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Abstract

Results: This paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of

functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package

returns a network where nodes denote genes, edges model statistical dependencies between genes and the

weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction.

Four different entropy estimators are made available in the package minet (empirical, Miller-Madow,

Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks,

ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves

and ROC-curves in order to compare the inferred network with a reference one.

Conclusions: The package minet provides a series of tools for inferring transcriptional networks from microarray

data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor

website.
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Background

Modelling transcriptional interactions by large networks of interacting elements and determining how these

interactions can be effectively learned from measured expression data are two important issues in system

biology [1]. It should be noted that by focusing only on transcript data, the inferred network should not be

considered as a proper biochemical regulatory network, but rather as a gene-to-gene network where many

physical connections between macromolecules might be hidden by short-cuts. In spite of some evident

limitations the bioinformatics community made important advances in this domain over the last few

years [2, 3]. In particular, mutual information networks have been succesfully applied to transcriptional

network inference [4–6]. Such methods, which typically rely on the estimation of mutual information

between all pairs of variables, have recently held the attention of the bioinformatics community for the

inference of very large networks (up to several thousands nodes) [4, 7–9].

R is a widely used open source language and environment for statistical computing and graphics [10] which

has become a de-facto standard in statistical modeling, data analysis, biostatistics and machine

learning [11]. An important feature of the R environment is that it integrates generic data analysis and

visualization functionalities with off-the-shelf packages implementing the latest advances in computational

statistics. Bioconductor is an open source and open development software project for the analysis and

comprehension of genomic data [12] mainly based on the R programming language. This paper introduces

the new R and Bioconductor package minet, where the acronym stands for Mutual Information NETwork

inference. This package is freely available on the R CRAN package resource [10] as well as on the

Bioconductor website [12].

1 Mutual Information Networks

Mutual information networks are a subcategory of network inference methods. The rationale of this family

of methods is to infer a link between a couple of nodes if it has a high score based on mutual

information [9].

Mutual informaton network inference proceeds in two steps. The first step is the computation of the

mutual information matrix (MIM), a square matrix whose i, j-th element

MIMij = I(Xi;Xj) (1)

is the mutual information between Xi and Xj , where Xi ∈ X , i = 1, . . . , n, is a discrete random variable

denoting the expression level of the ith gene. The second step is the computation of an edge score for each
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pair of nodes by an inference algorithm that takes the MIM matrix as input.

The adoption of mutual information in network inference tasks can be traced back to the Chow and Liu’s

tree algorithm [13,14]. Mutual information provides a natural generalization of the correlation since it is a

non-linear measure of dependency. Hence with mutual information generalized correlation networks

(relevance networks [7]) and also conditional independence graphs (e.g. ARACNE [8]) can be built. An

advantage of these methods is their ability to deal with up to several thousands of variables also in the

presence of a limited number of samples. This is made possible by the fact that the MIM computation

requires only n(n−1)
2 estimations of a bivariate mutual information term. Since each bivariate estimation

can be computed fastly and is low variant also for a small number of samples, this family of methods is

adapted for dealing with microarray data. Note that since mutual information is a symmetric measure, it is

not possible to derive the direction of an edge using a mutual information network inference technique.

Notwithstanding the orientation of the edges can be obtained by using algorithms like IC which are well

known in the graphical modelling community [15].

1.1 Relevance Network

The relevance network approach [7] has been introduced in gene clustering and was successfully applied to

infer relationships between RNA expressions and chemotherapeutic susceptibility [6]. The approach

consists in inferring a genetic network where a pair of genes {Xi, Xj} is linked by an edge if the mutual

information I(Xi;Xj) is larger than a given threshold I0. The complexity of the method is O(n2) since all

pairwise interactions are considered.

Note that this method does not eliminate all the indirect interactions between genes. For example, if gene

X1 regulates both gene X2 and gene X3, this would cause a high mutual information between the pairs

{X1,X2}, {X1,X3} and {X2,X3}. As a consequence, the algorithm will set an edge between X2 and X3

although these two genes interact only through gene X1.

1.2 CLR Algorithm

The CLR algorithm [4] is an extension of the relevance network approach. This algorithm computes the

mutual information for each pair of genes and derives a score related to the empirical distribution of the

MI values. In particular, instead of considering the information I(Xi;Xj) between genes Xi and Xj , it
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takes into account the score zij =
√

z2
i + z2

j where

zi = max
(

0,
I(Xi;Xj)− µi

σi

)
(2)

and µi and σi are respectively the sample mean and standard deviation of the empirical distribution of the

values I(Xi, Xk), k = 1, . . . , n. The CLR algorithm was successfully applied to decipher the E. Coli

TRN [4]. CLR has a complexity in O(n2) once the MIM is computed.

1.3 ARACNE

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [8] is based on the Data

Processing Inequality [16]. This inequality states that, if gene X1 interacts with gene X3 through gene X2,

then

I(X1;X3) ≤ min (I(X1;X2), I(X2;X3)) .

ARACNE starts by assigning to each pair of nodes a weight equal to the mutual information. Then, as in

relevance networks, all edges for which I(Xi;Xj) < I0 are removed, with I0 a given threshold. Eventually,

the weakest edge of each triplet is interpreted as an indirect interaction and is removed if the difference

between the two lowest weights is above a threshold W0. Note that by increasing I0 the number of inferred

edges is decreased while the opposite effect is obtained by increasing W0.

If the network is a tree and only pairwise interactions are present, the method guarantees the

reconstruction of the original network, once it is provided with the exact MIM. ARACNE’s complexity is

O(n3) since the algorithm considers all triplets of genes. In [8] the method was able to recover components

of the TRN in mammalian cells and outperformed Bayesian networks and relevance networks on several

inference tasks [8].

1.4 MRNET

MRNET [9] infers a network using the maximum relevance/minimum redundancy (MRMR) feature

selection method [17,18]. The idea consists in performing a series of supervised MRMR gene selection

procedures where each gene in turn plays the role of the target output.

The MRMR method has been introduced in [17,18] together with a best-first search strategy for

performing filter selection in supervised learning problems. Consider a supervised learning task where the

output is denoted by Y and V is the set of input variables. The method ranks the set V of inputs

according to a score that is the difference between the mutual information with the output variable Y
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(maximum relevance) and the average mutual information with all the previously ranked variables

(minimum redundancy). The rationale is that direct interactions (i.e. the most informative variables to the

target Y ) should be well ranked whereas indirect interactions (i.e. the ones with redundant information

with the direct ones) should be badly ranked by the method. The greedy search starts by selecting the

variable Xi having the highest mutual information to the target Y . The second selected variable Xj will be

the one with a high information I(Xj ;Y ) to the target and at the same time a low information I(Xj ;Xi)

to the previously selected variable. In the following steps, given a set S of selected variables, the criterion

updates S by choosing the variable

XMRMR
j = arg max

Xj∈V \S
(uj − rj) (3)

that maximizes the score

sj = uj − rj , (4)

where uj is a relevance term and rj is a redundancy term. More precisely,

uj = I(Xj ;Y )

is the mutual information of Xj with the target variable Y , and

rj =
1
|S|

∑

Xk∈S

I(Xj ;Xk)

measures the average redundancy of Xj to each already selected variables Xk ∈ S. At each step of the

algorithm, the selected variable is expected to allow an efficient trade-off between relevance and

redundancy. It has been shown in [19] that the MRMR criterion is an optimal "pairwise" approximation of

the conditional mutual information between any two genes Xi and Xj given the set S of selected variables

I(Xi;Xj |S).

The MRNET approach consists in repeating this selection procedure for each target gene by putting

Y = Xi and V = X \ {Xi}, i = 1, . . . , n, where X is the set of the expression levels of all genes. For each

pair {Xi, Xj}, MRMR returns two (not necessarily equal) scores si and sj according to (4). The score of

the pair {Xi, Xj} is then computed by taking the maximum of si and sj . A specific network can then be

inferred by deleting all the edges whose score lies below a given threshold I0 (as in relevance networks,

CLR and ARACNE). Thus, the algorithm infers an edge between Xi and Xj either when Xi is a

well-ranked predictor of Xj (si > I0) or when Xj is a well-ranked predictor of Xi (sj > I0).
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An effective implementation of the best-first search for quadratic problems is available in [20]. This

implementation demands an O(f × n) complexity for selecting f features using a best first search strategy.

It follows that MRNET has an O(f × n2) complexity since the feature selection step is repeated for each of

the n genes. In other terms, the complexity ranges between O(n2) and O(n3) according to the value of f .

In practice the selection of features stops once a variable obtains a negative score.

Implementation of the inference algorithms in minet

All the algorithms discussed above are available in the minet package. The RELNET algorithm is

implemented by simply running the command build.mim which returns the MIM matrix which can be

considered as a weighted adjacency matrix of the network. CLR, ARACNE and MRNET are implemented

by the commands aracne(mim), clr(mim), mrnet(mim) respectively that return a weighted adjacency

matrix of the network.

It should be noted, that the modularity of the minet package makes possible to assess network inference

methods on similarity matrices other than MIM [21].

2 Mutual Information Estimation

An information-theoretic network inference technique aims at identifying connections between two genes

(variables) by estimating the amount of information common to any pair of genes. Mutual information is a

measure which calculates dependencies between two discrete random variables. An important property of

this measure is that it is not restricted to the identification of linear relations between the random

variables [16].

If X is a continuous random variable taking values between a and b, the interval [a, b] can be discretized by

partitioning it into |X | subintervals, called bins, where the symbol X denotes the bin index vector. We use

also nb(xk) to denote the number of data points in the kth bin and the symbol m =
∑

k∈X nb(xk) to

denote the number of samples. If X is a random vector each element Xi can be discretized separately into

|Xi| bins with index vector Xi.

Let X be a random vector and p a probability measure. The i, j-th element of the mutual information

matrix (MIM) is defined by

MIMij = H(Xi) + H(Xj)−H(Xi, Xj) (5)

= I(Xi;Xj)
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=
∑

ki∈Xi

∑

kj∈Xj

p(xki , xkj ) log
(

p(xki , xkj )
p(xki)p(xkj )

)
,

where the entropy of a random variable X is defined as

H(X) = −
∑

k∈X
p(xk) log p(xk) (6)

and I(Xi;Xj) is the mutual information between the random variables Xi and Xj .

Hence, each mutual information calculus demands the estimation of three entropy terms (Eq. 5). A fast

entropy estimation is therefore essential for an effective network inference based on MI. Entropy estimation

has gained much interest in feature selection and network inference over the last decade [22]. Most

approaches focus on reducing the bias inherent to entropy estimation. In this section, some of the fastest

and most used entropy estimators are stressed. Other interesting approaches can be found in [22–26].

2.1 Empirical and Miller-Madow corrected estimators

The empirical estimator (also called “plug-in”, “maximum likelihood” or “naive”, see [23]) is the entropy of

the empirical distribution.

Ĥemp = −
∑

k∈X

nb(xk)
m

log
nb(xk)

m
. (7)

Note that, because of the convexity of the logarithmic function, an underestimate of p(xk) causes an error

on H(X = xk) that is larger than the one given by an overestimation of the same quantity. As a result,

entropy estimators are biased downwards, that is

E[Ĥemp(pX)] ≤ H(pX). (8)

It has been shown that the variance of the empirical estimator is upper-bounded by

var(Ĥemp) ≤
(

(log m)2

m

)
which depends only on the number of samples whereas the asymptotic bias of the

estimate bias(Ĥemp) = − |X |−1
2m depends also on the number of bins |X | [23]. As |X | % m, this estimator

can still have a low variance but the bias can become very large [23].

The Miller-Madow correction is then given by the following formula which is the empirical entropy

corrected by the asymptotic bias,

Ĥmm = Ĥemp +
|X | − 1

2m
. (9)
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where |X | is the number of bins with non-zero probability. This correction, while adding no computational

cost to the empirical estimator, reduces the bias without changing variance. As a result, the Miller-Madow

estimator is often preferred to the naive empirical entropy estimator.

2.2 Shrink entropy estimator

The rationale of the shrink estimator, [27], is to combine two different estimators, one with low variance

and one with low bias, by using a weighting factor λ ∈ [0, 1]

p̂λ(xk) = λ
1
|X | + (1− λ)

nb(xk)
m

. (10)

Shrinkage is a general technique to improve an estimator for a small sample size [3]. As the value of λ

tends to one, the estimated entropy is moved toward the maximal entropy (uniform probability) whereas

when λ is zero the estimated entropy tends to the value of the empirical one.

Let λ∗ be the value minimizing the mean square function, see [27],

λ∗ = arg min
λ∈[0,1]

E

[
∑

k∈X
(p̂λ(xk)− p(xk))2

]
. (11)

It has been shown in [28] that the optimal λ is given by

λ∗ =
|X |(m2 −

∑
k∈X nb(xk)2)

(m− 1)(|X |
∑

k∈X nb(xk)2 −m2)
. (12)

Ĥshrink = −
∑

k∈X
p̂λ(xk) log p̂λ(xk) (13)

2.3 The Schurmann-Grassberger Estimator

The Dirichlet distribution can be used in order to estimate the entropy of a discrete random variable. The

Dirichlet distribution is the multivariate generalization of the beta distribution. It is also the conjugate

prior of the multinomial distribution in Bayesian statistics. More precisely, the density of a Dirichlet

distribution takes the following form

f(X;β) =
∏

k∈X Γ(βk)
Γ(

∑
k∈X βk)

∏

k∈X
xβk−1

k (14)

where βi is the prior probability of an event xi and Γ(·) is the gamma function, (see [25,27,29] for more

details).
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In case of no a priori knowledge, the βk are assumed to be equal (βk = N, k ∈ X ) so as no event becomes

more probable than another. Note that using a Dirichlet prior with parameters N is equivalent to adding

N ≥ 0 “pseudo-counts” to each bin i ∈ X . The prior actually provides the estimator the information that

|X |N counts have been observed in previous experiments. From that viewpoint, |X |N becomes the a priori

sample size.

The entropy of a Dirichlet distribution can be computed directly with the following equation:

Ĥdir(X) =
1

m + |X |N
∑

k∈X
(nb(xk) + N)(ψ(m + |X |N + 1)− ψ(nb(xk) + N + 1)) (15)

with ψ(z) = d ln Γ(z)
dz the digamma function.

Various choices of prior parameters has been proposed in the literature [29–31]. Schurmann and

Grassberger have proposed the prior N = 1
|X | [32] that has been retained in the package.

Implementation of estimators in minet

The mutual information matrix is estimated by using the function build.mim(dataset, estimator).

This function returns a matrix of paired mutual informations computed in nats (base e) and takes two

arguments:

1. the data frame dataset which stores the gene expression dataset or a generic dataset where columns

contain variables/features and rows contain outcomes/samples

2. the string mi, that denotes the routine used to perform mutual information estimator.

The package makes available four estimation routines : "mi.empirical", "mi.shrink", ”mi.sg”,"mi.mm"

(default:"mi.empirical") each referring to the estimators technique explained above.

3 Discretization Methods

All the estimators discussed in the previous section have been designed for discrete variables. If the

random variable X is continuous and takes values comprised between a and b, it is then required to

partition the interval [a, b] into |X | sub-intervals in order to adopt a discrete entropy estimator. The two

most used discretizing algorithm are the equal width and the equal frequency quantization. These are

explained in the next sections. Other discretization methods can be found in [33–35].
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3.1 Equal Width

The principle of the equal width discretization is to divide the range [ai, bi] of each variable

Xi, i ∈ {1, 2, ..., n} in the dataset into |Xi| sub-intervals of equal size :

[ai, ai + bi−ai
|Xi| [, [ai + bi−ai

|Xi| , ai + 2 bi−ai
|Xi| [, ...[ai + (|Xi|−1)(bi−ai)

|Xi| , bi + ε[. Note that an ε is added in the last

interval in order to include the maximal value in one of the |Xi| bins. This discretization scheme has a

O(m) complexity cost (by variable).

3.2 Global Equal Width

The principle of the global equal width discretization is the same as the equal width (Sec. 3.1) except that

the considered range [a, b] is not the range of each random variable such as in Sec. 3.1 but the range of the

random vector composed of all the variables in the dataset. In other words, a and b are respectively the

minimal and the maximal value of the dataset.

3.3 Equal Frequency

The equal frequency discretization scheme consists in partitioning the range [ai, bi] of each variable Xi in

the dataset into |Xi| intervals, each having the same number m/|Xi| of data points points. As a result, the

size of each interval can be different. Note that if the |Xi| intervals have equal frequencies, the computation

of entropy is straightforward: it is log 1
|Xi| . However, there can be more than m/|Xi| identical values in a

vector of measurements. In such case, one of the bins will be more dense than the others and the resulting

entropy will be different of log 1
|Xi| . It should be noted that this discretization is reported in some papers as

one of the most efficient method (e.g. for naive Bayes classification) [35].

Implementation of discretization strategies in minet

The discretization is performed in minet by the function

discretize(dataset, disc="equalfreq", nbins=sqrt(nrow(dataset)))

where

• dataset is the dataset to be discretized

• disc is a string which can take three values: "equalfreq" "equalwidth"

"globalequalwidth"(default is " equalfreq").
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• nbins, the number of bins to be used for discretization, which is by default set to
√

m with m is the

number of samples [35]. Note that there are functions used by the built-in R hist() function that

can be used here such as nclass.FD(dataset), nclass.scott(dataset) and

nclass.Sturges(dataset).

4 Assessment of the network inference algorithm

A network inference problem can be seen as a binary decision problem where the inference algorithm plays

the role of a classifier: for each pair of nodes, the algorithm either returns an edge or not. Each pair of

nodes can thus be assigned a positive label (an edge) or a negative one (no edge).

A positive label (an edge) predicted by the algorithm is considered as a true positive (TP) or as a false

positive (FP) depending on the presence or not of the corresponding edge in the underlying true network,

respectively. Analogously, a negative label is considered as a true negative (TN) or a false negative (FN)

depending on whether the corresponding edge is present or not in the underlying true network,

respectively. Note that all mutual information network inference methods use a threshold value in order to

delete the arcs having a too low score. Hence, for each treshold value, a confusion matrix can be computed.

4.1 ROC curves

The false positive rate is defined as

FPR =
FP

TN + FP
,

and the true positive rate as

TPR =
TP

TP + FN
,

also known as recall or sensitivity.

A Receiver Operating Characteristic (ROC) curve, is a graphical plot of the TPR (true positive rate) vs.

FPR (false positive rate) for a binary classifier system as the threshold is varied [36]. A perfect classifier

would yield a point in the upper left corner (having coordinates [0,1]) of the ROC space, representing 100%

TPR (all true positives are found) and 0% FPR (no false positives are found). A completely random guess

gives a point along the diagonal line (the so-called line of no-discrimination) which goes from the left

bottom to the top right corners. Points above the diagonal line indicate good classification results, while

points below the line indicate wrong results.
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4.2 PR curves

It is generally recommended [37] to use receiver operator characteristic (ROC) curves when evaluating

binary decision problems in order to avoid effects related to the chosen threshold. However, ROC curves

can present an overly optimistic view of an algorithm’s performance if there is a large skew in the class

distribution, as typically encountered in transcriptional network inference because of sparseness. To tackle

this problem, precision-recall (PR) curves have been cited as an alternative to ROC curves [38].

Let the precision quantity

p =
TP

TP + FP
,

measure the fraction of real edges among the ones classified as positive and the recall quantity

r =
TP

TP + FN
,

also know as true positive rate (TPR), denote the fraction of real edges that are correctly inferred. These

quantities depend on the threshold chosen to return a binary decision. The PR curve is a diagram which

plots the precision (p) versus recall (r) for different values of the threshold on a two-dimensional coordinate

system.

4.3 F-Scores

Note that a compact representation of the PR diagram is returned by the maximum and/or the average of

the F-score quantity [39]:

F =
2pr

r + p
,

which is an harmonic average of precision and recall.

The general formula for non-negative real β is:

Fβ =
(1 + β)(pr)

βp + r

where β is a parameter denoting the weight of the recall. Two commonly used F-scores are the F2-measure,

which weights recall twice as much as precision, and the F0.5-measure, which weights precision twice as

much as recall. In transcriptional network inference, precision is often a more desirable feature than recall

since it is expensive to investigate if a gene regulates another.
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Assesment functionalities in minet

In order to benchmark the inference methods, the package provides a number of assessment tools. The

validate(net, ref.net, steps=50) function allows to compare an inferred network net to a reference

network ref.net, described by a Boolean adjacency matrix. The assessment process consists in removing

the inferred edges having a score below a given threshold and in computing the related confusion matrix,

for steps thresholds ranging from the minimum to the maximum value of edge weigths. A resulting

dataframe table containing the list of all the steps confusion matrices is returned and made available for

further analysis.

In particular, the function pr(table) returns the related precisions and recalls, rates(table) computes

true positive and false positive rates while the function fscores(table, beta) returns the Fβ − scores.

The functions show.pr(table) and show.roc(table) allow the user to plot PR-curves and ROC-curves

respectively (Figure 3) from a list of confusion matrices.

5 Example

Once the R platform is launched, the package, its description and its vignette can be loaded using the

following commands:

library(minet)

library(help=minet)

vignette("minet")

A demo script (demo(demo)) shows the main functionalities of the package that we describe in the

following.

In order to infer a network with the minet package, four steps are required:

• data discretization,

• MIM computation,

• network inference,

• normalization of the network (optional).

The main function of the package is minet which sequentially executes the four steps mentioned above, see

Figure 1).
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Figure 1: The four steps in the minet function (discretization disc, mutual information matrix build.mim,
inference mrnet, aracne, clr and normalization norm.

The function minet(dataset, method, estimator, disc, nbins) takes the following arguments:

dataset, a matrix or a dataframe containing the microarray data, method, the inference algorithm (such as

ARACNE, CLR or MRNET), estimator, the entropy estimator used for the computation of mutual

information (empirical, Miller-Madow, shrink, Schurmannn-Grassberger), disc the binning algorithm (i.e.

equal frequency or equal size interval) and the parameter nbins which sets the number of bins to use. The

final step of the minet function is the normalization using the norm(net) function. This step normalizes all

the weights of the inferred adjancy matrix between 0 and 1. Hence, the minet function returns the inferred

network as a weighted adjacency matrix with values ranging from 0 to 1 where the higher is a weight, the

higher is the evidence that a gene-gene interaction exists.

For demo purposes the package makes available also the dataset syn.data representing the expression of

50 genes in 100 experiments. This dataset has been synthetically generated from the network syn.net

using the microarray data generator Syntren [40]. This dataset can be loaded with data(syn.data) and

the corresponding original network with data(syn.net).

Note that the command res<-minet(syn.data,"mrnet","mi.shrink","equalwidth",10) is a compact

way to execute the following sequence of instructions:

discdata<-discretize(syn.data,"equalwidth",10)

mim<-build.mim(discdata,"mi.shrink")

net<-mrnet(mim)

res<-norm(net)

In order to plot a PR-curve (see Figure 3), the functions show.pr and validate can be used.

table <- validate(res, syn.net)

show.pr(table)
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Figure 2: Graph generated with minet and plotted with Rgraphviz

Figure 3: Precision-Recall curves plotted with show.pr(table)
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In order to display the inferred network, the Rgraphviz package [41] can be used with the following

commands (see Fig. 2):

library(Rgraphviz)

graph <- as(res, "graphNEL")

plot(graph)

Note that, for the sake of computational efficiency, all the inference functions as well as the entropy

estimators are implemented in C++. As a reference, a network of five hundreds variables may be inferred

in less than one minute on an Intel Pentium 4 with 2Ghz and 512 DDR SDRAM.

6 Conclusion

Transcriptional network inference is a key issue toward the understanding of the relationships between the

genes of an organism. Notwithstanding, few public domain tools are available once a thourough

comparison of existing approaches is at stake. A new R/Bioconductor package, freely available, has been

introduced in this paper. This package makes available to biologists and bioinformatics practicioneers a set

of tools to infer networks from microarray datasets with a large number (several thousands) of genes. Four

information-theoretic methods of network inference (i.e. Relevance Networks, CLR, ARACNE and

MRNET), four different entropy estimators (i.e. empirical, Miller-Madow, Schurmann-Grassberger and

shrink) and three validation tools (i.e. F-scores, PR curves and ROC curves) are implemented in the

package. We deem that this tool is an effective answer to the increasing need of comparative tools in the

growing domain of transcriptional network inference from expression data.
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Function Usage
minet(data, method,

estimator, disc, nbins)
Network inference from data

discretize(data, disc,
nbins)

Unsupervised discretization

build.mim(data, estimator) Mutual information matrix estimation
Estimator can be "mi.empirical", "mi.mm", "mi.shrink" and "mi.sg".

mrnet(mim) MRNET algorithm
aracne(mim) ARACNE algorithm
clr(mim) CLR algorithm
norm(net) matrix/network normalization

validate(net1,net2, steps) Computes confusion matrices
pr(table) Computes precisions and recalls from confusion matrices

rates(table) Computes true positive rates and false positive rates from confusion
matrices

show.pr(table) Displays precision-recall curves from confusion matrices
show.roc(table) Displays receiver operator caracteristic curves from confusion matrices
fscores(table) Returns a vector of Fβ-scores from confusion matrices

Table 1: Available functions of the package minet (version 1.1.6)
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