in-depth discussion is provided in Appendix A. 2

Obviously, if πk+1 is defined as in Equation 2.32, the hypothesis of this theorem
is verified. Thus, we conclude that πk+1 is at least as good as πk in every state with
respect to their value function.

Discussion

Once the policy has been improved, we evaluate the new policy and again try to im-
prove it. The algorithm stops when there are no strictly improving action, i.e. when
maxa∈A Qπk(s, a) = V πk(s) for every state s ∈ S. Indeed in this case, Equation 2.20
gives:

V πk(s) = max
a∈A

Qπk(s, a) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V πk(s′)

)
. (2.35)

Consequently, the Bellman optimality theorem 2.15 states that the value function
V πk of πk corresponds to the optimal value function V ∗. We conclude that πk is an
optimal control policy.

As mentioned earlier, Policy Estimation together with Policy Improvement give
rise to the Policy Iteration algorithm. Once again, the interested reader can find an
algorithmic treatment of Policy Iteration in Sutton and Barto [SB98]. If Modified
Policy Evaluation is used instead of solving a linear system of equations, the resulting
algorithm is known as Modified Policy Iteration [PS78]. Note that Value Iteration
can be thought of as the extreme case of Modified Policy Iteration when the Modified
Policy Evaluation step carries out only a single update.

Importantly, because S and A are both assumed to be finite, the number of pos-
sible percept-to-action mappings is also finite. Therefore, Policy Iteration always
converges in a finite number of iterations, if the Policy Evaluation step is achieved
by resolving a system of linear equations. Furthermore, the number of improvements
that are needed before convergence is typically small because each Policy Improve-
ment step is based on accurate information about the value function of the current
policy [How60, BT89]. This makes of Policy Iteration an attractive DP algorithm,

Section 2.3 — Generic Framework of Reinforcement Learning 29

if the computational complexity that is intrinsic to the Policy Evaluation process is
neglected.

We conclude this section by pointing out that Policy Iteration can be interpreted
as an instance of the actor-critic paradigm [BSA83, KT03]. Actor-critic methods are
made up of two complementary parts: the critic that evaluates the current perfor-
mance of the learning agent, and the actor that is responsible for the optimization
of the current policy with respect to the conclusions of the critic. Such methods
are discussed in more detail in Sutton and Barton [SB98, Section 6.6]. In the case
of Policy Iteration, the critic component corresponds to Policy Evaluation, whereas
the actor component consists in the Policy Improvement mechanism.

2.3 Generic Framework of Reinforcement Learning
We now build on the theory of MDPs to define that of reinforcement learning.
Similarly to dynamic programming algorithms, reinforcement learning algorithms
target the solution of Markov decision problems. However, the main difference to
DP is that RL does not assume the a priori knowledge of the structure of the MDP
that has to be solved. A RL agent is aware of the state space S it can perceive
through its sensors, of the action space A it can span through its effectors, but not
of the system dynamics T , nor of the reinforcement signal R. This lack of a model
requires sampling the MDP to gather sufficient statistical knowledge about this
unknown model: The characteristics of the environment can only be determined by
performing actions in the environment and observing the results. As a consequence,
exploration is crucial for the RL process to succeed.

In RL, the agent strives to learn an optimal control policy by trial and error from
its interactions with the surrounding Markov decision process. Schematically, any
RL algorithm operates by repeating the following general sequence of operations:
At time t,

1. It senses its inputs to determine the current state st of the environment;

2. It selects an action at according to its control policy at time t;

3. It applies this action, which results in sensing a new state st+1 while perceiving
a numerical reinforcement rt+1 ∈ R; and

4. It updates its knowledge about the surrounding MDP and/or it modifies its
current control policy.

According to this general scheme, a single execution step of an RL algorithm
can be characterized by four elements: the initial state st, the chosen action at, the
perceived reinforcement rt+1 and the resulting state st+1. This leads to the definition
of an interaction:

Definition 2.25. An interaction is a quadruple:

〈st, at, rt+1, st+1〉 ∈ S × A× R× S. (2.36)

30 Chapter 2 — Reinforcement Learning

Therefore, RL is defined as the solution of Markov decision problems given a finite
sequence of interactions with the environment.

Note that at the second step of the RL scheme, an action at is selected. Impor-
tantly, the way at is chosen can be totally unrelated to the optimal control policy
that is to be learned. Sutton and Barto talk about the “behavior policy” when
designating the policy that is used at step 2 [SB98]. The behavior policy is to be
distinguished from the “estimation policy” that is iteratively constructed and im-
proved by the RL algorithm, and that will eventually lead to the optimal control
policy. The estimation policy is often not directly represented. Indeed, many RL
algorithms learn an estimation of the optimal state-action value function and the es-
timation policy is implicitly defined as the greedy policy with respect to this function
(cf. Equation 2.24).

Some RL algorithms allow the behavior policy to be fully randomized: The agent
keeps acting randomly, seemingly not taking immediate lessons from its interactions
with environment, but updating its internal model of the estimation policy. After
a certain amount of such random interactions, the algorithm stops and returns the
estimation policy, which has hopefully converged to the optimal control policy. Such
methods are often referred to as off-policy (or exploration insensitive) methods. On
the other hand, the estimation policy can be used directly as the behavior policy. It
this case, the behavior policy is continuously improved after each interaction, visibly
converging to an optimal control policy. This leads to the so-called on-policy (or
exploration sensitive) methods.

Although on-policy methods can seem much more spectacular from the AI point
of view, the development of off-policy methods is one of the biggest successes of RL.
Indeed, off-policy methods are able to learn from a static sequence of interactions
that has been independently collected. This makes them more flexible and less
dangerous, as it is not required to directly connect the learning agent (that initially
mostly act randomly) to the real-world system for the learning to succeed.

2.4 Reinforcement Learning in Finite Domains
To summarize, RL algorithms learn an optimal control policy π∗ from a finite
database of interactions. Of course, the generic RL scheme we have just presented
can be instantiated as a RL algorithm in various ways. We now review several
instances of the RL paradigm that can deal with finite state-action spaces. We
particularly focus the discussion on two well-known instances of the RL paradigm:
model-based methods and Q-learning. These algorithms will be useful in the sequel.

However, it is important to point out that a large part of the RL literature is
devoted to infinite domains. Indeed, we note that the generic framework of rein-
forcement learning does not assume the finiteness of the state space, neither of the
action space. Recent work in reinforcement learning generally focuses on infinite
state spaces. The discussion of such algorithms is deferred to Chapter 6. Simi-
larly, RL algorithms that can deal with infinite action spaces are discussed in Chap-
ter 7. We also mention that the RL paradigm can be adapted to continuous time

Section 2.4 — Reinforcement Learning in Finite Domains 31

by considering a continuous formulation of the Bellman equations, that are known
as Hamilton-Jacobi-Bellman equations [Doy96, MBM99, Doy00, Cou03, Mun06b].

2.4.1 Model-Based Algorithms
The most direct way for solving the reinforcement learning problem is to reconstruct
the surrounding MDP by estimating the reinforcement signal R and the transition
relation T from the database of interactions. Once this estimation is built, dynamic
programming algorithms such as Value Iteration or Policy Iteration can be applied.
This way, the RL problem is reduced to that of DP. Such approaches are often
referred to as model-based methods.

Extracting T from a finite database of interactions 〈st, at, rt+1, st+1〉 (with t =
1, . . . , N) can for example be achieved by computing the relative frequencies that
appear in the database. Similarly, R can be estimated as the mean of the perceived
reinforcements for each state-action pair. Formally, consider two states s, s′ ∈ S, an
action a ∈ A and a time stamp t ∈ {1, . . . , N}. We define the following shorthands:

ηt(s, a) =

{
1 if st = s and at = a,
0 otherwise;

(2.37)

ξt(s, a, s′) =

{
1 if st = s, at = a and st+1 = s′,
0 otherwise;

(2.38)

ζ(s, a) =
N∑

t=1

ηt(s, a). (2.39)

ζ(s, a) corresponds to the number of interactions that have s as starting point and
a as selected action. Using this notation, the estimated transition relation and
reinforcement signals can be defined as:

T (s, a, s′) =

∑N

t=1
ξt(s,a,s′)

ζ(s,a)
if ζ(s, a) 6= 0,

1 if ζ(s, a) = 0 and s′ = s,
0 otherwise;

(2.40)

R(s, a) =

{ ∑N
t=1

rtηt(s,a)
ζ(s,a)

if ζ(s, a) 6= 0,

0 otherwise.
(2.41)

The values for state-action pairs such that ζ(s, a) = 0 are purely conventional and
reflect a lack of exploration of the environment. Other prior estimate could be
used: For instance, in Equation 2.40, one might assume that all transitions are
equiprobable, thus setting T (s, a, s′) = 1/|S| whenever ζ(s, a) = 0.

Of course, model-based methods are inherently limited to batch processing: The
RL process can only start when the database of interactions has been collected. As
a consequence, they are off-policy methods. In practice, as they make very effective
use of available data, model-based algorithms give very good results, on the strict
condition that the number of state-action pairs is relatively small and that the
database is representative enough. If this is not the case, function approximation
techniques are needed, which will be introduced later.

32 Chapter 2 — Reinforcement Learning

2.4.2 Q-Learning
Q-learning is certainly the most well-known model-free RL algorithm [Wat89]. This
algorithm directly learns the optimal state-action value function Q∗. It was in-
spired by the temporal difference learning process that was previously proposed by
Sutton [Sut88]. It is popular both for its convergence results and for its ease of
implementation.

Q-learning stepwise updates an estimation of Q∗ through a bootstrapping process:
The estimate of some state-action optimal value is updated with the estimated
optimal value of a successor state. Recall the Bellman optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′). (2.42)

Suppose that Q̂ is a state-action value function that corresponds to the current
estimation of Q∗. Let now 〈st, at, rt+1, st+1〉 be an interaction. Let also (s, a) ∈
S × A be a state-action pair. Then the value maxa′∈A Q̂(s′, a′) is an estimation
of
∑

s′∈S T (s, a, s′) maxa′∈A Q̂(s′, a′) if the successor s′ is chosen with probability
T (s, a, s′). But following the transitions of the environment ensures making a tran-
sition from s to s′ with probability T (s, a, s′). Thus

rt+1 + γ max
a′∈A

Q̂(st+1, a
′) (2.43)

is an unbiased estimate of the optimal state-action value Q∗(st, at) that is derived
from the considered interaction (cf. Equation 2.42). The temporal difference at time
t is the difference between this observed estimate and the old estimate:

∆t = rt+1 + γ max
a′∈A

Q̂(st+1, a
′)− Q̂(st, at). (2.44)

This value ∆t is often equally referred to as the Bellman residual at time t. Note
that if the system is deterministic, the Bellman residuals are equal to zero as soon as
Q̂ has converged to the optimal state-action value function by virtue of the Bellman
optimality theorem. Based on this temporal difference, we define a new estimate Q̂′

of the optimal state-action value function as:

Q̂′(s, a) =

{
Q̂(s, a) if s 6= st or a 6= at,

Q̂(s, a) + α∆t otherwise,
(2.45)

where α is the learning rate parameter that balances the importance of the boot-
strapping. Thanks to this parameter, each state-action value Q̂(s, a) progressively
converges to the expected future rewards in the face of stochastic transitions of the
environment.

Following the steps detailed in this discussion, Q-learning builds a sequence of
state-action values functions Q̂0, Q̂1, . . . by repeatedly using the following update
rule whenever a new interaction 〈st, at, rt+1, st+1〉 is acquired:

Q̂t+1(st, at) = Q̂t(st, at) + αt(st, at)

(
rt+1 + γ max

a′∈A
Q̂t(st+1, a

′)− Q̂t(st, at)

)
, (2.46)

Section 2.4 — Reinforcement Learning in Finite Domains 33

leaving all the state-action pairs that are different from (st, at) unchanged. The
step-size parameter αt(st, at) may change from one iteration to the next and may
depend both on st and at. Note that Q-learning is an off-policy method, thus the
behavior policy can be distinct from the estimation policy.

Convergence Properties

The convergence of Q-learning has been investigated by several authors [WD92,
JJS94, Tsi94, BT96]. It has been proved that this algorithm converges with proba-
bility 1 to the optimal state-action value function if the behavior policy visits each
state-action pair infinitely often and if the learning rate αt decreases to zero at a
suitable rate. Given an infinite sequence of interactions, the following conditions
precisely define what is a “suitable rate”:

∞∑
t=0

αt(s, a) = ∞ (2.47)

∞∑
t=0

α2
t (s, a) < ∞, (2.48)

for each state-action pair (s, a) ∈ S × A. For practical purposes, a common choice
for αt that meets these two requirements is:

αt(st, at) =
1

1 + v(st, at)
, (2.49)

where v(st, at) denotes the number of visits to the state-action pair (st, at) before
time t. This choice requires the storage of a counter for each state-action pair.

The proof of convergence of Bertsekas and Tsitsiklis relies on the fact that the
optimal state-action function Q∗ is a fixed point of the Bellman backup operator
H [Tsi94, BT96]. Another approach is to relate Q-learning to the framework of
stochastic approximation theory that was defined by Robbins and Monro [RM51],
as Q-learning can be described as a stochastic version of Value Iteration (compare
Equations 2.42 and 2.43) [JJS94].

Exploration vs. Exploitation Trade-Off

As mentioned earlier, Q-learning is an off-policy algorithm. However, contrarily to
model-based methods, it is not limited to batch processing and progressively learns
while interacting with the environment: Q-learning is an on-line method, whereas
model-based approaches are off-line methods [KLM96]. It is therefore possible for
Q-learning to control the system at the same time it learns an optimal policy.

In such an on-line setup, Q-learning must not only randomly explore the system
to gather more accurate knowledge about its dynamics, but should also exploit what
it has learned so far by greedily choosing actions with respect to its current estimate
of the Q∗ function. If there is insufficient exploration, the algorithm will likely

34 Chapter 2 — Reinforcement Learning

converge to a sub-optimal control policy. On the other hand, deferring exploitation
tends to disregard the on-line control of the system. As a consequence, there exists
a trade-off between exploration and exploitation. Evidently, this trade-off is not
unique to Q-learning and must be faced by any on-line RL algorithm. This has led
to the development of exploration strategies that choose the actions by balancing
exploration with exploitation. In essence, an exploration strategy tells how to derive
a behavior policy from an estimation policy.

Let Q̂(s, a) be the current estimate of Q∗ of a fixed RL algorithm at a given time.
The ε-greedy (or semi-uniform random) exploration strategy [Wat89] is the simplest
one. This strategy depends on a parameter parameter ε ∈ [0, 1]. The behavior policy
it defines either picks an action at random with probability ε, or follows the greedy
action argmaxa∈A Q̂(s, a) with probability 1 − ε. Formally, the ε-greedy strategy
defines a Markovian, stationary, non-deterministic behavior policy π : S 7→ Π(A)
(cf. Remark 2.11) as:

π(s, a) =

{
1−ε
M

if Q̂(s, a) = maxa′∈A Q̂(s, a′),
ε
|A| otherwise,

(2.50)

where M is the number of actions a ∈ A such that Q̂(s, a) = maxa′∈A Q̂(s, a′).
The Boltzmann (or Gibbs , or softmax) exploration strategy [Luc59, Bri90] is

slightly more sophisticated and is based on the Boltzmann distribution. Instead of
assigning the same probability to each action a ∈ A when a random selection is
performed in a state s ∈ S, the Boltzmann strategy weights the actions according
to the value Q̂(s, a): Actions leading to higher expected returns are more likely
to be selected. A temperature parameter T ≥ 0 determines the amount to which
the probabilities are affected. A zero temperature leads to a fully greedy behavior
policy, whereas a temperature that tends to infinity generates a uniform random
policy. Thus, varying the temperature defines a smooth continuum between greedy
and random policies. The behavior policy π : S 7→ Π(A) that is induced by the
Boltzmann strategy is:

π(s, a) =
eQ̂(s,a)/T∑

a′∈A eQ̂(s,a′)/T
. (2.51)

These two exploration strategies satisfy the convergence conditions of Q-learning.
In practice, the ε parameter or the temperature T is gradually reduced, in order to
progressively move from a purely exploratory policy to an exploitation policy as the
RL algorithm better captures the dynamics of the environment.

Both of these so-called undirected strategies have limitations. Indeed, the proper
initial values for ε and T , as well as their decaying rate, are problem specific and
must often be hand-tuned: They have no way to detect when enough exploration
has taken place. This can be penalizing when interactions are expensive to acquire.
More complex exploration strategies, referred to as directed strategies , solve this
problem to some extent by keeping track of which areas of the underlying MDP
have been explored so far [RP03]. This is generally done by counting the number of
visits to each state-action pair (s, a) and by storing information about the statistical
confidence in the values Q̂(s, a).

Section 2.4 — Reinforcement Learning in Finite Domains 35

Directed strategies comprise interval estimation [Kae90, KLM96] and model-
based interval estimation [Wie99]. Very sketchily, these methods compute a confi-
dence interval for each state-action value, then choose the action with the highest
upper bound. Initial exploration is assured because of an initially large confidence
interval, and the exploration decreases as the confidence in the estimated optimal
state-action values grows. The counter-based [Thr92], the recency-based [Thr92],
and the error-based [Sch91] directed exploration strategies are also commonly used.

2.4.3 Survey of Other Algorithms
Of course, model-based methods and Q-learning are just a small subset of the RL
algorithms that have been proposed over years in the literature. We now give some
pointers to other algorithms that are applicable when dealing with finite state-action
spaces. Additional material can be found in reference textbooks [KLM96, BT96,
SB98].

Temporal-Difference Algorithms

Q-learning belongs to the family of temporal-difference methods (cf. Section 2.4.2).
SARSA is another algorithm from this family [RN94]. This method uses an up-
date rule that is syntactically similar to that of Q-learning, but that is conceptually
quite different. Unlike Q-learning, SARSA is an on-policy algorithm: Instead of
learning the optimal state-action value function, it learns the state-action value
function of the behavior policy and continuously improves this policy. SARSA
gets its name from its update rule that learns from a sequence of quintuplets
〈st, at, rt+1, st+1, at+1〉 [Sut96b]. Each such quintuplet consists in an interaction along
with the action at+1 that is chosen by π at the next time step, when faced with state
st+1. Then, the update rule is:

Q̂t+1(st, at) = Q̂t(st, at) + αt(st, at)
(
rt+1 + γQ̂t(st+1, at+1)− Q̂t(st, at)

)
, (2.52)

where the underlined part of the formula is the only difference with respect to
the update rule of Q-learning (cf. Equation 2.46). Theoretical analysis shows that
SARSA also converges [SJLS00].

Adaptive Heuristic Critic (AHC) [BSA83] is a third temporal-difference method
that is a stochastic version of Policy Iteration (just as Q-learning can be thought of
as the stochastic version of Value Iteration). AHC is an on-policy algorithm that is
defined in the actor-critic framework: The critic component evaluates the value of its
behavior policy π through a stochastic version of Policy Estimation, and the actor
component regularly improves the behavior policy. In general, the critic component
is implemented through the TD(0) algorithm [Sut88], or through an evolution of this
algorithm. TD(0) updates its estimate of the value function V π(s) of the behavior
policy π through the stochastic version of the Bellman equation (cf. Theorem 2.13):

V̂t+1(st) = V̂t(st) + αt(st, at) (rt+1 + γVt(st+1)− Vt(st)) , (2.53)

36 Chapter 2 — Reinforcement Learning

whenever an interaction 〈st, at, rt+1, st+1〉 is acquired by following π.
In AHC, the behavior policy π is not extracted from a value function as in

Q-learning or SARSA, but it is stored independently according to a suitable repre-
sentation scheme. Moreover, contrarily to Policy Iteration, AHC does not assume
any knowledge of the dynamics of the environment and, as such, cannot directly use
Equation 2.32 to improve the behavior policy. Therefore, several versions of AHC
have been proposed that mostly differ in the way the behavior policy π is stored and
in the way the actor improves its policy according to the temporal-difference that is
computed by the critic component. One possible variant consists in storing a set of
preferences p(s, a) of selecting an action a when facing a state s, then in increasing
(resp. decreasing) this preference whenever the temporal-difference of Equation 2.53
is positive (resp. negative) [SB98, Section 6.6].

Although AHC has been exploited in many early RL systems, its use tends to
decline in favor of methods based on state-action value functions such as Q-learning
or SARSA [SB98, Section 6.6]. However, the AHC model of reinforcement learning
is still appealing from a biological point of view [Bar95, HAB95, KLG+05].

Eligibility Traces

The learning rules of Q-learning, SARSA and TD(0) only take the current state
into account when updating their estimate of the (state-action) value functions.
However, the immediate reinforcement rt+1 that is perceived in the interaction at
time t also influences to a lesser extent the return that is perceived at time t − 1
(cf. Equation 2.5). Similarly, rt+1 has an even lighter impact on the return at time
t−2, and so on. This suggests using a more general, elaborate procedure for updating
the value functions: Instead of updating only the utility of the state st, the perceived
reinforcement could be backpropagated over the utility of the previous states along
the trajectory that has been followed by the MDP. The backpropagation is carried
out with exponentially decaying weights that are governed by a decay parameter
λ ∈ [0, 1], hence capturing the discounting that is embedded in the definition of the
return. This way, convergence is hopefully quicker.

This basic idea has been unified under the name of eligibility traces . Concep-
tually, an eligibility trace is a function et : S 7→ R that records to what extent an
immediate reinforcement has an impact on each state of the MDP. The stochastic
update rule (cf. Equations 2.46, 2.52 and 2.53) is then applied to all the states s ∈ S,
and not only to the current state st, weighting the temporal-difference update by the
value et(s) of the eligibility trace. The eligibility traces may be seen as an algebraic
trick by which rewards are propagated backward over the current trajectory without
having to remember the trajectory explicitly. The literature generally distinguishes
two mechanisms for updating eligibility traces between two successive iterations:
accumulating traces and replacing traces [SB98, Section 7.8]. Examples of algo-
rithms that take advantage of eligibility traces are Q(λ)-learning [Wat89, PW96]5,

5These papers present two different versions of Q(λ)-learning: In Watkins’ approach, the eligi-
bility traces are reset whenever exploration takes place, which contrasts with Peng and Williams’

Section 2.4 — Reinforcement Learning in Finite Domains 37

SARSA(λ) [RN94, Rum95], TD(λ) [Sut88, Day92], and, more recently, QV(λ)-
learning [Wie05]. Singh and Sutton provide an in-depth theoretical discussion about
eligibility traces [SS96].

Monte-Carlo Methods

Another approach to model-free reinforcement learning bases the prediction of the
value functions on average returns collected while interacting with the environment.
Such methods are known as Monte-Carlo methods [Rub81, BD94].

For example, let π be a percept-to-action mapping whose state-action value func-
tion Qπ(s, a) has to be computed. Sketchily, the Monte-Carlo approach generates
a large number of truncated histories that start with the state-action pair (s, a),
and evaluates Qπ(s, a) as the average of the observed returns corresponding to these
histories. By virtue of the law of large numbers, this average value indeed converges
to the true state-action utility. Thus, an optimal control policy can be generated
through the Policy Iteration process: The state-action value function Qπk(s, a) for
the current policy πk is estimated, then πk is improved through Equation 2.32, and
this process is repeated until convergence [SB98, Chapter 5].

Interactive Model-Based Techniques

The model-based algorithms that were presented in Section 2.4.1 are purely batch
processing: Learning can only happen when the database of interactions has been
fully collected. This might be problematic, as fully randomized behavior policies can
be harmful for the surrounding environment, or can be very inefficient in gathering
sufficient data when some states are hard to reach [Whi91]6. The interactive model-
based methods (also known as planning [SB98, Chapter 9]) relax this assumption
and are capable of on-line learning. They can indeed produce an estimation of an
optimal control policy before the end of the collection of the database.

The simplest interactive model-based method is the certainty equivalence ap-
proach [KV86]. Whenever M interactions are acquired, a model of the underlying
MDP is estimated and solved through a dynamic programming algorithm (cf. Sec-
tion 2.4.1). Unfortunately, this straightforward approach involves re-solving an MDP
after each sequence of M interactions, hereby introducing a computational burden.
This problem can be somewhat circumvented by taking the lastly computed optimal
state-action value function as a starting point of the DP algorithm. However, there
is in general no guarantee that this will indeed reduce the computation time.

Alternatively, instead of applying the Bellman backup operator H to all the
states as in Value Iteration (cf. Section 2.2.4), H could be applied only to the state-
action pairs whose utility are likely to change the most, given a change in the model.

version. These are probably the two most common implementations, though several other variants
have been proposed [Lin93, Cic95, WS98].

6Note that the latter problem disappears if the environment supports resetting to a random
state, which will be the case in the experiments of the next chapters, or if one uses a behavior
policy that counts the number of visits to each state-action pair.

38 Chapter 2 — Reinforcement Learning

This idea has led to the development of Dyna [Sut90], prioritized sweeping [MA93]
and Queue-Dyna [PW93]. These algorithms essentially differ in the way the state-
action pairs to be updated are selected: In Dyna, the selection is random, whereas
prioritized sweeping and Queue-Dyna make use of specialized data structures for
deciding which transitions have the greatest impact on the optimal state-action value
functions. Ernst provides an independent treatment of a prioritized sweeping-like
algorithm [Ern03, Section 5.3]. Real-time dynamic programming [BBS95] is another
interactive model-based algorithms that is tuned for specific problems [KLM96].

Finally, the interactive model-based algorithm that is called explicit explore or
exploit (E3) [KS98] has attracted a lot of attention since its introduction. Its main
advantage is to explicitly balance exploration and exploitation, hereby achieving
near-optimal performance in polynomial time. To this end, E3 keeps track of the
accuracy of its model of the environment. Recent work tries to combine E3 with
apprenticeship to eliminate its need for an initial aggressive exploration of the state
space, which might cause problem in real-world tasks [AN05].

2.5 Successful Applications
We now list some of the most successful applications of reinforcement learning on
real-world tasks. Of course, this is not an attempt to be exhaustive. A complete
description of the used algorithms cannot be included in this dissertation, so we only
provide pointers to the pertaining papers:

• Turning a computer into an excellent Backgammon player [Tes95];

• Turning a computer into an average chess player [BTW98];

• Dispatching elevators for skyscrapers [CB98];

• Learning quadruped gait control [HG98, KYK01, KS04b];

• Solving the Acrobot swing-up control problem [SB98, YIS99];

• Riding a bicycle [RA98, LP03];

• Training robotic agent for the RoboCup competition [SS01];

• Applications in trading [MS01b] and marketing [AVAS04];

• Controlling a helicopter [BS01, NCD+04];

• Stabilizing electric power systems [Ern03];

• Learning ball acquisition on an Aibo robot [FS04];

• Learning strategies for curing HIV [ESGW06];. . .

Section 2.6 — Summary 39

Although they are often limited, these applications are wide-ranging, targeting
games, robotics, or even finance. Interestingly enough, psychology, biology and neu-
roscience that initiated the development of reinforcement learning, have also begun
to benefit from the recent developments in the RL field [ODS+04, KLG+05].

2.6 Summary
This chapter introduced the theory of Markov decision processes and of reinforce-
ment learning. In this framework, the learning agent iteratively discovers a percept-
to-action mapping that maximizes the quantitative feedback it receives over time.
The relation between reinforcement learning and dynamic programming was dis-
cussed. Several reinforcement learning algorithms for finite state-action spaces were
presented, notably model-based methods and Q-learning.

40 Chapter 2 — Reinforcement Learning

CHAPTER

THREE

Appearance-Based Vision

As motivated in the Introduction, reinforcement learning is an especially attractive
framework to deal with purposive vision problems. When RL is used in this context,
the set of states S corresponds to a set of images. Unfortunately, it is impossible to
directly feed basic RL algorithms with a state space that consists of images. Because
such algorithms generally rely on a tabular representation of the value functions,
they indeed become quickly impractical as the number of possible percepts increases.
This is evidently a problem in visual tasks: Even though the set of possible images
is finite, the number of possible images exponentially increases with their size, and
images are highly subject to noise.

Similar problems often arise in many fields of computer vision, and several ap-
proaches have been proposed over years. Recent solutions often rely on the extraction
of meaningful visual features that can then be used for higher-level treatment. More
specifically, we now discuss the popular, highly successful local-appearance paradigm.
In the subsequent chapters, we will introduce novel RL algorithms that take advantage
of the local-appearance paradigm, enabling them to solve purposive vision problems.

3.1 Mid-Level Representation of Images
As argued above, images are high-dimensional and noisy. However, only a few
portions of an image may contain contain relevant information for the task to be
solved. Furthermore, typical images exhibit many redundant patterns. Therefore, a
successful approach in computer vision systems consists in extracting visual features
that digest the informative content of the raw images. Visual features lead to a
mid-level representation of the images, that is halfway between the raw images and
a more semantic representation of the observed objects. This approach can also
be motivated from a neurophysiological point of view: Although the exact natural
process is still currently debated, the human brain performs a data reduction of
several order of magnitude to summarize the huge quantity of raw visual information
it perceives, so that this “purified” data stream can be used in higher-level cognitive
tasks.

41

42 Chapter 3 — Appearance-Based Vision

3.1.1 Visual Feature Generators

Generally speaking, a visual feature is a vector of real numbers that represents
some essential, discriminant and meaningful portion of an image. Visual features
have a much smaller dimensionality than the image space, targeting a compact
representation that improves and speeds up the image analysis. Furthermore, though
it is not strictly required, visual features often add some invariance to viewpoint or
illumination changes, with respect to the raw pixels of the original image. From an
abstract point of view, the extraction of the visual features in an image is done by
a visual feature generator:

Definition 3.1. A visual feature generator GV : S 7→ P(V) is a mapping from the
set of images S to the power set of visual features. V is the visual feature space1,
which usually corresponds to Rn for some n > 0.

A visual feature generator transforms an input image as a set of visual features.
For computational tractability, it is also required that it be impossible to generate
an infinite set of visual features: For each image s ∈ S, GV (s) must be finite.

The various visual feature generators can be ranked according to their fulfillment
of desirable properties, notably:

• distinctiveness (generated visual features should discriminate between different
scenes or objects, so as to provide strong consistency constraints for matching),

• robustness (features should be weakly influenced by a bad image quality due
to noise, blur, discretization artifacts or compression effects),

• repeatability (features should be invariant to scale, rotational, viewpoint or
illumination changes),

• simplicity (features should be quickly extracted), and

• compactness (features should be low-dimensional, so as to speed up the match-
ing process and to reduce the memory burden).

Evidently, these properties must be balanced with respect to the task that has to
be solved. For example, a real-time robotic application typically requires both high
simplicity and compactness. On the other hand, an object recognition task needs
high distinctiveness, which can generally only be achieved by using a less compact
representation. At the time of writing, there is no visual feature that performs
uniformly better than the others.

1This definition allows the use of general visual feature spaces. In particular, visual features can
be vectors of real numbers with varying size: V = ∪i∈IRi, with I ⊆ N0. This possibility will not be
exploited in this dissertation, but opens the path to the multimodal analysis of visual features. This
might be useful when solving real-world robotic applications, because it allows the simultaneous
use of different classes of visual features, combining their respective skills. Lisin et al. have recently
proposed an example of such a multimodal analysis for image classification [LMB+05].

Section 3.1 — Mid-Level Representation of Images 43

Remark 3.2. From a fully general perspective, the generation of visual features is
stochastic. This means that the resulting set of visual features is possibly different
from one application of GV to the other, so that GV is a probabilistic mapping
S 7→ Π(P(V)). However, stress is generally put on deterministic visual feature
generators. A noticeable exception is the work by Marée et al. [MGPW05] that will
be discussed later. 2

3.1.2 Appearance-Based Vision
Visual features have attracted a lot of attention in the literature over the recent
years, leading to the very successful appearance-based approach to computer vision.

This trend must be distinguished from the older geometry-based vision (or model-
based vision) that detects geometric primitives such as lines, curved surfaces or
generalized cylinders in the images, and that maps them in a 3D model of the
objects through algorithms such as RANSAC [FB81]. The target applications were
localization and pose estimation from a single view of an object. Forsyth and Ponce’s
textbook provides a survey of these methods [FP03, Chapter 18]. Geometry-based
vision is less flexible than appearance-based vision, because it requires the a priori
knowledge of the geometry of the objects. Furthermore, the appearance of the
objects (e.g. color and texture) is not fully taken into account. Therefore, geometry-
based vision is currently mostly useful in tasks that consider simple, untextured
manufactured objects.

Structure-based vision is another trend in computer vision. It analyzes the topol-
ogy of visual structures, and is closely related to mathematical morphology [Ser82].
In such approaches, the topology of the observed objects is represented as a graph,
and the matching of images is reduced to graph matching. The skeleton is an im-
portant notion in structure-based vision [Blu67]. It converts a binary image (i.e. a
silhouette) to a graph that represents the articulations connecting the maximal balls
that can be embodied inside the silhouette. The skeleton can be extracted from
the contours that are lines along which an abrupt change in the luminosity oc-
curs [Can86]. Theoretical advantages of the skeleton include its invariance to linear
transformations (scale, rotation, translation), and the fact that it preserves topo-
logical and geometrical properties of the silhouettes. Unfortunately, it is highly
sensitive to noise and to an inaccurate binarization of the images. Moreover, sim-
ilarly to geometry-based vision, it only considers binary images and thus does not
bring the appearance of the objects into play. In practice, structure-based vision is
mostly useful for applications in controlled environments such as biology or miner-
alogy. It has also been applied to image compression and architecture. Nowadays,
structure-based vision tends to focus on the analysis of ridges , that do not require
a binarization of the images and that are more informative about the shape of the
objects [Ebe96].

Geometry-based and structure-based vision will not be further covered in this dis-
sertation. Several instantiations of visual features and their application in computer

44 Chapter 3 — Appearance-Based Vision

vision are now discussed. Of course, a complete, exhaustive survey of appearance-
based vision is out of the scope of this dissertation. Our aim is only to give some
insight about state-of-the-art techniques and to present the most popular visual
features.

3.2 Global-Appearance Methods
Historically, the visual features that have first been considered describe the global
appearance of the image. Many visual structures, such as texture, are indeed only
meaningful when the images are looked at in a large area. Global-appearance fea-
tures digest the entire set of the pixels of the images. Corresponding visual feature
generators have the property that a single visual feature is extracted, whatever the
input image is: For each image s ∈ S, we have that |GV (s)| = 1.

Sometimes, depending on the targeted application, global appearance features
are only computed on a region of interest in the image. In the case of video sequences,
the region of interest can be delimited through tracking (e.g. using Kalman filter-
ing [Kal60]) or motion segmentation (e.g. using background subtraction with a prob-
abilistic background model that consists of a mixture of Gaussians [SG99]). On the
other hand, the problem of segmenting static images is at best hard and not clearly
defined, at worst an utopia: Segmenting an image should indeed extract meaningful
regions of interest, but these are precisely determined by a high-level understanding
of the image content, which generally leads to a chicken-and-egg situation. Never-
theless, the BlobWorld system is a successful application of segmentation to image
retrieval [CBGM02]. Standard algorithms for image segmentation are thresholding,
Region Growing and Split and Merge [PP93]. More advanced techniques notably
include Expectation-Maximization [DLR77, BCGM98], and graph-based approaches
such as the Normalized Cut algorithm [SM00] or its more general version, namely
the Graph Cut [BVZ01].

3.2.1 Normalized Images
The most basic global-appearance feature generator is the normalized image extrac-
tor . Given an image s ∈ S, it is downsized to a fixed-size image and possibly
converted to grayscale. Photometric normalization can also be carried out. All the
n pixels in this normalized image are then collected inside a vector of real numbers
to form a visual feature v ∈ Rn, thus the visual feature space is V = Rn. The
resulting visual feature can be matched with a model feature by directly resorting
to a suitable correlation measure that is defined over the Rn space, such as the Sum
of Squared Distances [CM95].

This approach has several weaknesses: Such features have a low robustness and
repeatability, and are highly redundant; their distinctiveness is very dependent on
the correlation measure; the memory and computational requirements are high if the
model database contains various objects under various viewpoints; and insignificant
variations in the images (such as minor scale changes) are susceptible to compromise

Section 3.2 — Global-Appearance Methods 45

the matching. This is mostly due to the non-exploitation of the knowledge about
the distribution of the model features inside Rn. However, normalized images have
reported to be successful when they are directly used as feature vectors for Support
Vector Machines (SVM) classification [PV98].

3.2.2 Eigen-Patches
To cope with these problems, Sirovich and Kirby have proposed to project the high-
dimensional normalized images into a low-dimensional subspace [SK87]. Given a
database of model images, Principal Component Analysis (PCA) is used to extract
the first N eigen-patches that best explain the variations in the model images (N
is chosen much smaller than n). Mathematically, the eigen-patches correspond to
the first eigen-vectors of the covariance matrix of the model database. Any normal-
ized image can thereafter be projected as a vector v ∈ RN of real numbers, and
can be approximately reconstructed as the linear combination of the eigen-patches
with coefficients given by v. This process imposes some form of structure on the
normalized images. In this framework, the visual feature space V corresponds to
RN . Successful applications of PCA or variants include face description [SK87],
face recognition [TP91], tracking [NMN94], object recognition [MN95], image re-
trieval [SW96] and visual navigation [WC96, WSV99].

3.2.3 Histograms
Rather than using PCA, it has been proposed to collect statistics about the image
inside a histogram. Histogram-based approaches consider a set of M real-valued
measures that can be evaluated at each pixel of the image. The variation domain
of each measure is quantized into a set of buckets. Given an input image, the
corresponding multidimensional histogram is computed as a vector of real numbers
that counts, for each bucket of each measure, the proportion of pixels in the image
the measure of which falls into this bucket. If m designates the total number of
buckets across all the measures, the visual feature space is V = Rm. Note that
in general, it is difficult to determine the optimal bucket size for an application.
Histogram-based approaches have become very popular for image retrieval.

Color Histograms

The simplest measure for histograms consists, given a pixel, in returning the value
of a fixed color channel in a fixed colorspace. This kind of measure leads to the
definition of color histograms [SB91], that are generally 3-dimensional. The seminal
work about color histograms considers the widespread RGB colorspace [SB91]. By
construction, this approach is robust to scale and rotational transforms. Unfortu-
nately, color histograms based on the RGB colorspace are highly sensitive to the
illumination conditions and are device-dependent. Furthermore, RGB is not per-
ceptually uniform, which leads to unexploited and redundant bins if using a uniform
quantization. As a consequence, the normalization of color histograms has been

46 Chapter 3 — Appearance-Based Vision

investigated [JV96], as well as colorspaces that offer improved uniformity such as
HSV [SC95], CIELub [STLC97] or CIELab [CTB+99].

Texture Histograms

Because color histograms do not keep track of the relative arrangements of colored
pixels, they are highly sensitive to pose and viewpoint changes. Therefore, texture
histograms (also known as texton histograms) that take the texture of the observed
objects into consideration have been proposed. The texture can indeed be a distinc-
tive information for several classes of objects (think for example about grass, wood
beams or brick walls).

There is no formal definition of what a texture is, but it intuitively corresponds
to a spatial arrangement of small patterns. These patterns can repeat, though they
are often fractal or random. In practice, a texture measure evaluates the response
of a linear filter at the considered pixel. Schiele and Crowley consider the first-order
Gaussian derivatives and the Laplacian as linear filters [SC96, SC00]. Leibe and
Schiele measure Gaussian derivatives at multiple scales [LS03]. Renninger and Ma-
lik use filter banks giving answers that are similar to those given by the V1 visual
cortex [RM04]. Recent advances in texture histograms compensate the shadowing
and occlusions effects that are due to local height variations [OD04]. In general, tex-
ture histograms have a much higher dimensionality than color histograms. Note that
histograms combining color and texture information have been explored [NBE+93].

3.3 Local-Appearance Methods
Because they consider all the pixels of the images, global-appearance methods suffer
from two major drawbacks: They are not robust to partial occlusions, and they
are very sensitive to background clutter. Removing clutter requires segmentation,
but the segmentation of a scene is very costly, if not impossible to carry out in
practice if a video sequence is not available. These limitations are also present in
geometry-based and structure-based vision.

For this reason, vision systems that work by characterizing the entire image have
been gradually supplanted over the last decade by local-appearance methods . Such
methods identify statistically or structurally significant portions of the images, then
represent each selected image portion as a vector of real numbers that is known
as a local descriptor . The problem of matching images is consequently reduced to
that of matching the local descriptors. Advantages of local-appearance methods are
summarized below:

• There is no need for 2D or 3D models of objects2;

• Local-appearance is robust to partial occlusions (and also to specular effects);

• No segmentation is required;

2Note that global-appearance methods have the same advantage.

Section 3.3 — Local-Appearance Methods 47

• The local descriptors can compensate to some extent the local geometric and
photometric deformations that result from seeing a scene under different view-
ing conditions, because projective deformations can be locally approximated as
affine deformations, and because the local descriptors are generally normalized;

• The visual feature extraction is a biologically plausible process, which has
been corroborated through neurophysiological experiments on the V1 visual
cortex [KvD87, You87].

Local-appearance methods have been used in a broad class of computer vi-
sion problems, such as image classification and categorization, object detection and
recognition, texture recognition, database retrieval, camera calibration, stereovision,
structure from motion, robot localization and tracking [MS05].

In practice, local-appearance methods involve two elements: The interest point
detector selects the most informative and reliable portions of the image, and the
local descriptor generator converts the selected portions to a vector of real numbers
that characterize the appearance of these portions. The portions selected by the
interest point detector are centered around a so-called interest point in the image,
and the portion itself is called the neighborhood of the interest point. In general,
the interest points have very stable properties, such as a maximum in the signal
entropy or an important change of the signal energy in all the directions. Thus, the
selected neighborhoods are hopefully a direct result of a structure that is present
in the scene, and there is therefore a high confidence that these neighborhoods will
appear in many different views of a scene. Local-appearance vision has benefited in
recent years from more and more powerful detectors and descriptors.

3.3.1 Harris Corner Detector
In this section, we provide an introduction to the most popular, important inter-
est point detector, namely the Harris detector (that is also referred to as Harris-
Stephens detector) [HS88]. We detail its principle, as it is the basis of most modern
interest point detectors. It considers grayscale images and was originally inspired
by the Moravec corner detector [Mor80].

The Harris detector is a corner detector : A corner is an area in the image where
the visual signal changes abruptly in the two spatial directions, or, equivalently,
where the gradient of the visual signal is simultaneously large in two orthogonal
directions. This contrasts with edges : At an edge, the gradient is large in the
direction that is perpendicular to the edge, but there is no gradient in the parallel
direction3. We also mention the existence of a third main kind of interest point
besides corners and edges: The blobs are found at the stable centers of circular,
uniform regions (a region is uniform if its gradient is almost zero everywhere).

3In fact, the Harris detector is a combined corner and edge detector, so that it can also detect
edges. This possibility is seldom considered in appearance-based vision because edges do not tend
to be spatially localized, which may lead to unstable interest points. A noticeable exception is
Jurie and Schmid’s edge-based detector [JS04].

48 Chapter 3 — Appearance-Based Vision

(a) (b) (c)

Figure 3.1: Basic idea of the Harris detector. (a) A corner is observed through a
small window that is moved around. Shifting this window in any direction should
give a significant change in the filter response. (b) When the window covers an edge,
there is no change along the edge direction. (c) Over an uniform region, there is no
change in any direction.

The idea of the Harris detector is to consider a window centered around a given
pixel, then to shift the window in any direction and to measure the mean changes
in the intensity that results from this shift (cf. Figure 3.1). If the mean change of
the intensity is large in both directions, the detector assumes it has found a corner.
This seminal idea was originally proposed by Moravec [Mor80].

Mathematically, given a shift (u, v), the mean change of intensity C(x0, y0, u, v)
that is induced by this shift when considering the pixel at location (x0, y0) is:

C(x0, y0, u, v) =
∑
x,y

w(x− x0, y − y0) (I(x + u, y + v)− I(x, y))2 , (3.1)

where w(x, y) defines the considered window (representing the neighborhood). The
Harris detector uses a two-dimensional Gaussian with standard deviation σI as the
weighting window [HS88]:

w(x, y) = G(x, y; σI). (3.2)

The value σI is known as the integration scale and determines the scale of the
detected corners by dictating the size of the inspected window.

We now notice that the expression I(x+u, y +v) in Equation 3.1 can be approx-
imated using the gradient of the image I taken at point (x, y):

I(x + u, y + v) ≈ I(x, y) + u
∂

∂x
I(x, y) + v

∂

∂y
I(x, y). (3.3)

In practice, the image is smoothed by a two-dimensional Gaussian G(x, y; σD) with
standard deviation σD before the gradient is computed. This ensures an improved
robustness to noise in the visual signal. The value σD is known as the differentiation
scale and defines the smoothing extent. Its value is generally set proportional to
the integration scale by the heuristic relation σD = sσI with s comprised between
0.5 and 0.75 [MS02] (in practice, a good value for s is 0.7 [MS04]). It is common
to use the shorthand notation Ix(x, y) (resp. Iy(x, y)) to designate the value of the

Section 3.3 — Local-Appearance Methods 49

gradient of the smoothed image in the x-axis (resp. y-axis) direction4:

Ix =
∂

∂x
(G(x, y; σD)⊗ I(x, y)), and (3.4)

Iy =
∂

∂y
(G(x, y; σD)⊗ I(x, y)). (3.5)

Using matrix notation, Equation 3.1 can therefore be rewritten as:

C(x0, y0, u, v) ≈
∑
x,y

w(x− x0, y − y0) (uIx(x, y) + vIy(x, y))2

=
∑
x,y

w(x− x0, y − y0)(
u2I2

x(x, y) + 2uvIx(x, y)Iy(x, y) + v2I2
y (x, y)

)
=

∑
x,y

w(x− x0, y − y0)
[
u v

] [I2
x IxIy

IxIy I2
y

]
(x, y)

[
u
v

]
=

[
u v

]
M(x0, y0)

[
u
v

]
, (3.6)

where M(x0, y0) is the auto-correlation matrix at location (x0, y0). The matrix
M(x0, y0) is of size 2 × 2 for a fixed (x0, y0). It depends depends on the window
function w(x, y), and it can be evaluated through a two-dimensional convolution
with a Gaussian kernel:

M(x0, y0) =
∑
x,y

w(x− x0, y − y0)

[
I2
x IxIy

IxIy I2
y

]
(x, y)

=

(
G(x, y; σ2

I)⊗
[

I2
x IxIy

IxIy I2
y

]
(x, y)

)
(x0, y0). (3.7)

The auto-correlation matrix is independent of (u, v) and describes the gradient dis-
tribution in a local neighborhood of the point (x0, y0). It is also known as the second
moment matrix .

Summarizing, Equation 3.6 is a bilinear approximation of the average change
of intensity C(x0, y0, u, v) at pixel (x0, y0) that is due to the shift (u, v). As a
consequence, the eigenvectors of M(x0, y0) represent the two principal curvatures
of the gradient. The strength of the directions corresponding to the eigenvectors is
directly related to their respective eigenvalues λ1 and λ2. Thus, when the eigenvalues
λ1, λ2 are both large, then the intensity change C(x0, y0, u, v) is large in all directions,
which in turn implies with good confidence that the window is over a corner. On
the other hand, if one eigenvalue dominates, the area is considered as an edge; and
if both eigenvalues are negligible, the area is considered uniform. This is depicted
in Figure 3.2 (a).

4In the following formulas, the operator ⊗ corresponds to the 2D discrete convolution.

50 Chapter 3 — Appearance-Based Vision

λ1 λ1 � λ2

≈ 0
λ1, λ2

λ1, λ2 � 0
λ1 ≈ λ2

λ1 � λ2

λ2

Edge

Corner

Edge

Uniform

R > 0
R < 0

R < 0R ≈ 0

Edge
Corner

EdgeUniform

(a) (b)

Figure 3.2: Analysis of cornerness in the Harris detector. (a) Classification of an
image point (x0, y0) using the eigenvalues of M(x0, y0). (b) The decision boundaries
based on the cornerness measure R(x0, y0) that has been proposed by Harris and
Stephens. Their slope is parametrized by the k constant.

Finally, Harris and Stephens provide an heuristic rule to decide when the eigen-
values are sufficiently large to induce a corner [HS88]. They consider the cornerness
measure that is defined by the expression:

R(x0, y0) = λ1λ2 − k(λ1 + λ2)
2 (3.8)

= det(M(x0, y0))− k trace(M(x0, y0))
2, (3.9)

where k is empirically determined constant that lies in the interval [0.04, 0.06] (Harris
and Stephens suggest k = 0.04). When the two eigenvalues are large, the product
dominates the sum and the cornerness is positive. When one eigenvalue is large with
respect to the other, the sum dominates and the cornerness is negative. When the
two eigenvalues are small, the cornerness is about zero. This leads to the decision
boundaries that are represented in Figure 3.2 (b). Equation 3.9 can be used to
compute the cornerness without achieving the costly computation of the eigenvalues.

Accordingly, the Harris detector computes the value of R(x0, y0) at each pixel
(x0, y0) of the image. If this value is above a fixed threshold, then the Harris detector
considers (x0, y0) as the location of an interest point, and selects a neighborhood
that is centered around (x0, y0) and whose size is related to the integration scale
σI .5 It can be shown that the Harris detector is invariant to rotation, and that it is
robust to noise and illumination conditions [SMB00]. This quality is mainly due to
the fact that the computation of the cornerness only implies evaluating first-order
derivatives.

3.3.2 Interest Point Detectors
A possible mathematical definition of an interest point detector is:

5A non-maximum suppression on a 3× 3 mask is also used to keep only local maxima [SMB00].

Section 3.3 — Local-Appearance Methods 51

(a) (b) (c)

Figure 3.3: Commonly used support window spaces: (a) a circular neighborhood,
(b) a rectangular neighborhood, and (c) an elliptic neighborhood.

Definition 3.3. An interest point detector DL : S 7→ P(R2×W) is a mapping from
the set of images S to the power set of interest points. An interest point is a triple
(x, y, w) ∈ R2×W , where W is the support window space. It is required that DL(s)
is finite for each image s ∈ S.

An interest point detector converts an image s ∈ S to a set of triples (xi, yi, wi)
describing the various interest points that have been detected in the image s. The
location (xi, yi) of each interest point is accompanied with an information wi ∈ W
that describes the shape of the neighborhood that has triggered the detection of the
interest point (the component wi is often referred to as the support region).

Remark 3.4. In general, the process of detecting interest points is stochastic
(cf. Remark 3.2). A stochastic interest point detector is a probabilistic mapping
DL : S 7→ Π(P(R2 ×W)). Unless explicitly mentioned, we only consider determin-
istic interest point detectors, that are by far most common. 2

Support Window Spaces

The definition of an interest point detector resorts to a support window space. Here
is a description of the most common support window spaces that are used in the
local-appearance paradigm (cf. Figure 3.3):

Circular neighborhood: The support window is a circular neighborhood. The
corresponding support window space collapses to a single real number that
captures the scale of the circular neighborhood: W = R. The Harris detector
notably uses this support window space. In the latter case, W contains the
integration scale σI .

Rectangular neighborhood: In this case, the support window is a rectangular
neighborhood centered around the interest point location. The rectangle is
possibly rotated by a given angle. The support window space contains this
angle together with the width and the height of the rectangle: W = R2× [0, π[.

52 Chapter 3 — Appearance-Based Vision

Elliptic neighborhood: An elliptic neighborhood is a generalization of a circular
neighborhood. It is delimited by an ellipse defining a non-uniform scaling
(i.e. that is possibly different in each direction). The corresponding support
window space is W = R2 × [0, π[: An element in this support window space is
a triple (a, b, θ), where a defines the length of the semimajor axis, b the length
of the semiminor axis, and θ a rotation angle for the ellipse. Evidently, other
parametrization of an ellipse may be used.

An example of result of an interest point detector on a real-world image is depicted
in Figure 3.4.

Description of Widespread Detectors

There exists an abundant literature about interest point detectors. Schmid et al.
provide an historical treatment [SMB00]. The most important detectors are de-
scribed below:

Fixed Grid: This is most basic interest point detector. It simply returns a set of
interest points, each of them being sampled on a fixed, uniform grid. If the
height of the image s ∈ S is N pixels, if its width is M pixels, and if the grid
has m×n cells, the interest point detector generates a set of m×n of interest
points as follows:

DL(s) = {(xij, yij, wij) | i ∈ {0, . . . ,m− 1} and j ∈ {0, . . . , n− 1} and

(xij, yij) =

(
M(2i + 1)

2m
,
N(2j + 1)

2n

)}
. (3.10)

The fixed grid detector generally considers a fixed-sized rectangular neighbor-
hood wij that is identical for all the cells in the grid. This detector is in general
too simple for complex visual recognition tasks, but it may be sufficient for
applications such as scene classification [FP05]. Indeed, it has the inherent
advantage that the images are by definition densely covered.

Randomized detector: In a similar vein, Marée et al. [MGPW05] have proposed
to use a fully randomized selection of interest points. This is the only stochas-
tic interest point detector we evoke in this dissertation. In its basic version, the
randomized detector selects k interest points uniformly at random, the neigh-
borhood of which is a square w of fixed size. Using the definition of stochastic
interest point detectors (cf. Remark 3.4), we can write:

DL(s, {(x1, y1, w1), . . . , (xm, ym, wm)}) =
0 if m 6= k,
0 if there exists i ∈ {1, . . . ,m} such that

xi 6∈ {0, . . . ,M − 1} or yi 6∈ {0, . . . , N − 1} or wi 6= w,(
1

MN

)k
otherwise,

Section 3.3 — Local-Appearance Methods 53

(a)

(b)

Figure 3.4: Example of interest point detection. (a) An illustrative image that
is taken from the database that has been collected for this research work [Jod05].
This database will be described in Section 5.1.5. (b) The result of the Harris-Affine
interest point detector [MS04] on this image. Note that, in this case, the support
window space consists of elliptic neighborhoods.

54 Chapter 3 — Appearance-Based Vision

where M × N is the size of the image. More sophisticated versions of ran-
domized detector select, for each interest point, a rectangular neighborhood
with random size or/and random orientation. Marée et al. have showed re-
markable performance of this approach for object classification [MGPW05],
if it is combined with a powerful machine learning algorithm that is called
Extra-Trees [GEW06] (cf. also Chapter 6).

Color Harris: As mentioned earlier, the Harris detector is at the core of many
other interest point detectors. A first natural extension is to take the color
of the images into account. This idea leads to the so-called Color Harris
detector [GB01]. It is in essence identical to the Harris detector, but the
auto-correlation matrix of Equation 3.7 is replaced as follows:

M = G(x, y; σ2
I)⊗

[
R2

x + G2
x + B2

x RxRy + GxGy + BxBy

RxRy + GxGy + BxBy R2
y + G2

y + B2
y

]
(x, y),

(3.11)
where Rx (resp. Ry) denotes the first-order derivative over the x axis (resp. y
axis) of the red color channel that has been previously smoothed by a Gaussian
kernel of standard deviation σD (Gx, Gy, Bx and By are defined identically for
the green and blue color channels). This way, the cornerness is computed across
the color channels. According to Gouet and Boujemaa’s comparison [GB02],
this detector was the most stable interest point detector that makes use of
color, with respect to rotational, illumination and viewpoint changes, as well
as to noise. The Color Harris detector has been used for the tracking of soccer
players [GHPV05].

Harris-Laplace: The Harris detector considers a single integration scale, and there-
fore fails in the presence of scale changes between images: It has been shown
empirically that it can only cope with scale factors up to roughly 1.4 [SMB00].
This is problematic as soon as moving objects are filmed or the zoom level
is modified. More fundamentally, a real-world object is typically composed
of structures with various sizes. This is illustrated in Figure 3.5. Thus, the
Harris detector is inherently unable to capture all the relevant structures of a
scene.

This motivates the introduction of interest point detectors that can automat-
ically select, for each location in the image, the scale that best suits the sur-
rounding visual structure: Such a scale is called the intrinsic scale of the
location. Lindeberg has extensively studied methods for automatic scale selec-
tion [Lin98]. When applied to scale selection of blobs, Lindeberg’s approach
consists in computing, for a finite set of scales {σ1, . . . , σk}, the response of
the normalized Laplacian-of-Gaussian linear filter (which corresponds to the
trace of the Hessian, normalized by the square of the scale):

r(x0, y0; σi) = σ2
i

∣∣∣∣ ∂2

∂x∂x
(G(σi)⊗ I)(x0, y0) +

∂2

∂y∂y
(G(σi)⊗ I)(x0, y0)

∣∣∣∣
= σ2

i |Ixx(x0, y0) + Iyy(x0, y0)| , (3.12)

Section 3.3 — Local-Appearance Methods 55

Figure 3.5: A bicycle can be hierarchically decomposed as a set of objects of vary-
ing size. Each of these constituting subparts should be observed at a scale that
corresponds to its size, that is known as the intrinsic scale of the visual structure.
(Reproduced with permission from Scalzo and Piater [SP06].)

0 20 40 60 80 100
0

20

40

60

80

100

scale in pixels

tra
ce

 o
f t

he
 H

es
si

an

(a) (b) (c)

Figure 3.6: Illustration of the computation of the intrinsic scale for blob features. (a)
The source image the size of which is 121×121 pixels. (b) The scale-space signature
r(60, 60; σ) for the location at the center of the image. Each local maximum in this
signature defines an intrinsic scale for this location: In this example, two intrinsic
scales are detected at σ = 11 pixels and σ = 42 pixels. Thus, there are typically
multiple intrinsic scales associated with each image location. (c) Two circles whose
radii correspond to one computed intrinsic scale are overlaid on the source image.
The smaller intrinsic scale is triggered by the blue blob corresponding to the earth,
whereas the larger is induced by the orange blob of the sun. (The source image is
reproduced with permission from Scalzo [Sca04].)

56 Chapter 3 — Appearance-Based Vision

using notation similar to Equations 3.4 and 3.5. When this so-called scale-
space signature attains a maximum over scale, the location is surrounded by
a blob-like structure, the size of which corresponds to the size of the kernel.
The process is illustrated in Figure 3.6. Although the isotropic kernel of Equa-
tion 3.12 is especially well adapted to blob structures, it also provides a good
estimation of the intrinsic scale of corner and edge structures [MS04]. Interest-
ingly enough, Marr has emphasized the importance of Laplacian-of-Gaussian
in biological perception [Mar82b].

Automatic scale selection opens the path to scale-invariant interest point de-
tectors. The rough idea of the Harris-Laplace detector is to use the intrinsic
scales as the integration scale in the Harris detector [MS01a]. Sketchily, the
Harris-Laplace detector involves two successive steps: (1) The Harris detector
is applied at several integration scales6, hence returning a set of interest points
with circular neighborhood of varying size, then (2) the interest points that
do not attain a maximum in the Laplacian-of-Gaussian scale-space signature
are discarded.

Difference-of-Gaussians (DoG): Focusing on an efficient implementation, Lowe
has developed the scale-invariant DoG detector, that is similar in spirit to
Harris-Laplace but that approximates the Laplacian-of-Gaussian (LoG) of
Equation 3.12 by a Difference-of-Gaussians (hence the name DoG) [Low99].

DoG is a close approximation of LoG, but it has the advantage that it can be
evaluated at various scales efficiently. To this end, a pyramidal representation
of the image is built. Each level in this pyramid is the smoothed version of
the lower level, starting with the bottom level containing the source image.
The top level corresponds to the coarsest scale, and is limited by the size of
the image. This representation is known as the Gaussian pyramid , and can
be evaluated efficiently. Then, the detector builds the so-called DoG pyramid :
Each level of the DoG pyramid is obtained by subtracting two successive levels
of the Gaussian pyramid [FP03, Section 9.2]. As the Laplacian is roughly
equal to the difference of two Gaussians, each level of the DoG pyramid is an
approximation of the LoG at the corresponding scale.

Lowe proposes to consider the DoG pyramid as a tensor with three dimensions
that is parametrized by a triple (x, y, σ), and then to identify local 3D extrema
in this tensor. Once a maximum is reached at coordinates (x0, y0, σ0), the
detector assumes it has found an interest point at location (x0, y0) with a
circular neighborhood of size σ0. The drawback of this approach is that the
local maxima tend to also lay over edges. Thus, a cleanup step is necessary to
discard these less stable interest points. On the other hand, using DoG instead
of LoG considerably reduces the computation expense, making DoG suitable
for real-time applications, at the price of a slight loss in accuracy.

6The considered integration scales are 1.4iσ0, where i is an integer and σ0 an initial scale.

Section 3.3 — Local-Appearance Methods 57

(a) (b) (c)

Figure 3.7: Two views of the same object under viewpoint changes (a,b). No circular
neighborhood in view (b) can capture the same physical surface as the circular
neighborhood in view (a) (notably the shadow), whereas the elliptic neighborhood in
view (c) does. (This illustration is strongly inspired by Mikolajczyk et al. [MTS+05].)

Harris-Affine: The Harris-Laplace and DoG detectors offer invariance to similar-
ity transforms (translation, rotation and scale), but not to the changes in
viewpoint. Indeed, a circular neighborhood cannot cope with the geometric
deformations caused by a viewpoint change (cf. Figure 3.7). Nevertheless, if
the object surface is almost planar and if the perspective effects are neglected,
an anisotropic rescaling (i.e. an affinity) can approximate the projective trans-
formation that results from the visual sensing process. As a consequence,
recent work in local-appearance vision considers elliptic neighborhoods.

Harris-Affine is such an affine-invariant detector [MS04]. It first applies the
Harris-Laplace detector so as to extract an initial set of interest points. Then,
for each interest point, the following process is repeated: (1) The eigenvalues
of the auto-correlation matrix are used to estimate the anisotropic shape of the
elliptic neighborhood around the interest point (this is achieved through an
iterative process that is due to Lindeberg and Baumberg [Lin98, Bau00]), and
(2) the elliptic neighborhood is normalized to a circular neighborhood. The
process stops when the eigenvalues of two successive auto-correlation matrices
are equal, which means that the computed elliptic neighborhood is stable. If
a fixed point cannot be reached, the interest point is discarded.

We have reviewed several interest point detectors that are based on the ideas
of the Harris detector, and that have attracted a lot of attention over the last
decade. Another useful detector is Edge-Based Regions (EBR) [TVG04] that is
affine-invariant.

However, appearance-based vision might well be currently at a turning point.
Indeed, recent work suggests that blob detectors are more stable and repeatable
than cornerness-based detectors [MTS+05]. Interest point detectors that select blob
structures notably comprise the Hessian detector [Bea78], the Hessian-Laplace de-
tector and the Hessian-Affine detector [GL96, Lin98, MS02]. These methods are the
counterparts of the Harris-family detectors where the cornerness measure is replaced
in favor of the determinant of the Hessian. The Hessian of the image is built with

58 Chapter 3 — Appearance-Based Vision

second-order derivatives of the image, beforehand smoothed by a Gaussian. The
Hessian fires on blobs because of its isotropic “Mexican hat” shape.

A very interesting evolution of the Hessian-Laplace detector is the Fast-Hessian
detector [BTVG06b]. Following the same line of ideas as the DoG detector, Fast-
Hessian approximates the Hessian-of-Gaussians filter by box filters. This allows
a much faster computation if integral images [VJ01] are internally used7, without
losing much accuracy. Other examples of detectors for blob-like structures are In-
tensity Extrema-Based Regions (IBR) [TVG04], Maximally Stable Extremal Regions
(MSER) [MCUP04], and Salient Regions [Gil98, KZB04]. Of the above, IBR and
MSER are fully affine-invariant, whereas Fast-Hessian and Salient Regions are only
scale-invariant.

Comparison of the Detectors

Following the criteria about good visual features that were presented in Section 3.1.1,
we deduce that the ideal interest point detector has the following properties:

• robustness (cf. Section 3.1.1),

• repeatability (two distinct views of the same scene should share a high percent-
age of common interest points),

• quantity (the objects of interest should be densely covered, even if their size
in the image is small),

• accuracy (the location of an interest point should be accurate), and

• simplicity (cf. Section 3.1.1).

Again, the choice of an interest point detector must be balanced by the computer
vision task to be solved. For example, the interest points that are used in camera
calibration, stereovision or structure from motion must be accurate (if possible,
with sub-pixel precision). On the other hand, quantity is much more important
when dealing with object recognition.

As a consequence, performance evaluation of detectors has gained more and
more importance in modern computer vision. To make things simple, Mikolajczyk
et al. suggest that the highest repeatability among the affine-invariant detectors is
obtained by MSER, closely followed by Hessian-Affine [MTS+05]. Unfortunately,
ensuring the affine invariance demands much more complex algorithms and involves
a high computational burden, which might not systematically be compensated by
the gain in repeatability. In practice, the scale-invariant DoG is probably the most
versatile detector, and is pretty fast with respect to Harris-Laplace and Harris-
Affine [MS04]. The recent Fast-Hessian detector might prove to be a powerful, even
faster alternative to DoG [BTVG06b]. Finally, as long as scale invariance and affine
invariance are not required, the Harris detector is certainly the best choice [SMB00].

7Typical speedup is of order 4. An image of size 800× 640 can be treated in 120ms.

Section 3.3 — Local-Appearance Methods 59

3.3.3 Local Descriptors
As explained in Section 3.3, once interest points have been selected, a local descriptor
generator is used to convert the neighborhood of this point as a vector of real-valued
attributes:

Definition 3.5. A local descriptor generator GL : S × (R2 ×W) 7→ V is a deter-
ministic mapping from an interest point to a vector of real numbers.

Not all local descriptor generators can use the full expressiveness of the support
windows that are spanned by the interest point detector. However, it is always
possible to convert a support window space to another one at the price of some
approximation (e.g. an elliptic neighborhood can be normalized to a circular one, a
rectangular neighborhood can be approximated by an elliptic one, and so on).

Description of Widespread Descriptors

As for interest point detectors, a large number of local descriptor generators have
been proposed over years in the literature. We now review the most useful:

Adapting global-appearance methods: Any global-appearance method can be
directly adapted so as to describe the content of the neighborhood around an
interest point (cf. Section 3.2).

The simplest description technique is therefore to normalize the neighborhood
of the interest point to a square of fixed size, and to directly use the raw pixel
values as a local descriptor. Following this idea, Marée et al. have applied
random subwindows [MGPW05] to image classification. A random subwindow
is a raw image patch the size of which is typically 11 × 11 pixels, and that is
selected through the randomized interest point detector. In their approach,
the color information of the patches is not discarded, and the image patches
are generally converted to the HSV colorspace. This idea was motivated by
earlier work showing that patches of size 5 × 5 can lead to performance that
are close to other state-of-the-art local description techniques [EC04]. Scalzo
and Piater also use raw image patches for the probabilistic representation of a
hierarchy of visual features [SP06].

Similarly, several authors have considered the application of PCA for describ-
ing the local appearance (cf. Section 3.2.2). The earliest work on this topic
defines eigenwindows [OI97], that carry out a Principal Component Analysis
on graylevel patches of size 15×15. This topic was further investigated by Colin
de Verdière and Crowley [CdVC98], as well as by Paredes et al. [PPJV01].

Finally, color histograms have also be used to describe the neighborhood of an
interest point [EM95].

Differential descriptors: Another important family of local descriptors is differ-
ential descriptors . They can be applied to circular neighborhoods or to elliptic
neighborhoods, and are based on the evaluation of the derivatives of the image.

60 Chapter 3 — Appearance-Based Vision

i = 0 i = 1 i = 2

j = 0

j = 1

j = 2

Figure 3.8: The Gaussian derivatives δi+j

δxiδyj G up to second order. In practice, deriva-
tives of order higher than 3 are mostly useless, due to their high sensitivity to noise.

Indeed, following the Taylor expansion applied to the image intensity surface,
the neighborhood of an interest point can be represented as the derivatives up
to a given order. If an elliptic neighborhood is to be characterized, it is first
normalized to a circular neighborhood.

Following this reasoning, the so-called local jet descriptor is a truncated vector
that comprises all the differential responses up to a given order [KvD87]. In
practice, to get a stable local jet, the image is smoothed by a Gaussian filter
before computing the derivatives themselves. By the linearity of 2D convolu-
tion, this process is equivalent to filtering the image with a Gaussian derivative
(cf. Figure 3.8). The size of the Gaussian kernel is chosen so as to correspond
to the radius of this neighborhood. Using the notation of Equations 3.4, 3.5
and 3.12, the local jet up to second order is:

I
Ix

Iy

Ixx

Ixy

Iyy

 . (3.13)

As such, the local jet is not invariant to rotation. This invariance can be
ensured by two different approaches: (1) The Gaussian derivatives are ro-
tated (steered) to aim in the direction of the gradient before being applied,
leading to steerable filters [FA91]8; or (2) the components of the local jet are

8Steerable filters might turn out to be problematic, if the gradient is ill-conditioned. This is
notably the case on uniform or symmetrical circular neighborhoods.

Section 3.3 — Local-Appearance Methods 61

(a) (b)

Figure 3.9: Decomposition of the neighborhood used (a) by the SIFT descriptor,
and (b) by the Shape Context descriptor.

combined so as to obtain rotation invariance, giving rise to differential invari-
ants [FtHRKV91]. The differential invariants up to second order are given
by:

I ↔ intensity
I2
x + I2

y ↔ gradient magnitude
Ixx + Iyy ↔ Laplacian

I2
xIxx + 2IxyIxIy + I2

yIyy

I2
xx + 2I2

xy + I2
yy

 . (3.14)

Differential descriptors have also been generalized to color images, leading to
color differential invariants that are 8-dimensional [MGD98, GB02]. Thanks
to a careful exploitation of the color information, it is possible though not
mandatory to stop the expansion of color differential invariant at the first
order, which is beneficial with respect to noise. Color Differential Invariants
have been successfully applied to soccer player tracking in conjunction with the
Color Harris detector [GHPV05]: As soccer teams can only be distinguished
by their colors, it is indeed required to take color into account in this context.

Filter banks: The neighborhood of an interest point can also be described by its
texture, thanks to the outputs of a set of linear filters [FP03, Section 9.1]. This
approach is evidently closely related to texture histograms (cf. Section 3.2.3).
Commonly used sets of filters include Gabor filters [MM96], wavelets [POP98],
as well as custom-engineered filter banks that are tuned for specific applica-
tions [RH99]. Despite their historical popularity, the filter banks do not always
provide the best method for image description. For instance, raw pixel values
can be more effective than filter outputs for texture classification [VZ03].

SIFT (Scale-Invariant Feature Transform): So far, the spatial distribution of
the visual attributes (such as raw pixels, PCA or filter outputs) around the
interest point have not been fully taken into account. In recent literature, very
promising results have been achieved by so-called distribution-based descriptors

62 Chapter 3 — Appearance-Based Vision

that subdivide the considered neighborhood and compute visual attributes
separately inside each subregion [MS05]. In this way, a compromise is achieved
between geometric invariance on the one hand and greater discriminative power
on the other hand.

Currently, the Scale-Invariant Feature Transform (SIFT) is certainly the most
popular local descriptor [Low99, Low04]. SIFT is precisely a distribution-based
descriptor: It divides a square neighborhood into a 4× 4 grid and computes a
histogram of local gradient orientations in each subregion. This is illustrated
in Figure 3.9 (a). Gradient orientations are discretized in eight bins9, which
results in a vector of 128 real numbers. Using histograms provides stability
against deformations of the image pattern, whereas the subdivision prevents
the potential loss of spatial information.

Gradient Localization and Orientation Histograms (GLOH) [MS05] and PCA-
SIFT [KS04a] are two evolutions of SIFT. The former is 128-dimensional and
applies PCA to a log-polar location grid, whereas the latter is 36-dimensional
and applies PCA to the normalized gradient image.

Finally, the authors of the Fast-Hessian detector have recently introduced the
Speeded Up Robust Feature (SURF) descriptor [BTVG06b]. Just like the Fast-
Hessian detector is an approximate version of the DoG detector, the SURF
descriptor is an approximation of the SIFT descriptor. The computation can
be carried out about 3-4 times faster (the running time on a 800× 640 image
is 350ms), and might as such be used in real-time applications.

Shape Context: Another important distribution-based descriptor is Shape Con-
text [BMP02] that is based on the Canny edge detector [Can86]. Shape Con-
text uses a log-polar decomposition of a circular image region, and counts edge
points in each spatial bin (cf. Figure 3.9 (b)). The corresponding descriptor is
36-dimensional.

The aforementioned descriptors are probably the most widespread. Mikolajczyk
and Schmid [MS05] succinctly describe other descriptors: Gradient Moment Invari-
ants , Spin Image, Complex Filters and Cross Correlation. For the sake of complete-
ness, we also mention the existence of Color Moment Invariants [SSTVG03], Local
Affine Frames [OM02, OM03] and Order Type [TC04].

Comparison of the Descriptors

The ideal interest point detector has the following properties (these properties have
been already discussed in Section 3.1.1): distinctiveness , robustness , simplicity and
compactness . Mikolajczyk and Schmid provide an in-depth comparison of the perfor-
mance of various descriptors [MS03, MS05]. The best overall performance is obtained
by SIFT and GLOH, so that the current de facto standard for local-appearance vision
is to use the SIFT descriptor. Unfortunately, SIFT and GLOH are high-dimensional

9A linear interpolation is used at this step to obtain smoothed weighted histograms.

Section 3.4 — Exploiting Visual Features 63

(which makes similarity calculations costly) and require sophisticated, computation-
ally expensive algorithms. This makes them inapplicable to robotic and/or real-time
applications10. Among the low-dimensional descriptors, steerable filters and gradient
moment invariants are the best choices.

It is important to note that Mikolajczyk and Schmid’s performance evaluation
does not include descriptors based on the raw pixels of the images [MGPW05]. Fur-
thermore, the promising SURF was not yet developed at the time this comparison
was written [BTVG06b]. Preliminary experimental results show that SURF out-
performs SIFT in repeatability and recall, while being easier to implement. Thus,
future research in local-appearance vision might favor these two recent algorithms.

3.3.4 Local-Appearance Feature Generators
If a local descriptor generator is used in conjunction with an interest point detector,
a visual feature generator is obtained (cf. Definition 3.1). As such a generator is
founded on the local-appearance paradigm, it is known as a local-appearance feature
generator:

Definition 3.6. Let:

• DL : S 7→ P(R2 ×W) be an interest point detector (cf. Definition 3.3), and

• GL : S × (R2 ×W) 7→ V be a local descriptor generator (cf. Definition 3.5).

Then, the local-appearance feature generator GV : S 7→ P(V) that is induced by DL

and GL is defined as:

GV (s) =
⋃

(x,y,w)∈DL(s)

GL(s, (x, y, w)). (3.15)

Remark 3.7. Publicly available implementations of interest point detectors and
local descriptors are available [Low05, Dor05, Mik06, BTVG06a]. 2

3.4 Exploiting Visual Features
Once a finite set of visual features has been extracted through a visual feature
generator, the third step consists in exploiting this information for a given computer
vision task. This can be achieved through at least two distinct approaches: by
matching the visual features , or by learning a predictive model .

Let us consider the epitome of image classification. This computer vision task
consists in attributing a class label c(s) ∈ C to a given image s ∈ S. The finite set
C contains the possible labels. Although more sophisticated approaches exist, one
simple method to solve this task consists in two steps:

10This claim must be nuanced, as SIFT extraction has been implemented on a Field-
Programmable Gate Array (FPGA) [SNJM04].

64 Chapter 3 — Appearance-Based Vision

Learning phase: Assume we are given a database of learning pairs 〈si, ci〉 ∈ S ×
C that maps a set of images to their respective ground-truth class labels.
The learning phase applies the following steps: (1) For each image si in the
database, a set {

v
(i)
1 , . . . ,v

(i)
ki

}
(3.16)

of ki visual features is extracted through the visual feature generator GV ; and
(2) a visual feature database is built, that maps each extracted visual feature
to the class label assigned to the image that originally contained this feature:{

〈v, c〉 | (∃i) (∃j ∈ ki) v = v
(i)
j and c = ci

}
. (3.17)

Classification phase: When classifying an unseen image s ∈ S, the following al-
gorithm is carried out: (1) A set of visual features {v1, . . . ,vk} is generated
from s; (2) each of these visual features is assigned a class label by querying
the visual feature database, so that each visual feature votes for one class label;
and (3) the unseen image is assigned with the class label that has obtained
most votes.

The keystone of the algorithm above is the querying of the visual feature database
at the second step of the classification phase. This step assigns one class label to a
single visual feature. Such a step is not unique to image classification: It is in general
present in all the vision systems that make use of local appearance. The way this
query is achieved allows to distinguish between two different, general approaches
to the exploitation of visual features, which have already been mentioned at the
beginning of this section:

Matching the visual features: The first way to query the visual feature database
consists in scanning the raw database {〈vl, cl〉} so as to find the feature vl∗ ∈ V
that best matches an input visual feature v. Then, the label cl∗ of this best
feature vl∗ is assigned to the input feature. To this end, a metric d(x, y) must
have been defined on the visual feature space V , and the best visual feature is
defined as the one that minimizes the distance with the input feature:

c(v) = cl∗ , with l∗ = argmin
l

d(vl, v). (3.18)

Euclidean distance for d(x, y) can be used in this context [OM02, KS04a].
However, this distance may be insufficient, as it cannot cope with scale differ-
ences between the variables, neither with the interdependency that possibly
links several variables. Therefore, the Mahalanobis distance [SM97, SSTVG03]
and the tangent distance [SLDV98, KMND04] are often considered.

As far as histogram-based visual features are used (cf. Section 3.2.3), spe-
cific similarity measures have been designed. These measures notably in-
clude Histogram Intersection [SB91], Sum of Squared Distance [CM95], χ2-
statistic [SC96] and Earth Mover’s Distance [RTG00]. Rubner et al. compare
these similarity measures for histograms [RPTB01].

Section 3.5 — Summary 65

From a general perspective, matching the features conceptually corresponds
to a nearest neighbor retrieval. Evidently, variants of nearest neighbor can be
used, such as k-nearest neighbor retrieval: This retrieval method outputs the
class that is the most represented among the k visual features that are the
nearest from the input visual feature.

We finally note that efficient data structures for nearest neighbor retrieval can
be used for achieving the minimization of Equation 3.18. For instance, Schmid
and Mohr [SM97] use k-d trees [Sam84], Georgescu et al. [GSM03] resort to
Locality Sensitive Hashing [IM98, LMGY04], whereas Obdržálek and Matas
propose a decision-tree based indexing [OM05].

Learning a predictive model: The second possibility to query the visual feature
database consists in generating a predictive model from the database through
a suitable machine learning algorithm. The computed model is thereafter used
to classify unseen visual features. The introduction of a metric is not required
here, as the learning and the prediction phases do not resort to the raw visual
feature database.

For example, Marée et al. [MGPW05] build a classification model for raw
image patches using the Extra-Trees learning algorithm [GEW06]. As already
mentioned, this approach to image classification reaches performance that are
closed to state-of-the-art methods based on the matching of visual features. A
closely related paper uses Randomized Trees [LF06].

Earlier work on model learning often focuses on Support Vector Machines and
Neural Networks . Marée reviews these methods in the case raw image patches
are used as global-appearance visual features [Mar05, Section 3.2.3]. Support
Vector Machines have also been used to classify local-appearance visual fea-
tures [CWN04, EC04, ZMLS06].

3.5 Summary
In this chapter, techniques for creating a mid-level representation of images were
discussed. Emphasis was put on appearance-based visual features, and, more specif-
ically, on local-appearance features. We looked at the widespread Harris detector
in detail. More sophisticated interest point detectors were then discussed. Finally,
we presented several local description algorithms and the way visual features are
exploited in appearance-based vision.

Using a local-appearance approach for closed-loop learning of visual tasks in un-
committed environment seems to be a promising approach. Indeed, the learning
agent has to focus its attention on discriminative visual cues, but without being
aware of what cue is background clutter, and without knowing which part of the ob-
served objects are occluded. As a consequence, we choose to develop RL algorithms
that take advantage of local-appearance visual features.

66 Chapter 3 — Appearance-Based Vision

CHAPTER

FOUR

Reinforcement Learning of Visual Classes

Chapters 2 and 3 have respectively proposed an introduction to reinforcement learn-
ing and to appearance-based vision. We now combine the ideas of these two chapters
for closed-loop learning of visual tasks. Similarly to local-appearance vision (cf. Sec-
tion 3.4), there exist at least two possible approaches for exploiting visual features in
the context of reinforcement learning:

1. Once a metric and a threshold on this metric are defined in the visual feature
space V , any visual feature splits the visual space S in two parts: Those images
that exhibit this feature, and the others. As a consequence, visual features can
be used to add structure to the visual space. By testing the presence of selected,
highly informative visual features in the input images, a bunch of visual classes
can be built. Thus, the complex, high-dimensional visual space is mapped to a
finite set of visual classes that can hopefully be much smaller than the original
set of possible images. Thereby, standard RL algorithms can be used to extract
an optimal control policy. Such a task-driven discretization of the visual space
subscribes to a top-down philosophy, and is adopted by the Reinforcement
Learning of Visual Classes (RLVC) algorithm that is discussed in the current
chapter.

2. Another possibility consists in approximating the optimal state-action value
function Q∗(s, a) by a regression model that takes the raw visual features as
input. Thus, there is no need to introduce a metric on the visual feature space
V . In this case, the visual features are used as they are, without comparing
them to a selected subset of highly informative visual features. This bottom-up
philosophy will be exploited in Visual Approximate Policy Iteration (V-API)
in Chapter 6.

4.1 Features in the Perceptual Space
As stated in Chapter 2, the objective of reinforcement learning is to learn an optimal
percept-to-action mapping π∗ : S 7→ A (cf. Theorem 2.15 and Definition 2.16). Such

67

68 Chapter 4 — Reinforcement Learning of Visual Classes

a mapping directly links the state space S to the action space A. To emphasize
the fact that the agent takes its decisions by resorting only to the current state S,
the state space S will be equally referred to as the perceptual space. Similarly, any
state s ∈ S can be called a percept . Chapter 3 has described how it is possible
to define visual features on a perceptual space that is constituted by images. We
now generalize the notion of a visual feature to non-visual perceptual spaces. The
algorithm RLVC will be defined using these more general notions, so that RLVC can
be applied to vision-for-action tasks as well as to other kind of control problems.

4.1.1 Visual Features Exhibited by Images
As mentioned above, RLVC exploits the visual features in a way that is inspired
by computer vision applications that match visual features (cf. Section 3.4). Thus,
RLVC assumes that a metric d(x, y) has been defined on the visual feature space
V . Furthermore, to be able to match two visual features, a fixed threshold ε on this
metric is introduced:

Definition 4.1. Let v1, v2 ∈ V be two visual features. These visual features are
matched with respect to to the metric d(x, y) and to the threshold ε ∈ R+

0 if:

d(v1, v2) < ε. (4.1)

Thanks to the concept of matched visual features, an image is said to exhibit a
visual feature if a matching visual feature can be found at one of its interest points
by the visual feature generator GV (cf. Definition 3.1):

Definition 4.2. Let s ∈ S be an image, and let v ∈ V be a visual feature. The
image s is said to exhibit the visual feature v if:

(∃v′ ∈ GV (s)) d(v, v′) < ε. (4.2)

This definition naturally extends to a visual feature detector that tests whether
a given image exhibits a given visual feature or not:

Definition 4.3. A visual feature detector is a mapping DV : S × V 7→ B that
associates a Boolean number to a pair that is composed of a visual percept s ∈ S
and a visual feature v ∈ V . The visual feature detector is defined by the following
relation:

DV (s, v) = true if and only if s exhibits v. (4.3)

Although these notions come from an analysis of appearance-based vision, they can
be naturally extended to non-visual perceptual spaces.

4.1.2 General Perceptual Features
Any visual feature v ∈ V indeed acts as a binary classifier that maps any image
to two classes: those images that exhibit v (cf. Definition 4.2), and the others. Of

Section 4.1 — Features in the Perceptual Space 69

course, the concept of a feature is not limited to visual spaces: Visual features are
nothing else but a special kind of the more abstract notion of perceptual features . A
perceptual feature is anything that can be either present or absent from a percept.
This leads us to the following definition:

Definition 4.4. A perceptual feature detector DS : S × FS 7→ B is a mapping
that associates a Boolean to any pair that consists of a percept and of a perceptual
feature1. FS is the perceptual feature space, that is possibly infinite.

Below follow some examples of useful perceptual feature detectors for some com-
mon perceptual spaces.

Visual Spaces

In this case, the perceptual feature space FS directly corresponds to the visual
feature space V . The corresponding perceptual feature detector tests if the given
image exhibits the given visual feature at one of its interest points (cf. Definition 4.2):

DS(s, v) = true if and only if (∃v′ ∈ GV (s)) d(v, v′) < ε. (4.4)

Continuous Spaces

Continuous perceptual spaces have received by far the most attention in the RL
literature. In this case, S corresponds to Rn for some n > 0. Inspired by the theory
of decision tree induction [BFS84], a perceptual feature in such continuous spaces is
defined as a test that checks if a given component of the vector encoding the percept
is smaller than a given threshold:

FS = R× {1, . . . , n}, (4.5)

DS(s, (t, i)) = true if and only if si < t. (4.6)

The same kind of features has notably been used by Munos and Moore in Variable
Resolution Grids [MM02].

Perceptual Spaces with Binary Numbers

Some work about reinforcement learning considers learning agents whose percepts
are binary numbers. For example, Chapman and Kaelbling have designed an RL
algorithm that can be fed with very simple, strongly structured, monochrome images
from the video game Amazon [CK91]. An image is encoded as a fixed-length binary
number that is formed by the concatenation of the value of its pixels. More recently,
Porta and Celaya consider environments in which the perceptual space is a fixed-
sized vector of variables with a finite variation domain [PC05]. Such percepts contain
the Boolean answers of a bank of binary tests that check a given property of the

1The subscript S of the notation DS and FS emphasizes the fact that these features are defined
on the perceptual space S. This convention will be useful in Chapter 7.

70 Chapter 4 — Reinforcement Learning of Visual Classes

percept.2 Thus, such perceptual spaces that are composed of binary numbers can
be defined as:

S =
⋃
n∈N

Bn, (4.7)

where B designates the set of Boolean numbers.
In this context, a suitable perceptual feature indicates the position of one bit in

the binary number. The perceptual feature detector tests whether the indicated bit
is set in the given percept. Formally, we obtain the following definitions:

FS = N, (4.8)

DS(bn−1 . . . b0, i) = true if and only if (i < n and bi = true) . (4.9)

Note that if the indicated bit is absent from the binary number, it is assumed to be
false. This is basically the same convention as in the standard positional number
systems.

4.1.3 Perceptual Feature Generators
Besides the visual feature detector, the other important concept from appearance-
based vision is the visual feature generator. Once again, it is possible to naturally
extend this concept to non-visual perceptual spaces:

Definition 4.5. A perceptual feature generator GS : P(S) 7→ P(FS) is a mapping
that associates to each set of percepts, the set of all the perceptual features that are
present in one of these percepts. For computational tractability, it is required that
for each finite set {s1, . . . , sm} of percepts, GS({s1, . . . , sm}) is finite.

Note that it is allowed for a perceptual feature generator to generate an empty set
of perceptual features. This can happen, for example, when an image is uniform, in
which case no salient interest point can be detected. Moreover, as already pointed
out in Remarks 3.2 and 3.4, the process of generating perceptual features could
theoretically be stochastic.

The dark side of this convenient definition is that it clouds the involved com-
putational mechanisms. These mechanisms can be quite complex, depending on
the considered perceptual space. We now describe perceptual feature generators for
some commonly used perceptual spaces.

Visual Spaces

Once a visual feature generator GV has been fixed (cf. Definition 3.1), it is straight-
forward to derive a corresponding perceptual feature generator. It is indeed sufficient
to collect the set of all the visual features that are generated across the input set of
images:

GS({s1, . . . , sm}) =
m⋃

i=1

GV (si). (4.10)

2The relation between this bank of features and our perceptual features are discussed in Sec-
tion 4.3.

Section 4.2 — Learning Architecture 71

Note that in Chapter 5, a more complex strategy will be introduced. This generator
will produce spatial combinations of visual features that are more discriminative
than individual point features.

Continuous Spaces

When the perceptual space is continuous, a plausible way to extract thresholding
features consists in considering each component of the input percepts as a threshold
for this component:

GS({s1, . . . , sm}) =
m⋃

i=1

n⋃
j=1

(sij, j). (4.11)

Perceptual Spaces with Binary Numbers

In the case of perceptual spaces that consist of binary numbers, the perceptual
feature generator can simply return the set of all possible bits. To this end, the
generator first identifies the longest binary number in the furnished percepts, then
returns all the indices below this threshold:

GS({s1, . . . , sm}) = {0, . . . , n}, (4.12)

where n ∈ N is the greatest integer such that:

(∃i ∈ {1, . . . , n}) DS(si, n) = true. (4.13)

4.2 Learning Architecture
The key problem which arises when reinforcement learning is applied to large-scale
(e.g. visual) or continuous problems is referred to as the Bellman curse of dimension-
ality [Bel57a]. Standard reinforcement learning algorithms such as those described
in Chapter 2 directly use the “flat” perceptual space S. However, perceptual fea-
tures allow to represent percepts in terms of properties they have, instead of the
percepts themselves3. Thus, perceptual features can be used to add structure to the
perceptual space.

The basic idea of the Reinforcement Learning of Visual Classes4 (RLVC) algo-
rithm consists in partitioning the perceptual space into a finite set of perceptual
classes by focusing the attention of the agent on highly distinctive perceptual fea-
tures [JP04, JP05c, JP05e]. Each percept is mapped to a perceptual class, and each
perceptual class is in turn associated with a single symbol. This symbolic input
can then be used as the input to a classical, embedded RL algorithm, as shown in

3Such feature-based representations of percepts are often called intentional representations.
4A better denomination for this algorithm would have been Reinforcement Learning of Percep-

tual Classes, as it can be as well applied to non-visual perceptual spaces. However, the algorithm
was initially designed specifically for vision-for-action tasks. Thus, to keep the consistency with
our publications, we have chosen to keep this original denomination.

72 Chapter 4 — Reinforcement Learning of Visual Classes

percepts

Perceptual Classifier Reinforcement Learningdetected perceptual classes

reinforcements

informative perceptual features

actions

Figure 4.1: Sketch of the learning architecture of RLVC.

Figure 4.1. Indeed, this task-driven pre-processing step is intended to reduce the
size of the input domain, thus enhancing the rate of convergence, the generalization
capabilities as well as the robustness of RL to noise in complex perceptual domains.
The central difficulty is the dynamic selection of the discriminative perceptual fea-
tures. This selection process should group images that share homogeneous properties
together in the same perceptual class.

To this end, RLVC consists of two simultaneous, interleaved processes: The
incremental generation of a so-called percept classifier that maps a percept to the
corresponding perceptual class, and the reinforcement learning of a mapping from
the perceptual classes to the suitable actions.

Initially, the percept classifier knows about one perceptual class, so that any
image is mapped to this class. Of course, this introduces a kind of perceptual aliasing
(or hidden state) [WB91]: The optimal decisions cannot always be made, since
percepts requiring different reactions are associated with the same class. The agent
then isolates the aliased classes. Since there is no external supervisor, it can only rely
on a statistical analysis of the earned reinforcements. For each detected aliased class,
the agent dynamically selects a new perceptual feature that is distinctive, i.e. that
best disambiguates the aliased percepts. The extracted feature is used to refine the
classifier. This way, at each stage of the algorithm, the number of perceptual classes
in the classifier grows.

New perceptual features are learned until perceptual aliasing vanishes. The re-
sulting image classifier is finally used to control the system. Thus, RLVC selects
a subset of highly relevant perceptual features in a fully closed-loop, task-driven
learning process.

4.3 Related Work

The exploitation of perceptual features has already been actively addressed in the
reinforcement learning literature.

Section 4.3 — Related Work 73

4.3.1 Factored Representations of MDPs

In the context of dynamic programming, the use of perceptual features has led to
the development of factored representations . In a factored Markov decision pro-
cess [BDG00], the perceptual space is described using a finite set of intensional
variables {x1, . . . , xn}, where each variable xi takes its values in a finite domain,
and is termed a factor of the MDP. In our framework, a factor xi would corre-
spond to a perceptual feature that would have been selected through some suitable
pre-processing. As the size of the perceptual space is exponential in the number of
factors, it is impossible to directly represent the transition relation T , the reinforce-
ment signal R, as well as the value functions or the policies.

Several compact representations based on the factors have therefore been defined.
One way to encode the transition relation T is to use a separate dynamic Bayesian
network [DK89, Mur02] for each action. This particular class of Bayesian networks
is sometimes referred to as two-stage temporal Bayesian networks . Any factor that is
not relevant to the action is not represented. If there are only a few relevant factors,
this representation is much more compact than a flat representation of the transition
probabilities. An alternative factored representation is based on the concept of
probabilistic STRIPS operators [KHW95], that is a special kind of decision trees. As
for the reinforcement signal R, it is often encoded as a simple decision tree.

Even when the transition relation and the reinforcement signal have been repre-
sented compactly, the main challenge is to develop algorithms which can take these
factored data structures and calculate similarly compact representations of the op-
timal policy and the value function. The Structured Policy Iteration algorithm is
one of the few algorithms that maintain a factored representation throughout the
entire computation [BDG00]. This algorithm encodes value functions and policies
using decision trees. This technique allows the efficient solution of Markov decision
problems in very large perceptual spaces, without explicit state enumeration.

The Spudd algorithm is also designed to solve factored Markov decision prob-
lems [HSHB99]. Spudd represents the value functions as Algebraic Decision Dia-
grams (ADD) [BFG+93a], that extend Binary Decision Diagrams (BDD) [Bry92]5.
This algorithm can optimally solve Markov decision problems whose perceptual
space contains hundreds of millions of states. Unfortunately, ADD can only rep-
resent value functions that have only few hundreds of distinct values.

Further work about factored MDPs includes the doctoral dissertations by Sal-
lans [Sal02] and Guestrin [Gue03]. All these techniques are defined in the framework
of Markov decision processes. As a consequence, much of this work assumes that the
parameters of the MDP are known, and usually that the factored representations of
actions and reward function are also known, which is not the case in RLVC.

5Binary decision diagrams will be presented in Section 5.1.3.

74 Chapter 4 — Reinforcement Learning of Visual Classes

4.3.2 Perceptual Aliasing

Standard reinforcement learning explicitly assumes that the agent is able to distin-
guish between the states of the environment using only its sensors: The perceptual
space is said fully observable, and the right decisions can always be made on the ba-
sis of the percepts. If it is not the case (i.e. if the perceptual space is only partially
observable), the agent cannot distinguish between any pair of states and thus will
possibly not be able to take systematically the right decision. This phenomenon is
known as the perceptual aliasing (or hidden state) problem, and is closely related
to ours. Indeed, Section 4.2 has explained that the incremental selection of a set
of perceptual features necessarily leads to a temporary perceptual aliasing, which
RLVC tries to get rid of.

Early work in reinforcement learning has tackled this general problem in two
distinct ways: Either the agent identifies and then avoids states where perceptual
aliasing occurs (as in the Lion algorithm [WB91]), or it tries to build a short-term
memory that will allow it to remove the ambiguities on its percepts (as in the pre-
dictive distinctions approach [Chr92]). Very sketchily, these two algorithms detect
the presence of perceptual aliasing through an analysis of the sign of Q-learning up-
dates (cf. Section 2.4.2). The possibility of managing a short-term memory has led to
the development of the Partially Observable Markov Decision Processes (POMDP)
theory [KLC98], in which the current state is a random variable of the percepts.
Hasinoff’s technical report [Has03] is an up-to-date reference about the perceptual
aliasing issue.

Although these approaches are closely related to the perceptual aliasing RLVC
temporarily introduces, they do not consider the exploitation of perceptual fea-
tures. Indeed, they tackle a structural problem in a given control task, and, as
such, they assume that perceptual aliasing cannot be removed. As a consequence,
these approaches are orthogonal to our research interest, since the ambiguities RLVC
generates can be removed by further refining the percept classifier. In fact, the tech-
niques above tackle a lack of information inherent to the used sensors, whereas our
goal is to handle a surplus of information related to the high redundancy of visual
representations.

4.3.3 Adaptive Resolution in Finite Perceptual Spaces

RLVC performs an adaptive discretization of the perceptual space through an au-
tonomous, task-driven selection of perceptual features. Work in RL that incre-
mentally partitions a large (either discrete or continuous) perceptual space into a
piecewise constant value function is usually referred to as adaptive-resolution tech-
niques. Ideally, regions of the perceptual space with a high granularity should only
be present where they are needed, while a lower resolution should be used elsewhere.
RLVC is such an adaptive-resolution algorithm. We now review several adaptive-
resolution methods that are suited for finite perceptual spaces.

The idea of adaptive-resolution techniques in reinforcement learning goes back to
the G Algorithm [CK91], and has inspired the other approaches that are discussed

Section 4.3 — Related Work 75

below. The G Algorithm considers perceptual spaces that are made up of fixed-
length binary numbers. It learns a decision tree that tests the presence of informative
bits in the percepts. This algorithm uses a Student’s t-test to determine if there is
some bit b in the percepts that is mapped to a given leaf, such that the state-action
utilities of states in which b is set are significantly different from the state-action
utilities of states in which b is unset. If such a bit is found, the corresponding leaf
is split. The process is repeated for each leaf. This method is able to learn compact
representations, even though there is a large number of irrelevant bits in the percepts.
Unfortunately, when a region is split, all the information associated with that region
is lost, which makes for very slow learning. Concretely, the G Algorithm can solve
a task whose perceptual space contains 2100 distinct percepts, which corresponds to
the set of binary numbers with a length of 100 bits.

McCallum’s U-Tree algorithm builds upon this idea by combining a “selective
attention” mechanism inspired by the G Algorithm with a short-term memory that
enables the agent to deal with partially observable environments [McC96]. Therefore,
McCallum’s algorithms are a keystone in reinforcement learning, as they unify the
G Algorithm [CK91] with Chrisman’s predictive distinctions [Chr92].

U-Tree incrementally grows a decision tree through Kolmogorov-Smirnov tests.
It has succeeded at learning behaviors in a driving simulator. In this simulator,
a percept consists in a set of 8 discrete variables whose variation domains contain
between 2 and 6 values, leading to a perceptual space with 2, 592 possible per-
cepts. Thus, the size of the perceptual percept is much smaller than a visual space.
However, this task is difficult because the “physical” state space is only partially
observable through the perceptual space: The driving task contains 21, 216 physical
states, which means that several physical states requiring different reactions can be
mapped to the same percept through the sensors of the agent. U-Tree resolves such
ambiguities on the percepts by testing the presence of perceptual features in the
percepts that have been encountered previously in the history of the system. To
this end, U-Tree manages a short-term memory. In this dissertation, we do not con-
sider partially observable environments. Our challenge is rather to deal with huge
visual spaces, without hand-tuned pre-processing, which is in itself a difficult, novel
research direction.

More recently, Porta and Celaya have also considered adaptive-resolution algo-
rithms for complex finite perceptual spaces [PC05]. They propose to apply rein-
forcement learning only on a subset of the perceptual input. In their framework, a
perceptual input is a vector of Booleans with a fixed size that contains the binary
answers of a set of feature detectors. This concept is very similar to our notion of
perceptual features. However, their algorithms handle complex action spaces simul-
taneously with complex perceptual spaces. As discussed in Chapter 7, this is an
important contribution, as RL algorithms are also highly sensitive to the number of
possible actions. Although RLVC is limited to discrete, small-sized action spaces,
this requirement will be lifted in the generalized version of RLVC that will be called
Reinforcement Learning of Joint Classes .

76 Chapter 4 — Reinforcement Learning of Visual Classes

4.3.4 Adaptive Resolution in Continuous Perceptual Spaces

It is important to notice that all the methods for adaptive resolution in large-scale,
finite perceptual spaces use a fixed set of perceptual features that is hard-wired. This
has to be distinguished from RLVC that samples perceptual features from a possibly
infinite feature space (e.g. the visual feature space is infinite), and that makes no
prior assumptions about the maximum number of useful features. From this point
of view, RLVC is closer to adaptive-resolution techniques for continuous perceptual
spaces. Indeed, these techniques can dynamically select new relevant features from
a whole continuum.

The very first research in adaptive-resolution algorithms for continuous percep-
tual spaces is the Darling algorithm [Sal93]. This algorithm, just like all the
current algorithms for continuous adaptive resolution, splits the perceptual space
using thresholds, as described in Section 4.1.2. For this purpose, Darling builds a
hybrid decision tree that assigns a label to each point in the perceptual space. This
is a fully on-line and incremental algorithm that is equipped with a forgetting mech-
anism that deletes outdated interactions. Darling is however limited to binary
reinforcement signals, and it only takes immediate reinforcements into account, so
that Darling is much closer to supervised learning than to reinforcement learning.

The Parti-Game algorithm [MA95] produces goal-directed behaviors in continu-
ous perceptual spaces. Parti-Game also splits regions where it deems it important,
but the approach and assumptions are significantly different. Parti-Game indeed
assumes that the agent possesses a greedy controller that can move it towards any
desired state. There is no guarantee that the greedy controller will succeed, but the
agent is warned when the greedy controller becomes stuck against some obstacle.
Parti-Game assumes that the dynamics of the world are deterministic and that the
goal state is known. The objective is to produce behavior that takes the agent to the
goal without becoming stuck, which is different from the objective of reinforcement
learning where the agent must maximize its expected discounted return. Parti-Game
uses a game-theoretic approach to decide which regions to split. Moore and Atke-
son show that Parti-Game can learn competent behavior in a variety of continuous
domains. Unfortunately, the approach is currently limited to deterministic domains
where the agent has a greedy controller. Moreover, this algorithm searches for any
solution to a given task, and does not try to find the optimal one.

The Continuous U-Tree algorithm is an extension of U-Tree that is adapted to
continuous perceptual spaces [UV98]. Just like Darling, Continuous U-Tree in-
crementally builds a decision tree that splits the perceptual space in a finite set of
hypercubes, by testing thresholds. Kolmogorov-Smirnov and sum-of-squared-errors
are used to determine when to split a node in the decision tree. Pyeatt and Howe
analyze the performance of several splitting criteria for a variation of Continuous
U-Tree [PH01]. They conclude that Student’s t-test leads to the best performance.
Continuous U-Tree has been extended to Semi-Markov Decision Processes (cf. Sec-
tion 2.2) by Uther in the T-Tree algorithm [Uth02].

Munos and Moore have proposed Variable Resolution Grids [MM02]. Their
algorithm assumes that the perceptual space is a compact subset of Euclidean space,

Section 4.3 — Related Work 77

and begins with a coarse, grid-based discretization of the state space. In contrast
with the other abstract algorithms in this section, the value function and policy
vary linearly within each region. Munos and Moore use Kuhn triangulation as
an efficient way to interpolate the value function within regions. The algorithm
refines its approximation by splitting cells according to a splitting criterion. Munos
and Moore explore several local heuristic measures of the importance of splitting
a cell including the average of corner-value differences, the variance of corner-value
differences, and policy disagreement. They also explore global heuristic measures
involving the influence and variance of the approximated system. The influence is a
measure of non-local dependencies in the value function, and variance is an estimate
of the error in the value function due to the grid approximation. Variable Resolution
Grids are probably the most advanced adaptive-resolution algorithm available so far.

4.3.5 Discussion

To summarize, several algorithms that are similar in spirit to RLVC have been
proposed over the years. Nevertheless, our work appears to be the first that can
learn direct image-to-action mappings through reinforcement learning. Indeed, none
of the methods above combines all the following desirable properties of RLVC:

1. It is defined in the reinforcement learning framework, which is important from
the point of view of purposive vision (cf. the introductory chapter);

2. The set of relevant perceptual features is not chosen a priori by hand, as the
selection process is fully automatic and does not require any human interven-
tion;

3. Visual perceptual spaces are explicitly considered through appearance-based
visual features; and

4. The highly informative perceptual features can be drawn out of a possibly
infinite set.

These advantages of RLVC are essentially due to the fact that the candidate
perceptual features are not selected only because they are informative: They are
also ranked according to some information-theoretic measure that is inspired by the
learning of decision trees [BFS84]. Such a ranking is required, as vision-for-action
tasks induce a large number of visual features (a typical image contains about a
thousand of them). This kind of criterion that ranks perceptual features, though
already considered in Variable Resolution Grids [MM02], seems to be new in dis-
crete perceptual spaces. This gives to RLVC a competitive advantage over previous
adaptive-resolution algorithms in finite perceptual spaces, and this is the main fea-
ture that allows our algorithms to learn image-to-action mappings.

78 Chapter 4 — Reinforcement Learning of Visual Classes

Figure 4.2: A percept classifier and its effects on the perceptual space. (This illus-
tration is strongly inspired by Pyeatt and Howe [PH01].)

4.4 Adaptive Discretization of the Perceptual Space

As discussed in Section 4.2, we propose to insert a percept classifier before the
RL algorithm. This classifier maps the stimuli to a set of perceptual classes, by
focusing the attention of the agent on highly distinctive perceptual features that are
extracted through a perceptual feature generator GS. RLVC assumes the finiteness
of the action space: A = {a1, . . . , am}. However, the perceptual space S can possibly
be infinite.

The percept classifier is iteratively refined. Because of this incremental process, a
natural way to implement the percept classifiers is to use binary decision trees. Each
of their internal nodes is labeled by the perceptual feature, the presence of which
is to be tested in that node. The n leaves of the trees define a set of n perceptual
classes, which is hopefully much smaller than the original perceptual space S, and
upon which it is possible to apply directly any usual RL algorithm. To classify a
percept, the system starts at the root node, then progresses down the tree according
to the result of the feature detector DS for each perceptual feature found during the
descent, until reaching a leaf. This process is illustrated in Figure 4.2.

To summarize, RLVC builds a sequence C0, C1, C2, . . . of growing decision trees, in
a sequence of attempts to remove perceptual aliasing. At any stage k, the classifier
Ck partitions the perceptual space S into a finite number mk of perceptual classes:

Definition 4.6. A percept classifier Ck : S 7→ Sk is a mapping from the percepts to

Section 4.4 — Adaptive Discretization of the Perceptual Space 79

Figure 4.3: The different components of the RLVC algorithm.

a set of perceptual classes Sk that is defined as:

Sk =
{

c
(k)
1 , . . . , c(k)

mk

}
. (4.14)

The initial classifier C0 maps all of its input percepts to a single perceptual class c
(0)
1 .

The components of RLVC are depicted in Figure 4.3. An in-depth discussion of
each of these components will be given in the next sections. We first briefly review
each of them:

RL algorithm: For each classifier in the sequence, an arbitrary, standard RL algo-
rithm is applied. This provides information such as the optimal state-action
function, the optimal value function or the optimal policy that are induced by
the current classifier Ck. For the purpose of these computations, either new
interactions can be acquired, or a database of previously collected interactions
can be exploited. This component is covered in Section 4.4.1.

Note that in all the experiments that are presented in this dissertation, model-
based RL algorithms have been applied to static databases of interactions.
These databases have been collected using a fully randomized exploration
strategy (cf. Section 2.4.2).

Aliasing detector: In RLVC, the embedded reinforcement learning algorithm does
not perceive the system directly through its sensors, but rather through a
percept classifier. As a consequence, until the agent has learned the perceptual
classes that are required to complete its task, the input space is only partially
observable from the point of view of the embedded RL algorithm.

Therefore, at regular intervals, an aliasing detector extracts the classes in
which perceptual aliasing occurs, through an analysis of the Bellman residu-
als (cf. Section 2.4.2). Indeed, as explained in Section 4.4.2, tight relations
exist between perceptual aliasing and Bellman residuals. If no aliased class is
detected, RLVC stops. This periodic check testing whether to add additional
distinctions to the leaves of the tree is also present in U-Tree [McC96] and
Continuous U-Tree [UV98].

80 Chapter 4 — Reinforcement Learning of Visual Classes

Perceptual feature generator: After applying the RL algorithm, a database of
interactions 〈st, at, rt+1, st+1〉 is available. The perceptual feature generator

GS produces a set F
(k)
i of candidate perceptual features for each aliased class

c. This is done by applying GS on the set of percepts that are mapped to
the aliased classes. The features that will be used to refine a classifier will be
chosen among this set of candidates.

Feature selector: Once the set of candidate features F
(k)
i is built, this component

selects the perceptual feature f ∗ ∈ F
(k)
i that best reduces the perceptual alias-

ing in the perceptual class c. This step is further described in Section 4.4.3.

Classifier refinement: The leaves that correspond to the aliased classes are re-
placed by an internal node testing the presence or absence of the selected
perceptual features.

Post-processing: This optional component is invoked after every refinement, and
corresponds to techniques for reducing overfitting effects. A suitable post-
processing procedure will be detailed in Chapter 5.

The resulting general outline of RLVC is described in Algorithm 4.1. The follow-
ing sections describe the remaining algorithms, namely aliased, selector and
post-process.

4.4.1 Mapping an MDP through a Percept Classifier
We now discuss how aliasing can be detected in a classifier Ck. Formally, any percept
classifier Ck converts a sequence of N interactions 〈st, at, rt+1, st+1〉, to a mapped
sequence of N quadruples:

〈Ck(st), at, rt+1, Ck(st+1)〉 ∈ Sk × A× R× Sk, (4.15)

where Sk is the set of perceptual classes that are known to Ck. Each of these
quadruples corresponds to an interaction in a so-called mapped MDP Mk, whose
set of states corresponds to the set of perceptual classes that are known to Ck:

Definition 4.7. Let 〈st, at, rt+1, st+1〉 be a sequence of interactions that comes from
an exploration of the MDP M. Let also Ck be a percept classifier that is generated
by RLVC. The mapped MDP Mk that is derived from this sequence of interactions,
is the quadruple:

〈Sk, A, Tk,Rk〉, (4.16)

where Tk and Rk are constructed from the relative frequencies that appear in the
mapped sequence 〈Ck(st), at, rt+1, Ck(st+1)〉. Precisely, Tk (resp.Rk) are derived from
the mapped sequence through Equations 2.40 (resp. 2.41).

Each mapped MDP Mk is characterized by an optimal state-action value func-
tion on the domain Sk×A that will be denoted Q̂∗

k. RLVC applies the embedded RL

Section 4.4 — Adaptive Discretization of the Perceptual Space 81

Algorithm 4.1 — General structure of RLVC

1: k ← 0
2: mk ← 1
3: Ck ← binary decision tree with one leaf
4: repeat
5: Collect N interactions 〈st, at, rt+1, st+1〉
6: Apply some RL algorithm on the sequence that is mapped through Ck
7: Ck+1 ← Ck
8: for i← 1 to mk do
9: c← c

(k)
i

10: if aliased (c) then
11: F ← GS ({st | Ck(st) = c})
12: f ∗ ← selector (c, F)
13: if f ∗ 6= ⊥ then
14: Ck+1 ← Ck+1, where the perceptual class c is refined by a test on f ∗

15: mk+1 ← mk+1 + 1
16: end if
17: end if
18: end for
19: k ← k + 1
20: post-process(Ck)
21: until Ck = Ck−1

algorithm to the mapped sequence of interactions to obtain this optimal state-action
value function. In turn, the function Q̂∗

k induces another state-action value function
Q∗

k on the initial domain S × A through the relation:

Q∗
k(s, a) = Q̂∗

k (Ck(s), a) . (4.17)

Computing Q̂∗
k can be difficult: In general, there may exist no MDP defined on

the state space Sk and on the action space A that can generate a given mapped
sequence, given that the latter is not necessarily Markovian anymore. Thus, if some
RL algorithm is run on the mapped sequence, it might not converge toward Q̂∗

k, or
not even converge at all. However, when applied on the mapped MDP Mk, any
model-based RL method (cf. Section 2.4.1) can be used to compute Q̂∗

k. Under some
conditions, Q-learning also converges to the optimal state-action value function of
the mapped MDP [SJJ95].

4.4.2 Measuring Aliasing
In the absence of aliasing, the agent could perform optimally, and the state-action
value function Q∗

k, as defined by Equation 4.17, would correspond to the optimal
state-action value function Q∗, according to Bellman theorem that states the unique-
ness of the optimal Q function (cf. Section 2.2.3). By Equation 2.29, the function

Bk(s, a) = (HQ∗
k)(s, a)−Q∗

k(s, a), (4.18)

82 Chapter 4 — Reinforcement Learning of Visual Classes

where H is the Bellman backup operator for the MDP M, is therefore a measure
of the aliasing induced by the image classifier Ck with respect to the percept s ∈ S
and to the action a ∈ A.

The basic idea behind RLVC is to refine the perceptual classes containing a
percept s ∈ S such that Bk(s, a) is non-zero for some action a ∈ A. To evaluate
the function Bk(s, a), all the learning agent has at its disposal is a database of
interactions 〈st, at, rt+1, st+1〉. Consider a time stamp t in this database. According
to Equation 4.18 and to the definition of the Bellman backup operator H, the value
of Bk for the state-action pair (st, at) equals

Bk(st, at) = R(st, at) + γ
∑
s′∈S

T (st, at, s
′) max

a′∈A
Q∗

k(s′, a′)−Q∗
k(st, at). (4.19)

Unfortunately, the learning agent does not have access to the transition proba-
bilities T and to the reinforcement function R of the MDP M modeling the envi-
ronment. Therefore, Equation 4.19 cannot be directly evaluated by the agent. A
similar issue arises in the Q-learning [Wat89] and the Fitted Q Iteration [EGW05]
algorithms. As discussed in Section 2.4.2 in the context of Q-learning, these algo-
rithms solve this problem by considering the stochastic version of the time difference
that is described by Equation 4.19. Following the same line of reasoning as in Sec-
tion 2.4.2, the value ∑

s′∈S

T (st, at, s
′) max

a′∈A
Q∗

k(s′, a′) (4.20)

can be estimated as
max
a′∈A

Q∗
k(s′, a′), (4.21)

if the successor s′ is chosen with probability T (st, at, s
′). But following the transi-

tions of the environment ensures making a transition from st to st+1 with probability
T (st, at, st+1). Thus

∆t = rt+1 + γ max
a′∈A

Q∗
k(st+1, a

′)−Q∗
k(st, at) (4.22)

= rt+1 + γ max
a′∈A

Q̂∗
k (Ck (st+1) , a′)− Q̂∗

k(Ck(st), a) (4.23)

is an unbiased estimate of Equation 4.19. The value ∆t is the Bellman residual that
is used to iteratively update the estimate of the optimal state-action value function
in Q-learning (cf. Section 2.4.2).

As previously discussed when deriving Q-learning, if the system is deterministic,
in the absence of perceptual aliasing, and after convergence to the optimal state-
action value function, these Bellman residuals are equal to zero. Therefore, a nonzero
∆t potentially indicates the presence of perceptual aliasing in the perceptual class
ct = Ck(st) with respect to action at.

Our criterion for detecting the aliased classes is now described. First, the Q̂∗
k

function is computed. Secondly, let c be a perceptual class that belongs to the
percept classifier Ck, and let a ∈ A be an action. Consider the following set of time
stamps:

T (c, a) = {t | Ck(st) = c and at = a}. (4.24)

Section 4.4 — Adaptive Discretization of the Perceptual Space 83

Algorithm 4.2 — Aliasing Criterion of RLVC

1: aliased (c) :–
2: for a ∈ A do
3: ∆← {∆t | Ck(st) = c and at = a}
4: if σ2(∆) > τ then
5: return true
6: end if
7: end for
8: return false

Each element in this set indexes an interaction that is simultaneously related to the
class c and to the action a. We assert the presence of aliasing in the perceptual class
c with respect to an action a ∈ A if the set of Bellman residuals

{∆t | t ∈ T (c, a)} (4.25)

has a variance that exceeds a given threshold τ ∈ R+
0 . This is summarized in

Algorithm 4.2, where σ2(·) denotes the variance of a set of samples.

4.4.3 Selecting Distinctive Perceptual Features
Once aliasing has been detected in some perceptual class c ∈ Sk with respect to an
action a, we need to select a perceptual feature that best explains the variations
in the set of ∆t values corresponding to c and a. This perceptual feature is to be
chosen among the set of candidates F

(k)
i . This is a regression problem, for which we

suggest an adaptation of a popular splitting rule used in the CART algorithm for
building regression trees [BFS84].

In CART, variance is used as an impurity indicator: The split that is selected
to refine a particular node is the one that leads to the greatest reduction in the
sum of the squared differences between the response values for the learning samples
corresponding to the node and their mean. More formally, if the learning samples
are L = {〈xi, yi〉}, then the feature that is selected is:

f ∗ = argmin
v∈F

(k)
i

(
pv
⊕ · σ2

(
Lv
⊕
)

+ pv
	 · σ2

(
Lv
	
))

, (4.26)

where pv
⊕ (resp. pv

) is the proportion of samples 〈xi, yi〉 that exhibit (resp. do
not exhibit) the feature v in xi, and where Lv

⊕ (resp. Lv
) is the set of outputs yi

corresponding to samples that exhibit (resp. do not exhibit) the feature v in xi.
This idea can be directly transferred in our framework, if the set of xi corresponds
to the set of aliased percepts st, and if the set of yi corresponds to the set of Bellman
residuals ∆t. This is written explicitly in Algorithm 4.3.

Our algorithms exploit the stochastic version of Bellman residuals. Of course,
real environments are in general non-deterministic, and thus generate variations in
Bellman residuals that are not a consequence of perceptual aliasing. RLVC can be

84 Chapter 4 — Reinforcement Learning of Visual Classes

Algorithm 4.3 — Feature selection process

1: selector (c, F) :–
2: f ∗ ← ⊥ {Best feature found so far}
3: r∗ ← +∞ {Variance reduction induced by f ∗}
4: for a ∈ A do
5: T ← {t | Ck(st) = c and at = a}
6: for perceptual features f ∈ F do
7: S⊕ ← {∆t | t ∈ T and DS(st, f) = true}
8: S	 ← {∆t | t ∈ T and DS(st, f) = false}
9: p⊕ ← |S⊕|/|T |

10: p	 ← |S	|/|T |
11: r ← p⊕ · σ2 (S⊕) + p	 · σ2 (S)
12: if r < r∗ and the distributions (S⊕, S) are significantly different then
13: f ∗ ← f
14: r∗ ← r
15: end if
16: end for
17: end for
18: return f ∗

made somewhat robust to such a variability by introducing a statistical hypothesis
test: For each candidate feature, a Student’s t-test is used to decide whether the
two sub-distributions that the feature induces are significantly different.

This is precisely the approach that is used when generating binary decision trees:
Whenever a leaf node should be split, the components that have an influence on
the outcome variable are selected, then the most relevant component among these
candidates is used to refine the node. The choice of Student’s t-test to detect which
variables have an influence, which originates in the G Algorithm [CK91], is motivated
by Pyeatt and Howe’s comparison [PH01] as well as by the CART algorithm for
learning regression trees [BFS84]. As for the variance reduction score, it is employed
in the learning of regression trees through CART [BFS84].6

4.5 The Binary Gridworld Application
In this chapter, RLVC will be evaluated on several navigation tasks with increasing
complexity. We first consider the application of RLVC for to solve of discrete 2D
mazes that are constituted of walls and empty cells. There is one exit in the mazes.
In each cell, the agent has four possible actions: Go up, right, down, or left. If a
move would take the agent into a wall, its location is not changed. If a move takes

6Note that the general architecture of RLVC is independent of this choice: Although we were
inspired by the learning of CART decision trees, any other algorithm for learning regression trees
can be inserted as the inner loop of Algorithm 4.3. For example, in our previous papers, we have
used a splitting rule that is borrowed from the building of classification trees [Qui93, JP05c].

Section 4.5 — The Binary Gridworld Application 85

*

bits :

irrelevant (random) information

0 4

x position (0−10) y position (0−7)

128125

Figure 4.4: On the left, Sutton’s Gridworld [Sut90]. Filled squares are walls, and
the exit is indicated by an asterisk. On the right, a diagram describing the percepts
of the agent, that are binary numbers of 128 bits. The x and y positions are encoded
as binary numbers of respectively 4 and 3 bits, and are concatenated with a random
binary number.

it into the exit, the agent is randomly teleported elsewhere in the maze. The agent
earns a reward of 100 when the exit is reached, and a penalty of −1 for any other
move. Note that the agent is faced with the delayed reward problem.

This task is directly inspired by Sutton’s so-called Gridworld task [Sut90], with
the major exception that our agent does not have a direct access to its (x, y) position
in the maze. Rather, the position is implicitly encoded in the percepts: In the
current section, the percepts will be binary numbers that contain the binary values
of x and y; at a later time, the position will be encoded as images (cf. Section 4.6.2)
to prove the capability of RLVC to deal with vision-for-action tasks. In this first
experiment, we have used the original Gridworld topology, which is depicted at the
left of Figure 4.4. The sensors of the agent return a binary number, the structure of
which is shown on the right of the same figure. Therefore, the perceptual space is
S = B128. This is a perceptual domain that has a complexity that is quite similar
to that of the experimental setup used to evaluate the G Algorithm [CK91].

Because the percepts consist of a binary number, the perceptual feature space is
defined as the set of bits F = N, and the perceptual feature detector and generator
are defined according to Sections 4.1.2 and 4.1.3 for perceptual spaces with binary
numbers. As a reminder, the perceptual feature detector consists in testing whether
a given bit is set in a binary number, and the perceptual feature generator returns
the list of the non-constant bits in a given set of binary numbers. RLVC has been
run on a static database of 5, 000 interactions that has been collected through a fully
randomized exploration policy.

To achieve its task, the agent has to focus its attention on the bits encoding x and
y; the other bits are irrelevant to the task because they are random. We have noticed
that this is indeed the case: The built classifier only uses the bits 0, 1, 2, 3, 125, 126
and 127. The obtained percept classifier is depicted in Figure 4.5, and the classes as
well as the optimal percept-to-action mapping that the classifier induce are reported
in Figure 4.6. It can easily be checked that the built policy is optimal. After k has
reached the value 15 (which roughly corresponds to the diameter of the maze) no
further split was produced. Note however that this value can vary depending on the

86 Chapter 4 — Reinforcement Learning of Visual Classes

cl
as

s
44

bi
t 2

bi
t 0

ye
s

bi
t 1

no

bi
t 1

ye
s

bi
t 1

no

cl
as

s
54

bi
t 1

27

ye
s

bi
t 1

25

no

cl
as

s
52

bi
t 3

no

bi
t 1

ye
s

cl
as

s
0

ye
s

bi
t 1

27

no

bi
t 1

25ye
s

bi
t 0

no

bi
t 1

26

ye
s

bi
t 0

no

cl
as

s
3

ye
s bi

t 0no

cl
as

s
35

ye
s cl

as
s

53

no

bi
t 1

26ye
s

bi
t 1

26

no

cl
as

s
14

ye
s

cl
as

s
55

no

cl
as

s
21

ye
s

cl
as

s
37

no

bi
t 1

25ye
s

cl
as

s
11

no

bi
t 1

26ye
s

bi
t 1

26

no

cl
as

s
6

ye
s

cl
as

s
38

no
no

cl
as

s
16

ye
s

bi
t 1

25

ye
s

bi
t 1

25no

bi
t 1

26

ye
s

bi
t 1

26no

cl
as

s
1

ye
s cl
as

s
50

no

cl
as

s
24

ye
s

cl
as

s
41

no

bi
t 1

26

ye
s

bi
t 1

26

no

cl
as

s
13

ye
s cl

as
s

64

no

cl
as

s
31

ye
s

cl
as

s
49

no

bi
t 1

27ye
s

bi
t 1

27

no

bi
t 1

26

ye
s

bi
t 1

26

no

cl
as

s
8

ye
s cl
as

s
57

no

cl
as

s
26

ye
s

cl
as

s
45

no

bi
t 1

26ye
s

bi
t 1

26

no

cl
as

s
17

ye
s

cl
as

s
42

no

cl
as

s
25

ye
s

cl
as

s
62

no

bi
t 1

25ye
s

bi
t 1

25

no

bi
t 1

27

ye
s

bi
t 1

27

no

cl
as

s
4

ye
s bi
t 1

26no

cl
as

s
20

ye
s cl

as
s

47

no

bi
t 1

26ye
s

bi
t 1

26

no

cl
as

s
12

ye
s cl

as
s

43

no

cl
as

s
19

ye
s

cl
as

s
40

no

bi
t 1

27ye
s

bi
t 1

27

no

bi
t 1

26

ye
s

bi
t 1

26

no

cl
as

s
7

ye
s cl
as

s
59

no

cl
as

s
32

ye
s

cl
as

s
60

no

bi
t 1

26ye
s

bi
t 1

26

no

cl
as

s
22

ye
s

cl
as

s
39

no
no

cl
as

s
27

ye
s

bi
t 0ye

s

bi
t 0

no

bi
t 1

26

ye
s

bi
t 1

26

no

bi
t 1

27

ye
s

bi
t 1

25no

bi
t 1

25

ye
s cl

as
s

30

no

cl
as

s
2

ye
s cl
as

s
63

no

bi
t 1

27

ye
s

cl
as

s
33

no

cl
as

s
15

ye
s cl

as
s

58

no

bi
t 1

25ye
s

bi
t 1

25

no

bi
t 1

27

ye
s

bi
t 1

27

no

cl
as

s
9

ye
s cl
as

s
65

no

cl
as

s
36

ye
s

cl
as

s
61

no

bi
t 1

27ye
s

bi
t 1

27

no

cl
as

s
18

ye
s

cl
as

s
48

no

cl
as

s
29

ye
s

cl
as

s
56

no

bi
t 1

26ye
s

cl
as

s
10

no

bi
t 1

25ye
s

bi
t 1

25

no

bi
t 1

27

ye
s

bi
t 1

27

no

cl
as

s
5

ye
s cl
as

s
51

no

cl
as

s
34

ye
s

cl
as

s
66

no

bi
t 1

27ye
s

bi
t 1

27

no

cl
as

s
23

ye
s

cl
as

s
46

no
no

cl
as

s
28

ye
s

Figure 4.5: The percept classifier Ck that is obtained at the end of the RLVC process.
Note that this decision tree contains no test on the random bits present in the
percepts.

Section 4.6 — Visual Applications 87

15

46 48 58 60 45 47 64 *
66 61 27 25 19 31 16

51 65 32 26 20 13 6

28 29 39 42 43 41 37 55

23 18 59 57 50 53 35

34 36 63 22 17 12 24 21 14

*

Figure 4.6: On the left, the classes that are induced by the percept classifier that
is generated through RLVC. On the right, the optimal percept-to-action mapping
that is built when reinforcement learning is applied through this classifier.

collected database of interactions. The number of generated perceptual classes was
67, which is slightly less than the total number of cells (11× 8 = 88) because there
is no need to make distinctions between the walled-up cells. The full learning time
was 5 seconds on a 3GHz Pentium IV.

It is important to notice that the classification rule is obtained without pre-
treatment, nor human intervention. The agent is initially not aware of which bits
are important, it just knows that it should consider bit features. Moreover, the
interest of using features is clear in this application: A direct tabular representation
of the Q function would have 2128× 4 cells (one for each possible pair with a binary
number and an action).

4.6 Visual Applications
The behavior of RLVC is now investigated on several vision-for-action tasks. The
tasks considered are navigation problems in which the agent is equipped with visual
sensors. The goal of all these tasks consists in escaping from a maze as quickly as
possible. Local-appearance visual features (cf. Definition 3.6) are used to solve these
problems.

4.6.1 Details of Implementation
We first describe several details of implementation that may prove to be useful when
RLVC is used to solve vision-for-action tasks.

Limitation of the Number of Splits

Using Algorithm 4.1 directly might potentially result in the creation of a large num-
ber of perceptual classes, and hereby in overfitting. As a consequence, it is very
useful in practice to bound the number of perceptual classes that can be refined

88 Chapter 4 — Reinforcement Learning of Visual Classes

at each stage of the algorithm, since splitting one visual class potentially has an
impact on the Bellman residuals of all the perceptual classes. In practice, we first
try to split the classes that have the most samples before considering the others,
since there is more statistical evidence of variance reduction for the former. From
an algorithmic point of view, this means that the loop over i in Algorithm 4.1 favors
the perceptual classes c such that ∑

a∈A

T (c, a) (4.27)

is the largest. In our tests, we systematically apply this heuristic and we limit to 5
the number of perceptual classes that are refined for a given Ck.

Mahalanobis Distance

Throughout the experiments of this dissertation, the Mahalanobis distance will be
used as the metric on the visual feature space V . The Mahalanobis distance is
a generalization of the Euclidean distance. It takes the correlation between the
components of the visual features into account. A correlation means that there exists
an association between a pair of components. The Mahalanobis distance makes
uniform the influence of such associated components by an anisotropic rescaling.
From a geometrical perspective, whereas the locus of the visual features at a fixed
Euclidean distance from the origin of the axes is a spheroid, the same locus is a
rotated ellipsoid under the Mahalanobis distance. The axes of the ellipsoid define
the rescaling factors, and the rotation allows to reflect the correlations between the
components:

Definition 4.8. Let Σ ∈ Rn×n be a covariance matrix for the visual feature space
V = Rn. Let x, y ∈ V two visual features. The Mahalanobis distance between x
and y is defined as:

dΣ(x, y) =
√

(x− y)T Σ−1(x− y). (4.28)

If Σ is the identity matrix, the Mahalanobis distance corresponds to the Euclidean
distance.

The covariance matrix Σ can be estimated from a finite set of representative
images {s1, . . . , sn} ⊂ S. The idea consists in collecting all the visual features that
are extracted by the visual feature generator:

C =
n⋃

i=1

GV (si); (4.29)

then the covariance matrix Σ of C is computed as follows:

Σ =

cov(v1, v1) cov(v1, v2) . . . cov(v1, vn)
cov(v2, v1) cov(v2, v2) . . . cov(v2, vn)

...
...

cov(vn, v1) cov(vn, v2) . . . cov(vn, vn)

 , (4.30)

Section 4.6 — Visual Applications 89

where cov(vi, vj) denotes the covariance of the components vi and vj that can be
computed as:

cov(vi, vj) =
∑
v∈C

(vi − v̄i)(vj − v̄j)

|C|
, (4.31)

where v̄i denotes the mean of the ith component in the collection C, and |C| is the
number of visual features in the collection. In practice, computing Equation 4.28
is costly, but it is possible to reduce this formula to a simple Euclidean distance
through a careful base change that makes use of the diagonalization of matrix Σ−1.
This technique is detailed by Schmid and Mohr [SM97].

4.6.2 Illustration on Visual Gridworld Tasks

We now apply RLVC to solve a vision-for-action task that is an adaptation of the
experimental setup of Section 4.5. The navigation rules are kept identical, but the
position is now implicitly encoded in the percepts by an image instead of a binary
number. In each cell, a different object is stored under a transparent glass, and
the sensors of the agent return a color picture of the object underneath. For this
benchmark, we have used the pictures from the COIL-100 database [NNM96]. In our
setup, the local-appearance feature generator consists in the combination of Harris
color points of interest with color differential invariants. We have made experiments
for this task under different configurations:

Small visual Gridworld: The topology for this first experiment is depicted in
Figure 4.7. Figure 4.8 shows the obtained results. It can easily be seen that
the policy built using the last classifier is indeed optimal for the task, since
the algorithm succeeds at distinguishing between all the 7 visual inputs. There
were 120 distinct visual features, but RLVC has only selected 6 features. The
algorithm stopped once k reached the value of 6.

Large visual Gridworld: In a second experiment, we have used Sutton’s original
Gridworld topology [Sut90], which is depicted in Figure 4.9. Here again, RLVC
managed in k = 45 steps to build a classifier that allows the agent to distinguish
between all the states, and therefore to optimally solve its task. This classifier
is too large to be visualized in this dissertation. However, it is very interesting
to note that RLVC has selected only 46 different features among the 1080
possible ones. In fact, the algorithm has produced 47 perceptual classes, each
of these corresponding exactly to one cell, allowing it to produce here again
the optimal policy.

Large visual Gridworld with rotations: This third setup is the same as Large
Gridworld, but each time the sensors take a picture of the object, its point
of view is randomly chosen in the interval [0◦, 45◦], which adds complexity to
the task. RLVC succeeded after 71 iterations at computing a classifier that
distinguishes between 343 perceptual classes by testing 171 different features

90 Chapter 4 — Reinforcement Learning of Visual Classes

Figure 4.7: Small visual Gridworld topology. Cells with a cross are walls, and the
exit is indicated by a gray background. Empty cells are labeled by a picture, in which
circles indicate the interest points that are detected by the Color Harris detector.

(a)

5 2
3
17

6

4
*

(b) (c)

Figure 4.8: Resolution of the small visual Gridworld by RLVC: (a) The final classifier
Ck that tests the presence of the circled local-appearance features, (b) the label of
the perceptual class that is assigned to each empty cell by Ck, and (c) the computed
optimal policy for this classification, i.e. argmaxa∈A Q∗

k(s, a).

Section 4.6 — Visual Applications 91

Figure 4.9: Large visual Gridworld topology (with 47 empty cells).

out of a set of 1141 possible features. This classifier is fine enough to obtain
an optimal policy for the task.

These experiments indicate that RLVC can succeed at simple vision-for-action
tasks.

4.6.3 Illustration on a Continuous Navigation Task
The experiments above on visual Gridworlds have discrete dynamics. In the current
section, we evaluate RLVC on an abstract task that parallels a real-world scenario in
which the navigation is continuous. However, we avoid any unnecessary complexity
with the visual sensors. As a consequence, the sensor model we use may seem
unrealistic; a better visual sensor model will be used in Section 5.1.5.

RLVC has succeeded at solving the continuous, noisy visual navigation task
depicted in Figure 4.10. An agent moves inside a maze in which walls are present.
The agent is reduced to a single point, so it is always free to move between any
two walls. The goal of the agent is to reach as fast as possible one of the two exits
of the maze. The set of possible locations is continuous (i.e. subpixel). At each
location, the agent has four possible actions: Go up, right, down, or left. Every
move is altered by Gaussian noise, the standard deviation of which is 2% the size
of the maze. Glass walls are present in the maze. Whenever a move would take the
agent into a wall or outside the maze, its location is not changed. If the position of
the agent is initially set inside a wall, it can make no move.

The agent earns a reward of 100 when an exit is reached. Any other move,
including the forbidden ones, generates zero reinforcement. When the agent succeeds
at escaping the maze, it arrives in a terminal state in which every move gives rise

92 Chapter 4 — Reinforcement Learning of Visual Classes

Figure 4.10: A visual, continuous, noisy navigation task. The exits of the maze are
indicated by boxes with a cross. Walls of glass are identified by solid lines. The
agent is depicted at the center of the figure. Each one of the four possible moves
is represented by an arrow, the length of which corresponds to the resulting move.
The sensors return a picture that corresponds to the dashed portion of the image.

to a zero reinforcement. In this task, γ was set to 0.9. Note that the agent faces
the delayed-reward problem, and that it must take the distance to the two exits into
consideration for choosing the most attractive one.

The maze has a ground carpeted with a color image of 1280 × 1280 pixels that
is an assembly of pictures from the COIL-100 database [NNM96]. The agent does
not have direct access to its (x, y) position in the maze. Rather, its sensors take
a picture of a surrounding portion of the ground. This portion is larger than the
blank areas, which makes the input space fully observable, albeit at limited spatial
resolution. Importantly, the glass walls are transparent, so that the sensors also
return the portions of the tapestry that are behind them. Therefore, there is no
way for the agent to directly locate the walls. It is obliged to identify them as the
regions of the maze in which an action does not change its location.

In this experiment, we have used color differential invariants [GB01] as visual

Section 4.6 — Visual Applications 93

Figure 4.11: The resulting image-to-action mapping π∗(s) = argmaxa∈A Q∗
k(s, a),

sampled at regularly-spaced points. It manages to choose an optimal action at each
location.

features. The entire tapestry includes 2298 different visual features. RLVC selected
200 features, corresponding to a ratio of 9% of the entire set of possible features.
The computation stopped after the generation of 84 percept classifiers (i.e. when k
reached 84), which took 35 minutes on a 2.4GHz Pentium IV using a static database
of 10,000 interactions. 205 perceptual classes were identified. This is a small num-
ber, compared to the number of perceptual classes that would be generated by a
discretization of the maze when the agent knows its (x, y) position. For example, a
reasonably sized 20× 20 grid leads to 400 perceptual classes.

The optimal, deterministic image-to-action mapping that results from the last
obtained image classifier Ck is shown in Figure 4.11. Figure 4.12 compares the opti-
mal value function of the discretized problem with the one obtained through RLVC.
The similarity between the two pictures indicates the soundness of our approach.
Importantly, RLVC operates with neither pretreatment, nor human intervention.
The agent is initially not aware of which visual features are important for its task.
Moreover, the interest of selecting descriptors is clear in this application: A direct,
tabular representation of the Q function considering all the Boolean combinations

94 Chapter 4 — Reinforcement Learning of Visual Classes

(a) (b)

Figure 4.12: (a) The optimal value function, when the agent has direct access to its
(x, y) position in the maze and when the set of possible locations is discretized into
a 50× 50 grid. The brighter the location, the greater its value. (b) The final value
function obtained by RLVC.

of features would have 22298 × 4 cells.
The behavior of RLVC on real-word images has also been investigated. The

navigation rules were kept identical, but the tapestry was replaced by a panoramic
photograph of 3041 × 384 pixels of a subway station, as depicted in Figure 4.13.
RLVC took 101 iterations to compute the mapping at the right of Figure 4.13. The
computation time was 159 minutes on a 2.4GHz Pentium IV using a static database
of 10,000 interactions. 144 distinct visual features were selected among a set of 3739
possible ones, generating a set of 149 perceptual classes. Here again, the resulting
classifier is fine enough to obtain a nearly optimal image-to-action mapping for the
task.

4.7 Summary

This chapter introduced a novel adaptive-resolution algorithm called Reinforcement
Learning of Visual Classes (RLVC). RLVC is designed to learn mappings that di-
rectly connect complex stimuli to output actions that are optimal for the surrounding
environment. The framework of RLVC is general in the sense that it can be applied
to any problem that can be formulated as a Markov decision problem. This paradigm
can also be motivated from the point of view of purposive vision, and not only as
an ad-hoc machine learning algorithm.

The learning process behind our algorithms is closed-loop and flexible. The agent
takes lessons from its interactions with the environment, similarly to the way living

Section 4.7 — Summary 95

(a) (b)

Figure 4.13: (a) A navigation task with a real-world image, using the same conven-
tions as in Figure 4.10. (b) The deterministic image-to-action mapping computed
by RLVC.

96 Chapter 4 — Reinforcement Learning of Visual Classes

beings learn to solve everyday tasks. RLVC focuses the attention of an embedded re-
inforcement learning algorithm on highly informative and robust parts of the inputs
by testing the presence or absence of perceptual features. The relevant perceptual
features are incrementally selected in a sequence of attempts to remove perceptual
aliasing: The discretization process targets zero Bellman residuals and is inspired by
supervised learning algorithms for building decision trees. Our algorithms are de-
fined independently of any perceptual feature space. The user may choose the used
perceptual features as he sees fit. We have shown that the use of appearance-based
features (cf. Chapter 3) allows RLVC to learn direct image-to-action mappings.

Our approach unifies adaptive-resolution methods for finite and continuous per-
ceptual spaces. On the one hand, RLVC tests the presence of perceptual features
that behave as binary classifiers that discretely divide the perceptual space into two
parts. On the other hand, thanks to perceptual feature generators, RLVC samples
the perceptual features from a possibly infinite, continuous perceptual feature space.
This interesting property is due to the introduction of perceptual feature generators:
The only human intervention that is needed by RLVC is the development of a suit-
able generator. Because of their general nature, perceptual feature generators can
be used in a wide variety of domains. For instance, any visual feature generator that
was introduced in Chapter 3 can be used to solve any vision-for-action task.

CHAPTER

FIVE

Extensions to RLVC

In this chapter, we build on the basic version of RLVC by proposing two extensions
that improve the performance of the algorithm on certain tasks:

1. Fighting overfitting. Because of its greedy nature, RLVC is highly subject to
overfitting. Splitting one perceptual class can potentially improve the control
policy for all the perceptual classes. Therefore, the splitting strategy can get
stuck in local minima in the original description of RLVC: Once a split is
made that subsequently proves useless, it cannot be undone. Thus, the first
extension that is discussed in the current chapter consists in integrating a
forgetting mechanism with RLVC. Experiments indeed show an improvement
in the generalization abilities, as well as a reduction of the number of perceptual
classes and selected features [JP05d].

2. Generating more distinctive visual features. When RLVC is applied to vision-
for-action tasks, its efficacy clearly depends on the discriminative power of the
visual features. If their power is insufficient, the algorithm will not be able
to completely remove the aliasing, and will thus produce sub-optimal control
policies. Practical experiments on simulated visual navigation tasks exhibit
this deficiency, as soon as the number of detected visual features is reduced
or as features are made more similar by using a less sensitive metric. The
second extension to RLVC that is considered consists in constructing highly
informative spatial combinations of visual features on demand, when individual
local features alone are insufficient [JSP05].

5.1 Compacting the Percept Classifiers
We have previously written that limiting the number of refinements per round of
RLVC is generally useful. The first extension to RLVC pushes this reasoning fur-
ther, and consists in providing RLVC with the possibility of aggregating perceptual
classes that share similar properties. This leads to a scheme that combines refin-
ing steps (local optimization) with aggregation phases (prevention of overfitting).

97

98 Chapter 5 — Extensions to RLVC

Doing so has at least three potential benefits: (a) Useless features are discarded,
which enhances generalization capabilities; (b) RLVC can reset the search for good
features so as to avoid local optima; and (c) the number of samples available to the
embedded RL algorithm for each perceptual class is increased, resulting in better
percept-to-action mappings.

5.1.1 Equivalence Relations in Markov Decision Processes
Since we apply an embedded RL algorithm at each stage k of RLVC, properties such
as the optimal value function V̂ ∗

k (c), the optimal state-action value function Q̂∗
k(c, a)

and the optimal percept-to-action mapping π̂∗k(c) are known for each mapped MDP
Mk, where c ∈ Sk and a ∈ A. Using these properties, it is easy to define a whole
range of equivalence relations between the perceptual classes. For instance, given
a threshold ε ∈ R+, we list below three possible equivalence relations for a pair of
perceptual classes (c, c′) ∈ Sk × Sk:

Optimal Value Equivalence:

|V̂ ∗
k (c)− V̂ ∗

k (c′)| ≤ ε.

Optimal Policy Equivalence:

|V̂ ∗
k (c)− Q̂∗

k(c′, π̂∗k(c))| ≤ ε and |V̂ ∗
k (c′)− Q̂∗

k(c, π̂∗k(c′))| ≤ ε.

Optimal State-Action Value Equivalence:

(∀a ∈ A) |Q̂∗
k(c, a)− Q̂∗

k(c′, a)| ≤ ε.

We therefore propose to modify RLVC so that, periodically, perceptual classes
that are equivalent with respect to one of these criteria are merged together. This
way, RLVC alternatively splits and merges perceptual classes. The compaction
phase should not be done too often, in order to allow exploration. To the best of
our knowledge, this possibility has not been investigated yet in the framework of
adaptive-resolution methods in reinforcement learning.

5.1.2 Decision Trees are not Expressive Enough
In the original version of RLVC, the perceptual classes correspond to the leaves of a
decision tree. When using decision trees, the aggregation of perceptual classes can
only be achieved by starting from the bottom of the tree and recursively collapsing
leaves, until dissimilar leaves are found. This operation is very close to post-pruning
in the framework of decision trees for machine learning [BFS84]. In practice, this
means that classes that have similar properties, but that can only be reached from
one another by making a few number of hops upwards then downwards, are ex-
tremely unlikely to be matched. This greatly reduces the interest of exploiting the
equivalence relations.

This drawback is due to the rather limited expressiveness of decision trees. In
a decision tree, each perceptual class corresponds to a conjunction of perceptual

Section 5.1 — Compacting the Percept Classifiers 99

feature literals, which defines a path from the root of the decision tree to one leaf.
To take full advantage of the equivalence relations, it is necessary to associate, to each
perceptual class, an arbitrary union of conjunctions of perceptual features. Indeed,
when exploiting the equivalence relations, the perceptual classes are the result of a
sequence of conjunctions (splitting) and disjunctions (aggregation). Thus, a more
expressive data structure that would be able to represent general, arbitrary Boolean
combinations of perceptual features is required. Such a data structure is introduced
in the next section.

5.1.3 An Excursion into Computer-Aided Verification

Thanks to significant advances in digital-processor technology in the past few deca-
des, embedded controllers are nowadays widely integrated at the automation level of
factories and in common-life electronic appliances. Thus, there is a growing interest
in the automatic verification of such devices, which has led to the development of the
field of computer-aided verification. One of the basic techniques of computer-aided
verification is reachability analysis that consists in computing the set of all states
that can be reached by a program from a fixed set of initial conditions. When this
set is computed, it is possible to test whether it intersects a set of undesirable states
that cause a failure of the system. This leads to a safety analysis of programs.

As a consequence, there is a fundamental need in computer-aided verification
for representing a set of states of a given program. A whole range of methods for
representing the state space of richer and richer domains have been developed over
the last few years, such as Finite Unions of Polyedra [Sch86], Algebraic Decision Di-
agrams [BFG+93b], Number and Queue Decision Diagrams [Boi99], Upward Closed
Sets [DR00] and Real Vector Automata [BBR97, BRW98, BJW05]1.

Representation systems for general Boolean functions (i.e. mappings from Bn to
B) have been extensively studied, since Boolean functions can abstract the behavior
of logical, discrete electronic devices. Unfortunately, canonical representations like
truth tables or Karnaugh maps are quite impractical because they need 2n mem-
ory cells for their representation of a function with n Boolean arguments. This has
motivated the development of the highly successful (Ordered) Binary Decision Di-
agram (BDD) representation [Bry86, Bry92]. BDDs are a compact, efficient and
widespread way to represent and manipulate arbitrary Boolean functions. The well-
known computer-aided verification tool Spin notably embeds an implementation of
elaborate BDD structures [SPI06].

A BDD is a directed, acyclic graph, the internal nodes of which are labeled by
a test on one Boolean variable. Each internal node has two children, one that cor-

1Note that one of our personal contributions that is outside the scope of this dissertation has
consisted in showing, through topological arguments, how the difficult and delicate-to-implement
algorithms for handling Real Vector Automata can be simplified by using a restricted class of
automata on infinite words [Jod01, BJW01, BJW05]. This has allowed us to achieve reachability
analysis of linear hybrid systems [Jod02], that has later been extended with acceleration techniques
so as to compute state spaces that can only explored through an infinite sequence of discrete
transformations [BJH03].

100 Chapter 5 — Extensions to RLVC

p q r s f(p, q, r, s)
F F F F F
F F F T F
F F T F F
F F T T T
F T F F F
F T F T F
F T T F F
F T T T T

p q r s f(p, q, r, s)
T F F F F
T F F T F
T F T F F
T F T T T
T T F F T
T T F T T
T T T F T
T T T T T

Figure 5.1: A truth table that defines a mapping f : B4 7→ B.

p

q q

r r r r

s s s s s s s s

F F F T F F F T F F F T T T T T

Figure 5.2: The Shannon decomposition [Sha49] that corresponds to the truth table
of Figure 5.1. In this picture, a dotted line indicates the assignment of the Boolean
value false, whereas a solid line corresponds to an assignment to true.

responds to an assignment of true to the corresponding decision variable, and the
other that corresponds to an assignment of false. The terminal nodes of the graph
are labeled either by true or by false, which defines the Boolean output of the
function. Thus, each path from the root to a leaf corresponds to an evaluation of
the Boolean function for a specific assignment of its input variables. BDDs make the
assumption that all the Boolean variables appear in the same order on all paths from
the root2. This makes possible the normalization to a unique, canonical form. For
example, consider a Boolean function, the truth table of which is given in Figure 5.1.
The normalization process for this function is illustrated by Figures 5.2 and 5.3. As
a consequence, the testing of functional properties such as satisfiability and equiv-
alence become straightforward: The equivalence of two Boolean functions can be
simply tested by acyclic graph matching, and testing for satisfiability reduces to a
comparison with the constant function false. Furthermore, useful Boolean opera-
tions such as conjunctions, projections, disjunctions or evaluations can be directly
achieved on this symbolic representation.

2Strictly speaking, this assumption only holds for Ordered BDDs that have been introduced
by Bryant [Bry86, Bry92]. However, Ordered BDDs are by far the most useful category of BDDs
because of their normal form that is induced by the ordering assumption.

Section 5.1 — Compacting the Percept Classifiers 101

(a)

s

F

s s s

T

s s s s

p

q q

r r r r

r

s s

r r

p

q q

r

s

F T

p

q q

r r

s s s

F T

p

q

r

T

s

F

(b) (c) (d)

Figure 5.3: Normalization of the Shannon decomposition of Figure 5.2. (a) First,
the tree structure is turned into an acyclic graph by merging the terminal nodes, so
that only two terminal nodes are kept (one for a true output, the other for false).
(b,c) Secondly, identical subtrees are recursively merged and shared, starting with
the last variable in the ordering. (d) Finally, useless tests that lead to the same node
are discarded. The last graph is the resulting Binary Decision Diagram. Obviously,
all the graphs in this sequence represent the same Boolean function.

102 Chapter 5 — Extensions to RLVC

But in order to benefit from these advantages, we have to define an ordering on
the variables for all functions to be represented. The size of a BDD representation
can be highly dependent on this ordering. Unfortunately, the problem of computing
an optimal ordering is co-NP-complete [Bry86].3 Nevertheless, automatic heuristics
can in practice find orderings that are close to optimal, and are implemented in
all the software libraries for manipulating BDDs. This is interesting in our case,
since reducing the size of the BDD potentially discards irrelevant variables, which
corresponds to removing useless perceptual features.

As a consequence, BDDs are a particularly well-suited tool for our framework. In
the sequel, we will write B(n) to designate the set of BDDs with n Boolean inputs,
and

B
b

(5.1)

will represent the application of some BDD B to the vector of Booleans b ∈ Bn.

5.1.4 Embedding BDDs inside RLVC
We propose to replace the single decision tree that represents the percept classi-
fier and that is progressively refined, by a set of Binary Decision Diagrams. More
precisely, one BDD is assigned to each perceptual class:

Definition 5.1. Let
F̂k =

(
f

(k)
1 , . . . , f (k)

nk

)
(5.2)

be a finite, ordered subset of nk perceptual features from FS. Let also

Ĉk : Ck 7→ B(nk) (5.3)

be a mapping that associates one BDD with each perceptual class, the set of all
these BDDs defining a partition4 of Bnk . Then, a BDD-based percept classifier is a
percept classifier Ck : S 7→ Sk that is defined as:

Ck(s) = c if and only if Ĉk(c)
b(s)

= true, (5.4)

for each percept s ∈ S, where b(s) ∈ Bnk is the vector of Booleans that corresponds
to the outputs of the perceptual feature detector for all the features in F̂k:

b(s) =

DS

(
s, f

(k)
1

)
...

DS

(
s, f

(k)
nk

)
 . (5.5)

The embedding of BDD-based percept classifiers inside the RLVC process re-
quires two modifications of Algorithm 4.1: class refinement and class aggregation.

3A problem is a member of co-NP if and only if its complement problem is in complexity class
NP.

4This set is a partition of Bnk if for any b ∈ Bnk , there exists one and only one perceptual class
c such that Ĉk(c) assigns true to b.

Section 5.1 — Compacting the Percept Classifiers 103

Algorithm 5.1 — Refining a BDD-based percept classifier

1: bdd-refining (Ck, c, f∗) :–
2: i← ⊥
3: for j ← 1 to nk do
4: if f

(k)
j = f ∗ then

5: i← j
6: end if
7: end for
8: if i = ⊥ then
9: {f ∗ is an new feature}

10: for j ← 1 to mk do
11: Add a new decision variable to Ĉk[j]
12: end for
13: nk ← nk + 1
14: i← nk

15: F̂k ←
(
F̂k ; f ∗

)
16: end if
17: mk ← mk + 1
18: Ĉ[mk]← Ĉk[c] ∧ i
19: Ĉ[c]← Ĉk[c] ∧ ¬i

Class refinement: The operation of refining a perceptual class c with a perceptual
feature f ∗ consists in three steps:

1. The perceptual feature f ∗ is matched5 against all the perceptual features
inside the set F̂k. This step allows RLVC to realize that a perceptual
feature has been previously used. It might reduce the size of the BDDs
by avoiding redundant tests, while reducing the number of variables upon
which the BDDs are defined.

2. If the feature f ∗ is previously unseen, it is added to F̂k. Furthermore, an
additional input variable is added to all the BDDs that are stored inside
Ĉk: This is a Cartesian product operation, which is easily achievable on
BDDs.

3. The old perceptual class c is removed from the percept classifier, and is
replaced by two new perceptual classes c⊕ and c	. The BDDs that are
associated with c⊕ and c	 in Ĉk(c) are defined as follows:

Ĉk(c⊕) = Ĉk(c) ∧ f ∗ (5.6)

Ĉk(c) = Ĉk(c) ∧ ¬f ∗. (5.7)

The resulting operations are outlined in Algorithm 5.1.

5This requires the introduction of an equivalence relation that is defined over the perceptual
feature space. In the case of visual features, this could be a simple threshold on the Euclidean
distance.

104 Chapter 5 — Extensions to RLVC

Algorithm 5.2 — Compacting a BDD-based percept classifier

1: post-process (Ck) :–
2: {Detect equivalent perceptual classes}
3: R← {} {Equivalence classes}
4: S ← Sk {Perceptual classes not considered so far}
5: while S 6= ∅ do
6: c← Select a perceptual class in S
7: S, T ← S \ {c}, {c}
8: for c′ ∈ S do
9: if equivalent-classes(c, c′) then

10: S, T ← S \ {c′}, T ∪ {c′}
11: end if
12: end for
13: R← R ∪ {T}
14: end while
15: {Merge equivalent classes into a new BDD-based percept classifier}
16: m′

k = |R|
17: i← 1
18: while R 6= ∅ do
19: T ← Select an equivalence class in R
20: R← R \ {T}
21: i, c′ ← i + 1, c

′(k)
i

22: Ĉ ′k(c′)← true
23: for c ∈ T do
24: Ĉ ′k(c′)← Ĉ ′k(c′) ∨ Ĉk(c)
25: end for
26: end while
27: Replace the BDD-based percept classifier 〈F̂k, mk, Ĉk〉 by 〈F̂k, m

′
k, Ĉ ′k〉

28: {Remove irrelevant perceptual features and decision variables}
29: for i← 1 to nk do
30: b← false
31: for c ∈ Sk do
32: if Ĉk(c) makes at least one test on the ith variable then
33: b← true
34: end if
35: end for
36: if not b then
37: Remove f

(k)
i from F̂k

38: nk ← nk − 1
39: for c ∈ Sk do
40: Remove the ith variable from Ĉk(c) through a projection
41: end for
42: end if
43: end for

Section 5.1 — Compacting the Percept Classifiers 105

Class aggregation: The aggregation of similar perceptual classes takes place in
the post-process(Ck) component that was left empty in the basic version of
RLVC. When two identical perceptual classes c1 and c2 are detected (with
respect to a fixed equivalence relation), they are merged into a single class c,
the BDD of which is defined as:

Ĉk(c) = Ĉk(c1) ∨ Ĉk(c2). (5.8)

Every time a merging operation takes place, it is advised to perform a variable
reordering so as to minimize the memory requirements.

A possible, interesting side-effect of merging perceptual classes is that this
operation might leave some variable inside F̂k unused. Therefore, each variable
in the set F̂k is tested so as to find a BDD that uses this variable. If the
variable is unused, then it is deleted from the set F̂k and is taken off all
the BDDs through a projection operation. As a result, irrelevant perceptual
features (i.e. features that are found to be not discriminant) are progressively
eliminated. The corresponding piece of pseudo-code is given in Algorithm 5.2.

This concludes the discussion of our techniques for avoiding overfitting inside
RLVC. One must however be aware that, as already pointed out by McCallum, the
distinctions that are necessary to learn an optimal percept-to-action mapping are
generally finer than the distinctions that are necessary to represent the resulting
optimal mapping [McC96]. In practice, to allow exploration, this means that aggre-
gation phases should not occur too often. Therefore, this is a heuristic technique
that might prove to be useful, but that is to use with caution because it may prevent
the convergence of RLVC.

5.1.5 Navigation around Montefiore Institute
We have applied the modified version of RLVC to another simulated navigation task.
In this task, the agent moves between 11 spots of the campus of the University of
Liège (cf. Figure 5.4). Every time the agent is at one of the 11 locations, its body
can aim at four possible orientations: North, South, West, East. The physical state
space is therefore of size 11 × 4 = 44. The agent has three possible actions at its
disposal: Turn left, turn right, go forward to the next intersection. Its goal is to
enter a specific building, where it will obtain a reward of +100. Turning left or right
induces a penalty of −5, and moving forward, a penalty of −10. The discount factor
γ is set to 0.8. The optimal control policy is not unique: One of them is depicted in
Figure 5.5.

The agent does not have direct access to its position and orientation. Rather, it
only perceives a picture of the area that is in front of it (cf. Figure 5.6). Thus, the
agent has to connect an input image to the appropriate action without explicitly
knowing its geographical localization. The full database of images that has been
collected is available on the Internet [Jod05].

We have used SIFT keypoints as visual features [Low04]. Before applying the
SIFT keypoint detector, we have downscaled each of the 1,056 color images to a

106 Chapter 5 — Extensions to RLVC

N

(c) Google Map

Figure 5.4: The Montefiore campus in Liège. Red spots correspond to the places
between which the agent moves. The agent can only follow the links between the
different spots. Its goal is to enter the Montefiore Institute, that is labeled by a red
cross, where it obtains a reward of +100.

gray-level image of size 160× 120. Thresholding on the Mahalanobis distance gave
rise to a set of 13,367 distinct visual features. Both versions of RLVC have been
applied on a static database of 10,000 interactions that has been collected using
a fully randomized exploration policy. The same database of interactions is used
throughout the entire algorithms, and this database only contains images that belong
to the learning set.

The original version of RLVC has identified 281 perceptual classes by selecting
264 SIFT features. The error rate on the computed visual policy (i.e. the proportion
of sub-optimal decisions when the agent is presented all the possible stimuli in the
image databases) was 0.1% on the learning set and 8% when the images of the
test set are used6. Note that this difference between learning and test sets clearly
indicates the presence of overfitting effects. The detail of the corresponding statistics
are reported in Figure 5.7.

The modified version of RLVC was then applied, with one compacting stage every
10 iterations of RLVC. It was experimentally observed on this task that using the
conjunction of the first two criteria of Section 5.1.1 (optimal value equivalence and

6This is with respect to the optimal policy when the agent has direct access to its position and
viewing direction.

Section 5.1 — Compacting the Percept Classifiers 107

(c) Google Map

Figure 5.5: One of the optimal, deterministic control policies for the Montefiore
navigation task. For each state, we have indicated the optimal action (the letter
“F” stands for “move forward”, “R” for “turn right” and “L” for “turn left”). This
policy has been obtained by applying a standard RL algorithm to the scenario in
which the agent has direct access to its position and viewing direction.

optimal policy equivalence) as an equivalence relation tends to lead to interesting
performance. Intuitively, states are thus considered dissimilar if they differ either in
their utility or in their optimal action.

The results are shown in Figure 5.8 and are clearly superior. There is no error
on the learning set anymore, while the error rate on the test set is 4.5%. The
number of selected features is reduced to 171. Furthermore, the resulting number of
perceptual classes becomes 59, instead of 281. Thus, there is a large improvement
in the generalization abilities, as well as a reduction of the number of perceptual
classes and selected visual features. Interestingly, the number of perceptual classes
(59) is very close to the number of physical states (44), which indicates that the
algorithm starts to learn a physical interpretation for its percepts.

108 Chapter 5 — Extensions to RLVC

(c) Google Map

Figure 5.6: The percepts of the agent. For each possible location and each possible
viewing direction, a database of 24 images of size 1024× 768 with significant view-
point changes has been collected [Jod05]. Those 44 databases have been randomly
divided into a learning set of 18 images and a test set of 6 images. Four different
percepts are shown, that correspond to the location and viewing direction marked
by a yellow square on the top image.

Section 5.1 — Compacting the Percept Classifiers 109

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
Learning

Test
Classes

Features

Figure 5.7: Statistics of RLVC as a function of the step counter k. The red
(resp. green) plot corresponds to the error of the computed policy on the learn-
ing (resp. test) images — the corresponding axis is on the right of the plot. The
number of perceptual classes (resp. selected features) is plotted in blue (resp. purple)
— the corresponding axis is on the left of the plot.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
Learning

Test
Classes

Features

Figure 5.8: Statistics of the extended version of RLVC as a function of the step
counter k, using the same conventions as Figure 5.7. The decreases in the blue and
purple curves indicate the compacting phases. It is interesting to highlight the fact
that a compacting phase tends to reduce the errors. These results are superior to
the scores of the original RLVC.

110 Chapter 5 — Extensions to RLVC

5.1.6 Discussion
To summarize, experimental results show an improvement when visual policies are
regularly compacted. Thus, compacting visual policies is probably an important
step to deal with realistic visual tasks, if an iterative splitting process is applied.
The price to pay is of course a higher computational cost. Future work will focus
on a theoretical justification of the used equivalence relations. This implies bridging
the gap to the theory of MDP minimization [GDG03].

Finally, we also note that an implementation of percept classifier through Al-
gebraic Decision Diagrams instead of BDDs may ease the implementation, and re-
duce the computational and memory requirements. Algebraic Decision Diagrams
(ADDs) [BFG+93b] are a generalization of BDDs to multi-variate outputs: They
can directly represent mappings from Boolean inputs Bn to a finite set of classes.
Therefore, an ADD-based percept classifier would embed only a single ADD in-
stead of one BDD per perceptual class. However, ADD-based percept classifiers
would lead exactly to the same results as BDD-based percept classifiers, because
the performance of the resulting percept-to-action mapping only depends on the
used equivalence relation.

5.2 Learning Hierarchies of Visual Features
After Chapter 4 and Section 5.1 that have considered general perceptual feature
spaces, we now introduce an extension to RLVC that is exclusively related to vision-
for-action tasks. Most objects encountered in the world are composed of a number of
distinct constituent parts (e.g. a face contains a nose and two eyes, a phone possesses
a keypad). These parts are themselves recursively composed of other sub-parts
(e.g. an eye contains an iris and eyelashes, a keypad is composed of buttons). Such
a hierarchical physical structure certainly imposes strong constraints on the spatial
disposition of the visual features. This idea was already illustrated in Figure 3.5
(page 55).

Following this line of reasoning, we propose a second extension to RLVC that
consists in iteratively constructing highly informative spatial combinations of visual
features. This research is promising for it permits the construction of features at
increasingly higher levels of discriminative power, enabling us to tackle visual tasks
that are unsolvable using individual point features alone. To the best of our knowl-
edge, this extension to RLVC appears to be one of the first attempts to build visual
feature hierarchies in a closed-loop, interactive and task-driven learning process.
The most closely related work is Piater’s doctoral dissertation [Pia01].

Also note that the interest of this research can also be motivated from a neuropsy-
chological point of view. Wallis and Bülthoff indeed write that neuropsychological
studies on this topic suggest two major hypotheses:

“The first is that objects are represented in a mosaic-like form in
which objects are encoded by combinations of complex, reusable fea-
tures. rather than two-dimensional templates, or three-dimensional mod-

Section 5.2 — Learning Hierarchies of Visual Features 111

els. The second hypothesis is that transform-invariant representations of
objects are learned through experience, and that this learning is affected
by the temporal sequence in which different views of the objects are seen,
as well as by their physical appearance.” [WB99]

5.2.1 Related Work

The idea of combining visual features that are spatially close to each other goes back
to semi-local constraints [SM97]. Semi-local constraints are a pragmatic approach to
reduce the number of false positives when assessing the presence of visual features.
They consist in matching two visual features only if they share a sufficient number of
common visual features in their close neighborhood. These methods are reviewed in
Forsyth and Ponce’s textbook [FP03, Section 23.1.4]. Evolutions of these approaches
has been used in many areas of computer vision. We notably point out the use of
generalized semi-local constraints for the tracking of a geometric model of a soccer
player [GHPV05].

This idea has later been generalized to hierarchical models of spatial arrange-
ments of features. Semi-local constraints can be understood as hierarchical models
with only one level. Since the seminal work by Forsyth et al. about object detec-
tion [FHI99], such hierarchical models have become increasingly popular [WK02,
BT05, EU05]. For instance, Scalzo and Piater propose to build a probabilistic,
graph-based hierarchy of visual features [SP05, SP06]. They detect the presence of
such a model through Nonparametric Belief Propagation [SIFW03]. Other graphical
models have been proposed for representing articulated structures, such as pictorial
structures [FH05, KTZ04]. Similarly, the constellation model represents objects by
parts, each modeled in terms of both shape and appearance by Gaussian probability
density functions [PFZ03].

The reason for the interest in hierarchical models comes from the fact that vi-
sual features, as detected by interest point detectors and as characterized by local
description generators, are not able to describe the shape of the observed objects.
As a consequence, there is a recent, general agreement that higher-level appearance-
based representations are highly desirable, notably to deal with the problem of im-
age categorization. Our work contrasts with previous approaches in the sense that
the generation of so-called composite features is driven by the task to be solved. In
RLVC, we have additional information, namely the reinforcement signal, that should
be used to keep only visual components that are meaningful for the task.

5.2.2 An Unbounded Hierarchy of Spatial Relationships

From an algorithmic point of view, we introduce, in the current section, a more
elaborate perceptual feature generator GS that can generate a hierarchy of visual
features simultaneously with the percept classifier. As soon as sufficiently informa-
tive visual feature cannot be extracted anymore, the algorithm tries to combine two
visual features in order to construct a higher level of abstraction that is hopefully

112 Chapter 5 — Extensions to RLVC

more distinctive and more robust to noise. This extension of RLVC assumes the
co-existence of two different kinds of visual components :

Primitive (visual) components: They correspond to the individual point fea-
tures, i.e. to the basic visual features of the set V that were introduced in
Chapter 3.7

Composite (visual) components: They consist of spatial combinations of lower-
level visual components. There is no a priori bound on the maximal height
of the hierarchy. A composite component can be potentially combined with a
primitive component, or with a composite component.

A natural way to represent such a hierarchy is to use a directed acyclic graph
G = (N, E), in which each node v ∈ N corresponds to a visual component, and
in which each edge (v, v′) ∈ E models the fact that v′ is a part of the composite
component v. Thus, G must be binary , i.e. any node should have either no child,
or exactly two children. The set NP of the leaves of G corresponds to the set of
primitive components, while the set NC of its internal vertices represents the set of
composite components. The resulting perceptual feature space for RLVC is FS = N .

Each primitive component vP ∈ NP is labeled with a visual feature V (vP) ∈
V (cf. Definition 3.1). Similarly, each internal node vC ∈ NC is annotated with
constraints on the relative position between its parts. In this work, we consider
only constraints on the distances between the constituent visual components of the
composite components, and we assume that they should be distributed according to
a Gaussian law G(µ, σ) of mean µ and standard deviation σ. More precisely, let vC

be a composite component, the parts of which are v1 and v2. In order to trigger the
detection of vC in an image s ∈ S, there should be both an occurrence of v1 and an
occurrence of v2 in s such that their relative Euclidean distance in the image has a
sufficient likelihood ν of being generated by a Gaussian of mean µ(vC) and standard
deviation σ(vC). To ensure symmetry, the location of the composite component is
then taken as the midpoint between the locations of v1 and v2.

The occurrences of a visual component v in a percept s can accordingly be found
using the recursive Algorithm 5.3. A suitable perceptual feature detector DS can
be derived from this algorithm, by testing whether the resulting set of occurrences
contains at least one element:

DS(s, v) = true if and only if occurrences(s, v) 6= ∅ (5.9)

This perceptual feature detector can be directly embedded inside RLVC.

7The terms primitive components and visual features denote in fact the same entities. The
terminology “primitive component” is used to emphasize the fact that we deal with hierarchies of
visual features, and not just individual features alone.

7Richer constraints could be used, such as taking the relative orientation or the scaling factor
between the constituent components into consideration, which would require the use of multivariate
Gaussians.

Section 5.2 — Learning Hierarchies of Visual Features 113

Algorithm 5.3 — Detecting occurrences of visual components

1: occurrences(s, v) :–
2: if v is primitive then
3: P ← DL(s) {Compute the interest points}
4: O ← {}
5: for (x, y, w) ∈ P do
6: v′ ← GL(s, (x, y, w)) {Generate the local description}
7: if d(V (v), v′) < ε then
8: {The detected visual feature matches the visual component v}
9: O ← O ∪ {(x, y)}

10: end if
11: end for
12: return O
13: else
14: O ← {}
15: O1 ← occurrences(s, subcomponent1(v))
16: O2 ← occurrences(s, subcomponent2(v))
17: for all (x1, y1) ∈ O1 and (x2, y2) ∈ O2 do
18: d←

√
(x2 − x1)2 + (y2 − y1)2

19: if G(d− µ(v), σ(v)) ≥ ν then
20: O ← O ∪ {((x1 + x2)/2, (y1 + y2)/2)}
21: end if
22: end for
23: return O
24: end if

5.2.3 Closed-Loop Generation of Composite Components
The cornerstone of this extension to RLVC is the way of generating the composite
components. The general idea behind our algorithm is to accumulate statistical
evidence from the relative positions of the detected visual components in order to
find “conspicuous coincidences” of visual components. This is done through an
sophisticated perceptual feature generator GS({s1, . . . , sn}) (cf. Definition 4.5).

Identifying Spatial Relations

We first extract the set F of all the (primitive or composite) components that occur
within the set of provided images {s1, . . . , sn}:

F = {v ∈ N | (∃i) occurrences(si, v) 6= ∅} . (5.10)

We then identify the pairs of visual components the occurrences of which are highly
correlated within the set of provided images {s1, . . . , sn}. This simply amounts to
counting the number of co-occurrences for each pair of components in F , then only
keeping the pairs the corresponding count of which exceeds a fixed threshold.

114 Chapter 5 — Extensions to RLVC

Algorithm 5.4 — Generation of composite components

1: GS({s1, . . . , sn}) :–
2: F ← {}
3: for v ∈ N do
4: for i← 1 to n do
5: if occurrences(si, v) 6= ∅ then
6: F ← F ∪ {v}
7: end if
8: end for
9: end for

10: F ′ ← {}
11: for all (v1, v2) ∈ F × F do
12: if enough co-occurrences of v1 and v2 in {s1, . . . , sn} then
13: Λ← {}
14: for all i ∈ {1, . . . , n} do
15: for all occurrences (x1, y1) of v1 in si do
16: for all occurrences (x2, y2) of v2 in si do
17: Λ← Λ ∪ {

√
(x2 − x1)2 + (y2 − y1)2}

18: end for
19: end for
20: end for
21: Apply a clustering algorithm on Λ
22: for each cluster C = {d1, . . . dm} in Λ do
23: µ← mean(C)
24: σ ← stddev(C)
25: Add to F ′ a composite component vC composed of v1 and v2, annotated

with a mean µ and a standard deviation σ
26: end for
27: end if
28: end for
29: return F ′

Let now v1 and v2 be two components that are highly correlated. A search
for a meaningful spatial relationship between v1 and v2 is then carried out in the
images that contain occurrences of both v1 and v2. For each such co-occurrence, we
accumulate in a set Λ the distances between the corresponding occurrences of v1 and
v2. Finally, a clustering algorithm is applied on the distribution Λ in order to detect
typical distances between v1 and v2. For the purpose of our experiments, we have
used hierarchical clustering [JMF99]. For each detected cluster, a Gaussian is fitted
by estimating a mean value µ and a standard deviation σ. Finally, a new composite
component vC is introduced in the component hierarchy, that has v1 and v2 as parts
and such that µ(vC) = µ and σ(vC) = σ. The corresponding piece of code is given
in Algorithm 5.4.

Section 5.2 — Learning Hierarchies of Visual Features 115

Visual Component Validation

Algorithm 5.4 can generate several composite components for a given perceptual
class that consists of images (cf. Algorithm 4.1). However, at the end of Algo-
rithm 4.3, at most one generated composite component is to be kept. It is therefore
important to notice that the performance of the clustering method is not critical for
our purposes. Indeed, irrelevant spatial combinations are automatically discarded,
thanks to the variance-reduction criterion of the component selection component. In
fact, the reinforcement signal helps direct the search for a good component, which
is an advantage over unsupervised methods of building component hierarchies.

5.2.4 Experimental Results

We demonstrate the efficacy of our algorithms on a version of the classical “car-
on-the-hill” control problem [MA95], where the position and velocity information is
presented to the agent visually.

In this episodic task, a car (modeled by a mass point) is riding without friction
on a hill, the shape of which is defined by the function:

H(p) =

{
p2 + p if p < 0,

p/
√

1 + 5p2 if p ≥ 0.

The goal of the agent is to reach as fast as possible the top of the hill, i.e. a location
such that p ≥ 1. At the top of the hill, the agent obtains a reward of 100. The car
can thrust left or right with an acceleration of ±4 Newtons. However, because of
gravity, this acceleration is insufficient for the agent to reach the top of the hill by
always thrusting toward the right. Rather, the agent has to go left for while, hence
acquiring potential energy by going up the left side of the hill, before thrusting
rightward. There are two more constraints: The agent is not allowed to reach
locations such that p < −1, and a velocity greater than 3 in absolute value leads to
the destruction of the car.

Formal Definition of the Task

Formally, the set of possible actions is A = {−4, 4}, while the physical state space
is S = {(p, s) | |p| ≤ 1 ∧ |s| ≤ 3}. The system has the following continuous-time
dynamics:

ṗ = s,

ṡ =
a

M
√

1 + Ḣ(p)2

− gḢ(p)

1 + Ḣ(p)2
,

where a ∈ A is the thrust acceleration, Ḣ(p) is the first derivative of H(p), M = 1[kg]
is the mass of the car, and g = 9.81[m/s2] is the acceleration due to gravity. These
continuous-time dynamics are approximated by the following discrete-time state

116 Chapter 5 — Extensions to RLVC

−.5−1 .5 1

mg

u

p

N

0.2

0.4

−0.2

H(p)

Figure 5.9: The car-on-the-hill control problem.

update rule:

pt+1 = pt + hṗt + h2ṡt/2,

st+1 = ṗt + hṡt,

where h = 0.1 is the integration time step. The reinforcement signal is defined
through this expression:

R((pt, st), a) =

{
100 if pt+1 ≥ 1 ∧ |st+1| ≤ 3,
0 otherwise.

In our setup8, the discount factor γ was set to 0.75.

Inputs of the Agent

In previous work [MA95, EGW03], the agent was always assumed to have direct
access to a numerical measure of its position and velocity. The only exception is
Gordon’s work in which a visual, low-resolution representation of the global scene
is given to the agent [Gor95]. In our experimental setup, the agent is provided with
two cameras, one looking at the ground underneath, the second at a velocity gauge.
This way, the agent cannot directly know its current position and velocity, but has
to suitably interpret its visual inputs to derive them.

Some examples of the pictures the sensors can return are presented in Figure 5.10.
The ground is carpeted with a colored banner of 1280×128 pixels that is an assembly
of pictures from the COIL-100 database [NNM96]. It is very important to notice

8This definition is actually a mix of two coexistent formulations of the car-on-the-hill
task [EGW03, MA95]. The major differences with the initial formulation of the problem [MA95]
is that the set of possible actions is discrete, and that the goal is at the top of the hill (rather than
on a given area of the hill), just like in the definition from Ernst et al. [EGW03]. To ensure the
existence of an interesting solution, the velocity is required to remain less than 3 (instead of 2),
and the integration time step is set to h = 0.1 (instead of 0.01).

Section 5.2 — Learning Hierarchies of Visual Features 117

(a)

(b)

Figure 5.10: (a) Visual percepts corresponding to pictures of the velocity gauge
when s = −3, s = 0.5 and s = 1.5. (b) Visual percepts returned by the position
sensor. The region framed with a white rectangle corresponds to the portion of the
ground that is returned by the sensor when p = 0.1. This portion slides back and
forth as the agent moves.

that using individual point features is insufficient for solving this task, since the
set of primitive components in the pictures of the velocity gauge are always the
same. To know its velocity, the agent has to generate composite components that
are sensitive to the distance of the primitive components on the cursor with respect
to the primitive components on the digits.

Results

In this experimental setup, we used color differential invariants [GB01] as primitive
components. Among all the possible visual inputs (both for the position and the
velocity sensors), there were 88 different primitive components. The entire image of
the ground includes 142 interest points, whereas the images of the velocity gauge
include more or less 20 interest points.

The output of RLVC is a decision tree that defines 157 perceptual classes. Each
internal node of this tree tests the presence of one visual component, taken from
a set of 91 distinct, highly discriminant features selected by RLVC. Among the 91
selected visual components, there were 56 primitive and 26 composite components.
Two examples of composite components that were selected by RLVC are depicted
in Figure 5.12. The computation stopped after k = 38 refinement steps in Algo-
rithm 4.1.

118 Chapter 5 — Extensions to RLVC

(a) Position

V
el

oc
ity

−1 0 1

3

0

−3

(b) Position

V
el

oc
ity

−1 0 1

3

0

−3

Figure 5.11: (a) The optimal value function, when the agent has a direct access to its
current (p, s) state and the input space is discretized in a 13× 13 grid. The brighter
the location, the greater its value. (b) The value function obtained by RLVC.

Figure 5.12: Two composite components that were generated, in yellow. The prim-
itive components of which they are composed are marked in yellow. The first com-
ponent triggers for velocities around 0, whereas the second triggers around −2.

Section 5.2 — Learning Hierarchies of Visual Features 119

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Iterations (k)

M
is

se
d

go
al

 (%
)

RLVC
Direct perception (13x13 grid)

Figure 5.13: Evolution of the number of times the goal was missed over the iterations
of RLVC.

0 5 10 15 20 25 30 35 40
12

13

14

15

16

17

18

19

Iterations (k)

M
ea

n
le

ng
th

 o
f a

n
in

te
ra

ct
io

n

RLVC
Direct perception (13x13 grid)

Figure 5.14: Evolution of the mean lengths of the successful trials over the iterations
of RLVC.

120 Chapter 5 — Extensions to RLVC

To show the efficacy of our method, we compare its performance with the scenario
in which the agent has a direct perception of its current (p, s) state. In the latter
scenario, the state space was discretized in a grid of 13 × 13 cells. The number 13
was chosen since it approximately corresponds to the square root of 157, the number
of perceptual classes that were produced by RLVC. This way, RL is provided an
equivalent number of perceptual classes in the two scenarios. Figure 5.11 compares
the optimal value function of the direct-perception problem with the one obtained
through RLVC. Here again, the two pictures are very similar, which indicates the
soundness of our approach.

We have also evaluated the performance of the optimal image-to-action mapping

π∗ = argmax
a∈A

Q∗((p, s), a) (5.11)

obtained through RLVC. For this purpose, the agent was placed randomly on the
hill, with an initial velocity of 0. Then, it used the mapping π∗ to choose an action,
until it reached a final state. A set of 10,000 such trials were carried out at each
step k of Algorithm 4.1. Figure 5.13 compares the proportion of trials that missed
the goal (either because of leaving the hill on the left, or because of acquiring a
too high velocity) in RLVC and in the direct-perception problem. When k became
greater than 27, the proportion of missed trials was always smaller in RLVC than
in the direct-perception problem. This advantage in favor of RLVC is due to the
adaptive nature of its discretization. Figure 5.14 compares the mean lengths of the
successful trials. The mean length of RLVC trials clearly converges to that of the
direct-perception trials, while staying slightly larger.

To conclude, RLVC achieves a performance close to the direct-perception sce-
nario. However, the mapping built by RLVC directly links visual percepts to the
appropriate actions, without explicitly considering the physical variables.

5.3 Summary
This chapter has proposed two extensions to the basic version of RLVC. The first
extension considers techniques for avoiding overfitting in RLVC. The idea is to ag-
gregate visual classes that share similar properties with respect to the theory of Dy-
namic Programming. Interestingly, this process enhances the generalization abilities
of the learned image-to-action mapping, reduces the number of perceptual classes
that are built, and progressively eliminates irrelevant perceptual features.

Secondly, an extension of RLVC has been introduced that allows the closed-loop,
interactive and task-driven learning of a hierarchy of geometrical combinations of
visual features. This is to contrast to most of the prior work on the topic, that
uses either a supervised or unsupervised framework [Pia01, FPZ03, BT05, SP06].
Besides the novelty of the approach in the field of computer vision, we have shown
its practical value in visual control tasks in which the information provided by the
individual point features alone is insufficient for solving the task. Indeed, spatial
combinations of visual features are more informative.

CHAPTER

SIX

Function Approximators for Purposive
Vision

As shown in the preceding chapters, RLVC succeeds at learning direct image-to-
action mapping by selecting highly informative features. One might wonder, however,
whether the feature selection process is actually desirable, as it might introduce a
high variance in the computed image classifiers, just as in the case of incremental
learning of decision trees [GEW06]. Furthermore, selecting visual features requires
the introduction of an equivalence relation between the features. This relation is
difficult to define. A fixed threshold on a metric in the visual feature space is often
used. However, modifying this threshold can lead to significant changes in the learned
image-to-action mappings.

Moreover, as argued by Piater [Pia01], both mammalian and state-of-the-art
feature-based computer vision systems owe their performance largely to their use of
a large number of features. The resulting redundancy or over-completeness creates
robustness to various kinds of image variation and degradation. On the contrary,
RLVC focuses the attention of the agent only on discriminative visual features. This
motivates the design of RL methods that can learn image-to-action mappings by
analyzing a large number of raw, partially redundant visual features.

This approach is closely linked to the theory of function approximation in RL,
and requires the introduction of sophisticated, general RL algorithms that can be
defined independently of a given approximation architecture, such as Fitted Q Iter-
ation [EGW05] or Approximate Policy Iteration [LP03, Mun03].

6.1 Feature Vectors
RLVC takes advantage of perceptual feature detectors and generators. According to
the definitions of Chapter 4, perceptual feature is inherently boolean, in the sense
that it is either present or absent given a percept. When dealing with vision-for-
action tasks, this is a very coarse abstraction of a visual feature. Indeed, the use
of a metric masks the information about the appearance of the visual feature that

121

122 Chapter 6 — Function Approximators for Purposive Vision

was extracted by the visual feature generator (cf. Section 3.1.1). In this chapter, we
will work with the raw visual features by making explicit their appearance. This
motivates the following definition:

Definition 6.1. A raw feature generator GR : S 7→ P(Rn) is a mapping from a
percept to a set of real-valued vectors. Rn is the raw feature space, and a vector
f ∈ Rn is called a raw feature.

Any visual feature generator is evidently a raw feature generator, provided that the
visual feature space V corresponds to Rn.

Similarly, it is possible to define a raw feature generator for any task in which
the perceptual space is continuous (i.e. tasks such that S = Rn, in which a percept
is a vector of reals). In the this case, a suitable raw feature generator is simply the
identity function:

GR(s) = {s}, for all s ∈ S. (6.1)

Note that visual tasks seem at first more complex than continuous tasks, as the raw
feature generator of Equation 6.1 is a one-to-one mapping, whereas visual feature
generators can produce several vectors of appearance for a single image. All the
techniques that will be described in the current chapter apply to any control task
such that it is possible to define a raw feature generator on the perceptual space.
This includes vision-for-action tasks, as well as any other task with continuously-
valued perceptual spaces.

The techniques of this chapter, besides the use of the raw features, are charac-
terized by the use of the whole set of raw features. This means that the algorithms
below do not take decisions involving only a subset of informative features. This
potentially ensures better robustness and generalization abilities.

Of course, as the raw feature space is infinite, it can be sampled only sparsely.
As a consequence, we resort to the embedding of function approximators inside the
RL process. Among the RL algorithms that use function approximators, we use
Approximate Policy Iteration (API) [BT96]. Moreover, as raw feature generators
are in general one-to-many mappings, averaging will be used to deal with multiple
raw features. The combination of these two techniques will lead to the definition of
Visual Approximate Policy Iteration (V-API).

6.2 Related Work
All the RL techniques we have encountered so far represent value functions and
state-action value functions as lookup tables . As discussed in Chapter 2, these basic
techniques converge, provided that some conditions on the parameters of the algo-
rithms are met. However, as argued when introducing RLVC, such algorithms do
not scale well with the number of inputs. Indeed, as each cell in a lookup table is
uncoupled with the other cells, the number of interactions that are needed to learn
an optimal control policy grows with the number of possible percepts. This is the
data dilution problem. Lookup tables are evidently useless when dealing with infi-
nite perceptual spaces. Furthermore, using lookup tables results in some degree of

Section 6.2 — Related Work 123

redundancy : If two percepts are similar, they are likely to share similar utilities. This
means that the lookup tables can be represented more compactly in memory, hereby
reducing the memory requirements. More importantly, this redundancy can be ex-
ploited to generalize between similar percepts, allowing the agent to reason about
percepts not encountered during learning, be it through interpolation or through
extrapolation.

As a consequence, current research in reinforcement learning stresses the usage
of function approximators . The goal is to create an approximation of the entire
(state-action) value functions from a finite, limited number of acquired interactions.
This is therefore a regression problem. Such function approximators can be either
parametric or nonparametric, and should follow Occam’s razor principle, i.e. they
should yield to the simplest explanation of visible information. Function approxi-
mators are typically trained by supervised learning [Mit97] on a database, so as to
minimize an error function. Many successful applications of RL have involved the
use of function approximators.

Not all function approximation techniques are equally appropriate for reinforce-
ment learning however. Furthermore, there exist multiple ways to embed function
approximation inside the reinforcement learning process. In this section, several su-
pervised learning architectures and their application to reinforcement learning are
presented. We will consider continuous perceptual spaces: S = Rn. For the time
being, only finite action spaces are considered: A = {a1, . . . , am}. Infinite action
spaces will be considered in Chapter 7.

6.2.1 Linear Approximation Schemes
Function approximators based on a linear combination of basis functions offer a
number of advantages that made them particularly successful in the context of re-
inforcement learning. The general form of linear function approximators for value
functions is:

V̂ (s; w) =
l∑

i=1

wiφi(s), (6.2)

where φi(s) : S 7→ R is a set of l basis functions , and where w ∈ Rl is the weight
vector . This definition can be extended to state-action value functions as follows:

Q̂(s, a; w) =
l∑

i=1

wiφi(s, a). (6.3)

In this case, the l basis functions are mapping from S×A to the set of real numbers.
The independence between the weight vector and the current percept is the defining
characteristic of a linear approximation architecture.

Unlike some more complex function approximation schemes, linear approxima-
tors can be easily and efficiently trained through gradient descent. The correct
choice of the basis functions is an important factor in determining the success of a
linear approximator. Evidently, prior knowledge about the control problem should

124 Chapter 6 — Function Approximators for Purposive Vision

drive which basis functions are chosen. Several general categories of basis functions
are reviewed below, but many variations of these ideas exist.

Grid-Based Discretization

The simplest linear approximation scheme consists in uniformly dividing the per-
ceptual space into a set of hypercubes. There is one basis function φi(s) for each
hypercube, which is zero everywhere except inside the corresponding hypercube,
where it is equal to one. Evidently, the cost of such a discretization is exponential in
the number of perceptual dimensions. This is the Bellman curse of dimensionality
(cf. Section 4.3) that motivates coarser discretization in areas where little accuracy
is needed. A generalization of this idea is to use an arbitrary partitioning of the
perceptual space. In general, this does not alleviate the curse of dimensionality,
though.

Tile Coding (CMAC)

Instead of using one single grid to approximate the value function, tile coding con-
sists in adding multiple overlapping grids [Alb75]. In tile coding, an exhaustive
partitioning of the perceptual space is considered, which is called a tiling . Multiple
copies of the tiling are superimposed, each offset by a different amount. The tilings
need not be uniform grids, an arbitrary partitioning strategy can be used. Tile cod-
ing is generally combined with hashing techniques to reduce memory requirements.
Using tile coding is popular in RL, but its application to high-dimensional problems
is not straightforward, as it requires a careful choice of tilings.

Gaussian Kernels

Tile coding uses rectangles with sharp edges, so that strong discontinuities are always
produced at the border of the tiles. This is problematic when continuous value
functions are to be represented. Therefore, several authors have used Gaussian
kernels instead of rectangular kernels, as in radial basis functions [Pow87] and in
normalized Gaussian networks [MD89]. This allows to make gradual, smoother
transitions, at the cost of a higher computational expense.

6.2.2 Non-Linear Approximation Schemes
Linear approximators have limited representational power. As a result, many re-
searchers have focused their attention on non-linear approximators. Some of them
are presented now.

Artificial Neural Networks

By far the most popular non-linear approximator used in reinforcement learning
is the artificial neural network [RM86]. This approximation architecture has been
modeled after the brain, targeting biological plausibility. Artificial neural networks

Section 6.2 — Related Work 125

typically consist of many hundreds of simple processing units, the neurons which are
wired together in a complex communication network. Each unit is a simplified model
of a real neuron which fires (sends off a new signal) if it receives a sufficiently strong
input signal from the other units to which it is connected. The weights of these
connections are adjusted through supervised learning by the back-propagation algo-
rithm. Emphasis is generally put on communication networks that form a directed
acyclic graph, and, more specifically, on multilayer perceptrons [PEL00].

Artificial neural networks constitute a parametric approximation architecture, as
the weights suffice to entirely describe the network once its topology is fixed. They
have excellent generalization capabilities, especially when the input space is high.
On the other hand, the backpropagation algorithm tends to be trapped in a local
optimum.

Instance-Based Approximators

Instance-based approximators are not parametric architectures as linear approxi-
mators or artificial neural networks: They simply store their training data. When
asked to make a prediction, they retrieve the stored points that are closest to the
query point according to some distance metric. They then combine these val-
ues so as to generate a suitable output. These approximation architectures no-
tably include nearest neighbor , k-nearest neighbor [CH67] and locally weighted re-
gression [AMS97, Sma02]. The computational load of these algorithms is mostly
borne during prediction, because learning consists in adding the training data to a
database, possibly in a optimized data structure such as a k-d tree [Sam84]. As a
consequence, this approach is sometimes known as lazy learning algorithms.

6.2.3 Function Approximation in Reinforcement Learning

Several common function approximators have been introduced. We now discuss
how these approximation techniques have been embedded inside the reinforcement
learning process over years. Many RL algorithms with function approximators were
designed from an existing approach in finite-state reinforcement learning, such as
Q-learning or Value Iteration. Thus, we cluster these algorithms by the learning
architecture for finite spaces they were inspired by. The theoretical properties of
many algorithms below are studied in detail by Bertsekas and Tsitsiklis [BT96].
Many pointers to references about the convergence of reinforcement learning with
function approximators can be found in Smart’s doctoral dissertation [Sma02, Sec-
tions 4.2 and 4.3] and in Sutton’s RL FAQ [Sut04].

Fitted Temporal-Difference Methods

Generally speaking, the temporal-difference update rules that were described in
Chapter 2 can be also exploited when representing state-action value functions
through function approximators. This is especially direct if the underlying approx-
imation architecture is incremental , to wit, if it is possible to update the approx-

126 Chapter 6 — Function Approximators for Purposive Vision

imator by progressively adding newly acquired input-output pairs that associate a
state-action pair to an utility. Even if the architecture is non-incremental (i.e. if it
makes batch processing), it is still possible to re-calculate the approximator every
time a fixed number of input-output pairs have been computed through the update
rules.

Linear approximation schemes have the advantage of locality , at the condition
that the basis functions are carefully chosen. Indeed, if the basis functions have a
non-zero value only in a small area of the perceptual space, a small change in the
weight vector w will only have significant impact in a small region only. This is
important when dealing with an on-line temporal-difference algorithm, as a global
change in the shape of the function is likely to be a source of instability. Evidently,
instance-based techniques have also this advantage, but this is not the case of neural
networks.

Much research has been devoted to the embedding of function approximators
inside the Q-learning process. Watkins has proposed the first work in this line of
ideas by using a CMAC [Wat89]. Unfortunately, this method was shown to exhibit
divergent behavior in simple grid-world reinforcement learning problems, because Q-
learning with linear function approximation is unsound [Bai95]. Sutton has shown
that using SARSA along with a CMAC enables more robust and effective learning
than Q-learning [Sut96a], but SARSA can also oscillate with linear approximation
schemes [TV96]. Later on, the Q-learning update rule has been used in conjunction
with radial basis functions [KA97], with instance-based approximators as in lazy
Q-learning [SS97] and Hedger [Sma02], as well as with neural networks [Lin91,
BT96, tHK00]. Gordon provides a good reference about convergence of various
temporal-difference methods [Gor01].

Approximate Actor-Critic Architectures

The use of function approximators is very natural when learning with actor-critic
algorithms such as AHC. Recall that such algorithms are based on the evaluation
of the value function V π for a fixed percept-to-action mapping π through temporal-
difference learning (cf. Equation 2.53).

Approximate actor-critic architectures are very popular when using a linear
parametrization of the value functions as given in Equation 6.2. The most com-
monly used approach for updating the weight vector w through TD(0) is stochastic
direct gradient [Wer90], defined by the relation:

w ← w + αt(st, at)
(
rt+1 + γV̂ (st+1; w)− V̂ (st; w)

)
∇wV̂ (st; w). (6.4)

Therefore, the direct gradient algorithm assumes that using the partial derivative of
the temporal-difference error with respect to the current percept will result in the
correct solution if it converges. However, when the parameters w are updated, the
desired output changes too. This might result in oscillations or worse in divergence,
even for very small Markov decision processes [Bai95, TV96]. Baird uses an evolution
of this rule [Bai95], by combining the partial derivative of the utility of the current

Section 6.2 — Related Work 127

state with that of the next state:

w ← w + αt(st, at)
(
rt+1 + γV̂ (st+1; w)− V̂ (st; w)

)
(
∇wV̂ (st; w)− γ ∇wV̂ (st+1; w)

)
. (6.5)

This update rule is known as stochastic residual gradient . These two update rules
are based on TD(0). The use of eligibility traces leads to approximated versions of
TD(λ), the very positive theoretical properties of which are discussed by Tsitsiklis
and Van Roy [TV97].

Two variants of TD(λ) with linear approximation schemes replace the local
gradient descent by a direct resolution of systems of linear equations. These so-
called least-squares methods are both based on iterative matrix updates, and exhibit
better convergence rates. The first method is called Least-Squares TD Learning
(LSTD(λ)) [Boy02]. Its basic version, called LSTD [BB96], does not use eligibility
traces. Convergence of LSTD(λ) is discussed in recent work [NB03, Sch03]. A second
least-squares method has been recently introduced under the name of Least-Squares
Policy Evaluation (LSPE) [NB03].

Approximate actor-critic architectures have also been often combined with neu-
ral networks. The early work by Anderson uses an artificial neural network [And87],
and succeeds at solving the pole-balancing problem. Similarly, Lin has embed-
ded neural network approximations with both the AHC and the Q-learning al-
gorithm [Lin91]. Zhang and Dietterich learned strategies for job-shop scheduling
through TD(λ) and neural networks [ZD95]. Probably one the greatest successes
of RL has been the TD-Gammon algorithm that turns a computer into an excel-
lent Backgammon player [Tes95]. Similarly to Zhang and Dietterich, TD-Gammon
combines TD(λ) and neural networks, the inputs of which are hand-coded expert
features. Note that the effectiveness of this approach strongly depends on the qual-
ity of the input features. More recently, Coulom has proposed the continuous TD(λ)
algorithm that can handle complex, continuous motor-control problems [Cou02].

Fitted Value Iteration

Much recent research in reinforcement learning focuses on embedding function ap-
proximators inside the Value Iteration process (cf. Section 2.2.4). This general, in-
creasingly popular family of RL methods is known as Fitted Value Iteration [Gor95,
MS06]. Fitted Value Iteration can be written as a stochastic iterative rule [SM05],
which makes it a special form of Approximate Value Iteration [TV96].

The theoretical properties of Fitted and Approximate Value Iteration in the
context of dynamic programming are discussed by Bertsekas and Tsitsiklis [BT96].
These results were later extended by Gordon [Gor99], who showed that the use of a
particular family of function approximators (the averagers) ensures the convergence
of Fitted Value Iteration. Unfortunately, the convergence properties from Bertsekas
and Tsitsiklis are defined with respect to the maximum norm (cf. Section 2.2.2),
but approximation architectures generally strive at minimizing the errors in the

128 Chapter 6 — Function Approximators for Purposive Vision

Euclidean norm. This has motivated the study of convergence properties of Fitted
Value Iteration in other norms by Munos [Mun05, Mun06a].

Very sketchily, Fitted Value Iteration methods are characterized by two main
properties: (1) the way Bellman backup operators are approximated1, and (2) the
family of function approximators that is used. As discussed by Munos, there exist
at least two possible approaches for approximating the Bellman backup operators in
the framework of reinforcement learning [Mun06a, Section 6]: either through a gen-
erative model of the underlying MDP, which leads to Sampling-Based Fitted Value
Iteration [SM05, MS06]; or through a stochastic version of the Bellman backup
operators, which leads to the Fitted Q Iteration algorithm [EGW05] (cf. also Sec-
tion 6.4.2). The exploited function approximator scheme must be carefully chosen,
as already noticed by Boyan and Moore in the early grow-support algorithm [BM95]:
Successfully investigated families of function approximators include kernels [OS02],
instance-based approximators [EGW05], regression trees [EGW05], as well as neural
networks [Rie05].

Direct Policy Search

Finally, we also note the existence of the direct policy search methods that are related
to function approximation techniques. Such methods search for optima in the space
of all possible percept-to-action mappings by directly examining different policy
parametrizations, but they bypass the computation of the value functions. These
methods are especially useful for partially observable control problems, but are out
of the scope of this dissertation. The interested reader can find a review of state-of-
the-art direct policy search methods in Peshkin’s doctoral dissertation [Pes02].

6.3 Approximate Policy Iteration
Approximate Policy Iteration (API) is a generalization of Modified Policy Iteration
(cf. Section 2.2.5) to arbitrary perceptual spaces S, that are possibly continuous.
Therefore, API is an alternative to Fitted Value Iteration, in which Modified Policy
Iteration plays the same role as Value Iteration. In Chapter 2, we have introduced
actor-critic architectures as reinforcement learning methods that iteratively improve
a percept-to-action mapping by separately storing the current policy itself and its
value function, and by using a stochastic version of Bellman backup operators.

Actor-critic architectures contrast with Modified Policy Iteration that can eval-
uate the current percept-to-action mapping πk by repeatedly applying the exact
Bellman backup operator Hπk . This is possible because Modified Policy Iteration is
defined in the dynamic programming framework. Nevertheless, it was the designer’s
responsibility to fix how the policy πk is represented. Two equivalent representa-
tion systems are possible: (1) either directly through a table that maps percepts
to actions, which was possible since the perceptual space was assumed finite, or (2)

1Indeed, the operators of Sections 2.2.2 and 2.2.3 are only applicable to finite state-action spaces
for which a model of the environment is known.

Section 6.3 — Approximate Policy Iteration 129

implicitly from the current state-action value function by extracting a greedy policy
from this function:

πk(s) = argmax
a∈A

Qπk−1(s, a). (6.6)

In infinite perceptual spaces, the difference between these two approaches be-
comes less evident, as the Bellman backup operator can only be approximated, and
as it is impossible to directly represent the current percept-to-action mapping by ta-
ble lookup. In this dissertation, we will therefore distinguish between the following
two architectures:

• Approximate actor-critic architectures. In this setup, the current percept-to-
action mapping πk and its value function V πk(s) or its state-action value func-
tion Qπk(s, a) are separately stored. Approximate actor-critic architectures
have been discussed above.

• Approximate Policy Iteration architectures. In this case, only state-action
value functions are stored, and the current percept-to-action mapping is de-
fined as the greedy policy with respect to this state-action value function. In
such architectures, the value functions V πk(s) are not relevant: It is impossi-
ble to directly extract a greedy percept-to-action mapping from them, because
this operation would require an exact model of the environment. Approximate
Policy Iteration architectures are the topic of this chapter.

In both cases, approximate versions of Bellman backup operators are used. Note that
the terminology “Approximate Policy Iteration” is somewhat misleading, as it has
often been used in the literature to designate approximate actor-critic architectures,
in the sense that has just been defined. In fact, Approximate Policy Iteration can
be thought of as a particular class of approximate actor-critic methods, in which the
actor is implicitly deduced from the critic component. As a consequence, the policy
evaluation and the policy improvement steps are essentially blended into a single
process, since there is no need for an intermediate, complete representation of the
generated percept-to-action mappings.

Bertsekas and Tsitsiklis’ reference book [BT96, Section 6.2] discusses several
results about the convergence of Approximate Policy Iteration under the maximum
norm. Munos generalizes these convergence results to quadratic norms [Mun03] in
the context of linear approximation architectures. As argued by Munos [Mun03]
as well as by Lagoudakis and Parr [LP03], Approximate Policy Iteration has the
empirical advantage of quick convergence over Value Iteration. This motivates the
use of API for purposive vision.

6.3.1 Nonparametric Approximate Policy Iteration
Contrarily to the case of Fitted Value Iteration, there exist only a few concrete
algorithms that apply Approximate Policy Iteration in the sense defined above.
To the best of our knowledge, API has only been used in conjunction with linear
approximation architectures, leading to the Least-Squares Policy Iteration (LSPI)

130 Chapter 6 — Function Approximators for Purposive Vision

algorithm [LP03]. In LSPI, the evaluation of a greedy percept-to-action mapping, so
as to obtain its approximated state-action value function using samples, is carried
out by the LSTDQ algorithm [LP03]. LSTDQ is a variation of the LSTD algorithm
for approximate actor-critic architectures [BB96].

Although they are very useful for physical control problems, linear approxima-
tion schemes are not well suited to purposive vision tasks, as their representational
power is limited. In the next sections, a general, nonparametric RL version of
Approximate Policy Iteration is described. More precisely, we introduce the Non-
parametric Approximate Policy Iteration (Nonparametric API) algorithm that has
the two following important properties:

• This algorithm can accommodate any function approximation architecture,
such as instance-based methods, neural networks or regression trees. This
contrasts with LSPI that explicitly targets parametric, linear approximation
schemes. In fact, Nonparametric API underlines the black-box aspect of su-
pervised learning algorithms, and does not make any assumption about this
algorithm. This is a point of view that is shared with the Fitted Q Iteration
algorithm by Ernst et al. [EGW05].

• Nonparametric API learns near-optimal percept-to-action mappings from a
static database of interactions, and does not require a model of the surround-
ing MDP. Just like Least-Squares Policy Iteration, Nonparametric API is a
fully off-policy algorithm and can, in principle, use data collected from any
reasonable sampling distribution [LP03].

In Section 6.5, Nonparametric API will be combined with a function approximator
that is specifically tuned to problems that admit a raw feature generator (cf. Defi-
nition 6.1). However, Nonparametric API can easily be used with another function
approximation architecture. This motivates the following definition:

Definition 6.2. A state-action value function approximator is a mapping Q̂ : S ×
A 7→ R that assigns a real number to each state-action pair. The family F designates
the set of all state-action value function approximators that can be represented with
the considered approximation scheme.

Because we deal with black-box learning procedures, the existence of a learning
oracle L is assumed. This oracle returns a state-action value function approximator
from a database:

Definition 6.3. Let D = {〈st, at, vt〉} be a finite database of triples that are made
up of a state st ∈ S, an action at ∈ A and a utility vt ∈ R. A learning oracle is a
function:

L : P(S ×A× R) 7→ F , (6.7)

that builds a function approximator Q̂ = L(D) that is the closest possible to the
given sample distribution, in the sense that it minimizes a given error function over
the family F with respect to the database D.

Section 6.3 — Approximate Policy Iteration 131

Algorithm 6.1 — Nonparametric Approximate Policy Iteration

1: approximate-policy-iteration ({〈st, at, rt+1, st+1〉}) :–
2: k ← 1
3: Q̂(1) ← L ({〈st, at, rt+1〉})
4: loop

5: Q̂(k+1) ← greedy-evaluation
(
Q̂(k), {〈st, at, rt+1, st+1〉}

)
6: if equivalent-approximators

(
Q̂(k), Q̂(k+1), {〈st, at〉}

)
then

7: return π[Q̂(k)]
8: end if
9: k ← k + 1

10: end loop

6.3.2 Implicit Representation of the Generated Policies
As mentioned above, Nonparametric API relies on a simple, state-of-the-art principle
that was already exploited in Least-Squares Policy Iteration [LP03]: Any state-
action value function Q(s, a) induces a greedy percept-to-action mapping π[Q] that
always selects the action maximizing Q:

π[Q] (s) = argmax
a∈A

Q(s, a), for each s ∈ S. (6.8)

Note that the maximization of this equation can easily be achieved, as the action
space is assumed finite.

As a consequence, there is no need of an explicit, separate representation system
for policies if we keep track of the state-action value functions2. Thus, it is suffi-
cient for Nonparametric API to generate a sequence of state-action value function
approximators Q̂(1), Q̂(2), Q̂(3), . . . Each approximator Q̂(k) in this sequence implic-
itly represent a greedy percept-to-action mapping πk+1 that can be evaluated on
demand:

πk+1(s) = π[Q̂(k)] (s) = argmax
a∈A

Q(k)(s, a), for each s ∈ S. (6.9)

6.3.3 Main Algorithm
Recall that Modified Policy Iteration relies on two interleaved processes: Mod-

ified Policy Evaluation and Policy Improvement. Thanks to the implicit represen-
tation of the policies, the Policy Improvement step of Nonparametric API becomes
trivial: It is indeed sufficient to define Q̂(k+1) as the state-action value function of the
greedy policy with respect to Q̂(k). This is precisely the result of the Modified Pol-
icy Evaluation component that will be described in the next section. Algorithm 6.1
summarizes the backbone of Nonparametric API. The input to the algorithm is
a database of interactions 〈st, at, rt+1, st+1〉, which makes of Nonparametric API

2In terms of the notation of Section 2.2.5, this would correspond to a version of Modified Policy
Iteration algorithm that would not not keep track of πk, but only of Qπk .

132 Chapter 6 — Function Approximators for Purposive Vision

Algorithm 6.2 — Comparison of two state-action value function approximators

1: equivalent-approximators
(
Q̂, Q̂′, {〈st, at〉}

)
:–

2: d← 0
3: for t← 1 to T do
4: q ← Q̂(st, at)
5: q′ ← Q̂′(st, at)
6: d← d + (q − q′)2

7: end for
8: if d < ε then
9: return true

10: else
11: return false
12: end if

an off-policy, model-free RL algorithm. The third line implicitly builds an initial
percept-to-action mapping π1 that maximizes immediate reinforcements.

The algorithm stops when the difference between two successive Q̂πk becomes
negligible. Unfortunately, because the state-action value function approximators
are not lookup tables, it is impossible to directly compare them. To this end, we
rather sample their values for the state-action pairs that are present in the input
database of interactions. This is a natural choice, because the learning oracle L
builds the approximators from utilities sampled at these control points. Then, the
test of equivalence consists in testing whether the empirical loss on the utilities
drops below a threshold ε:

1

T

T∑
t=1

l
(
Q̂(k)(st, at)− Q̂(k+1)(st, at)

)
< ε (6.10)

where T is the number of interactions in the database, and where the loss function
l is usually an absolute or quadratic function [Mun06a, Section 3]. In practice, we
have been using the quadratic loss function in our experiments. The corresponding
piece of code is given in Algorithm 6.2.

6.3.4 Modified Policy Evaluation in Nonparametric API
We now describe a Modified Policy Evaluation component that is suited to Non-
parametric API. This component is to be plugged as greedy-evaluation inside
Algorithm 6.1. Its role consists in computing the state-action value function Q̂(k+1)

of a percept-to-action mapping πk+1 = π[Q̂(k)] that is greedy with respect to Q̂(k),
given the input database of interactions 〈st, at, rt+1, st+1〉.

To this end, similarly to the original version of Modified Policy Evaluation, a
sequence of state-action value function approximators Q̂i is generated. This is done
according to the principle of Modified Policy Iteration, to wit, Q̂i+1 is defined as
(Hπk+1Q̂i), where Hπk+1 is the Bellman backup operator that corresponds to πk+1.

Section 6.3 — Approximate Policy Iteration 133

Algorithm 6.3 — Evaluation of a greedy policy in Nonparametric API

1: greedy-evaluation
(
Q̂(k), {〈st, at, rt+1, st+1〉}

)
:–

2: i← 1
3: Q̂1 ← Q(k)

4: {The decisions of the policy πk+1 are cached in an array c[t + 1]}
5: for t← 1 to T do
6: c[t + 1]← argmaxa′∈A Q̂(k)(st+1, a

′)
7: end for
8: loop
9: D ← {}

10: for t← 1 to T do
11: D ← D ∪

{〈
st, at, rt+1 + γ Q̂i (st+1, c[t + 1])

〉}
12: end for
13: Q̂i+1 ← L(D)

14: if equivalent-approximators
(
Q̂i, Q̂i+1, {〈st, at〉}

)
then

15: return Q̂i

16: end if
17: i← i + 1
18: end loop

However, there are two differences with respect to finite perceptual spaces: (1) The
functions Q̂i are now approximations that are built through the learning oracle L,
and (2) the Bellman backup operator for the percept-to-action mapping πk+1 cannot
be directly used anymore because the perceptual space is possibly infinite. To solve
this problem, let us consider the Bellman backup operator for πk+1. According to
Equations 2.27 and 6.9, it is defined as:

(Hπk+1Q̂)(s, a) = R(s, a) + γ

∫
s′∈S

T (s, a, s′)
∑
a′∈A

πk+1(s
′, a′) Q̂(s′, a′) (6.11)

= R(s, a) + γ

∫
s′∈S

T (s, a, s′) Q̂

(
s′, argmax

a′∈A
Q̂(k)(s′, a′)

)
. (6.12)

As the dynamics of the system are unknown, Nonparametric API uses the stochastic
version of this equation for an interaction 〈st, at, rt+1, st+1〉, which can be motivated
similarly to the update rule of Q-learning (cf. Section 2.4.2):

rt+1 + γ Q̂

(
st+1, argmax

a′∈A
Q̂(k)(st+1, a

′)

)
. (6.13)

Thus, the sequence of state-action value function approximators that are generated
by the approximate version of Modified Policy Evaluation component is defined
through the following batch mode recurrence:

Q̂i+1 ← L
({〈

st, at, rt+1 + γ Q̂i

(
st+1, argmax

a′∈A
Q̂(k)(st+1, a

′)

)〉})
. (6.14)

134 Chapter 6 — Function Approximators for Purposive Vision

A new state-action value approximator is constructed by the learning oracle L by
each application of this update rule. This rule can be motivated similarly to Fitted
Q Iteration [EGW05]: The stochastic aspect of the environment will eventually be
captured by the function approximators. Interestingly, all the elements

ct+1 = argmax
a′∈A

Q̂(k)(st+1, a
′) (6.15)

that are used in Equation 6.14 are constant across all the applications of the update
rule. Therefore, it is possible to cache these values ct+1 in an array in order to speed
up the computations.

Similarly to the main algorithm, this learning process stops when the difference
between two successive Q̂i drops below a threshold. The first element Q̂1 of the
sequence can be chosen freely. In practice, it is set to Q̂(k): This is a starting point
that reduces the number of iterations before convergence, as the percept-to-action
mapping πk+1 generally shares common decisions with πk. The resulting code is
outlined in Algorithm 6.3.

This concludes the general definition of Nonparametric API. In the next sections,
we will discuss function approximators that are suited when a raw feature generator
is available.

6.4 Extremely Randomized Trees
This section introduces Regression Extra-Trees3, a family of nonparametric function
approximators that results from research at the University of Liège [GEW06]. We
restrict our study to the case where all attributes (both the inputs and the output)
are numerical, hence the name “Regression” Extra-Trees. Thus, a Regression Extra-
Tree model defines a mapping Rn 7→ R, and is learned from a database of real-valued
input-output pairs 〈xi, yi〉 ∈ Rn × R.

As their name indicates, Regression Extra-Trees are tree-based function approx-
imators. Extra-Trees are a highly successful evolution of CART trees [BFS84], of
Bagging [Bre96], and of Random Forests [Bre01]. Extra-Trees are characterized by
a strong random component that is present during their generation, which leads to
a strong reduction in both bias and variance of the function approximators. Extra-
Trees also have excellent performance in generalization [GEW06].

6.4.1 Extra-Tree Induction
Internally, an Extra-Tree model is constituted by a forest of M independent de-
cision trees. Each of their internal nodes is labeled by a threshold on one of the
input attributes that is to be tested in that node. The leaves are labeled by a re-
gression output. The regression response for an input x is obtained by computing
the response of each subtree. This is achieved by starting at the root node, then
progressing down the tree according to the result of the thresholding tests found

3The name “Extra-Trees” stands for EXTremely RAndomized Trees.

Section 6.4 — Extremely Randomized Trees 135

Algorithm 6.4 — General structure for Regression Extra-Tree learning

1: extra-trees({〈xi, yi〉}, M) :–
2: T ← φ
3: for i← 1 to M do
4: T ← T ∪ {subtree({〈xi, yi〉})}
5: end for
6: return T

Algorithm 6.5 — Recursive induction of a single subtree

1: subtree({〈xi, yi〉}) :–
2: if too few samples or each input xi is constant or yi is constant then
3: o← mean({yi})
4: return a leaf labeled with output o
5: else
6: for v ← 1 to n do
7: a, b← mini{xi,v}, maxi{xi,v}
8: t[v]← random value in [a, b]
9: s[v]← score({〈xi, yi〉}, v, t[v])

10: end for
11: v∗ ← argmaxv{s[v]}
12: i	 ← {i | xi,v∗ < t[v∗]}
13: i⊕ ← {i | xi,v∗ ≥ t[v∗]}
14: T	 ← subtree({〈xi, yi〉} | i ∈ i)
15: T⊕ ← subtree({〈xi, yi〉} | i ∈ i⊕)
16: return a binary decision node 〈t[v∗], T	, T⊕〉
17: end if

during the descent, until a leaf is reached. By doing so, each subtree votes for a
regression output. Finally, the mean of these outputs is assigned to the sample.

Algorithms 6.4 and 6.5 describe how to build a Regression Extra-Tree model.
In this pseudo-code, xi ∈ Rn contains the input attributes of the ith sample in the
learning set and yi ∈ R is the observed regression output for this sample. We assume
the existence of a function score({〈xi, yi〉}, v, t) that returns the score of the thresh-
old t on the vth input component with respect to the database {〈xi, yi〉}. In our im-
plementation, variance reduction was used as the score function (cf. Section 4.4.3).
These algorithms are identical to those presented by Geurts et al. [GEW06] and are
restated here in order to complement the description of our distributed algorithms
(cf. Section 6.6). We refer the reader to Geurts et al. [GEW06] for a complete and
thorough treatment.

6.4.2 Applications of Extra-Trees

The choice of exploiting Extra-Trees to deal with vision-for-action problems is mo-
tivated by their good performance in supervised learning problems [GEW06], but

136 Chapter 6 — Function Approximators for Purposive Vision

also by previous applications in the domains of computer vision [MGPW05, Mar05]
and reinforcement learning [EGW05]. These positive results are described below.
Our definition of Visual Approximate Policy Iteration has been inspired by some of
the ideas from these applications.

Image Classification

The image classification task is a common benchmark for supervised learning algo-
rithms in computer vision. This problem consists in attributing a class number to
the image of an object, so that all the images of a given object are assigned with
the same class number, and so that no image of an alien object is associated with
this class. The image classifier is trained by a database of pairs mapping reference
images to the corresponding class. Marée et al. [Mar05, MGPW05] have shown that
Classification Extra-Trees can be used to reach state-of-the-art performance on this
task using the value of raw pixels (see also Section 3.4).

In practice, they have proposed to exploit Classification Extra-Tree models that
define a mapping Rn 7→ C, where C = {c1, . . . , cm} is a set of object classes.
The induction of such classification models is similar, but not identical, to Algo-
rithm 6.4 [GEW06]. The models are now generated from a database of input-output
pairs 〈xi, ci〉 ∈ Rn×C. Marée et al. assume the presence of a visual feature generator
GV that extracts a set of visual features from any image s ∈ S. Their research work
has mainly focused on the extraction of image patches at random interest points,
but any other visual feature generator could be used as well.

Evidently, Classification Extra-Trees cannot be used directly to classify an im-
age, because a visual feature generator maps one visual percept to many visual
features (cf. Definition 3.1). This fundamental problem is solved by applying the
Extra-Tree model independently on each visual feature that is present in the in-
put image. This process generates one classification output per visual feature in
the input image. Then, the output of the function approximator is defined as the
class that obtains most votes among these classification outputs. This approach is
depicted in Figure 6.1.

We now describe how the corresponding Classification Extra-Tree model is gen-
erated. Given a training database of image-class pairs 〈si, ci〉 ∈ S × C, a second
database is constructed as follows:

{〈v, c〉 | (∃i) (∃v′ ∈ GV (si)) v = v′ and c = ci} . (6.16)

Intuitively, this second database contains one entry for each visual feature in each
training image. Each of these features is associated with the class number of the
object whose image has triggered the detection of the visual feature. The entries of
this second database are elements of Rn×C, and are used to train the Classification
Extra-Tree model.

Section 6.4 — Extremely Randomized Trees 137

Visual percept

Visual feature generator

Visual feature 1 Visual feature 2 ... Visual feature k

Classification output 1

 Extra-Trees

Classification output 2

 Extra-Trees

Classification output k

 Extra-Trees

Majority vote

Object class

Figure 6.1: Assigning a class to an image using a Classification Extra-Tree model.

Tree-Based Batch Mode Reinforcement Learning

A second successful application of the Extra-Trees have been to use them as func-
tion approximators for reinforcement learning. Ernst et al. [EGW05] have proposed
to embed Regression Extra-Trees in the Fitted Value Iteration process (cf. Sec-
tion 6.2.3). Just like Nonparametric API, Fitted Q Iteration is a model-free RL
algorithm that takes as input a database of interactions 〈st, at, rt+1, st+1〉. The
perceptual space is usually assumed continuous (i.e. S = Rn). Similarly to Non-
parametric API, the Fitted Q Iteration algorithm makes a batch treatment of the
stochastic version of a Bellman backup operator. Nevertheless, Fitted Q Iteration
considers the Bellman backup operator H for the optimal state-action value function
(cf. Equation 2.27), instead of the operator Hπ for a fixed policy π. Thus, Fitted
Q Iteration directly targets the evaluation of the optimal state-action value func-
tion Q∗, whereas Nonparametric API evaluates the state-action value functions of a
sequence of improving policies.

Fitted Q Iteration generates a sequence of state-action value function approxima-
tors Q̂(i)(s, a) that converge to Q∗(s, a). Each of these approximators is represented
through Regression Extra-Trees. However, because the action space is discrete, the
actions cannot be given as an input to a Regression Extra-Tree model4. The solu-
tion to this problem is straightforward: The single Extra-Tree model Q̂(i)(s, a) is

replaced by |A| Extra-Tree models Q̂
(i)
a (s), one for each possible action a ∈ A, and

4The full definition of Extra-Trees by Geurts et al. [GEW06] does not include this limitation.
Symbolic variables can be used simultaneously to numeric variables. This restriction has been
introduced in this dissertation for teaching purposes.

138 Chapter 6 — Function Approximators for Purposive Vision

the following rule is used to evaluate the function:

Q̂(i)(s, a) = Q̂(i)
a (s), (6.17)

for each percept s ∈ S and each action a ∈ A. This discussion allows us to formulate
the recurrence rule of Fitted Q Iteration as follows:

Q̂(i)
a (s) = extra-trees {〈st, rt+1〉 | at = a} , (6.18)

Q̂(i+1)
a (s) = extra-trees

{〈
st, rt+1 + γ argmax

a′∈A
Q̂(i)

a (st+1)

〉
| at = a

}
, (6.19)

where extra-trees designates Algorithm 6.4. Intuitively speaking, Fitted Q Iter-
ation turns the Q-learning algorithm into a sequence of supervised regression prob-
lems.

Application to Real-Time Human Silhouette Detection

Finally, we also point out the use of Classification Extra-Trees in the framework of
real-time silhouette classification in a video sequence [BJV06, Bar06]. This approach
uses background subtraction techniques so as to extract the moving silhouettes in a
video stream. The system then classifies these silhouettes as human or non-human
according to supervised learning on a novel kind of morphological features that are
borrowed from structured-based vision (cf. Section 3.1.2). The classification can be
run in real-time, as the application of an Extra-Tree model is a very quick operation.
We mention this work here, as it is one of our personal contributions that is not
directly related to the core subject of this dissertation.

6.5 Visual Approximate Policy Iteration

We now introduce a family F of state-action value function approximators that can
be plugged in Nonparametric API to solve tasks that admit a raw feature generator,
such as vision-for-action tasks. This family is inspired by the successful applications
of the Extra-Trees that have just been discussed. Concretely, we take advantage of
the following ideas:

• We use Extra-Tree models in the RL process, because they are powerful, yet
fast and simple to implement. This idea comes from the Fitted Q Iteration
algorithm [EGW05].

• As a raw feature generator can produce more than one raw feature per per-
cept, an averaging technique is required. This is similar to image classification
through Extra-Trees [MGPW05]. However, as we deal with supervised regres-
sion problems instead of supervised classification problems, the vote is replaced
by a mean computation.

Section 6.5 — Visual Approximate Policy Iteration 139

Percept

Raw feature generator

Raw feature 1 Raw feature 2 ... Raw feature k

Regression output 1

 Extra-Tree model
 for the action

Regression output 2

 Extra-Tree model
 for the action

Regression output k

 Extra-Tree model
 for the action

Mean

Utility

Figure 6.2: Computing the state-action utility of a raw percept for a fixed action.
This architecture is derived from Figure 6.1.

A function approximator in this family is defined as a set of |A| Regression
Extra-Trees, one for each action. When evaluating the utility of a state-action pair
(s, a), each raw feature f that is generated by the raw feature generator GR for the
percept s is fed to the Extra-Tree model that corresponds to the action a. Finally,
all the outputs are averaged so as to obtain the utility of the percept-action pair.
This process is illustrated in Figure 6.2. Formally, we have the following definition:

Definition 6.4. Let GR be a raw feature generator. A raw Extra-Tree state-action
value function approximator (or, for short, a RETQ approximator) is a tuple:

Q̂ =
〈
Q̂a1 , . . . , Q̂am

〉
, (6.20)

where the finite set of actions is A = {a1, . . . , am}, and where each Q̂a is a Regression
Extra-Tree model that takes the raw feature space Rn as input. The output of a
RETQ approximator for a state-action pair (s, a) ∈ S × A is defined as:

Q̂(s, a) = mean
({

Q̂a(f) | f ∈ GR(s)
})

. (6.21)

The learning oracle L that can learn RETQ approximators from a database of
triples 〈st, at, vt〉 is now introduced (cf. Definition 6.3). Similarly to the application
of Extra-Trees to image classification, this oracle generates an intermediate database
that contains one utility for each raw feature in each percept st. This utility cor-
responds to the utility that was associated to the percept st that has triggered the
raw feature. The corresponding code is depicted in Algorithm 6.6.

140 Chapter 6 — Function Approximators for Purposive Vision

Algorithm 6.6 — Learning oracle for RETQ approximators

1: L({〈st, at, vt〉}) :–
2: for a ∈ A do
3: D[a]← {}
4: end for
5: for t← 1 to T do
6: for f ∈ GR(st) do
7: D[at]← D[at] ∪ {〈f , vt〉}
8: end for
9: end for

10: for a ∈ A do
11: Q[a]← extra-trees(D[a])
12: end for
13: return 〈Q[a1], . . . , Q[am]〉

The Visual Approximate Policy Iteration algorithm (V-API) is defined as the
conjunction of Nonparametric API with RETQ approximators [JBP06]. V-API can
cope with any task for which it is possible to define a raw feature generator, and
notably vision-for-action tasks. This will be demonstrated in Section 6.7.

Very recently, related work has been proposed by Ernst et al. [EMW06]. In their
approach, Extra-Trees are also used to solve vision-for-action tasks. However, there
are two main differences with V-API: (1) They only consider global visual features
(i.e. raw feature generators that only produce one feature per visual percept), that
happen to be a raw portion of a grayscale image; and (2) they use the Fitted Q
Iteration framework instead of Nonparametric API.

6.6 Distributed Implementation of Extra-Trees

V-API applies Regression Extra-Trees to large databases. As a consequence, even
if the computational expense of Extra-Trees is small with respect to other machine
learning algorithms, the complexity of visual spaces still prevents their direct use in
V-API. We propose to reduce this computational expense by taking advantage of the
extremely parallelizable nature of Algorithm 6.4: Each execution of Algorithm 6.5
is totally independent of other instances of the same algorithm, and each subtree
can be computed in a separate computational task. In other words, the learning of
Extra-Tree models can be formulated as a so-called bag of tasks [CBS+03, dCS+04],
where tasks are independent and can be processed on separate computer nodes,
which can greatly reduce the learning time. Once all the tasks are completed, it
is straightforward to merge all the subtrees to generate the Extra-Tree model. As
the application of a learned Extra-Tree model is very fast, only the induction of
Extra-Trees will be distributed, and not the process of applying a model.

Section 6.6 — Distributed Implementation of Extra-Trees 141

6.6.1 Building Extra-Trees in a Cluster of Computers

Our implementation of Regression Extra-Trees follows this principle. We assume the
presence of a cluster of computers, in addition to the computer that runs the V-API
algorithm. The latter computer will be refereed to as the user’s host . Furthermore,
we assume that the user’s host can log into any host in the cluster through the Unix
ssh (secure shell) command [SSH06]. This login must be possible without typing a
password, which can be for example be done by using a ssh-agent.

Each application of Algorithm 6.5 in Algorithm 6.4 is called a task . Each task
is run independently through ssh on one computer in the cluster, and is provided
with the same database 〈xi, yi〉 of input-output pairs. A simple task scheduler runs
on the user’s host so as to keep track of which machines in the cluster have been
assigned a task. The scheduler has also the responsibility for detecting failures in
the computations (e.g. reboot, lack of storage or temporary space, as well as network
or hardware failures), which can be done thanks to the flexible options for invoking
and monitoring a ssh session. Because of the random component of Extra-Tree
induction, each instance of the program constructs a different subtree. All these
subtrees are collected back through the pipe that is opened by ssh, and the user’s
host progressively inserts all these subtrees to form the resulting Extra-Tree model.

Whenever a subtree is returned and a subtree induction task is still pending, the
scheduler assigns this pending task to the host that has finished its computation.
This is of course a very primitive task scheduler: More sophisticated scheduling
strategies (e.g. featuring preemption) could be used as well without distorting our
approach. Furthermore, nothing would prevent the use of schedulers that would
distribute bag-of-tasks computations inside a peer-to-peer grid of computers [FK04,
Bd06], such as OurGrid [OG06], hereby benefiting from the computational power
of a much larger number of hosts.

Even with a cluster of computers, the resulting speedup is already huge: If N
homogeneous hosts are used, the computation time roughly equals dM/NeT + U ,
where M is the number of subtrees to generate (it is a parameter of Algorithm 6.4),
T is the mean amount of time for building one single subtree, and U corresponds to
the distribution time of the database among all the hosts. Therefore, we argue that
taking advantage of the highly parallelizable nature of Extra-Trees [GEW06] (and,
possibly, of Random Forests [Bre01]) could potentially have a great economical im-
pact on industrial image processing or real-time video surveillance (cf. Section 6.4.2).

6.6.2 The Database Distribution Problem

Unfortunately, if no attention is paid, the transmission overhead U can quickly
become a bottleneck. Indeed, the same large database has to be sent to N hosts by
the central task manager, which causes augmentation of network congestion. Thus,
a direct use of ssh to transmit the database would heavily reduce the interest of the
distributed implementation.

One plausible solution is to rely on the use of UDP multicasting to distribute
the database. However, due to the lack of flow control in UDP, slow hosts will

142 Chapter 6 — Function Approximators for Purposive Vision

Figure 6.3: Software architecture for the distributed learning of Extra-Trees.

be overwhelmed by the massive amount of data they receive. As a consequence,
a retransmission protocol would be required on top of UDP, which would greatly
complicate the implementation. Furthermore, UDP multicasting is generally blocked
by domain routers, which imposes the use of hosts inside the same domain. Another
possibility is to design an ad-hoc data distribution protocol, that superimposes a
virtual spanning tree topology on the hosts. The user’s host, at the root of the
spanning tree, would broadcast the databases to its children, and, in turn, each
child in the topology would recursively repeat the received messages to its own
children. This requires a still more complex implementation, because the spanning
tree must be correctly maintained, even if new hosts are plugged into the cluster,
or if a host is powered off or experiences difficulties. Moreover, experimental results
show that the reliability layer of TCP itself acts as a bottleneck, because of the
massive number of messages that are sequentially emitted by the host hierarchy.

We have therefore chosen to use the peer-to-peer protocol BitTorrent [Coh03,
BT06] for distributing the databases. Schematically, in BitTorrent, each host
interesting in downloading a file becomes part of a swarm that grabs all the pieces of
the file. Whenever a host acquires a piece, this piece is made available for download
to the other hosts. A distinguished host, the tracker , is used to keep track of the hosts
that belong to the swarm [BTT06]. Our final learning architecture is schematized in
Figure 6.3. Note that every time an host receives a database through BitTorrent,
it caches it as a temporary file, so as to avoid a redundant file transfer if a new subtree
induction task is thereafter scheduled on the same host.

This approach to file distribution is elegant and scalable, and indeed reduces the
transmission overhead U , making it roughly independent of the number of hosts
in the cluster. Such a solution for the distribution of databases over a network
of computers is still vastly unexplored. It should be useful in many distributed
computing applications in which all the tasks share the same input database, in
particular in the context of Grid Computing [FK04, Bd06].

Section 6.7 — Experimental Results 143

6.7 Experimental Results
Visual Approximate Policy Iteration was evaluated on the same benchmark visual
task as used in Section 5.1.5. The experimental setup was kept exactly identical.
Similarly to RLVC, V-API was applied to a static database of 10,000 interactions
that were collected using a fully randomized exploration policy. Again, the same
database is used throughout the entire V-API algorithm, and this database only
contains images that belong to the learning set.

The parallel implementation of Regression Extra-Trees runs on a testbed cluster
of N = 67 heterogeneous ix86 machines. It consists of a set of 27 AMD Athlon
1800+, 27 Intel Celeron 2.4GHz, and 13 Intel Pentium IV 2.8GHz CPUs. They are
interconnected via a switched 100Mbps Ethernet network.

Figure 6.4 shows the sequence of policies that is generated by V-API. The algo-
rithm stops after 6 iterations, which is a surprisingly small number. A total number
of 49 RETQ approximators were generated, which corresponds to 49 × |A| = 147
Regression Extra-Tree models. The overall running time was about 98 hours. This
shows the interest of taking advantage of the intrinsic parallelism of Extra-Trees, as
this divided the running time by about fifty. Statistics about the generated policies
are given in Figure 6.5. The error of the last policy in the generated sequence was
1.6% on the learning set and 6.6% on the test set, with respect to the optimal policy
when the agent has direct access to its position and viewing direction. These error
rates are better than those obtained in Section 5.1.5 through the basic version of
RLVC (0.1% on the learning and 8% on the test set), but they are slightly inferior
to that of RLVC extended with classifier compaction (0% on the learning and 4.5%
on the test set). However, the better balance between errors on the learning set and
on the test set indicates that overfitting effects are less present. Note also that these
error rates are notably a consequence of the downscaling of the input images to a
size of 160× 120 that was used to reduce the abundance of detected visual features.

The advantage of using BitTorrent is clear: Under optimal conditions, if m
Extra-Tree models (as discussed above, m = 147) are to be built from databases of
typical size S = 80MB, the transmission overhead corresponding to FTP would have
a theoretical lower bound of U ≈ m × N × S[MB]/100[Mbps] = 17 hours. Using
BitTorrent, this time is approximately reduced to U ≈ m× S[MB]/100[Mbps] = 16
minutes.

6.8 Summary
We have defined the Visual Approximate Policy Iteration (V-API) algorithm that is
an instance of API designed to work notably in visual spaces. It is based on a non-
parametric version of API. V-API extensively relies on the use of Regression Extra-
Trees as function approximators. This choice is motivated by the low bias and vari-
ance, as well as by the good generalization performance of the Extra-Trees [GEW06].
Furthermore, Classification Extra-Trees have been proved to be successful at solv-
ing image classification tasks [MGPW05]. The embedding of Extra-Trees inside the

144 Chapter 6 — Function Approximators for Purposive Vision

π0 :

L

L

L

L

L
LL

L

L

LL
L

L

F

L
L L

L
L

L
L L L

L

LL
L

L
L

L

L L

L

L

L
L L

L

L

L

L L

L

L

π1 :

L

LL

L

L

L

F

L
L

L
L L

L

L

L

L

L
L L

L

L

L

R
R F

R

R
RF

R
R

R

RR

R
R R

R
R

R

R

R
R

R

π2 :

L

L

L
F

L

L

L

L

L

L

L

R
F

R
RF

R

R

R

R R
R R

R
R

R

R

FL

R
R

L

R

L
F
R

R

L

R

L
R

R

RF π3 :

L

L

L
F

L
L

L

L

L

R
F

R
RF R

RR

R

R
R

R

R

FL

R
R

L
L

F

R R

L
R

F

L
R

L
F

F F
L F

F

L

π4 :

L
F

L
L

L

L

R
F

R
RF R

R

R

R
R

R

FL

R
R

L
L

F

L
R

F

L

L
F

F F
L

F

R

L
R

L

L

R

F
R

F
L

π5 :

L
F

L
L

L

L

R
F

R
RF R

R

R
R

R

FL

R
R

L
L

F
R

L
R

F

L

L
F

F F
L

F

R

R
L

R

F

F

R

R

R
L

Figure 6.4: The sequence of policies πk that are generated by V-API. At each lo-
cation, 4 letters from the set {F, L, R} are written, one for each viewing direction.
Each letter represents the action (go Forward, turn Left, turn Right) that receives
most votes in the learning set, for the corresponding pair location / viewing direction.

Section 6.8 — Summary 145

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5
Learning set

Test set

Figure 6.5: Error on the generated image-to-action mappings as a function of the
step counter k. The solid (resp. dashed) plot corresponds to the error rate of the
policy πk on the learning (resp. test) set.

framework of API is a first important contribution of this chapter, and should also
be useful in continuous perceptual spaces. To the best of our knowledge, this makes
of V-API the first application of API to high-dimensional, discrete spaces.

We have also shown how to take advantage of the highly parallelizable nature of
the induction of Extra-Trees by distributing the construction of the subtrees over
a cluster of computers. This allows us to greatly reduce the computational time,
which is often an important issue with visual spaces. Finally, the peer-to-peer Bit-
Torrent protocol was shown to be an effective tool for reducing the database
distribution expense. Of course, other fields of application of Extra-Trees, such as
supervised learning [GEW06], image classification [MGPW05] and the Fitted Q Iter-
ation algorithm [EGW05], will directly benefit from this new economical advantage.

Experimental results show similar results between RLVC and V-API. Here are
the main advantages of V-API over RLVC:

• It is conceptually simple and elegant;

• There is no need to cluster the raw features (e.g. by introducing a metric),
thus it benefits from the full discriminative power of the raw features;

• It exhibits the low variance and bias of Extra-Trees, so that the robustness
and the capabilities of generalization are potentially better, and so that it is
more stable.

However, these competitive advantages of V-API must be balanced by the following
disadvantages with respect to RLVC:

• The computational expense is much higher;

• The use of a cluster of computers is almost mandatory, which heavily compli-
cates the implementation;

146 Chapter 6 — Function Approximators for Purposive Vision

• It is impossible to generate higher-level features on demand (cf. Chapter 5).

Summarizing, a compromise seems to exist between the requirement of an equiva-
lence relation among visual features, and the use of raw visual features. Therefore,
V-API and RLVC certainly constitute two complementary techniques.

Acknowledgments

We reproduce here the acknowledgments that figure in the seminal paper about
Visual Approximate Policy Iteration [JBP06]. We kindly acknowledge P. Geurts
and the pepite s.a. team (http://www.pepite.be/) for providing us with an
implementation of Extra-Trees, which has inspired our novel parallel implementation
of Extra-Trees. We also wish to thank S. Martin of the University of Liège for his
valuable help regarding network programming and the protocol BitTorrent.

http://www.pepite.be/

CHAPTER

SEVEN

Reinforcement Learning of Joint Classes

Paradoxically, although robotic controllers often interact with their environment
through a set of continuously-valued actions (position, velocity, torque. . .), relatively
little consideration has been given to the development of RL algorithms that would
learn direct mappings from percepts to continuous actions. This is in contrast to
continuous perceptual spaces, for which many solutions exist (cf. Section 6.2). As
a consequence, vision-based robotic tasks with continuous output such as visual ser-
voing cannot currently be solved through RL. Moreover, even if the action space is
finite, standard reinforcement learning algorithms are doomed to failure if there is
a large number of possible actions. This is mainly due to the use of lookup tables
to represent the value functions, which makes the database of interactions dispersed
over a large number of cells.

The challenge posed by continuous actions spaces more fundamentally arises from
the fact that standard update rules based upon Bellman backup operators are only
applicable to finite sets of actions, as these rely on a maximization over the action
space. Furthermore, an a priori discretization of the action space generally suffers
from an explosion of the representational size of the domains known as the curse of
dimensionality, and may introduce artificial noise. As a consequence, similarly to
adaptive-resolutions techniques for perceptual spaces (cf. Section 4.3.3 and 4.3.4), it
seems promising to introduce adaptive-resolution methods for action spaces.

This chapter presents the Reinforcement Learning of Joint Classes (RLJC) al-
gorithm, which enables such closed-loop learning of direct mappings from images to
complex action spaces. RLJC is a generalization of RLVC to continuous or high-
dimensional action spaces. Rather than focusing the attention of the agent only on
highly informative features in the perceptual space, RLJC also takes features over the
action space into consideration. Therefore, RLJC is an adaptive-resolution method
for the joint space of percepts and actions.

147

148 Chapter 7 — Reinforcement Learning of Joint Classes

actions

pe
rc

ep
ts

actions

pe
rc

ep
ts

(a) (b)

Figure 7.1: Illustration of the discretization process of (a) RLVC, and (b) RLJC.

7.1 Adaptive Resolution in the Joint Space
As proposed above, a natural idea for extending RLVC to continuous action spaces
is to discretize the action space together with the perceptual space. Reinforcement
Learning of Joint Classes (RLJC) follows this principle, and subdivides the problem
space in a finite set of regions by applying tests to both the input perceptual space
and the output action space. More precisely, RLJC tests the presence of perceptual
features and of action features , that are both highly informative for the task to
be solved. For instance, if uni-dimensional continuous actions are considered, an
action feature could be a real number that would serve as a threshold on the effector
output, and that would mark off a region that has specific properties with respect
to the current task.

Similarly to RLVC that incrementally subdivides the perceptual space S, RLJC
progressively subdivides the combined percept-action space (or joint space) S×A, in
a sequence of attempts to remove perceptual aliasing. In each region that is induced
by the discretization process, the state-action value functions are kept constant.
This way, the possibly uncountable joint space is mapped to a finite number of
regions, and specific RL algorithms are then used to extract the optimal control
policies. Very importantly, the discretization process is adaptive: A new split occurs
only when it succeeds at distinguishing between two regions of the joint space that
have dissimilar properties with respect to the current state-action value function.
Therefore, the discretization of the action space can be inhomogeneous with respect
to the perceptual space. In other words, the action space can possibly be discretized
differently at each percept. This difference is illustrated in Figure 7.1.

7.2 Related Work
Previously-investigated solutions for handling continuous actions without a priori
discretization generally use function approximators such as neural networks [GSK98,
tHK00] or tile coding [SSR98]. Early work on neural networks in continuous action
space is reviewed by Kaelbling et al. [KLM96, Section 6.2]. Rummery proposes sev-
eral methods based on a collaboration between Adaptive Heuristic Critic (cf. Sec-

Section 7.2 — Related Work 149

tion 2.4.3) and neural networks [Rum95, Chapter 5]. Ernst et al. mention that
Fitted Q Iteration together with Extra-Trees (cf. Section 6.4.2) could be used in
continuous action spaces [EGW05, Section 4.5], though an experimental validation
is not given.

However, such function approximators are not well suited to continuous action
spaces. Indeed, although they can be used in approximate actor-critic architectures
such AHC, they are not directly applicable to algorithms such as Q-learning, SARSA,
Fitted Value Iteration, or Approximate Policy Iteration. This is a consequence of
the fact that these families of approximators cannot directly find the action that
maximizes the state-action value function given an input percept. Mathematically,
this operation corresponds to a multi-dimensional optimization of the projection
of a state-action value approximator over the action space. To this end, iterative
techniques for optimization of non-linear, non-convex, noisy functions are in general
required. This means that potentially a large number of actions have to be evaluated
before a good estimate of the optimal action is obtained. As the evaluation of the
utility of a state-action pair can be computationally expensive, this process might
be inapplicable in practice. Moreover, state-of-the-art optimization techniques such
as the simplex algorithm for general function maximization [NM65] are likely to be
trapped in local optima. Although they have been designed to avoid such a de-
ficiency, there is no guarantee that algorithms such as the stochastic hill climbing
method or the genetic algorithms [Hol75] will either reach a global optimum. Never-
theless, success is reported by Smart [Sma02, Section 4.8] on uni-dimensional actions
by using pairwise bisection [AMC00].

From this point of view, wire fitting is a particularly attractive family of function
approximators, because it supports the quick and exact extraction of the optimal
action [BK93] for a given percept. The underlying methodology is a moving least-
squares interpolator. The original idea of wire fitting was later extended by Gaskett
et al. using artificial neural networks, leading to the wire fitted neural networks that
have been exploited in the Q-learning framework [GWZ99, Gas02]. Nevertheless,
wire fitting is inherently defined over continuous joint spaces, which forbids its use
for solving visual tasks.

On the other hand, all the adaptive-resolution methods that were discussed in
Section 4.3 assume a finite number of actions. Moreover, in practice, these ac-
tions cannot be too numerous. A noticeable exception is the work by Porta and
Celaya [PC05], who consider feature detectors that are defined over the action
space. Unfortunately, this approach assumes that the set of relevant action fea-
tures is selected by hand. This contrasts with RLJC that is fully automatic, and
that can draw features from a possibly infinite set of features. The basic idea of
RLJC (i.e. discretizing the joint percept-action space) is also present in the JoSTLe
algorithm [MWSP04]. JoSTLe is one of the few adaptive-resolution techniques that
can discretize a continuous action space. It is an extension of Variable Resolution
Grids [MM02]. However, JoSTLe is specifically designed for fully continuous control
problems, as it heavily relies on Kuhn triangulations of the joint space.

Summarizing, to the best of our knowledge, none of these methods has been

150 Chapter 7 — Reinforcement Learning of Joint Classes

designed to cope with high-dimensional, discrete perceptual spaces such as visual
spaces, simultaneously with continuous action spaces. In contrast, RLJC is not
limited either to discrete or to continuous joint spaces: Indeed, RLJC only requires
that features can be defined on the perceptual and on the action spaces. Therefore,
one key advantage of RLJC lies in its generality.

7.3 Joint Features

7.3.1 Features in the Action Space
Just like perceptual features can be defined over the perceptual space (cf. Sec-
tion 4.1.2), it possible to define action features over the action space. An action
feature is anything that can be either present or absent from one of the agent’s
effector outputs. Just like a perceptual feature, an action feature splits the action
space in two parts. This leads us to the following definitions:

Definition 7.1. An action feature detector DA : A × FA 7→ B is a mapping that
associates a Boolean to any pair that consists of an action and of an action feature1.
FA is the action feature space, that is possibly infinite.

Besides the action feature detector, the presence of an oracle that extracts ac-
tion features from effector outputs is assumed. This generator computes the action
features that a given set of actions exhibits. The corresponding definition can be nat-
urally derived from the notion of a perceptual feature generator (cf. Section 4.1.3):

Definition 7.2. An action feature generator GA : P(A) 7→ P(FA) is a mapping that
associates to each set of actions, the set of all the action features that are present
in one of these actions. For computational tractability, it is required that for each
finite set {a1, . . . , am} of actions, GS({a1, . . . , am}) is finite.

7.3.2 Features for Continuous Action Spaces
We are primarily interested in closed-loop learning of mappings from images to
continuous actions. In this case, A = Rn for some positive integer n. Suitable
action features are mostly identical to the features for continuous perceptual spaces
(cf. Section 4.1.2). The corresponding action features simply consist in testing a
threshold on a particular component of the action space. The set of action features
is defined as:

FA = R× {1, . . . , n}. (7.1)

The corresponding action feature detector DA checks whether the considered com-
ponent of the given action is below the threshold or not:

DA(a, (t, i)) = true if and only if ai < t. (7.2)

1Similarly to Definition 4.4, the subscript A of the notation DA and FA emphasizes the fact
that these features are defined on the action space A.

Section 7.3 — Joint Features 151

Finally, the action feature generator GA converts any action to n action features,
one for each component of the input action a ∈ Rn:

GA({a1, . . . ,am}) =
m⋃

i=1

n⋃
j=1

(aij, j). (7.3)

7.3.3 Features for Cartesian Action Spaces
As discussed in Section 7.2, Porta and Celaya consider high-dimensional, discrete
action spaces [PC05]. In their framework, an action governs a set of k actuators.
The output value for the ith actuator must lie in a finite domain: Ai = {1, . . . , ni}.
Therefore, the action space is the Cartesian product of k finite domains:

A =
k×

i=1

{1, . . . , ni}. (7.4)

Such a Cartesian action space is basically the direct transposition of the binary-
number perceptual features (cf. Section 4.1.2) to action spaces and to variables with
more than two possible values. In this case, a perceptual feature tests whether the
ith component of an action is labeled by a given value:

FA =
k⋃

i=1

{(t, j) | j ∈ {1, . . . , ni}}, (7.5)

DA(a, (t, i)) = true if and only if ai = t. (7.6)

As the set of action features is finite, the action feature generator can simply return
the whole set of possible action features:

GA({a1, . . . , am}) = FA. (7.7)

A better strategy that reduces the number of features consists in returning only the
features that are present in the set of actions:

GA({a1, . . . , am}) =
m⋃

i=1

ni⋃
j=1

(aij, j). (7.8)

7.3.4 Joint Feature Detectors and Generators
When features are defined both over the perceptual space S and over the action
space A, it is possible to define joint features , that are either perceptual features or
action features:

Definition 7.3. Let FS (resp. FA) be a set of perceptual (resp. action) features.
The joint feature space is defined as:

F = FS ∪ FA. (7.9)

152 Chapter 7 — Reinforcement Learning of Joint Classes

Then, the feature detectors and generators can be trivially extended to the joint
space as follows:

Definition 7.4. Let DS (resp. DA) be a perceptual (resp. action) feature detector.
The joint feature detector D : (S ×A)× F 7→ B that is induced by DS and DA is a
mapping that associates a Boolean to any triple that consists of a state-action pair
and of a joint feature. Such a detector is defined through the relation:

D((s, a), f) =

{
DS(s, f) if f ∈ FS,
DA(a, f) otherwise.

(7.10)

Definition 7.5. Let GS (resp. GA) be a perceptual (resp. action) feature generator.
The joint feature generator G : P(S × A) 7→ P(F) that is induced by GS and GA

is a mapping that associates to each set of state-action pair, the set of all the joint
features that are present in one of these state-action pairs:

G({(s1, a1), . . . , (sm, am)}) = GS({s1, . . . , sm}) ∪ GA({a1, . . . , am}). (7.11)

These concepts will prove useful in the next sections, in which RLJC is formally
developed.

7.4 Reinforcement Learning of Joint Classes
Generalizing RLVC to continuous action spaces raises two important difficulties.
Firstly, because the discretization of the action space is non-uniform with respect
to the perceptual space, standard reinforcement learning algorithms for finite state-
action spaces (cf. Chapter 2) are useless. This contrasts with RLVC, that can take
advantage of such algorithms by working on the mapped MDPMk (cf. Section 4.4.1).
Secondly, the aliasing criterion defined in Section 4.4.2 cannot be used directly when
the action space is continuous, for at least two reasons: The Bellman residuals as
defined by Equation 4.23 are unavailable because of the non-uniform discretization of
the action space; and the set of time stamps of Equation 4.24 is useless, because the
action space can only be sparsely sampled, so that any T (c, a) essentially collapses
to a set containing at most one element. We now describe the structure of RLJC,
then how these difficulties are overcome.

7.4.1 Learning Architecture
Whereas RLVC learns a sequence of percept classifiers C0, C1, C2, . . . that discretize
the percept space by testing perceptual features, RLJC learns a sequence of joint
classifiers J0,J1,J2, . . . that discretize the joint state-action space by testing fea-
tures on the perceptual and on the action space. In terms of the notation of Sec-
tion 7.3, a joint classifier Jk in this sequence is a binary decision tree, the internal
nodes of which are labeled by a joint feature. Each leaf of these decision trees defines
a joint class . To classify a state-action pair (s, a) ∈ S ×A, the system starts at the

Section 7.4 — Reinforcement Learning of Joint Classes 153

root node, then progresses down the tree according to the result of the joint feature
detector D for each joint feature found during the descent, until reaching a leaf.
Thus, a joint classifier maps the (possibly infinite) joint space S × A to a finite set
of joint classes using the joint feature detector D:

Definition 7.6. A joint classifier Jk : S × A 7→ Ck is a mapping from the joint
space to a finite set of mk joint classes Ck that is defined as:

Ck =
{

c
(k)
1 , . . . , c(k)

mk

}
. (7.12)

In RLVC, for any state-action value function, all the percepts s, s′ ∈ c that lie
in the same perceptual class c share the same utility for all the actions. Similarly,
once a joint classifier Jk is fixed in RLJC, it constrains the allowed structure of the
state-action value functions Q(s, a), by requiring them to be piecewise constant over
each joint class:

Definition 7.7. Let Jk be a perceptual joint class. A constrained interpretation
Q̂ : Ck 7→ R is a mapping that associates a real-valued utility to each joint class.
In turn, each constrained interpretation induces a constrained state-action value
function Q : S × A 7→ R as follows:

Q(s, a) = Q̂(Jk(s, a)), (7.13)

where s ∈ S is a percept and a ∈ A is an action.

The general scheme of RLJC is identical to that of RLVC. The algorithm starts
with a joint classifier J0 that contains one single leaf, and thus that maps all of its
input state-action pairs to a single perceptual class c

(0)
1 . For each Jk in the sequence,

the optimal state-action value function Q∗
k constrained by Jk is computed. Then,

a set of highly discriminative joint features are selected by relying on an analysis
of the Bellman residuals that are induced by Q∗

k. The selected features are used
to refine Jk, leading to the joint classifier Jk+1. New joint classifiers are generated
until perceptual aliasing vanishes. The resulting backbone of RLJC is formalized
in Algorithm 7.1, and is visibly very similar to Algorithm 4.1. However, several
additional difficulties are hidden in this algorithm:

1. Given a state-action value function that is constrained by a joint classifier Jk,
how is it possible to extract the greedy action with respect to a percept s ∈ S?
This operation is indeed required by the reinforcement learning algorithm and
when controlling the system after RLJC has completed. The non-uniform
discretization complicates this operation, that was trivial in the context of
RLVC.

2. Given a joint classifier Jk, how is it possible to compute the optimal state-
action value function Q∗

k that is constrained by Jk?

3. How to adapt the aliasing detector and generator that have been defined in
the framework of RLVC in Chapter 4?

These problems are discussed in the next sections, which will lead to a concrete
implementation of Algorithm 7.1.

154 Chapter 7 — Reinforcement Learning of Joint Classes

Algorithm 7.1 — General structure of RLJC

1: k ← 0
2: mk ← 1
3: Jk ← binary decision tree with one leaf
4: repeat
5: Collect N interactions 〈st, at, rt+1, st+1〉
6: Reinforcement learning of Q∗

k(s, a), as constrained by Jk

7: mk+1 ← mk

8: Jk+1 ← Jk

9: for i← 1 to mk do
10: c← c

(k)
i

11: if aliased (c) then
12: f ∗ ← selector(c)
13: if f ∗ 6= ⊥ then
14: Jk+1 ← Jk+1, where the joint class c is refined by a test on f ∗

15: mk+1 ← mk+1 + 1
16: end if
17: end if
18: end for
19: k ← k + 1
20: until Jk = Jk−1

Algorithm 7.2 — Computing the utility of a percept s ∈ S in RLJC

1: utility (s, Q,Jk) :–
2: C ← {c | (∃a ∈ A) Jk(s, a) = c}
3: return maxc∈C Q̂(c)

7.4.2 Computing a Greedy Action
In this section, we describe how to effectively compute the greedy action

π[Q] (s) = argsup
a∈A

Q(s, a), (7.14)

for a percept s ∈ S, where Q is a state-action value function that is constrained
by some joint classifier Jk, whose constrained interpretation is Q̂. Thanks to the
parametrization of constrained state-action value functions, it is possible to extract
π[Q] (s) by evaluating Q(s, a) only for a finite number of actions.

Compatible Joint Classes

To this end, we first evaluate the set of joint classes that are compatible with the
percept s:

C(s) = {c | (∃a ∈ A) Jk(s, a) = c} . (7.15)

Intuitively, this set corresponds the joint classes to which a given percept may be
mapped. This is illustrated in Figure 7.2. From an algorithmic point of view, a joint

Section 7.4 — Reinforcement Learning of Joint Classes 155

pe
rc

ep
ts

actions

considered percept

Figure 7.2: The joint classes that are compatible with a given percept through a
joint classifier. These classes are grayed in this illustration. To compute the utility
of the considered percept, it is sufficient to maximize the constrained interpretation
over these compatible classes.

class c is compatible with a percept if it is possible, starting from the leaf of Jk that
corresponds to c, to climb the decision tree up to the root node without violating
any test on a perceptual feature. This gives an effective procedure for evaluating
C(s) through a top-down exploration: For each path from the root node to a leaf,
the corresponding leaf is added if and only if the percept s violates none of the tests
on perceptual features that label this path.

Evaluating the Utility of a Percept

The set of compatible classes is finite, as the set of joint classes is itself finite. Let us
now call c∗ ∈ Ck, the optimal compatible joint class, to wit, the class that maximizes
the constrained interpretation Q̂ among the joint classes that are compatible with s:

c∗ = argmax
c∈C(s)

Q̂(c). (7.16)

Then, using Equation 7.13, the utility of the percept s, that corresponds to the
utility of the greedy action π[Q] (s), can be evaluated as follows:

sup
a∈A

Q(s, a) = sup
a∈A

Q̂(Jk(s, a)) = Q̂(c∗). (7.17)

This equation means that the utility of a percept s corresponds to the state-action
value that is maximal among the joint classes that are compatible with s. Algo-
rithm 7.2 summarizes this discussion.

Constructing a Greedy Action

Now, a greedy action π[Q] (s) can be implicitly defined as one of the actions that
allows to travel from the root node to the optimal compatible joint class c∗:

Jk(s, π[Q] (s)) = c∗. (7.18)

156 Chapter 7 — Reinforcement Learning of Joint Classes

Algorithm 7.3 — Computing the greedy action π[Q] (s) for some percept s ∈ S

1: greedy-action (s, Q,Jk) :–
2: C ← {c | (∃a ∈ A) Jk(s, a) = c}
3: c∗ ← argmaxc∈C Q̂(c)
4: Λ← path in the tree Jk that leads from the root node to the leaf c∗

5: F⊕ ← set of sustained action features along Λ
6: F	 ← set of negated action features along Λ
7: return action-seeker(F⊕, F)

To turn this process into a working algorithm, an additional component is needed:

Definition 7.8. An action seeker A : P(FA)×P(FA) 7→ A is an oracle that, given
a finite set of required action features F⊕ ⊂ FA and a finite set of forbidden action
features F	 ⊂ FA, returns an action a ∈ A that exhibits all the required action
features, and that exhibits none of the forbidden action features:

DA(A(F⊕, F), f) = true for all f ∈ F⊕, (7.19)

DA(A(F⊕, F), f) = false for all f ∈ F	. (7.20)

Thanks to the action seeker, it is possible to compute a greedy action π[Q] (s)
by asking the action seeker to find an action that fulfills all the tests on the action
features that label the path from the root node to the optimal class c∗. This path
can be extracted through a bottom-up walk in the tree, starting from the leaf that
corresponds to c∗. This walk can be implemented efficiently, as long as each node of
the tree is associated with a pointer to its parent node. The corresponding piece of
code is summarized in Algorithm 7.3.

Example 7.9. The principle behind Algorithm 7.3 is illustrated in Figure 7.3. In
this example, the perceptual features along the path Λ are {fs1, fs2, fs3} ⊂ FS, and
the action features are {fa1, fa2, fa3} ⊂ FA. Let us assume that we are given a
percept s ∈ S that violates none of the tests on perceptual features along the path
Λ: In other words, s must exhibit fs2, but neither fs1, nor fs3. Now, the greedy
action π[Q] (s) must bring Jk to c∗ when s is given as input. This implies that this
greedy action must sustain the action feature fa1, while negating action features fa2
and fa3. Thus, F⊕ = {fa1} and F	 = {fa2, fa3} in this case. Finally, the action
seeker can be used to extract an action a ∈ A that fulfills the features in F⊕ while
the features in F	 are negated. The action a is greedy by construction, as it brings
the state-action pair (s, a) to the optimal compatible joint class c∗.

Action Seeker for Continuous Actions

We now define an action seeker that is suited to continuous action features (cf. Sec-
tion 7.3.2). In this context, the required set F⊕ of features along with the forbidden
set F	 of features defines the following region R of the action space A = Rn:

R = {a ∈ Rn | ((∀(t, i) ∈ F⊕) ai < t) and ((∀(t, i) ∈ F) ai ≥ t)} . (7.21)

Section 7.4 — Reinforcement Learning of Joint Classes 157

Figure 7.3: A path Λ from the root node to an optimal compatible joint class c∗ in
a hypothetical joint classifier.

Clearly, this region R corresponds to a hyperrectangle, whose lower bounds are
constrained by the forbidden features, whereas its upper bounds are given by the
required features. A natural action seeker therefore consists in returning a point
inside the hyperrectangle, for example the center of the hyperrectangle. This process
is formalized in Algorithm 7.4. In practice, A is itself a bounded hyperrectangle,
because each output channel has an allowed range. Thus, Algorithm 7.4 takes these
ranges into consideration: bi (resp. ci) corresponds to the lower (resp. upper) bound
of the allowed range for the ith effector channel.

7.4.3 Reinforcement Learning through Joint Classifiers

The second key problem in RLJC is to be able to obtain an optimal state-action
value function that is constrained by a joint classifier Jk. For the purpose of this
discussion, we first draw some observations about the relations between constrained
state-action value functions and function approximation methods in reinforcement
learning.

158 Chapter 7 — Reinforcement Learning of Joint Classes

Algorithm 7.4 — Action seeker for continuous action spaces

1: action-seeker (F⊕, F) :–
2: for (t, i) ∈ F	 do
3: if b[i] < t then
4: b[i]← t
5: end if
6: end for
7: for (t, i) ∈ F⊕ do
8: if c[i] > t then
9: c[i]← t

10: end if
11: end for
12: for i← 1 to n do
13: ai ← (b[i] + c[i])/2
14: end for
15: return a

Relating RLVC to Function Approximation

Although it has not been written explicitly, all the adaptive-resolution techniques
from Sections 4.3.3 and 4.3.4 can be thought of as specialized function approxima-
tion methods. This notably means that the learning of the optimal state-action
value function for the MDP that is mapped through a percept classifier Ck (cf. Sec-
tion 4.4.1) is inherently a function approximation process.

Indeed, once a percept classifier Ck is fixed in RLVC, all the state-action value
functions that are computed are piecewise constant in each perceptual class with
respect to each action. More precisely, let Qk(s, a) be a state-action value function
that is constrained by Ck. Then, all the percepts s, s′ ∈ c that lie in the same
perceptual class c are required to share the same value:

Qk(s, a) = Qk(s′, a), (7.22)

for all a ∈ A. As a consequence, these functions can be parametrized by a matrix
W of real numbers of dimensions |Sk| × |A|:

Qk(s, a; W) =

|Sk|∑
i=1

|A|∑
j=1

Wijφij(s, a), (7.23)

where φij(s, a) is a function that indicates whether the percept s is mapped in the
ith perceptual class, while action a simultaneously corresponds to the jth possible
action:

φij(s, a) =

{
1 if Ck(s) = c and a = aj,
0 otherwise,

(7.24)

if the finite set of actions is A = {a1, . . . , am}. As a consequence, the process
of computing the optimal state-action value function Q∗

k(s, a) of a mapped MDP

Section 7.4 — Reinforcement Learning of Joint Classes 159

is equivalent to the process of computing optimal parameters W ∗ for the linear
approximation architecture that is described by Equation 7.23. Such approximation
architectures were discussed in Section 6.2.

This observation allows us to close the gap between RLVC and function ap-
proximation. It implies that the reinforcement learning step of RLVC (cf. line 6 of
Algorithm 4.1) is not required to be implemented through RL algorithms for finite
state-action spaces (cf. Section 4.4.1). Indeed, any RL algorithm that would use the
linear approximation architecture above could be used to this end.

Generalization to Joint Classifiers

Starting from this observation about RLVC, it seems therefore natural to use func-
tion approximation techniques for reinforcement learning with a non-uniform dis-
cretization of the joint space. In RLJC, we propose to combine the Nonparametric
Approximate Policy Iteration algorithm that was introduced in Section 6.3.1, with
the state-action value functions constrained by Jk as an embedded approximation
architecture.

The use of Nonparametric API requires the presence of a learning oracle L that
is able to generate a constrained state-action value function from a database of
samples 〈st, at, vt〉 ∈ S × A × R (cf. Definition 6.3). One plausible learning oracle
simply consists in computing a constrained interpretation Q̂ that averages the values
of the samples over the joint classes that are defined by Jk:

Q̂(c) = mean {vt | Jk(st, at) = c} , (7.25)

for all the joint classes in Ck. The corresponding constrained state-action value
function immediately follows from Equation 7.13. This process is summarized in
Algorithm 7.5.

Accordingly, the computation of the optimal state-action value function Q∗
k that

is constrained by Jk is achieved at line 6 of Algorithm 7.1 through a call to Al-
gorithm 6.1. This successively leads to an optimal constrained interpretation Q̂∗

k,
that induces the optimal state-action value function Q∗

k. Note that Fitted Q Itera-
tion [EGW05] could as well be used for this purpose.

7.4.4 Detecting and Removing Aliasing in the Joint Space
The algorithms that were presented for detecting aliasing and selecting new distinc-
tive features are now adapted to the discretization of the joint class (cf. Sections 4.4.2
and 4.4.3). Thanks to Equation 7.17, the definition of Bellman residuals of Equa-
tion 4.22 can be further expanded:

∆t = rt+1 + γ sup
a′∈A

Q∗
k(st+1, a

′)−Q∗
k(st, at) (7.26)

= rt+1 + γ sup
a′∈A

Q̂∗
k(Jk(st+1, a

′))− Q̂∗
k(Jk(st, at)) (7.27)

= rt+1 + γ max
c∈C(st+1)

Q̂∗
k(c)− Q̂∗

k(Jk(st, at)), (7.28)

160 Chapter 7 — Reinforcement Learning of Joint Classes

Algorithm 7.5 — Learning a state-action value function that is constrained by Jk

1: L({〈st, at, vt〉}) :–
2: for c ∈ Ck do
3: q[c]← 0
4: n[c]← 0
5: end for
6: for t← 1 to T do
7: c← Jk(st, at)
8: q[c]← q[c] + vt

9: n[c]← n[c] + 1
10: end for
11: for c ∈ Ck do
12: if n[c] 6= 0 then
13: q[c]← q[c]/n[c]
14: end if
15: end for
16: return Q : S × A 7→ R : (s, a) 7→ q[Jk(s, a)]

Algorithm 7.6 — Aliasing Criterion of RLJC

1: aliased (c) :–
2: ∆← {∆t | Jk(st, at) = c}
3: if σ2(∆) > τ then
4: return true
5: else
6: return false
7: end if

where C(st+1) is the set of compatible joint classes with respect to the percept st+1.
As a consequence, the Bellman residuals can still be easily computed. Furthermore,
because there is only a finite number of joint classes, it is possible to consider the
set of the time stamps that are related to a given joint class c ∈ Ck:

T (c) = {t | Jk(st, at) = c} . (7.29)

If the database of interactions 〈st, at, rt+1, st+1〉 is not ill-conditioned, this set of time
stamps is not reduced to a set containing at most one element, which would be the
case if Equation 4.24 was directly used for continuous action spaces. Thus, the
aliasing criterion for a given joint class c ∈ Ck consists in testing whether the test
of Bellman residuals

{∆t | t ∈ T (c)} (7.30)

has a variance that exceeds a threshold τ ∈ R+
0 . The resulting adaptation of Al-

gorithm 4.2 is reported in Algorithm 7.6. The major difference with the aliasing
criterion of RLVC is that there is no need for a loop over the actions.

Section 7.5 — Experimental Results 161

Algorithm 7.7 — Feature selection process of RLJC

1: selector(c) :–
2: F ← G ({(st, at) | t ∈ T (c)})
3: f ∗ ← ⊥ {Best feature found so far}
4: r∗ ← +∞ {Variance reduction induced by f ∗}
5: T ← {t | Jk(st, at) = c}
6: for joint features f ∈ F do
7: S⊕ ← {∆t | t ∈ T and D((st, at), f) = true}
8: S	 ← {∆t | t ∈ T and D((st, at), f) = false}
9: p⊕ ← |S⊕|/|T |

10: p	 ← |S	|/|T |
11: r ← p⊕ · σ2 (S⊕) + p	 · σ2 (S)
12: if r < r∗ and the distributions (S⊕, S) are significantly different then
13: f ∗ ← f
14: r∗ ← s
15: end if
16: end for
17: return f ∗

Similarly, it is possible to define a set Fk(c) of candidate features for a joint class
c ∈ Ck that is considered as aliased:

Fk(c) = G ({(st, at) | t ∈ T (c)}) , (7.31)

where G is the joint feature generator. Note that this set may contain both percep-
tual and action features by virtue of Definition 7.5. Just like RLVC, RLJC selects
the candidate joint feature inside Fk(c) that most reduces the variance in the two
sub-distributions of Bellman residuals that are induced by the joint feature. A
Student’s t-test is also applied, to make RLJC robust to non-deterministic environ-
ments. This leads to Algorithm 7.7, an adaptation of Algorithm 4.3 to non-uniform
discretization of the action space. Note once again the removal of the loop over the
actions, which is possible thanks to the definition of joint classes. This concludes
the general description of RLJC.

7.5 Experimental Results
RLJC has been evaluated on a benchmark visual task that is very similar to that
of Section 4.6.3. This task is depicted in Figure 7.4. Again, the goal of the agent
is to reach as fast as possible one of the two exits of the maze. The only major
difference is that the set of possible actions is continuous and not discrete anymore.
At each location, the agent can make one step forward in any direction: The set A
of actions is the continuous interval [0◦, 360◦[. Every move is altered by a Gaussian
noise, whose standard deviation is 1% the size of the maze. Whenever a move would
take the agent into a wall or outside the maze, its location is not changed.

162 Chapter 7 — Reinforcement Learning of Joint Classes

Figure 7.4: A continuous, noisy navigation task with continuous actions. The exits
of the maze are indicated by boxes with a cross. Walls of glass are identified by solid
lines. The agent is depicted at the center of the figure. The continuum of possible
actions is represented by a solid circle. The two dashed circles indicate the standard
deviation due to the noise. The sensors return a picture that corresponds to the
dashed rectangular portion of the image.

In this experiment, SIFT visual features were used [Low04]. The entire tapestry
includes 5520 interest points, leading to a subset of 2467 distinct visual features. The
computation stopped when k reached 183, which took about 6 hours on a 3.0GHz
Pentium IV using a database of 10,000 interactions that were collected by a fully
randomized exploration policy. The final joint classifier Jk induces 896 joint classes,
and tests the presence of 586 visual features and 309 action features. The greedy
policy that results from this classifier is shown in Figure 7.5. Figure 7.6 compares the
optimal value function of a discretized version of the problem with the one obtained
through RLJC. The similarity between the two pictures indicates the soundness of
our approach.

Interestingly, when applied to a similar task with only four discrete actions,
RLVC generates a percept classifier Ck that contains 205 perceptual classes (cf. Sec-
tion 4.6.3). In that case, Ck induces an optimal state-action value function that is
parametrized by a matrix W of dimension 205 × 4 = 820 (cf. Section 7.4.3). This
latter number is very close to the number of joint classes that is produced by RLJC
(896). Therefore, discretizing the joint space produces a number of joint classes that

Section 7.6 — Summary 163

corresponds to the underlying physical structure of the task.

7.6 Summary
This chapter has introduced Reinforcement Learning of Joint Classes (RLJC). RLJC
is an extension of RLVC to high-dimensional, complex action spaces. RLJC adap-
tively discretizes the joint space of states and actions into a finite set of joint classes,
by testing the presence of highly distinctive features. The homogeneous treatment
of states and actions is at the same time elegant and powerful, and is conceptually
similar to that of JoSTLe [MWSP04]. However, RLJC is more general than JoS-
TLe, in the sense that it can be applied to any perceptual space and to any action
space upon which it is possible to define features. This notably includes visual input
spaces, and continuous input/output spaces. Therefore, RLJC could learn mappings
from continuous perceptual spaces to continuous action spaces as well. Experimen-
tal results on a simulated navigation task has indicated that RLJC is a promising
framework for the interactive learning of visual tasks.

164 Chapter 7 — Reinforcement Learning of Joint Classes

Figure 7.5: The resulting image-to-action mapping π∗ = argsupa∈A Q∗
k(s, a), sampled

at regularly-spaced points. RLJC manages to choose the correct action at most
locations.

Section 7.6 — Summary 165

(a)

(b)

Figure 7.6: (a) The optimal value function, if the agent has direct access to its (x, y)
position, if the set of possible locations is discretized into a 50× 50 grid, and if the
set of actions is discrete and contains 4 actions (go up, down, left or right). The
brighter the location, the greater its utility. (b) The final value function obtained
by RLJC.

166 Chapter 7 — Reinforcement Learning of Joint Classes

CHAPTER

EIGHT

Conclusions and Perspectives

The opening chapters of this dissertation were devoted to different aspects of au-
tonomous agents with visual sensors, and provided the context for the remaining
chapters: Despite active and mature research in computer vision and artificial intel-
ligence, designing robotic systems that can autonomously learn to solve visuomotor
tasks is still an open, challenging and crucial problem. Accordingly, the central
theme of this dissertation was defined as the design of algorithms for closed-loop
learning of visual control policies.

The exploitation of reinforcement learning as an algorithmic framework to this
end was motivated by the paradigm of purposive vision. The latter paradigm basi-
cally emphasizes the fact that a robotic agent should acquire visual skills from its
interactions with an uncommitted environment in order to achieve some set of goals.
In fact, there has been only relatively little focus on the learning aspects of such
task-driven vision [Pia01]. The use of reinforcement learning naturally enables the
fulfillment of a set of basic objectives that follow the philosophy of purposive vision
(cf. Section 1.2). Notably, reinforcement learning algorithms solve a vision-for-action
task by interacting with their environment. Moreover, they take into account the dy-
namic, temporal dimension of the surrounding environment, enabling them to solve
reactive visual control tasks. The exact class of vision-for-action problems that were
considered in this dissertation are those that can be modeled as Markov Decision
Problems.

In this chapter, I will discuss and reassemble the conclusions from the previous
chapters and make some suggestions for further research based on these conclusions.

8.1 Summary of the Contributions
The research work that is compiled in this dissertation has struggled with the in-
tractability of standard reinforcement learning algorithms when applied to visuomo-
tor tasks, because of the extremely high dimensionality of the visual percepts.

The proposed approach to this end relies on a novel idea, namely the exploita-
tion of local-appearance visual features that are borrowed from the community of

167

168 Chapter 8 — Conclusions and Perspectives

computer vision. Local-appearance vision summarizes images as finite sets of vi-
sual features by (1) seeking robust and highly informative patterns in the images
through interest point detectors , then by (2) describing these patterns as vectors of
real numbers through local description techniques . Recent results prove that this
approach to computer vision is highly effective and fruitful.

Along this dissertation, two general, complementary ways for using visual fea-
tures in the reinforcement learning process have been considered:

1. If an equivalence relation is defined over the space of visual features, a percept
classifier can be used to partition the large, complex visual space into a few
number of perceptual classes . If the latter set is kept small enough, any stan-
dard reinforcement learning can be used to extract an optimal image-to-action
mapping. Therefore, the first main contribution of this dissertation has been
to introduce general adaptive-resolution methods that can deal with any per-
ceptual space upon which it is possible to define perceptual features , of which
visual features are a particular instance.

The resulting algorithm, Reinforcement Learning of Visual Classes (RLVC),
incrementally refines a percept classifier by selecting perceptual features that
are behaviorally important for solving the task, in a sequence of attempts to
remove perceptual aliasing (cf. Chapter 4) [JP04, JP05b, JP05e, JP05c, JP07].
RLVC can be thought of as a generalized version of McCallum’s utile distinc-
tions approach [McC96] that can sample features from a possibly infinite set
thanks to the notion of feature generators . I have experimentally demonstrated
that RLVC is successful at solving simulated visual navigation tasks.

2. The other investigated way to exploit visual features consists in using the raw
content of the visual features, without ever considering an equivalence rela-
tion. In this framework, feature regression models , that associate the so-called
raw features with a real-valued utility, are used as function approximators. I
have proposed to embed such feature regression models inside a general, ab-
stract version of the Approximate Policy Iteration architecture that was called
Nonparametric Approximate Policy Iteration. The resulting algorithm, called
Visual Approximate Policy Iteration (cf. Chapter 6) [JBP06], proved to be
successful on a complex visual navigation task, at the cost of a higher compu-
tational expense than RLVC. Thus, Nonparametric and Visual Approximate
Policy Iteration are two other important contributions of this research.

Another major contribution of this dissertation was the definition of Reinforce-
ment Learning of Joint Classes (RLJC). RLJC is an extension of RLVC to complex,
high-dimensional and/or continuous action spaces (cf. Chapter 7) [JP06]. This algo-
rithm is conceptually similar to RLVC, but it introduces action features that can be
tested in the classifier, hereby producing a non-uniform discretization of the joint
state-action space. RLJC features a homogeneous, elegant treatment of perceptual
and action features. This algorithm has been used to solve a visual navigation task
with continuous outputs. RLJC is a brand new, general approach to adaptive-
resolution methods in reinforcement learning, for none of the previous algorithms in

Section 8.1 — Summary of the Contributions 169

the literature can deal with arbitrary, hybrid state-action spaces . Thus, I argue that
RLJC is potentially of major interest in the field of reinforcement learning.

Along the way, these main contributions have motivated the development of
several additional tools that may prove to be useful, depending on the context of
application:

1. Because of its greedy nature, RLVC is subject to overfitting. I have proposed
a forgetting mechanism that provides RLVC with the ability to aggregate per-
ceptual classes that share similar properties. This potentially enables RLVC to
discard perceptual distinctions that subsequently prove to be useless (cf. Sec-
tion 5.1) [JP05d, JP07]. Technically, this modified version of RLVC uses sets
of Binary Decision Diagrams (BDDs) [Bry86] as percept classifiers, instead
of decision trees. I have shown that this technique indeed reduces overfitting
effects.

2. It is possible to define vision-for-action tasks that cannot be solved using in-
dividual point features alone. This is for example the case when the agent
has to take the distance between two visual patterns into account, or when
the discriminative strength of the visual features is limited. In collaboration
with F. Scalzo, I have proposed to iteratively construct a hierarchy of spatial
combinations of visual features (cf. Section 5.2) [JSP05, JP07]. A composite
feature in this hierarchy is only triggered when two lower-level visual features
are present at a given distance in the image, thus it is more discriminative than
its subcomponents. This extension allows RLVC to deal with vision-for-action
tasks that could not be solved otherwise, such as the visual car-on-the-hill con-
trol problem. From the point of view of computer vision, this is an interesting
contribution, because it seems to be the first attempt to build hierarchies of
visual features in a fully closed-loop and task-driven learning protocol.

3. In collaboration with C. Briquet, I have also shown how the construction of
Extra-Trees can be distributed among a cluster of computers. Section 6.6 dis-
cussed how this idea was successfully implemented [JBP06]. This competitive
advantage of Extra-Trees over other families of machine learning algorithms
proved to be especially useful in the context of Visual Approximate Policy
Iteration, because the latter algorithm constructs many Extra-Tree models
from large databases. We have also proposed the protocol BitTorrent as
an effective way to distribute a large amount of identical data from one master
host to a set of slave hosts in a grid of computers. These ideas are certainly
of primarily interest in the framework of distributed implementations of data
mining algorithms. In particular, they should be directly applicable to any
forest-based supervised learning algorithm, such as Bagging [Bre96] or Ran-
dom Forests [Bre01].

It is worth pointing out that all the algorithms above have been implemented.
Thus, a major part of this dissertation consists in the development of software and

170 Chapter 8 — Conclusions and Perspectives

in the evaluation of the performance of the introduced algorithms on the benchmark
tasks that were discussed along the dissertation.

Finally, I would like to point out other personal contributions that are not directly
related to the core subject of this dissertation. These contributions are related to the
domain of computer-aided verification [BJW01, Jod02, BJH03, BJW05], for which
we have proposed to use automata-based approaches for the verification of hybrid
systems with infinite state spaces; and to the domain of video-surveillance [BJV06],
for which we have proposed to analyze and classify silhouettes through morphological
size distributions and Classification Extra-Trees. Our distributed implementation of
Extra-Tree was also used in the latter work.

8.2 Future Work

This dissertation will evidently not be the last word in the research on learning
image-to-action mappings in a closed-loop protocol. There are many interesting
topics that are suitable subjects for further research. This section brings together
some of these topics that are, in my opinion, especially worth pursuing.

8.2.1 Non-Visual Control Problems

Although the proposed algorithms have all been designed with the objective of solv-
ing vision-for-action tasks in mind, care was taken in this dissertation to present them
in a general version. This means that Reinforcement Learning of Visual Classes, Re-
inforcement Learning of Joint Classes as well as Nonparametric Approximate Policy
Iteration could be used to solve non-visual control problems as well:

• Perceptual features that could be used in RLVC and in RLJC when percepts
are continuous or when they consist of a set of bits were discussed in Sec-
tions 4.1.2 and 4.1.3;

• Action features that may prove to be useful in RLJC when an action associates
a discrete value to a set of effector channels were proposed in Section 7.3.3;

• The notion of state-action value function approximator (cf. Section 6.3.1) po-
tentially enables Nonparametric API to deal with non-visual perceptual spaces
(and, in particular, with continuous spaces).

Thus, an important research direction would be to evaluate the performance of
these algorithms on other combinations of perceptual and action spaces. Notably,
comparing the performance of RLJC with that of the JoSTLe algorithm on a fully
continuous task is of particular interest. From this perspective, another interesting
open question is to test how well RLJC scales with respect to the dimensionality of
the output action vector.

Section 8.2 — Future Work 171

8.2.2 Implementation in Real Learning Robots

Future research also includes the demonstration of the applicability of these algo-
rithms on a real robotic platform, such as visual navigation in a physical maze, or
grasping objects by combining visual and haptic feedback [CPG01]. Of course, be-
yond the careful design of the robot itself, applying these algorithms directly on a
real-world environment would raise practical problems, notably:

• Hidden state problem. The present work considers robotic agents with com-
plete perception. In practice, most control problems feature partial observabil-
ity, which means that their sensory feedback is insufficient to distinguish be-
tween any pair of percepts. Solving this problem would require the adaptation
of RLVC and RLJC to Partially Observable Markov Decision Processes. An
interesting research direction would be to provide the agent with a short-term
memory that would enable it to remove ambiguities on its percepts. Following
ideas proposed in McCallum’s U Tree algorithm [McC96], RLVC and RLJC
could be adapted to manage such a short-term memory by automatically se-
lecting a history length from its interactions with the environment.

• Non-stationary environments. The dynamics of real environments as well as
their sensory feedback continuously evolve over time. This is particularly true
in visual tasks: For example, think about the changes in the lighting condi-
tions along the day. This problem would also be exacerbated in multi-agent
setups , in which each learning agent is free to change its own behavior as it
learns, which results in fluctuations in the observed dynamics of the system.
The algorithms should therefore automatically adapt to these changes in their
environment. The techniques that have been developed to reduce overfitting
effects in RLVC might prove to be especially relevant in this context. Indeed, a
forgetting mechanism is needed to discard perceptual distinctions that become
useless as the control task evolves.

• Learning in real time. The versions of RLVC and RLJC that have been pro-
posed make batch processing, in that they first collect a database of interac-
tions, then they exploit this knowledge to extract distinctive features. When
dealing with a real robotic task, it is desirable to have algorithms that can learn
in an on-line fashion, i.e. in real time, as they interact with the environment.
This problem could be circumvented in RLVC and RLJC by splitting, every
time a new interaction is collected, only the class that is related to this interac-
tion. In this context, efficient, specialized data structures must be developed to
represent databases of interactions. These specialized data structures should
support a progressive evaluation of the variance of the Bellman residuals that
occur in the various classes. The results of the feature generators should also
be backed up so as to speed up the computations.

Addressing the same problems in the Visual Approximate Policy Iteration algorithm
is more difficult, and is another open question that is worth being explored.

172 Chapter 8 — Conclusions and Perspectives

8.2.3 Enhancing the Proposed Algorithms

Even when dealing with simulated vision-for-action problems, the proposed algo-
rithms could be improved in many ways. A first research direction is inspired by the
work about Variable Resolution Grids [MM02], and would consist in evaluating the
influence of areas of the perceptual space in order to select the classes that should
be refined further. Another interesting question is whether the advantages of RLVC
and V-API could be combined in an algorithm that would feature the low bias and
variance of Extra-Trees together with the high speed of RLVC, while not requiring
the use of a cluster of computers.

V-API should also be extended to continuous action spaces. At first, it would be
worth evaluating the performance of V-API when the state-of-the-art simplex algo-
rithm for general function maximization [NM65] is directly used to extract greedy
actions (cf. Section 7.2). A distributed implementation of the simplex algorithm
for general function maximization that would optimize approximators encoded as
an Extra-Tree model would be extremely desirable in this context. From an imple-
mentation perspective, also note that the current distributed implementation of the
learning of Extra-Trees does not feature task preemption. Thus, future work could
also focus on producing a gridified version of our software for learning Extra-Trees,
that would be able to handle the load inbalance. This would require the use of more
complex task scheduling policies.

Finally, as far as RLJC is concerned, it would be extremely promising to combine
the joint classifiers with interpolation methods when dealing with joint state-action
spaces that have either a continuous perceptual space, or a continuous action space.
In such a setup, the utility of a state-action pair could vary through interpolation in
the joint class that corresponds to this pair. This idea should combine the respective
advantages of Variable Resolution Grids [MM02] and RLJC, and should allow the
definition of a competitive reinforcement learning algorithm for hybrid state-action
spaces.

8.2.4 Towards Better Visual Features

From the point of view of the visual features themselves, the use of image patches at
random locations [Mar05, MGPW05] is very promising for solving vision-for-action
tasks through V-API [EMW06], and should be investigated in future work.

A direction that I did not follow but that should be promising when dealing with
real, robotic vision-for-action tasks would be to combine different kinds of local-
appearance visual features into a heterogeneous visual feature space. The respective
discriminative skills of these families of features would then combine and reinforce
each other. For instance, combining visual features that are detected through a
Harris-based detector with visual features obtained by a Hessian-based detector
would capture both discontinuous and uniform patterns in the visual percepts, which
might be useful to avoid hidden state problems. Integrating such multi-modal visual
features in the RLVC and in the V-API frameworks should be quite natural. In a
similar spirit, cues from other senses than vision (haptics, sounds, smells. . .) could

Section 8.2 — Future Work 173

be integrated in multimodal sensory signals [FAT05].
In the context of learning spatial combinations of visual features, it would be

very interesting to take the relative orientations between pairs of lower-level visual
features into account in composite features, instead of the distance alone. This idea
is pursued by Scalzo and Piater in an unsupervised learning framework [SP06]. To
this end, clustering in the joint space of distance and relative orientations would
be required. Finally, a major imperfection of the current scheme for closed-loop
generation of geometric combinations of features is that whenever a subcomponent
is not detected (for example because of noise in the image), the detection of higher-
level features that depend on it is never triggered. As a consequence, hierarchies of
visual features are so far only useful in strongly controlled experimental setups. To
state it more intuitively, the current learning architecture is “too deterministic.” A
probabilistic method for representing such hierarchies would also be highly desirable.
As in the work by Scalzo and Piater [SP06], the detection of composite features
should be inferred through evidence propagation [SIFW03], which would allow the
detection of composite features even though all of their subcomponents are not
readily detected in the images.

174 Chapter 8 — Conclusions and Perspectives

BIBLIOGRAPHY

[Alb75] J.S. Albus. A new approach to manipulator control: The cerebellar
model articulation controller (CMAC). Journal of Dynamic Systems,
Measurement and Control, 97(3):220–227, September 1975. 124

[All84] P.K. Allen. Surface descriptions from vision and touch. In Proc. of the
Conference on Robotics, pages 394–397, Atlanta (GA, USA), March
1984. IEEE. 9

[Alo90] Y. Aloimonos. Purposive and qualitative active vision. In Proc. of the
10th International Conference on Pattern Recognition, pages 436–460,
June 1990. 4

[AMC00] B.S. Anderson, A.W. Moore, and D. Cohn. A nonparametric approach
to noisy and costly optimization. In Proc. of the 7th International
Conference on Machine Learning, pages 17–24, Stanford University
(CA, USA), June 2000. 149

[AMS97] C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11:11–73, 1997. 125

[AN05] P. Abbeel and A. Ng. Exploration and apprenticeship learning in
reinforcement learning. In L. De Raedt and S. Wrobel, editors, Proc.
of the 22nd International Conference on Machine Learning, pages 1–8,
Bonn (Germany), August 2005. ACM. 38

[And87] C.W. Anderson. Strategy learning in multilayer connectionist repre-
sentations. In Proc. of the 4th International Workshop on Machine
Learning, pages 103–114, Irvine (CA, USA), June 1987. 127

[ANTH94] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Vision-based
behavior acquisition for a shooting robot by using a reinforcement
learning. In Proc. of IAPR/IEEE Workshop on Visual Behaviors,
pages 112–118, 1994. 8

[AVAS04] N. Abe, N. Verma, D. Apte, and R. Schroko. Cross channel optimized
marketing by reinforcement learning. In Proc. of the 10th International

175

176 Bibliography

Conference on Knowledge Discovery and Data Mining, pages 767–772,
New York, NY, USA, 2004. ACM Press. 38

[AWB88] Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active vision. Interna-
tional Journal of Computer Vision, 1(4):333–356, 1988. 5

[Bai95] Leemon C. Baird. Residual algorithms: Reinforcement learning with
function approximation. In Proc. of the 12th International Conference
on Machine Learning. Morgan Kaufmann, 1995. 126

[Baj88] R.K. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):996–
1005, August 1988. 5

[Bar95] A.G. Barto. Adaptive critics and the basal ganglia. In J.C. Houk, J.L.
Davis, and D.G. Beiser, editors, Models of Information Processing in
the Basal Ganglia, pages 215–232. MIT press, Cambridge, MA, 1995.
36

[Bar06] O. Barnich. Détection de personnes dans une séquence vidéo, 2006.
DEA Thesis, University of Liège. 138

[Bau00] A. Baumberg. Reliable feature matching across widely separated
views. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 774–781, Hilton Head (SC, USA), June
2000. 57

[BB92] D.H. Ballard and C.M. Brown. Principles of animate vision. Com-
puter Vision, Graphics, and Image Processing: Image Understanding,
56(1):3–21, July 1992. 5

[BB96] S.J. Bradtke and A.G. Barto. Linear least-squares algorithms for tem-
poral difference learning. Machine Learning, 22(1–3):33–57, 1996. 127,
130

[BBR97] B. Boigelot, L. Bronne, and S. Rassart. An improved reachability anal-
ysis method for strongly linear hybrid systems (extended abstract).
In Proc. of the 9th International Conference on Computer Aided Ver-
ification, volume 1254 of Lecture Notes in Computer Science, pages
167–178, Haifa (Israel), June 1997. Springer. 99

[BBS95] A.G. Barto, S.J. Bradtke, and S.P. Singhe. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72(1):81–138,
1995. 38

[BCGM98] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color and texture
based image segmentation using the expectation-maximization algo-
rithm and its application to content-based image retrieval. In Proc. of
the 6th International Conference on Computer Vision, pages 675–682,
Bombay (India), January 1998. Narosa Publishing House. 44

Bibliography 177

[BD94] A.G. Barto and M. Duff. Monte-Carlo matrix inversion and reinforce-
ment learning. In J.D. Cohen, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems, pages 687–694,
San Francisco, 1994. Morgan Kaufmann. 37

[Bd06] C. Briquet and P.-A. de Marneffe. What is the grid? tentative defi-
nitions beyond resource coordination. Technical report, University of
Liège, Liège (Belgium), 2006. 141, 142

[BDG00] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic
programming with factored representations. Artificial Intelligence,
121(1–2):49–107, 2000. 73

[Bea78] P.R. Beaudet. Rotationally invariant image operators. In Proc. of
the 4th International Joint Conference on Pattern Recognition, pages
579–583, Tokyo, 1978. 57

[Bel57a] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
16, 21, 26, 71

[Bel57b] R. Bellman. A Markovian decision process. Journal of Mathematics
and Mechanics, 6:679–684, 1957. 16

[Ber95] D.P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume 2. Athena Scientific, 1995. 21

[Ber00] D.P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume 1. Athena Scientific, 2 edition, 2000. 21

[BFG+93a] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams and their
applications. In International Conference on Computer-Aided Design,
pages 188–192, 1993. 73

[BFG+93b] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams and their ap-
plications. In Proc. of International Conference on Computer-Aided
Design, pages 188–192, 1993. 99, 110

[BFS84] L. Breiman, J.H. Friedman, and C.J. Stone. Classification and Re-
gression Trees. Wadsworth International Group, 1984. 69, 77, 83, 84,
98, 134

[BJH03] B. Boigelot, S. Jodogne, and F. Herbreteau. Hybrid acceleration us-
ing real vector automata. In Proc. of the 15th International Confer-
ence on Computer Aided Verification, volume 2725 of Lecture Notes
in Computer Science, pages 193–205, Boulder (CO, USA), July 2003.
Springer-Verlag. 99, 170

178 Bibliography

[BJV06] O. Barnich, S. Jodogne, and M. Van Droogenbroeck. Robust analysis
of silhouettes by morphological size distributions. In Advanced Con-
cepts for Intelligent Vision Systems (ACIVS 2006), volume 4179 of
Lecture Notes in Computer Science, pages 734–745. Springer Verlag,
2006. 138, 170

[BJW01] B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak au-
tomata for deciding linear arithmetic with integer and real variables.
In Proc. International Joint Conference on Automated Reasoning (IJ-
CAR), volume 2083 of Lecture Notes in Computer Science, pages 611–
625, Sienna (Italy), June 2001. Springer-Verlag. 99, 170

[BJW05] B. Boigelot, S. Jodogne, and P. Wolper. An effective decision proce-
dure for linear arithmetic with integer and real variables. ACM Trans-
actions on Computational Logic (TOCL), 6(3):614–633, July 2005. 99,
170

[BK93] L.C. Baird and A.H. Klopf. Reinforcement learning with high-
dimensional, continuous actions. Technical report, Wright-Patterson
Air Force Base Ohio: Wright Laboratory, 1993. WL-TR-93-1147. 149

[Blu67] H. Blum. A transformation for extracting new descriptors of shape.
In Proc. of the Symposium on Models for the Perception of Speech and
Visual Form, pages 362–380, 1967. 43

[BM95] J. Boyan and A. Moore. Generalization in reinforcement learning:
Safely approximating the value function. Advances in Neural Infor-
mation Processing Systems, 7:369–376, 1995. 128

[BMP02] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 24(4):509–522, 2002. 62

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces.
PhD thesis, University of Liège, Liège (Belgium), 1999. 99

[Boy02] J.A. Boyan. Technical update: Least-squares temporal difference
learning. Machine Learning, 49(2–3):233–246, 2002. 127

[BP79] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathe-
matical Sciences. Academic Press, New York, 1979. 211

[Bre96] L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140,
1996. 134, 169

[Bre01] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
134, 141, 169

Bibliography 179

[Bri90] J.S. Bridle. Training stochastic model recognition algorithms as net-
works can lead to maximum mutual information estimation of parame-
ters. In Advances in Neural Information Processing Systems, volume 2,
pages 211–217. Morgan Kaufmann, 1990. 34

[BRW98] B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of
real and integer arithmetic automata (extended abstract). In Proc.
of the 25th International Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science,
pages 152–163, Aalborg (Denmark), July 1998. Springer. 99

[Bry86] R. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions in Computers, 8(35):677–691, 1986. 99, 100,
102, 169

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary de-
cision diagrams. ACM Computing Surveys, 24(3):293–318, September
1992. xvii, 73, 99, 100

[BS01] J. Bagnell and J. Schneider. Autonomous helicopter control using
reinforcement learning policy search methods. In Proc. of the Inter-
national Conference on Robotics and Automation. IEEE, 5 2001. 38

[BSA83] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive el-
ements that can solve difficult learning control problems. IEEE Trans-
actions on Systems, Man and Cybernetics, 13(5):835–846, 1983. 29,
35

[BT89] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, 1989. 23, 27, 28

[BT96] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996. xvii, 6, 15, 26, 33, 35, 122, 125, 126, 127,
129

[BT05] G. Bouchard and B. Triggs. Hierarchical part-based visual object
categorization. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 710–715, San Diego (CA, USA), June
2005. 111, 120

[BT06] BitTorrent. Wikipedia, the Free Encyclopedia, 2006.
http://en.wikipedia.org/wiki/Bittorrent. 142

[BTT06] BitTorrent tracker. Wikipedia, the Free Encyclopedia, 2006.
http://en.wikipedia.org/wiki/Bittorrent_tracker. 142

[BTVG06a] H. Bay, T. Tuytelaars, and L. Van Gool. Implementation of SURF
(Speeded Up Robust Features), 2006.
http://www.vision.ee.ethz.ch/~surf/. 63

http://en.wikipedia.org/wiki/Bittorrent
http://en.wikipedia.org/wiki/Bittorrent_tracker
http://www.vision.ee.ethz.ch/~surf/

180 Bibliography

[BTVG06b] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Ro-
bust Features. In Proc. of the 9th European Conference on Computer
Vision, pages 404–417, May 2006. 58, 62, 63

[BTW98] J. Baxter, A. Trigdell, and L. Weaver. Knightcap: A chess program
that learns by combining TD(λ) with game-tree search. In Proc. of
the 15th International Conference on Machine Learning, pages 28–36.
Morgan Kaufmann, 1998. 38

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(11):1222–1239, 2001. 44

[BY92] A. Blake and A. Yuille, editors. Active Vision. MIT Press, Cambridge
(MA, USA), 1992. 5

[Can86] J. Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986. 43, 62

[CB98] R.H. Crites and A.G. Barto. Elevator group control using multiple
reinforcement learning agents. Machine Learning, 33:235–42, 1998. 38

[CBGM02] C. Carson, S. Belongie, S. Greenspan, and J. Malik. BlobWorld: Im-
age segmentation using expectation-maximization and its application
to image querying. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(8):1026–1038, 2002. 44

[CBS+03] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-
Neto, and R. Medeiros. Grid computing for bag of tasks applications.
In Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and
E-Goverment, September 2003. 140

[CdVC98] V. Colin de Verdière and J.L. Crowley. Visual recognition using local
appearance. In Proc. of the 5th European Conference on Computer
Vision, volume 1 of Lecture Notes in Computer Science, pages 640–
654. Springer, June 1998. 59

[CH67] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21–27, 1967. 125

[Chr92] L. Chrisman. Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In National Conference on Artificial
Intelligence, pages 183–188, 1992. 74, 75

[Cic95] P. Cichosz. Truncating temporal differences: On the efficient imple-
mentation of TD(λ) for reinforcement learning. Journal on Artificial
Intelligence, 2:287–318, 1995. 37

Bibliography 181

[CJG97] J.A. Coelho, A. Jefferson, and R.A. Grupen. A control basis for learn-
ing multifingered grasps. Journal of Robotic Systems, 14(7):545–557,
1997. 9

[CK91] D. Chapman and L.P. Kaelbling. Input generalization in delayed re-
inforcement learning: An algorithm and performance comparisons. In
Proc. of the 12th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 726–731, Sydney, August 1991. 69, 74, 75, 84,
85

[CM95] J.L. Crowley and J. Martin. Experimental comparison of correlation
techniques. In Proc. of the International Conference on Intelligent
Autonomous Systems, March 1995. 44, 64

[Coh03] B. Cohen. Incentives build robustness in bittorrent. In Proc. of
the Workshop on Economics of Peer-to-Peer Systems, 5 2003. 11, 142

[Cou02] R. Coulom. Reinforcement Learning Using Neural Networks, with Ap-
plications to Motor Control. PhD thesis, Institut National Polytech-
nique de Grenoble, 2002. 127

[Cou03] R. Coulom. Model-based actor-critic algorithm in continuous time
and space. In Proc. of the 6th European Workshop on Reinforcement
Learning, Nancy (France), 2003. 31

[CPG01] J.A. Coelho, J.H. Piater, and R.A. Grupen. Developing haptic and
visual perceptual categories for reaching and grasping with a humanoid
robot. Robotics and Autonomous Systems, special issue on Humanoid
Robots, 37(2–3):195–218, 2001. 9, 171

[CRS94] P.S. Churchland, V.S. Ramachandran, and T.J. Sejnowski. A critique
of pure vision. In C. Koch and J.L. Davis, editors, Large Scale Neu-
ronal Theories of the Brain, pages 23–60. MIT Press, Cambridge (MA,
USA), 1994. 2, 3

[CTB+99] C. Carson, M. Thomas, S. Belongie, J.M. Hellerstein, and J. Malik.
Blobworld: A system for region-based image indexing and retrieval.
In Proc. of the 3rd International Conference on Visual Information
Systems, volume 1614 of Lecture Notes in Computer Science, pages
509–516. Springer, 1999. 46

[CWN04] B. Caputo, C. Wallraven, and M.-E. Nilsback. Object categorization
via local kernels. In Proc. of the 17th International Conference on
Pattern Recognition, pages 132–135, August 2004. 65

[Dav98] A.J. Davison. Mobile Robot Navigation using Active Vision. PhD
thesis, University of Oxford, 1998. 5

182 Bibliography

[Day92] P. Dayan. The convergence of TD(λ) for general λ. Machine Learning,
8:341–362, 1992. 37

[dCS+04] F.A.B. da Silva, S. Carvalho, H. Senger, E.R. Hruschka, and C.R.G. de
Farias. Running data mining applications on the grid: A bag-of-tasks
approach. In Proc. of the International Conference on Computational
Science and its Applications, volume 3044 of Lecture Notes in Com-
puter Science, pages 168–177. Springer, May 2004. 140

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic
Press, New York, 1970. 21, 22, 24

[Deu04] H. Deubel. Localization of targets across saccades: Role of landmark
objects. Visual Cognition, 11(2–3):173–202, February 2004. 5

[DEVW06] R. Dardenne, J.-J. Embrechts, M. Van Droogenbroeck, and N. Werner.
A video-based human-computer interaction system for audio-visual
immersion. In Proc. of the 2nd Annual IEEE BENELUX/DSP Valley
Signal Processing Symposium (SPS-DARTS), pages 23–26, Antwerp
(Belgium), March 2006. IEEE Benelux.

[DK89] T. Dean and K. Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142–150, 1989. 73

[DLR77] A.P. Dempster, N.M. Laird, and S.B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society (Series B Methodological), 39(1):1–38, 1977. 44

[Dor05] G. Dorko. Implementation of various detectors and descriptors, 2005.
http://lear.inrialpes.fr/people/dorko/downloads.html. 63

[Doy96] K. Doya. Temporal difference learning in continuous time and space.
In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8, pages 1073–1079.
MIT Press, 1996. 31

[Doy00] K. Doya. Reinforcement learning in continuous time and space. Neural
Computation, 12:243–269, 2000. 31

[DR00] G. Delzanno and J.-F. Raskin. Symbolic representation of upward
closed sets. In Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, pages 426–440, Berlin
(Germany), March 2000. 99

[Ebe96] D. Eberly. Ridges in Image and Data Analysis. Kluwer Academics
Publishers, 1996. 43

http://lear.inrialpes.fr/people/dorko/downloads.html

Bibliography 183

[EC04] J. Eichhorn and O. Chapelle. Object categorization with SVM: Ker-
nels for local features. Technical Report 137, Max Planck Institute for
Biological Cybernetics, 07 2004. 59, 65

[EGW03] D. Ernst, P. Geurts, and L. Wehenkel. Iteratively extending time hori-
zon reinforcement learning. In Proc. of the 14th European Conference
on Machine Learning, pages 96–107, Dubrovnik (Croatia), September
2003. 116

[EGW05] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine Learning Research, 6:503–556,
April 2005. 9, 11, 82, 121, 128, 130, 134, 136, 137, 138, 145, 149, 159

[EM95] F. Ennesser and G.G. Medioni. Finding Waldo, or focus of attention
using local color information. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(8):805–809, 1995. 59

[EMW06] D. Ernst, R. Marée, and L. Wehenkel. Reinforcement learning with
raw pixels as state input. In Proc. of the International Workshop on
Intelligent Computing in Pattern Analysis/Synthesis, Xi’An, China,
August 2006. Accepted for publication. 9, 140, 172

[Ern03] D. Ernst. Near Optimal Closed-Loop Control Application to Electric
Power Systems. PhD thesis, University of Liège, Liège (Belgium),
2003. 38

[ESGW06] D. Ernst, G.B. Stan, J. Goncalves, and L. Wehenkel. Clinical data
based optimal STI strategies for HIV: A reinforcement learning ap-
proach. In Proc. of Benelearn 2006, 5 2006. 38

[EU05] B. Epshtein and S. Ullman. Feature hierarchies for object classifica-
tion. In Proc. of the 10th IEEE International Conference on Computer
Vision, pages 220–227, Beijing (China), October 2005. 111

[FA91] W.T. Freeman and E.H. Adelson. The design and use of steerable
filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(9):891–906, September 1991. 60

[FA95] C. Fermüller and Y. Aloimonos. Vision and action. Image and Vision
Computing, 13(10):725–745, December 1995. 5

[FAT05] P. Fitzpatrick, A. Arsenio, and E.R. Torres-Jara. Reinforcing robot
perception of multi-modal events through repetition and redundancy
and repetition and redundancy. Interaction Studies Journal, 2005.
Accepted for publication. 173

[FB81] M.A. Fischler and R.C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and

184 Bibliography

automated cartography. Communications of the ACM, 24(6):381–395,
1981. 43

[FH05] P.F. Felzenszwalb and D. Huttenlocher. Pictorial structures for object
recognition. International Journal of Computer Vision, 61(1):55–79,
January 2005. 111

[FHI99] D.A. Forsyth, J.A. Haddon, and S. Ioffe. Finding objects by grouping
primitives. In Shape, Contour and Grouping in Computer Vision,
pages 302–318, London (UK), 1999. Springer-Verlag. 111

[FK04] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 2004. 141, 142

[FP03] D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach.
Prentice Hall, 2003. 43, 56, 61, 111

[FP05] L. FeiFei and P. Perona. A Bayesian hierarchical model for learning
natural scene categories. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages 524–531, 2005.
52

[FPZ03] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages 264–271, Madi-
son (WI, USA), June 2003. 120

[FS04] P. Fidelman and P. Stone. Learning ball acquisition on a physical
robot. In Proc. of the International Symposium on Robotics and Au-
tomation, August 2004. 38

[FtHRKV91] L. Florack, B. ter Haar Romeny, J. Koenderink, and M. Viergever.
General intensity transformations and second order invariants. In
Proc. of the 7th Scandinavian Conference on Image Analysis, pages
338–345, 1991. 61

[Gas02] C. Gaskett. Q-Learning for Robot Control. PhD thesis, Research
School of Information Sciences and Engineering, Australian National
University, 2002. 149

[GB01] V. Gouet and N. Boujemaa. Object-based queries using color points
of interest. In IEEE Workshop on Content-Based Access of Image and
Video Libraries, pages 30–36, Kauai (HI, USA), 2001. 54, 92, 117

[GB02] V. Gouet and N. Boujemaa. About optimal use of color points of
interest for content-based image retrieval. Technical Report RR-4439,
INRIA Rocquencourt, Le Chesnay (France), April 2002. 54, 61

Bibliography 185

[GDG03] R. Givan, T. Dean, and M. Greig. Equivalence notions and model min-
imization in markov decision processes. Artificial Intelligence, 147(1–
2):163–223, 2003. 110

[GEW06] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine Learning, 36(1):3–42, 2006. 9, 11, 12, 13, 54, 65, 121, 134,
135, 136, 137, 141, 143, 145

[GFZ00] C. Gaskett, L. Fletcher, and A. Zelinsky. Reinforcement learning for
visual servoing of a mobile robot. In Proc. of the Australian Conference
on Robotics and Automation, Melbourne (Australia), August 2000. 8

[GHPV05] P. Gabriel, J-B. Hayet, J.H. Piater, and J. Verly. Object tracking
using color interest points. In Proc. of the International Conference on
Advanced Video and Signal Based Surveillance, pages 159–164, 2005.
54, 61, 111

[Gil98] S. Gilles. Robust Description and Matching of Images. PhD thesis,
University of Oxford, 1998. 58

[GL86] W.E.L. Grimson and T. Lozano-Pérez. Model-based recognition and
localization from tactile data. Journal of Robotics Research, 3(3):3–35,
1986. 9

[GL96] J. G̊arding and T. Lindeberg. Direct computation of shape cues based
on scale-adapted spatial derivative operators. International Journal
of Computer Vision, 17(2):163–191, 1996. 57

[Gor95] G.J. Gordon. Stable function approximation in dynamic program-
ming. In Proc. of the International Conference on Machine Learning,
pages 261–268, 1995. 116, 127

[Gor99] G.J. Gordon. Approximate Solutions to Markov Decision Processes.
PhD thesis, Carnegie Mellon University, Pittsburgh, June 1999. 127

[Gor01] G.J. Gordon. Reinforcement learning with function approximation
converges to a region. In Todd K. Leen, Thomas G. Dietterich, and
Volker Tresp, editors, Advances in Neural Information Processing Sys-
tems, pages 1040–1046. MIT Press, 2001. 126

[GS83] E.J. Gibson and E.S. Spelke. The development of perception. In
John H. Flavell and Ellen M. Markman, editors, Handbook of Child
Psychology Vol. III: Cognitive Development, chapter 1, pages 2–76.
Wiley, 4th edition, 1983. 3

[GSK98] H.-M. Gross, V. Stephan, and M. Krabbes. A neural field approach
to topological reinforcement learning in continuous action spaces. In
Proc. of the IEEE World Congress on Computational Intelligence, vol-
ume 3, pages 1992–1997, 1998. 148

186 Bibliography

[GSM03] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering
in high dimensions: A texture classification example. In Proc. of the
9th IEEE International Conference on Computer Vision, pages 456–
463, Nice (France), October 2003. IEEE Computer Society. 65

[Gue03] C. Guestrin. Planning under Uncertainty in Complex Structured En-
vironments. PhD thesis, Stanford University, August 2003. 73

[GWZ99] C. Gaskett, D. Wettergreen, and A. Zelinsky. Q-learning in continuous
state and action spaces. In Australian Joint Conference on Artificial
Intelligence, pages 417–428, 1999. 149

[HAB95] J.C. Houk, J.L. Adams, and A.G. Barto. A model of how the basal
ganglia generate and use neural signals that predict reinforcement.
In J.C. Houk, J.L. Davis, and D.G. Beiser, editors, Models of Infor-
mation Processing in the Basal Ganglia, pages 249–270. MIT press,
Cambridge, MA, 1995. 36

[Has03] S.W. Hasinoff. Reinforcement learning for problems with hidden state,
2003. Technical Report, University of Toronto, Department of Com-
puter Science. 74

[HG98] M. Huber and R. Grupen. A control structure for learning locomotion
gaits. In 7th Int. Symposium on Robotics and Applications, Anchorage
(AK, USA), May 1998. TSI Press. 38

[Hin70] K. Hinderer. Foundation of Non-Stationary Dynamic Programming
with Discrete Time Parameter, volume 33 of Lecture Notes in Oper-
ations Research and Mathematical Systems. Springer-Verlag, Berlin,
1970. 21

[HLL96] O. Hernández-Lerma and B. Lasserre. Discrete-Time Markov Control
Processes. Springer, New York, 1996. 21

[HLL99] O. Hernández-Lerma and B. Lasserre. Further Topics on Discrete-
Time Markov Control Processes. Springer, New York, 1999. 21

[Hol75] J.H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975. 149

[How60] R.A. Howard. Dynamic Programming and Markov Processes. Tech-
nology Press and Wiley, Cambridge (MA) and New York, 1960. 21,
26, 27, 28

[How71] R.A. Howard. Dynamic Probabilistic Systems, volume 2. Wiley, 1971.
21

Bibliography 187

[HS88] C. Harris and M. Stephens. A combined corner and edge detector. In
Proc. of the 4th Alvey Vision Conference, pages 147–151, University
of Manchester (UK), August 1988. 47, 48, 50

[HSHB99] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. Spudd: Stochastic
planning using decision diagrams. In Proc. of the 15th Conference
on Uncertainty in Artificial Intelligence, pages 279–288, Stockholm
(Sweden), 1999. 73

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proc. of the 30th Annual
ACM Symposium on Theory of Computing, pages 604–613, may 1998.
65

[ISS02] M. Iida, M. Sugisaka, and K. Shibata. Direct-vision-based reinforce-
ment learning to a real mobile robot. In Proc. of International Con-
ference of Neural Information Processing Systems, volume 5, pages
2556–2560, 2002. 8, 11

[JBP06] S. Jodogne, C. Briquet, and J.H. Piater. Approximate policy iter-
ation for closed-loop learning of visual tasks. In Proc. of the 17th
European Conference on Machine Learning (ECML), volume 4212 of
Lecture Notes in Computer Science, pages 222–233. Springer Verlag,
September 2006. xvii, 9, 11, 140, 146, 168, 169

[JJS94] T. Jaakkola, M.I. Jordan, and S.P. Singh. Convergence of stochastic
iterative dynamic programming algorithms. In Jack D. Cowan, Gerald
Tesauro, and Joshua Alspector, editors, Advances in Neural Informa-
tion Processing Systems, volume 6, pages 703–710. Morgan Kaufmann
Publishers, 1994. 33

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, 1999. 114

[Jod01] S. Jodogne. Représentation à états finis d’ensembles de réels, May
2001. Master’s thesis, University of Liège. 99

[Jod02] S. Jodogne. Automata-based representations for the verification of
hybrid systems. In Proc. Summer School Modelling and Verification
of Parallel Processes (MOVEP), pages 320–325, Nantes (France), June
2002. 99, 170

[Jod05] S. Jodogne. Montefiore image database, 2005. 53, 105, 108

[JP04] S. Jodogne and J.H. Piater. Interactive selection of visual features
through reinforcement learning. In M. Bramer, F. Coenen, and
T. Allen, editors, Proc. of the 24th SGAI Internal Conference on Inno-
vative Techniques and Applications of Artificial Intelligence, volume 21

188 Bibliography

of Research and Development in Intelligent Systems, pages 285–298,
Cambridge (UK), December 2004. Springer-Verlag. 11, 71, 168

[JP05a] S. Jodogne and J.H. Piater. Apprentissage interactif de liaisons di-
rectes entre perceptions visuelles et actions. In Actes du Congrès
ORASIS, Fournols (France), May 2005. 11

[JP05b] S. Jodogne and J.H. Piater. Controlling an agent by focusing its atten-
tion on interactively selected patterns. Belgian Journal of Electronics
and Communications, special issue: URSI Forum 2004, 1:14–16, 2005.
11, 168

[JP05c] S. Jodogne and J.H. Piater. Interactive learning of mappings from
visual percepts to actions. In L. De Raedt and S. Wrobel, editors, Proc.
of the 22nd International Conference on Machine Learning (ICML),
pages 393–400, Bonn (Germany), August 2005. ACM. xvii, 11, 71, 84,
168

[JP05d] S. Jodogne and J.H. Piater. Learning, then compacting visual policies
(extended abstract). In Proc. of the 7th European Workshop on Re-
inforcement Learning (EWRL), pages 8–10, Napoli (Italy), October
2005. 11, 97, 169

[JP05e] S. Jodogne and J.H. Piater. Reinforcement learning of perceptual
classes using Q-learning updates. In M.H. Hamza, editor, Proc. of
the 23rd IASTED International Multi-Conference on Artificial Intelli-
gence and Applications, pages 445–450, Innsbruck (Austria), February
2005. Acta Press. 11, 71, 168

[JP06] S. Jodogne and J.H. Piater. Task-driven discretization of the joint
space of visual percepts and continuous actions. In Proc. of the 17th
European Conference on Machine Learning (ECML), volume 4212 of
Lecture Notes in Computer Science, pages 210–221. Springer Verlag,
September 2006. xvii, 11, 168

[JP07] S. Jodogne and J.H. Piater. Reinforcement learning of visual control
policies. Journal of Artificial Intelligence Research, 28:43, 1 2007. To
appear. 11, 168, 169

[JS04] F. Jurie and C. Schmid. Scale-invariant shape features for recognition
of object categories. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 90–96, Washington (DC, USA),
June 2004. 47

[JSP05] S. Jodogne, F. Scalzo, and J.H. Piater. Task-driven learning of spa-
tial combinations of visual features. In Proc. of the IEEE Workshop
on Learning in Computer Vision and Pattern Recognition, San Diego
(CA, USA), June 2005. IEEE. 11, 97, 169

Bibliography 189

[JV96] A.K. Jain and A. Vailaya. Image retrieval using color and shape.
Pattern Recognition, 29(8):1233–1244, 1996. 46

[KA97] R. Kretchmar and C. Anderson. Comparison of CMACs and radial
basis functions for local function approximators in reinforcement learn-
ing. In Proc. of the IEEE International Conference on Neural Net-
works, pages 834–837, Houston (TX, USA), 1997. 126

[Kae90] L. P. Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford
University, 1990. 35

[Kal60] R.E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, Transactions of the ASME,
82(1):35–45, 1960. 44

[KBTD95] J. Konczak, M. Borutta, H. Topka, and J. Dichgans. Development of
goal-directed reaching in infants: Hand trajectory formation and joint
force control. Experimental Brain Research, 106:156–168, 1995. 3

[KF04] C. Kwok and D. Fox. Reinforcement learning for sensing strategies.
In Proc. of the IEEE International Conference on Intelligent Robots
and Systems, 2004. 8

[KHW95] N. Kushmerick, S. Hanks, and D.S. Weld. An algorithm for proba-
bilistic planning. Artificial Intelligence, 76:239–286, 1995. 73

[Kir01] D. Kirkove. S’entendre à travers nos cultures, June 2001. Master’s
thesis, Institut Sainte-Julienne (Liège).

[KJ92] R. Kergen and P. Jodogne. Computerized control of the blankholder
pressure on deep drawing presses. Technical Report 920433, Society
of Automotive Engineers, Warrendale (PA, USA), 1992.

[KLC98] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99–134, 1998. 74

[KLG+05] M. Khamassi, L. Lachèze, B. Girard, A. Berthoz, and A. Guillot.
Actor-critic models of reinforcement learning in the basal ganglia:
From natural to artificial rats. Adaptive Behavior, Special Issue To-
wards Artificial Rodents, 13(2):131–148, 2005. 36, 39

[KLM96] L.P. Kaelbling, M.L. Littman, and A. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.
xvii, 6, 15, 24, 33, 35, 38, 148

[KMND04] D. Keysers, W. Macherey, H. Ney, and J. Dahmen. Adaptation in sta-
tistical pattern recognition using tangent vectors. IEEE Transactions

190 Bibliography

on Pattern Analysis and Machine Intelligence, 26(2):269–274, 2004.
64

[KS60] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand,
Princeton, 1960. 212

[KS98] M. Kearns and S. Singh. Near-optimal reinforcement learning in poly-
nomial time. In Proc. of the 15th International Conference on Machine
Learning, pages 260–268. Morgan Kaufmann, 1998. 38

[KS04a] Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive represen-
tation for local image descriptors. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 506–513, Washington
(DC, USA), June 2004. 62, 64

[KS04b] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proc. of the IEEE International Confer-
ence on Robotics and Automation, pages 2619–2624, New Orleans, 5
2004. 38

[KT03] V.R. Konda and J.N. Tsitsiklis. Actor-critic algorithms. SIAM Jour-
nal on Control and Optimization, 42(4):1143–1166, 2003. 29

[KTZ04] M.P. Kumar, P.H.S. Torr, and A. Zisserman. Extending pictorial
structures for object recognition. In Proc. of the British Machine
Vision Conference, 2004. 111

[KV86] P.R. Kumar and P. Varaiya. Stochastic Systems: Estimation, Identi-
fication and Adaptive Control. Prentice-Hall, 1986. 37

[KvD87] J.J. Koenderink and A.J. van Doorn. Representation of local geometry
in the visual system. Biological Cybernetics, 55:367–375, 1987. 47, 60

[KYK01] H. Kimura, T. Yamashita, and S. Kobayashi. Reinforcement learning
of walking behavior for a four-legged robot. In Proc. of the 40th IEEE
Conference on Decision and Control, Orlando (FL, USA), December
2001. 38

[KZB04] T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient
region detector. In Proc. of the 8th European Conference on Computer
Vision, pages 228–241, Prague (Czech Republic), May 2004. 58

[LF06] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(9):1465–1479, 2006. 65

[Lin91] L.-J. Lin. Programming robots using reinforcement learning and
teaching. In Proc. of the 9th National Conference on Artificial In-
telligence, pages 781–786, Cambridge (MA, USA), 1991. 126, 127

Bibliography 191

[Lin93] L.J. Lin. Reinforcement Learning for Robots using Neural Networks.
PhD thesis, Carnegie Mellon University, Pittsburgh, 1993. 37

[Lin98] T. Lindeberg. Feature detection with automatic scale selection. In-
ternational Journal of Computer Vision, 30(2):77–116, 1998. 54, 57

[Lip75] S.A. Lippman. Applying a new device in the optimization of expo-
nential queueing systems. Operation Research, 23:687–710, 1975. 21

[LMB+05] D.A. Lisin, M.A. Mattar, M.B. Blaschko, M.C. Benfield, and E.G.
Learned-Miller. Combining local and global image features for object
class recognition. In Proc. of the IEEE Workshop on Learning in
Computer Vision and Pattern Recognition, June 2005. 42

[LMGY04] T. Liu, A.W. Moore, A.G. Gray, and K. Yang. An investigation of
practical approximate nearest neighbor algorithms. In Advances in
Neural Information Processing Systems, Vancouver (British Columbia,
Canada), December 2004. 65

[Low99] D.G. Lowe. Object recognition from local scale-invariant features.
In International Conference on Computer Vision, pages 1150–1157,
Corfu (Greece), September 1999. xvii, 56, 62

[Low04] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004. xvii,
10, 62, 105, 162

[Low05] D.G. Lowe. Implementation of SIFT, 2005.
http://www.cs.ubc.ca/~lowe/keypoints/. 63

[LP03] M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal
of Machine Learning Research, 4:1107–1149, 2003. xvii, 13, 38, 121,
129, 130, 131

[LS03] B. Leibe and B. Schiele. Analyzing appearance and contour based
methods for object categorization. In Proc. of the Conference on Com-
puter Vision and Pattern Recognition, pages 409–415, Madison (WI,
USA), June 2003. IEEE Computer Society. 46

[Luc59] R.D. Luce. Individual Choice Behavior. Wiley, New York, 1959. 34

[MA93] A.W. Moore and C.G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time. Machine Learning, 13:103–
130, 1993. 38

[MA95] A. Moore and C. Atkeson. The parti-game algorithm for variable res-
olution reinforcement learning in multidimensional state-spaces. Ma-
chine Learning, 21, 1995. 76, 115, 116

http://www.cs.ubc.ca/~lowe/keypoints/

192 Bibliography

[Man60] A.S. Manne. Linear programming and sequential decisions. Manage-
ment Science, 6:259–267, 1960. 24

[Mar82a] D. Marr. Vision. Freeman, San Francisco, 1982. 2

[Mar82b] D. Marr. Vision. Freeman, 1982. 56

[Mar05] R. Marée. Classification Automatique d’Images par Arbres de Déci-
sion. PhD thesis, University of Liège, Liège (Belgium), February 2005.
65, 136, 172

[MBM99] R. Munos, L. Baird, and A. Moore. Gradient descent approaches to
neural-net-based solutions of the hamilton-jacobi-bellman equation.
In International Joint Conference on Neural Networks, page 6, July
1999. 31

[MCA+01] M.E. McCarty, R.K. Clifton, D.H. Ashmead, P. Lee, and N. Gou-
bet. How infants use vision for grasping objects. Child Development,
72:973–987, 2001. 3

[McC96] R.A. McCallum. Reinforcement Learning with Selective Perception
and Hidden State. PhD thesis, University of Rochester, New York,
1996. 10, 75, 79, 105, 168, 171

[MCUP04] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline
stereo from maximally stable extremal regions. Image and Vision
Computing, 22(10):761–767, 2004. 58

[MD89] J. Moody and C.J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1(2):281–294, 1989. 124

[MGD98] P. Montesinos, V. Gouet, and R. Deriche. Differential invariants for
color images. In Proc. of the International Conference on Pattern
Recognition, pages 838–840, Brisbane (Australia), August 1998. 61

[MGPW05] R. Marée, P. Geurts, J. Piater, and L. Wehenkel. Random subwindows
for robust image classification. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 34–40, San Diego
(CA, USA), June 2005. 43, 52, 54, 59, 63, 65, 136, 138, 143, 145, 172

[Mik06] K. Mikolajczyk. Implementation of various detectors and descriptors,
2006.
http://www.robots.ox.ac.uk/~vgg/research/affine/. 63

[Mit97] T.M. Mitchell. Machine Learning. McGraw Hill, 1997. 123

[MM96] B.S. Manjunath and W.Y. Ma. Texture features for browsing and
retrieval of image data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(5):837–842, 1996. 61

http://www.robots.ox.ac.uk/~vgg/research/affine/

Bibliography 193

[MM02] R. Munos and A. Moore. Variable resolution discretization in optimal
control. Machine Learning, 49:291–323, December 2002. 69, 76, 77,
149, 172

[MMD05] T. Mart́ınez-Maŕın and T. Duckett. Fast reinforcement learning for
vision-guided mobile robots. In Proc. of the IEEE International Con-
ference on Robotics and Automation, pages 18–22, Barcelona (Spain),
April 2005. 8

[MN95] H. Murase and S.K. Nayar. Visual learning and recognition of 3-D
objects from appearance. International Journal of Computer Vision,
14:5–24, 1995. 45

[Mor80] H. Moravec. Obstacle avoidance and navigation in the real world by a
seeing robot rover. Technical Report CMU-RI-TR-3, Carnegie-Mellon
University, September 1980. 47, 48

[MS01a] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant
interest points. In Proc. of the 8th International Conference on Com-
puter Vision, pages 525–531, Vancouver (Canada), July 2001. 56

[MS01b] J. Moody and M. Saffell. Learning to trade via direct reinforcement.
IEEE Transactions on Neural Networks, 12(4):875–889, 2001. 38

[MS02] K. Mikolajczyk and C. Schmid. An affine invariant interest point de-
tector. In Proc. of the 7th European Conference on Computer Vision,
volume 1, pages 128–142, 2002. 48, 57

[MS03] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 257–263, Madison (WI, USA),
June 2003. 10, 62

[MS04] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point
detectors. International Journal of Computer Vision, 60(1):63–86,
2004. 48, 53, 56, 57, 58

[MS05] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(10):1615–1630, 2005. 10, 47, 62

[MS06] R. Munos and C. Szepesvári. Finite time bounds for sampling based
fitted value iteration, 2006. Submitted to Journal of Machine Learning
Research. 127, 128

[MSN05] J. Michels, A. Saxena, and A.Y. Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In Proc. of the
22nd International Conference in Machine Learning, pages 593–600,
Bonn (Germany), August 2005. 8

194 Bibliography

[MTS+05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine
region detectors. International Journal of Computer Vision, 65(7):43–
72, November 2005. 10, 57, 58

[Mun03] R. Munos. Error bounds for approximate policy iteration. In Inter-
national Conference on Machine Learning, pages 560–567, 2003. 121,
129

[Mun05] R. Munos. Error bounds for approximate value iteration. In Proc. of
the 20th National Conference on Artificial Intelligence and the Sev-
enteenth Innovative Applications of Artificial Intelligence Conference,
pages 1006–1011, Pittsburgh (Pennsylvania, USA), July 2005. 128

[Mun06a] R. Munos. Performance bounds for approximate value iteration, 2006.
Submitted to SIAM Journal on Control and Optimization. 128, 132

[Mun06b] R. Munos. Policy gradient in continuous time. Journal of Machine
Learning Research, 7:771–791, 2006. 31

[Mur02] K. Murphy. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, UC Berkeley, July 2002. 73

[MWSP04] C.K. Monson, D. Wingate, K.D. Seppi, and T.S. Peterson. Variable
resolution discretization in the joint space. In International Conference
on Machine Learning and Applications, 2004. 149, 163

[NB03] A. Nedić and D.P. Bertsekas. Least-squares policy evaluation algo-
rithms with linear function approximation. Journal of Discrete Event
Systems, 13:79–110, 2003. 127

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E.H. Glasman,
D. Petkovic, and P. Yanker. The QBIC project: Querying images
by content using color, texture and shape. In Storage and Retrieval
for Image and Video Databases, pages 173–187, San Jose (CA, USA),
February 1993. 46

[NCD+04] A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, Ben Tse,
B. Berger, and E. Liang. Inverted autonomous helicopter flight via
reinforcement learning. In Proc. of the International Symposium on
Experimental Robotics, 2004. 38

[NM65] J.A. Nelder and R. Mead. A simplex method for function minimiza-
tion. Computer Journal, 7:308–313, 1965. 149, 172

[NMN94] S.K. Nayar, H. Murase, and S.A. Nene. Learning, positioning, and
tracking visual appearance. In Proc. of the Internation Conference on
Robotics and Automation, San Diego (CA, USA), May 1994. 45

Bibliography 195

[NNM96] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library
(COIL-100). Technical Report CUCS-006-96, Columbia University,
New York, February 1996. 89, 92, 116

[OD04] G.C. Oana and K.J. Dana. 3D texture recognition using bidirec-
tional feature histograms. International Journal of Computer Vision,
59(1):33–60, 2004. 46

[ODS+04] J. O’Doherty, P. Dayan, J. Schultz, R. Deichmann, K. Friston, and
R. Dolan. Dissociable roles of ventral and dorsal striatum in instru-
mental conditioning. Science, 304:452–454, April 2004. 39

[OG06] OurGrid, 2006.
http://www.ourgrid.org/. 141

[OI97] K. Ohba and K. Ikeuchi. Detectability, uniqueness, and reliability
of eigen windows for stable verification of partially occluded objects.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(9):1043–1048, 1997. 59

[O’L92] D.D. O’Leary. Development of connectional diversity and specificity in
the mammalian brain by the pruning of collateral projections. Current
Opinion in Neurobiology, 2(1):70–77, February 1992. 3

[OM02] Š. Obdržálek and J. Matas. Local affine frames for image retrieval. In
Proc. of the International Conference on Image and Video Retrieval,
pages 318–327, 2002. 62, 64

[OM03] Š. Obdržálek and J. Matas. Image retrieval using local compact DCT-
based representation. In Proc. of the 25th DAGM Symposium, pages
490–497, Magdeburg (Germany), 2003. 62

[OM05] Š. Obdržálek and J. Matas. Sub-linear indexing for large scale object
recognition. In Proc. of the 16th British Machine Vision Conference,
volume 1, pages 1–10, September 2005. 65

[OS02] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Ma-
chine learning, 49(2–3):161–178, 2002. 128

[PB98] J. Peng and B. Bhanu. Closed-loop object recognition using reinforce-
ment learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(2):139–154, February 1998. 8

[PC05] J.M. Porta and E. Celaya. Reinforcement learning for agents with
many sensors and actuators acting in categorizable environments.
Journal of Artificial Intelligence Research, 23:79–122, 2005. 69, 75,
149, 151

http://www.ourgrid.org/

196 Bibliography

[PEL00] J.C. Principe, N.R. Euliano, and W.C. Lefebvre. Neural and Adaptive
Systems: Fundamentals Through Simulations. John Wiley & Sons,
2000. 125

[Pes02] L. Peshkin. Reinforcement Learning with Policy Search. PhD thesis,
Brown University, 2002. 128

[PFS05] L. Paletta, G. Fritz, and C. Seifert. Q-learning of sequential atten-
tion for visual object recognition from informative local descriptors.
In Proc. of the 22nd International Conference on Machine Learning
(ICML), pages 649–656, Bonn (Germany), August 2005. 8, 10

[PFZ03] P. Perona, R. Fergus, and A. Zisserman. Object class recognition
by unsupervised scale-invariant learning. In Conference on Computer
Vision and Pattern Recognition, volume 2, page 264, June 2003. 111

[PG02] J.H. Piater and R.A. Grupen. Learning appearance features to support
robotic manipulation. In Cognitive Vision Workshop, September 2002.
9

[PH01] L.D. Pyeatt and A.E. Howe. Decision tree function approximation in
reinforcement learning. In Proc. of the Third International Symposium
on Adaptive Systems, pages 70–77, Havana, Cuba, March 2001. 76,
78, 84

[Pia01] J.H. Piater. Visual Feature Learning. PhD thesis, University of Mas-
sachusetts, Computer Science Department, Amherst (MA, USA),
February 2001. 6, 9, 110, 120, 121, 167

[POP98] C.P. Papageorgiou, M. Oren, and T. Poggio. A general framework
for object detection. In Proc. of the 6th International Conference on
Computer Vision, pages 555–562, January 1998. 61

[Pow87] M.J.D. Powell. Radial basis functions for multivariate interpolation:
A review. In J.C. Mason and M.G. Cox, editors, Algorithms for Ap-
proximation, pages 143–167. Clarendon Press, 1987. 124

[PP93] N.R. Pal and S.K. Pal. A review on image segmentation techniques.
Pattern Recognition, 26(9):1277–1294, September 1993. 44

[PPJV01] R. Paredes, J.C. Pérez-Cortes, A. Juan, and E. Vidal. Local repre-
sentations and a direct voting scheme for face recognition. In Proc. of
the 1st International Workshop on Pattern Recognition in Information
Systems, pages 71–79, July 2001. 59

[PRB05] L. Paletta, E. Rome, and H. Buxton. Attention architectures for
machine vision and mobile robots. In L. Itti, G. Rees, and J.K.
Tsotsos, editors, Neurobiology of Attention, pages 642–648. Academic
Press/Elsevier, 2005. 10

Bibliography 197

[PS78] M.L. Puterman and M.C. Shin. Modified policy iteration algo-
rithms for discounted Markov decision problems. Management Sci-
ence, 24:1127–1137, 1978. 27, 28

[PV98] M. Pontil and A. Verri. Support vector machines for 3D object recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2:637–646, 1998. 45

[PW93] J. Peng and R.J. Williams. Efficient learning and planning within the
dyna framework. Adaptive Behavior, 1(4):437–454, 1993. 38

[PW96] J. Peng and R.J. Williams. Incremental multi-step Q-learning. Ma-
chine Learning, 22:283–290, 1996. 36

[PW03] B. Porr and F. Wörgötter. Isotropic sequence order learning. Neural
Computation, 15(4):831–864, 2003. 3

[Qui93] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., San Francisco (CA, USA), 1993. 84

[RA98] J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforce-
ment learning and shaping. In Proc. of the 15th International Confer-
ence on Machine Learning, pages 463–471, Madison (WI, USA), 1998.
Morgan Kaufmann. 38

[RH99] T. Randen and J. Husøy. Filter for texture classification: A com-
parative study. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(4):291–310, 1999. 61

[Rie05] M. Riedmiller. Neural reinforcement learning to swing-up and balance
a real pole. In Proc. of the International Conference on Systems, Man
and Cybernetics, Big Island (USA), October 2005. 128

[RM51] H. Robbins and S. Monro. A stochastic approximation method. Annals
of Mathematical Statistics, 22:400–407, 1951. 33

[RM86] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition: Foundations,
volume 1. MIT Press, Cambridge (MA, USA), 1986. 124

[RM04] L.W. Renninger and J. Malik. When is scene identification just texture
recognition? Vision Research, 44(19):2301–2311, September 2004. 46

[RN94] G.A. Rummery and M. Niranjan. On-line Q-learning using connec-
tionist sytems. Technical Report CUED/F-INFENG-TR 166, Cam-
bridge University, 1994. 35, 37

198 Bibliography

[RP03] B. Ratitch and D. Precup. Using MDP characteristics to guide explo-
ration in reinforcement learning. In Proc. of the 4th European Con-
ference on Machine Learning, pages 313–324, Dubrovnik (Croatia),
September 2003. 34

[RPTB01] Y. Rubner, J. Puzicha, C. Tomasi, and J.M. Buhmann. Empirical
evaluation of dissimilarity measures for color and texture. Computer
Vision and Image Understanding, 84(1):25–43, October 2001. 64

[RTG00] Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover’s Distance
as a metric for image retrieval. International Journal of Computer
Vision, 40(2):99–121, 2000. 64

[Rub81] R.Y. Rubinstein. Simulation and the Monte-Carlo Method. Wiley,
New-York, 1981. 37

[Rum95] G.A. Rummery. Problem Solving with Reinforcement Learning. PhD
thesis, Cambridge University, 1995. 37, 149

[Sal93] M. Salganicoff. Density-adaptive learning and forgetting. In Proc. of
the 10th International Conference on Machine Learning, pages 276–
283, Amherst (MA, USA), June 1993. Morgan Kaufmann Publishers.
76

[Sal02] B. Sallans. Reinforcement Learning for Factored Markov Decision Pro-
cesses. PhD thesis, University of Toronto, 2002. 73

[Sam84] H. Samet. The Quadtree and related hierarchical data structures.
ACM Computing Surveys, 16(2):187–260, 1984. 65, 125

[SB90] R.S. Sutton and A.G. Barto. Time-derivative models of pavlovian re-
inforcement. In M. Gabriel and J. Moore, editors, Learning and Com-
putational Neuroscience: Foundations of Adaptive Networks, pages
497–537. MIT Press, 1990. 7

[SB91] M.J. Swain and D.H. Ballard. Color indexing. International Journal
of Computer Vision, 7(1):11–32, 1991. 45, 64

[SB98] R.S. Sutton and A.G. Barto. Reinforcement Learning, an Introduction.
MIT Press, 1998. xvii, 3, 6, 15, 16, 24, 26, 28, 29, 30, 35, 36, 37, 38

[SC95] J.R. Smith and S-F. Chang. Single color extraction and image query.
In IEEE International Conference on Image Processing, pages 528–
531, Washington, DC, October 1995. 46

[SC96] B. Schiele and J.L. Crowley. Object recognition using multidimen-
sional receptive field histograms. In Proc. of the 4th European Con-
ference on Computer Vision, Cambridge (UK), April 1996. 46, 64

Bibliography 199

[SC00] B. Schiele and J.L. Crowley. Recognition without correspondence us-
ing multidimensional receptive field histograms. International Journal
of Computer Vision, 36(1):31–50, January 2000. 46

[Sca04] F. Scalzo. Unsupervised learning of visual feature hierarchies, 2004.
DEA Thesis, University of Liège. 55

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
99

[Sch91] J. Schmidhuber. Adaptive confidence and adaptive curiosity. Technical
Report FKI-149-91, Institut für Informatik, Technische Universität at
München (Germany), 1991. 35

[Sch97] S. Schaal. Learning from demonstration. In M. C. Mozer, M. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing
Systems, volume 9, pages 1040–1046. Cambridge, MA, MIT Press,
1997. 8

[Sch03] R. Schoknecht. Optimality of reinforcement learning algorithms with
linear function approximation. In Advances in Neural Information
Processing Systems, pages 1555–1562. MIT Press, Cambridge (MA,
USA), 2003. 127

[Ser79] R.F. Serfozo. An equivalence between continuous and discrete time
Markov decision processes. Operation Research, 27:616–620, 1979. 21

[Ser82] J. Serra. Image analysis and mathematical morphology. Academic
Press, New York, 1982. 43

[SG99] C. Stauffer and W.E.L. Grimson. Adaptive background mixture mod-
els for real-time tracking. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages 246–252, Fort
Collins (CO, USA), 1999. 44

[Sha49] C.E. Shannon. The synthesis of two-terminal switching circuits. Bell
Systems Technical Journal, 28:59–98, 1949. 100

[Sha53] L.S. Shapley. Stochastic games. In Proc. of the National Academy of
Sciences of the United States of America, volume 39, pages 1095–1100,
1953. 16

[SI03] K. Shibata and M. Iida. Acquisition of box pushing by direct-vision-
based reinforcement learning. In Proc. of the Society of Instrument
and Control Engineers Annual Conference, page 6, 2003. 8, 11

[SIFW03] E.B. Sudderth, A.T. Ihler, W.T. Freeman, and A.S Willsky. Non-
parametric belief propagation. In Proc. of the IEEE Conference on

200 Bibliography

Computer Vision and Pattern Recognition, pages 605–612, 2003. 111,
173

[SJJ95] S.P. Singh, T. Jaakkola, and M.I. Jordan. Reinforcement learning with
soft state aggregation. In Advances in Neural Information Processing
Systems, volume 7, pages 361–368. MIT Press, 1995. 81

[SJLS00] S.P. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Con-
vergence results for single-step on-policy reinforcement-learning algo-
rithms. Machine Learning, 38(3):287–308, 2000. 35

[SK87] L. Sirovich and M. Kirby. Low-dimensional procedure for the charac-
terization of human faces. Journal of the Optical Society of America
A, 4(3):519–524, 1987. 45

[SLDV98] P. Simard, Y. LeCun, J.S. Denker, and B. Victorri. Transformation
invariance in pattern recognition-tangent distance and tangent propa-
gation. In Neural Networks: Tricks of the Trade (outgrowth of a 1996
NIPS workshop), volume 1524 of Lecture Notes in Computer Science,
pages 239–274, London, UK, 1998. Springer-Verlag. 64

[SM97] C. Schmid and R. Mohr. Local greyvalue invariants for image re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(5):530–535, 1997. 10, 64, 65, 89, 111

[SM00] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000. 44

[SM05] C. Szepesvári and R. Munos. Finite time bounds for sampling based
fitted value iteration. In Proc. of the 22nd International Conference
on Machine Learning, pages 880–887, Bonn (Germany), August 2005.
127, 128

[Sma02] W.D. Smart. Making Reinforcement Learning Work on Real Robots.
PhD thesis, Brown University, Providence, 2002. 125, 126, 149

[SMB00] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point
detectors. International Journal of Computer Vision, 37(2):151–172,
2000. 10, 50, 52, 54, 58

[SNJM04] S. Se, H. Ng, P. Jasiobedzki, and T. Moyung. Vision based model-
ing and localization for planetary exploration rovers. In Proc. of the
International Astronautical Congress, 2004. 63

[SP05] F. Scalzo and J.H. Piater. Statistical learning of visual feature hi-
erarchies. In Proc. of the IEEE Workshop on Learning in Computer
Vision and Pattern Recognition, San Diego (CA, USA), June 2005.
IEEE. 13, 111

Bibliography 201

[SP06] F. Scalzo and J.H. Piater. Unsupervised learning of dense hierarchical
appearance representations. In Proc. of the 18th International Con-
ference on Pattern Recognition, Hong-Kong, August 2006. 13, 55, 59,
111, 120, 173

[SPI06] Spin (model checking software), 2006.
http://spinroot.com/spin/whatispin.html. 99

[SR97] P.G. Schyns and L. Rodet. Categorization creates functional features.
Journal of Experimental Psychology: Learning, Memory and Cogni-
tion, 23(3):681–696, 1997. 3

[SS96] Satinder P. Singh and Richard S. Sutton. Reinforcement learning with
replacing eligibility traces. Machine Learning, 22:123, 1996. 37

[SS97] J.W. Sheppard and S. Salzberg. A teaching strategy for memory-based
control. Artificial Intelligence Review, 11(1–5):343–370, 1997. 126

[SS01] P. Stone and R.S. Sutton. Scaling reinforcement learning toward
RoboCup soccer. In Proc. of the 18th International Conference on
Machine Learning, pages 537–544. Morgan Kaufmann, 2001. 38

[SSH06] Secure shell. Wikipedia, the Free Encyclopedia, 2006.
http://en.wikipedia.org/wiki/Ssh. 141

[SSR98] J.C. Santamaria, R.S. Sutton, and A. Ram. Experiments with re-
inforcement learning in problems with continuous state and action
spaces. Adaptive Behavior, 6(2):163–218, 1998. 148

[SSTVG03] H. Shao, T. Svoboda, T. Tuytelaars, and L. Van Gool. HPAT indexing
for fast object/scene recognition based on local appearance. In Proc. of
the 2nd Internation Conference on Image and Video Retrieval, pages
71–80, Urbana-Champaign (IL, USA), July 2003. 62, 64

[STLC97] S. Sclaroff, L. Taycher, and M. La Cascia. ImageRover: A content-
based image browser for the world wide web. IEEE Workshop on
Content-Based Access Image and Video Libraries, page 2, 1997. 46

[Sut88] R.S. Sutton. Learning to predict by the methods of temporal differ-
ences. Machine Learning, 3(1):9–44, August 1988. xvii, 32, 35, 37

[Sut90] R.S. Sutton. Integrated architectures for learning, planning and re-
acting based on approximating dynamic programming. In Proc. of the
7th International Conference on Machine Learning, pages 216–224,
San Mateo (CA, USA), 1990. Morgan Kaufmann. 38, 85, 89

[Sut96a] R. Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. In Advances in Neural Information

http://spinroot.com/spin/whatispin.html
http://en.wikipedia.org/wiki/Ssh

202 Bibliography

Processing Systems, volume 8, pages 1038–1044. The MIT Press, 1996.
126

[Sut96b] R.S. Sutton. Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In Proc. of Advances in Neural
Information Processing Systems, pages 1038–1044, Cambridge, MA,
1996. MIT Press. 35

[Sut04] R.S. Sutton. Reinforcement learning FAQ, 2004.
http://www.cs.ualberta.ca/~sutton/RL-FAQ.html. 7, 24, 125

[SW96] D.L. Swets and J. Weng. Using discriminant eigenfeatures for im-
age retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(8):831–836, August 1996. 45

[TC03] M.J. Tarr and Y.D. Cheng. Learning to see faces and objects. Trends
in Cognitive Sciences, 7(1):23–30, 2003. 3, 4

[TC04] J. Thureson and S. Carlsson. Appearance based qualitative image de-
scription for object class recognition. In Proc. of the 8th European
Conference on Computer Vision, pages 518–529, Prague (Czech Re-
public), May 2004. 62

[Tes95] G. Tesauro. Temporal difference learning and TD-Gammon. Commu-
nications of the ACM, 38(3):58–68, March 1995. 38, 127

[tHK00] S. ten Hagen and B. Kröse. q-learning for systems with continuous
state and action spaces. In Proc. of the 10th Belgian-Dutch Conference
on Machine Learning, 2000. 126, 148

[Thr92] S. Thrun. Efficient exploration in reinforcement learning. Techni-
cal Report CMU-CS-92-102, Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA, 1992. 35

[Tij94] H.C. Tijms. Stochastic Models: An Algorithmic Approach. John Wiley,
1994. 21

[TP91] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1):71–86, 1991. 45

[Tsi94] J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-
learning. Machine Learning, 16(3):185–202, 1994. 33

[Tso94] J.K. Tsotsos. There is no one way to look at vision. CVGIP: Image
Understanding, 60(1):95–97, 1994. 5

[TTA99] Y. Takahashi, M. Takeda, and M. Asada. Continuous valued Q-
learning for vision-guided behavior acquisition. In Proc. of the In-
ternational Conference on Multisensor Fusion and Integration for In-
telligent Systems, pages 255–260, 1999. 8

http://www.cs.ualberta.ca/~sutton/RL-FAQ.html

Bibliography 203

[TV96] J.N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale
dynamic programming. Machine Learning, 22:59–94, 1996. 126, 127

[TV97] J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learn-
ing with function approximation. IEEE Transactions on Automatic
Control, 42(5):674–690, May 1997. 127

[TVG04] T. Tuytelaars and L. Van Gool. Matching widely separated views
based on affine invariant regions. International Journal of Computer
Vision, 59(1):61–85, 2004. 57, 58

[Uth02] W.T.B. Uther. Tree Based Hierarchical Reinforcement Learning. PhD
thesis, Carnegie Mellon University, 2002. 76

[UV98] W.T.B. Uther and M.M. Veloso. Tree based discretization for contin-
uous state space reinforcement learning. In Proc. of the 15th National
Conference on Artificial Intelligence (AAAI), pages 769–774, Madison
(WI, USA), July 1998. 76, 79

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 511–518, Kauai (HI,
USA), December 2001. 58

[Vou06] L. Voulzy. Derniers baisers. In Septième Vague, June 2006.
http://www.montefiore.ulg.ac.be/~jodogne/private/writing-phd.jpg.

[VZ03] M. Varma and A. Zisserman. Texture classification: Are filter banks
necessary? In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 691–698, Madison (WI, USA),
June 2003. 61

[Wal47] A. Wald. Sequential Analysis. John Wiley, 1947. 16

[Wal50] A. Wald. Statistical Decision Functions. John Wiley, 1950. 16

[Wat89] C.J.C.H. Watkins. Learning From Delayed Rewards. PhD thesis,
King’s College, Cambridge (UK), 1989. 24, 32, 34, 36, 82, 126

[WB91] S.D. Whitehead and D.H. Ballard. Learning to perceive and act by
trial and error. Machine Learning, 7:45–83, 1991. 72, 74

[WB99] G. Wallis and H. Bülthoff. Learning to recognize objects. Trends In
Cognitive Sciences, 3(1):22–31, January 1999. 111

[WC96] J. Weng and S. Chen. Incremental learning for vision-based naviga-
tion. In Proc. of the International Conference on Pattern Recognition,
pages 45–49, Vienna (Austria), 1996. 45

http://www.montefiore.ulg.ac.be/~jodogne/private/writing-phd.jpg

204 Bibliography

[WD92] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–
292, 1992. 24, 33

[Wer90] P.J. Werbos. Consistency of HDP applied to a simple reinforcement
learning problem. Neural Networks, 3:179–189, 1990. 126

[Wes95] C.-J. Westelius. Focus of Attention and Gaze Control for Robot Vision.
PhD thesis, Linköping University (Sweden), 1995. 5

[WGZ99] D. Wettergreen, C. Gaskett, and A. Zelinsky. Autonomous guidance
and control for an underwater robotic vehicle. In Proc. of the Interna-
tional Conference on Field and Service Robotics, Pittsburgh (USA),
August 1999. 8

[Whi91] S.D. Whitehead. Complexity and cooperation in q-learning. In Proc.
of the 8th International Workshop on Machine Learning, pages 363–
367, Evanston, IL, 1991. 37

[Whi93] D.J. White. Markov Decision Processes. John Wiley, New York, 1993.
21, 22

[Wie99] M.A. Wiering. Explorations in Efficient Reinforcement Learning. PhD
thesis, University of Amsterdam (IDSIA), February 1999. 35

[Wie05] M. Wiering. QV (λ)-learning: A new on-policy reinforcement learning
algorithm. In Proc. of the 7th European Workshop on Reinforcement
Learning, pages 17–18, Napoli (Italy), October 2005. 37

[WK02] H. Wersing and E. Körner. Unsupervised learning of combination
features for hierarchical recognition models. In Proc. of the Interna-
tional Conference on Artificial Neural Networks, volume 2415 of Lec-
ture Notes in Computer Science, pages 1225–1230. Springer, August
2002. 111

[WS98] M.A. Wiering and J. Schmidhuber. Fast online Q(λ). Machine Learn-
ing, 33(1):105–116, 1998. 37

[WSV99] N. Winters and J. Santos-Victor. Omni-directional visual navigation.
In Proc. of the 7th International Symposium on Intelligent Robotic
Systems, pages 109–118, Coimbra (Portugal), July 1999. 45

[WWZ04] C. Weber, S. Wermter, and A. Zochios. Robot docking with neural
vision and reinforcement. Knowledge-Based Systems, 17(2–4):165–172,
2004. 8

[Yin02] Peng-Yeng Yin. Maximum entropy-based optimal threshold selection
using deterministic reinforcement learning with controlled randomiza-
tion. Signal Processing, 82:993–1006, 2002. 8

Bibliography 205

[YIS99] J. Yoshimoto, S. Ishii, and M. Sato. Application of reinforcement
learning to balancing acrobot. In Proc. of the 1999 IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pages 516–521,
1999. 38

[You87] R.A. Young. The Gaussian derivative model for spatial vision: I.
Retinal mechanisms. Spatial Vision, 2(4):273–293, 1987. 47

[ZD95] W. Zhang and T.G. Dietterich. A reinforcement learning approach to
job-shop scheduling. In Proc. of the 14th International Joint Confer-
ence on Artificial Intelligence, pages 1114–1120, San Francisco (CA,
USA), 1995. 127

[ZMLS06] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid. Local fea-
tures and kernels for classification of texture and object categories: A
comprehensive study. In Proc. of Beyond Patches Workshop, in con-
junction with the IEEE Conference on Computer Vision and Pattern
Recognition, 2006. 65

206 Bibliography

APPENDIX

ONE

Proofs about Markov Decision Processes

Proof of Theorem 2.13 (page 20). We successively obtain:

V π(s) = Eπ

{
∞∑

t=0

γtR(st, at) | s0 = s

}

= Eπ

{
R(s0, a0) + γ

∞∑
t=0

γtR(st+1, at+1) | s0 = s

}

=
∑
a∈A

π(s, a) Eπ

{
R(s0, a0) + γ

∞∑
t=0

γtR(st+1, at+1) | s0 = s, a0 = a

}

=
∑
a∈A

π(s, a)

[
R(s0, a) + γ Eπ

{
∞∑

t=0

γtR(st+1, at+1) | s0 = s, a0 = a

}]

=
∑
a∈A

π(s, a)

[
R(s0, a) + γ

∑
s′∈S

T (s, a, s′) Eπ

{
∞∑

t=0

γtR(st+1, at+1) | s1 = s′

}]

=
∑
a∈A

π(s, a)

[
R(s0, a) + γ

∑
s′∈S

T (s, a, s′) V π(s′)

]
,

which concludes the proof. 2

Lemma A.1. Let f, f ′ : B 7→ R be two functions that map a finite set I to the real
numbers. Then: ∣∣∣∣max

i∈I
f(i)−max

i∈I
f ′(i)

∣∣∣∣ ≤ max
i∈I
|f(i)− f ′(i)|. (A.1)

Proof. This theorem can be seen as a consequence of triangle inequality. More
formally, let k, k′ ∈ I be respectively such that f(k) = maxi∈I f(i) and f ′(k′) =
maxi∈I f ′(i). We can assume without loss of generality that f(k) ≥ f ′(k′) (otherwise,

207

208 Proofs about Markov Decision Processes

exchange f and f ′). As a consequence and by definition of k′, f(k) ≥ f ′(k). Also
note that f ′(k′) ≥ f ′(k). Therefore:

∣∣∣∣max
i∈I

f(i)−max
i∈I

f ′(i)

∣∣∣∣ = |f(k)− f ′(k′)| = f(k)− f ′(k′)

≤ f(k)− f ′(k) = |f(k)− f ′(k)|
≤ max

i∈I
|f(i)− f ′(i)|.

2

Proof of Theorem 2.19 (page 23). We directly prove the two relations ||T πV −
T πV ′||∞ ≤ γ||V −V ′||∞ and ||TV −TV ′||∞ ≤ γ||V −V ′||∞. Note that in both case,
the contraction factor ρ equals γ. For T π, we successively obtain:

||T πV − T πV ′||∞ = max
s∈S

∣∣∣∣∣∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
−

∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ′(s′)

)∣∣∣∣∣
= max

s∈S

∣∣∣∣∣∑
a∈A

π(s, a)

(
γ
∑
s′∈S

T (s, a, s′)(V (s′)− V ′(s′))

)∣∣∣∣∣
= γ max

s∈S

∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)|V (s′)− V ′(s′)|

≤ γ max
s∈S

∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)||V − V ′||∞

= γ||V − V ′||∞ max
s∈S

∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)

= γ||V − V ′||∞,

where the last equality follows from the fact that probability distributions sum to
one. Then, we get for T :

||TV − TV ′||∞ = max
s∈S

∣∣∣∣∣max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

)
−

max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ′(s′)

)∣∣∣∣∣

Proofs about Markov Decision Processes 209

≤ max
s∈S

max
a∈A

∣∣∣∣∣R(s, a) + γ
∑
s′∈S

T (s, a, s′)V (s′) −

R(s, a)− γ
∑
s′∈S

T (s, a, s′)V ′(s′)

∣∣∣∣∣
= γ max

s∈S
max
a∈A

∣∣∣∣∣∑
s′∈S

T (s, a, s′)(V (s′)− V ′(s′))

∣∣∣∣∣
= γ max

s∈S
max
a∈A

∑
s′∈S

T (s, a, s′)|V (s′)− V ′(s′)|

= γ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)||V − V ′||∞

≤ γ||V − V ′||∞ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)

= γ||V − V ′||∞,

where the first inequality is a consequence of Lemma A.1. 2

Lemma A.2. A Markovian, stationary control policy π is optimal if and only if
T πV ∗ = V ∗.

Proof. Suppose that π is optimal. Bellman optimality theorem shows that V π =
V ∗. Furthermore, Theorem 2.13 states that T πV π = V π. Hence, T πV ∗ = T πV π =
V π = V ∗. Conversely, suppose that T πV ∗ = V ∗. By Banach fixed point theorem,
V ∗ is the unique fixed point of T π. Then, as a consequence of Theorem 2.13, we get
V π = V ∗. Bellman optimality theorem concludes that π is optimal. 2

Proof of Theorem 2.21 (page 23). According to Lemma A.2, it is sufficient to
prove that the policy π∗ defined by Equation 2.17 satisfies T π∗V ∗ = V ∗:

T π∗V ∗(s) = R(s, π∗(s)) + γ
∑
s′∈S

T (s, π∗(s), s′)V ∗(s′)

= max
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
= V ∗(s),

for all s ∈ S. The first line results from Corollary 2.14, the second line from the
definition of π∗, and the third line from Bellman optimality theorem. 2

Theorem A.3. H is a contraction mapping with respect to the maximum norm
||Q||∞ = max(s,a)∈S×A |Q(s, a)|.

210 Proofs about Markov Decision Processes

Proof. The proof is mostly identical to that of Theorem 2.19. Let Q and Q′ be
two state-action value functions. We have for Hπ:

|| HπQ−HπQ′||∞

= max
s∈S

max
a∈A

∣∣∣∣∣R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Q(s′, a′)−

R(s, a)− γ
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Q′(s′, a′)

∣∣∣∣∣
= max

s∈S
max
a∈A

∣∣∣∣∣γ∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)(Q(s′, a′)−Q′(s′, a′))

∣∣∣∣∣
= γ max

s∈S
max
a∈A

∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)|Q(s′, a′)−Q′(s′, a′)|

≤ γ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)||Q−Q′||∞

= γ||Q−Q′||∞ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)

= γ||Q−Q′||∞.

2

Theorem A.4. Hπ is a contraction mapping with respect to the maximum norm
||Q||∞ = max(s,a)∈S×A |Q(s, a)|.

Proof. Once again, the proof is mostly identical to that of Theorem 2.19. Let Q
and Q′ be two state-action value functions. We have:

|| HQ−HQ′||∞ = max
s∈S

max
a∈A

∣∣∣∣∣R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q(s′, a′)−

R(s, a)− γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q′(s′, a′)

∣∣∣∣∣
= max

s∈S
max
a∈A

∣∣∣∣∣γ∑
s′∈S

T (s, a, s′)

(
max
a′∈A

Q(s′, a′)−max
a′∈A

Q′(s′, a′)

)∣∣∣∣∣
= γ max

s∈S
max
a∈A

∑
s′∈S

T (s, a, s′)

∣∣∣∣max
a′∈A

Q(s′, a′)−max
a′∈A

Q′(s′, a′)

∣∣∣∣
≤ γ max

s∈S
max
a∈A

∑
s′∈S

T (s, a, s′) max
a′∈A
|Q(s′, a′)−Q′(s′, a′)|

≤ γ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)||Q−Q′||∞

Proofs about Markov Decision Processes 211

= γ||Q−Q′||∞ max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′)

= γ||Q−Q′||∞.

2

Definition A.5. A square matrix A ∈ Rn×n is a stochastic matrix if:

1. Aij ≥ 0 for all i, j = 1, . . . , n;

2.
∑n

j=1 Aij = 1 for all i = 1, . . . , n.

Note that stochastic matrices are a particular subclass of nonnegative matrices.
They play an important role in the analysis of Markov chains [BP79].

Lemma A.6. Let A and B be two stochastic matrix of same dimensions. Then
their product AB is also a stochastic matrix.

Proof. This proof is quite elementary. The definition of the matrix product gives:

(AB)ij =
n∑

k=1

AikBkj.

Thus, we directly conclude that (AB)ij is a matrix of nonnegative elements, by
definition of A and B. Furthermore, for all i = 1, . . . , n:

n∑
j=1

(AB)ij =
n∑

j=1

n∑
k=1

AikBkj =
n∑

k=1

Aik

n∑
j=1

Bkj =
n∑

k=1

Aik = 1,

which concludes the proof. 2

Lemma A.7. Let A be a square matrix. If

lim
n→∞

An = 0, (A.2)

where 0 is the zero matrix, then (I − A) has an inverse, and

(I − A)−1 =
∞∑

k=0

Ak. (A.3)

212 Proofs about Markov Decision Processes

Proof. This proof is essentially taken from Kemeny and Snell [KS60, Theorem
1.11.1]. Consider the identity:

I − An =

(
n−1∑
k=0

Ak

)
−

(
n∑

k=1

Ak

)

=

(
n−1∑
k=0

Ak

)
− A

(
n−1∑
k=0

Ak

)

= (I − A)
n−1∑
k=0

Ak, (A.4)

which holds for any n > 0. The hypothesis on A gives:

lim
n→∞

(I − An) = I − lim
n→∞

An = I.

Thus, for sufficiently large n, I − An must have a non-zero determinant:

(∃n′) det
(
I − An′

)
6= 0.

This inequation along with Equation A.4 implies that:

det
(
I − An′

)
= det

(
(I − A)

n′−1∑
k=0

Ak

)
= det(I − A) det

(
n′−1∑
k=0

Ak

)
6= 0.

As a consequence, det(I −A) 6= 0 and the matrix (I −A) has an inverse. Since this
inverse exist, we can multiply both sides of Equation A.4 by it:

(I − A)−1(I − An) =
n−1∑
k=0

Ak.

But the left side of this new identity clearly tends to (I − A)−1 when n tends to
infinity, which completes the proof. 2

Proof of Theorem 2.24 (page 28). We first introduce a theoretical framework that
allows us to reformulate the Policy Improvement theorem using matrix notation.
Given the policy π̃, define the matrices P π̃ and Rπ̃ as follows:

P π̃(s, s′) =
∑
a∈A

π̃(s, a)T (s, a, s′), (A.5)

Rπ̃(s) =
∑
a∈A

π̃(s, a)R(s, a). (A.6)

Note that P π̃(s′, s) and Rπ̃(s) can be thought of as matrices, as S is assumed finite.
P π̃(s, s′) corresponds to the probability of reaching a state s′ ∈ S when starting
from a state s ∈ S and following the policy π̃. As for Rπ̃(s), it gives the expected
immediate reward in a state s ∈ S when following the policy π̃. We now make three
observations:

Proofs about Markov Decision Processes 213

1. Using this matrix notation, the Bellman equation 2.7 for π̃ becomes:

V π̃ = Rπ̃ + γP π̃V π̃. (A.7)

2. Secondly, we remark that P π̃ is by definition a stochastic matrix (cf. Defini-
tion A.5). Therefore, by Lemma A.6, (P π̃)n is also a stochastic matrix for all
n ≥ 0. Because all the elements of a stochastic matrix are necessarily smaller
than 1 and because 0 ≤ γ < 1, we get:

lim
n→∞

(γP π̃)n = lim
n→∞

γn · lim
n→∞

(P π̃)n ≤ lim
n→∞

γn1 = 0,

where 1 is the matrix that contains only ones. Thus, Lemma A.7 can be
applied on A = γP π̃. We deduce that γP π̃ admits an inverse and that:

(I − γP π̃)−1 =
∞∑

k=0

(γP π̃)k.

Furthermore, because γ ≥ 0 and because (P π̃)k are stochastic, hence nonnega-
tive matrices for all k ≥ 0, we conclude that (I − γP π̃)−1 is itself nonnegative.

3. Finally, the hypothesis about the relation between π and π̃ can be rewritten
as: ∑

a∈A

π̃(s, a)Qπ(s, a) ≥ V π(s)

⇔
∑
a∈A

π̃(s, a)

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π(s′)

)
≥ V π(s)

⇔ Rπ̃(s) + γ
∑
s′∈S

P π̃(s, s′)V π(s′) ≥ V π(s)

⇔
(
Rπ̃ + γP π̃V π − V π

)
(s) ≥ 0,

for all s ∈ S, where the first equivalence is a consequence of Equation 2.20.
Thus, Rπ̃ + γP π̃V π − V π is also a nonnegative matrix.

Now consider the identity:

(I − γP π̃)(V π̃ − V π) = V π̃ − V π − γP π̃V π̃ + γP π̃V π

⇔ (I − γP π̃)(V π̃ − V π) = Rπ̃ + γP π̃V π − V π

⇔ V π̃ − V π = (I − γP π̃)−1(Rπ̃ + γP π̃V π − V π) (A.8)

where the first equivalence results from Equation A.7, and the second from the fact
that I − γP π̃ has an inverse. We know that (I − γP π̃)−1 and Rπ̃ + γP π̃V π − V π are
both nonnegative matrices. By Equation A.8, V π̃ − V π is also nonnegative, which
concludes the proof. 2

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Algorithms
	Abbreviations and Notation
	Introduction
	Vision-for-Action
	Reconstructionist Vision
	Human Visual Learning
	Purposive Vision

	Objectives
	Closed-Loop Learning of Visual Policies
	Motivation
	Related Work
	Extraction of Visual Features
	Task-Driven Exploitation of Visual Features

	Outline of the Dissertation

	Reinforcement Learning
	Markov Decision Processes
	Dynamics of the Environment
	Reinforcement Signal
	Histories and Returns
	Control Policies
	Value Functions

	Dynamic Programming
	Markov Decision Problems
	Contraction Mappings
	State-Action Value Functions
	Value Iteration
	Policy Iteration

	Generic Framework of Reinforcement Learning
	Reinforcement Learning in Finite Domains
	Model-Based Algorithms
	Q-Learning
	Survey of Other Algorithms

	Successful Applications
	Summary

	Appearance-Based Vision
	Mid-Level Representation of Images
	Visual Feature Generators
	Appearance-Based Vision

	Global-Appearance Methods
	Normalized Images
	Eigen-Patches
	Histograms

	Local-Appearance Methods
	Harris Corner Detector
	Interest Point Detectors
	Local Descriptors
	Local-Appearance Feature Generators

	Exploiting Visual Features
	Summary

	Reinforcement Learning of Visual Classes
	Features in the Perceptual Space
	Visual Features Exhibited by Images
	General Perceptual Features
	Perceptual Feature Generators

	Learning Architecture
	Related Work
	Factored Representations of MDPs
	Perceptual Aliasing
	Adaptive Resolution in Finite Perceptual Spaces
	Adaptive Resolution in Continuous Perceptual Spaces
	Discussion

	Adaptive Discretization of the Perceptual Space
	Mapping an MDP through a Percept Classifier
	Measuring Aliasing
	Selecting Distinctive Perceptual Features

	The Binary Gridworld Application
	Visual Applications
	Details of Implementation
	Illustration on Visual Gridworld Tasks
	Illustration on a Continuous Navigation Task

	Summary

	Extensions to RLVC
	Compacting the Percept Classifiers
	Equivalence Relations in Markov Decision Processes
	Decision Trees are not Expressive Enough
	An Excursion into Computer-Aided Verification
	Embedding BDDs inside RLVC
	Navigation around Montefiore Institute
	Discussion

	Learning Hierarchies of Visual Features
	Related Work
	An Unbounded Hierarchy of Spatial Relationships
	Closed-Loop Generation of Composite Components
	Experimental Results

	Summary

	Function Approximators for Purposive Vision
	Feature Vectors
	Related Work
	Linear Approximation Schemes
	Non-Linear Approximation Schemes
	Function Approximation in Reinforcement Learning

	Approximate Policy Iteration
	Nonparametric Approximate Policy Iteration
	Implicit Representation of the Generated Policies
	Main Algorithm
	Modified Policy Evaluation in Nonparametric API

	Extremely Randomized Trees
	Extra-Tree Induction
	Applications of Extra-Trees

	Visual Approximate Policy Iteration
	Distributed Implementation of Extra-Trees
	Building Extra-Trees in a Cluster of Computers
	The Database Distribution Problem

	Experimental Results
	Summary

	Reinforcement Learning of Joint Classes
	Adaptive Resolution in the Joint Space
	Related Work
	Joint Features
	Features in the Action Space
	Features for Continuous Action Spaces
	Features for Cartesian Action Spaces
	Joint Feature Detectors and Generators

	Reinforcement Learning of Joint Classes
	Learning Architecture
	Computing a Greedy Action
	Reinforcement Learning through Joint Classifiers
	Detecting and Removing Aliasing in the Joint Space

	Experimental Results
	Summary

	Conclusions and Perspectives
	Summary of the Contributions
	Future Work
	Non-Visual Control Problems
	Implementation in Real Learning Robots
	Enhancing the Proposed Algorithms
	Towards Better Visual Features

	Bibliography
	Proofs about Markov Decision Processes

