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Institut Montefiore, B28
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Abstract

This paper presents an algorithm for detecting deadlocks in concurrent finite-state sys-

tems without incurring most of the state explosion due to the modeling of concurrency by

interleaving. For systems that have a high level of concurrency our algorithm can be much

more efficient than the classical exploration of the whole state space. Finally, we show that

our algorithm can also be used for verifying arbitrary safety properties.

1 Introduction

When reasoning assertionally about concurrent programs, separating safety and liveness prop-

erties is a well established paradigm [1, 2]. Indeed, the proof techniques used for these two

types of properties are quite different: safety properties are mostly established with invariance

arguments whereas liveness properties require the use of well-founded orders.

Surprisingly, this distinction can often be ignored in model-checking [3, 4, 5, 6]. Indeed, model

checking can handle arbitrary temporal formulas which can represent both safety and liveness

properties. Nevertheless, it has been noticed that restricting model-checking like techniques

to safety properties can lead to better verification algorithms [7, 8, 9]. Intuitively, this can

be understood by the fact that safety properties can be checked by only considering the finite

behaviors of a system whereas liveness properties are only meaningful for infinite behaviors.

Representing infinite behaviors requires the use of concepts such as automata on infinite words

or trees [10, 11] which are significantly harder to manipulate than their finite word or tree

counterparts [12, 13].

In this paper, we explore whether partial-order model-checking techniques such as those of

[14, 15] also benefit from being restricted to safety properties. The motivation for partial-order

verification methods is that representing concurrency by interleaving is usually semantically

adequate but quite often extremely wasteful. This wastefulness plagues model checking as well

as other finite-state verification techniques since it creeps in when constructing the global state

graph corresponding to a concurrent program. In [16, 17, 18] among others, it is shown that

most of the state explosion due to the modeling of concurrency by interleaving can be avoided.

For instance, the method used in [16] is to build a state-graph where usually only one (rather



than all) interleaving of the execution of concurrent events is represented. This reduced state-

graph can then still be viewed as correctly representing the concurrent program by giving it an

interpretation based on Mazurkiewicz’s trace theory [19].

We first turn to the grand-father of finite-state verification problems: deadlock detection. We

show that for this problem, the algorithm of [16] can be strongly simplified and improved. The

main idea of the simplification (which is also found in [20]) is that since we are seeking deadlocks,

one can generate a global representation of the program that chooses amongst independent events

in a completely arbitrary way. The choices can even be completely “unfair” since, if there is a

deadlock, favored processes will anyway eventually be blocked and the deadlock will be detected.

This simplification leads to an algorithm that can be more easily and efficiently implemented

than the one of [16] and that often generates substantially fewer states.

Our next step is to turn to the verification of general safety properties. The approach we

use here is that of “on the fly verification” [6, 21, 9, 22, 23, 24]. Namely, we represent the

safety property (or rather its complement) by an automaton on finite words and we check that

the accepting states of this automaton are not accessible in its product with the automata

representing the program. We thus reduce the problem of verifying safety properties to a state

accessibility problem. This problem is in turn reduced by a simple transformation of the program

and of the specification to a deadlock detection problem to which we apply our new algorithm.

The paper ends with a comparison between our contributions and related work.

2 A Representation of Concurrent Systems

We consider a concurrent program P composed of n concurrent processes Pi. Each process is

described by a finite automaton Ai on finite words over an alphabet Σi. Formally, an automaton

is a tuple A = (Σ, S,∆, s0), where Σ is an alphabet, S is a finite set of states, ∆ ⊆ S ×Σ× S is

a transition relation, and s0 ∈ S is the starting state.

We consider automata without acceptance conditions. Thus a word w = a0a1 . . . an−1 is

accepted by an automaton A if there is a sequence of states σ = s0 . . . sn such that s0 is the

starting state of A and, for all 0 ≤ i ≤ n − 1, (si, ai, si+1) ∈ ∆. We call such a sequence σ an

execution of A on w. A state s is reachable from s0 if there is some word w = a0a1 . . . an−1 and

some execution σ = s0 . . . sn of A on w such that s = sn.

An automaton AG representing the joint global behavior of the processes Pi can be com-

puted by taking the product of the automata describing each process. Actions that appear in

several processes are synchronized, others are interleaved. Formally, the product (×) of two

(generalization to the product of n automata is immediate) automata A1 = (Σ1, S1,∆1, s01) and

A2 = (Σ2, S2,∆2, s02) is the automaton A = (Σ, S,∆, s0) defined by

• Σ = Σ1 ∪ Σ2,

• S = S1 × S2, s0 = (s01, s02),

• ((s, t), a, (u, v)) ∈ ∆ when

– a ∈ Σ1 ∩ Σ2 and (s, a, u) ∈ ∆1 and (t, a, v) ∈ ∆2,

– a ∈ Σ1 \ Σ2 and (s, a, u) ∈ ∆1 and v = t,

– a ∈ Σ2 \ Σ1 and u = s and (t, a, v) ∈ ∆2.
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Let S = S1 × · · · × Sn and ∆ ⊆ S × Σ × S denote respectively the set of states and the

transition relation of the product AG of the n automata Ai. In what follows, we assume that

the sets of states Si of the automata Ai are pairwise disjoint and, for a state s = (s1, s2, . . . , sn)

of AG, we write s ∈ s to mean ∃i, 1 ≤ i ≤ n such that s = si, i.e. we allow ourselves to view

the state s as a set rather than as a vector. Then, for each transition t = (s, a, s′) ∈ ∆ with

s = (s1, s2, . . . , sn) and s′ = (s′1, s
′
2, . . . , s

′
n), the sets

- •t = {si ∈ s : (si, a, s
′
i) ∈ ∆i},

- t• = {s′i ∈ s′ : (si, a, s
′
i) ∈ ∆i} and

- •t• = •t ∪ t•

are called respectively the preset , the postset and the proximity of the transition t. Intuitively,

the preset , resp. the postset , of a transition t = (s, a, s′) of AG represents the states of the Ai’s

that synchronize together on a, respectively before and after this transition. We say that the

Ai’s with a nonempty preset and postset for a transition t are active for this transition. The

state s′ reached after the execution of a transition t from a state s is s′ = (s \ •t) ∪ t•.
Two transitions t1 = (s1, a1, s

′
1), t2 = (s2, a2, s

′
2) ∈ ∆ are said to be equivalent (notation ≡)

iff
•t1 = •t2 ∧ t•1 = t•2 ∧ a1 = a2.

Intuitively, two equivalent transitions represent the same transition but correspond to distinct

occurrences of this transition. These occurrences can only differ by the states of the Ai’s that

are not active for the transition. We denote by T the set of equivalence classes defined over ∆

by ≡. In the sequel, “transitions” will denote elements of T .

3 Efficiently Detecting Deadlocks

A deadlock in a system composed of n concurrent processes Pi is defined as a reachable state

of the system in which all processes Pi are blocked, i.e. where no transition is executable.

Detecting deadlocks is usually performed by an exhaustive enumeration of all reachable states

of the automaton AG corresponding to the product of the n automata Ai. This enumeration

amounts to exploring all possible transition sequences the system is able to perform and storing

all intermediate states reached during this exploration. In concurrent systems, the number of

reachable states can be very large: this is the well-known “state explosion” phenomenon. This

combinatorial explosion limits both the applicability and the efficiency of the classical method.

In this section, we present a new simple method for detecting deadlocks without computing

and storing all reachable states of the concurrent system. The basic idea is to describe the

behavior of the system by means of partial orders rather than by sequences. More precisely, we

use Mazurkiewicz’s traces [19] as a semantic model.

Traces are defined as equivalence classes of sequences. Given an alphabet Σ and a dependency

relation D ⊆ Σ × Σ, two sequences over Σ belong to the same trace with respect to D (are in

the same equivalence class) if they can be obtained from each other by successively exchanging

adjacent symbols which are independent according to D. For instance, if a and b are two symbols

of Σ which are independent according to D, the sequences ab and ba belong to the same trace. A

trace is usually represented by one of its elements enclosed within brackets and, when necessary,
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subscripted by the alphabet and the dependency relation. Thus the trace containing both ab

and ba could be represented by [ab](Σ,D). A trace corresponds to a partial ordering of symbol

occurrences and represents all linearizations of this partial order. If two independent symbols

occur next to each other in a sequence of a trace, the order of their occurrence is irrelevant since

they occur concurrently in the partial order corresponding to that trace.

To describe the behavior of the concurrent system represented by AG in terms of traces, we

define the dependency in AG as the relation DAG
⊆ T × T such that

(t1, t2) ∈ DAG
iff •t•1 ∩ •t•2 6= ∅.

The complement of DAG
is called the independency in AG. Given an alphabet and a dependency

relation, a trace is fully characterized by only one of its linearizations (sequences). Thus, given

the set of transitions T and the dependency relation DAG
defined above, the linear behaviors of

AG can be fully investigated by exploring only one sequence (interleaving) for each possible trace

(partial ordering of transitions) the system is able to perform.

Note that all deadlocks of AG will be detected during this exploration. Indeed, for each

deadlock, there exists at least one transition sequence w leading to this deadlock from the

starting state. Moreover, all other sequences belonging to the same equivalence class [w](T,DAG
)

also lead to the same deadlock. Thus, for detecting this deadlock, it is sufficient to explore only

one of these sequences which can be chosen arbitrarily. This deadlock-preserving property of

partial-order semantics was already pointed out in [25, 20] among others.

Figure 1 presents an algorithm for performing this exploration. The main data structures

used are a Stack to hold the states from which the behavior of the system remains to be

investigated, and a hash table H to store the states that have already been visited. This

algorithm looks like a classical exploration of all possible transition sequences, except for two

differences. The first difference is that, instead of executing systematically all transitions enabled

in a state, we choose only some of these transitions to be executed. The second difference is that

a sleep set is attached to every state in order to further limit the search. Let us first examine

the selection of transitions.

The basic idea for selecting amongst the enabled transitions those that have to be executed

is the following. Whenever several independent transitions are enabled at a given state, we

execute only one of these transitions. This will ensure that we generate only one interleaving of

these independent transitions. When enabled transitions are dependent, their executions lead

to different traces corresponding to different nondeterministic choices which can be made by the

system. We then have to execute all these transitions in order to consider all possible traces the

system is able to perform.

We now give more details. In what follows, two transitions t1, t2 are referred to as being

in conflict iff (•t1 ∩ •t2) 6= ∅. Checking if two enabled transitions are dependent can be done

by checking if they are in conflict. Indeed, if two enabled transitions are in conflict, they are

trivially dependent. Conversely, two dependent transitions have at least one active process in

common and, if they are simultaneously enabled, this implies that they are in conflict. Two

transitions t, t′ are in indirect conflict iff ∃t1, . . . , tn, n ≥ 1 : (•t ∩ •t1) 6= ∅ ∧ (•t1 ∩ •t2) 6=
∅ ∧ . . . ∧ (•tn−1 ∩ •tn) 6= ∅ ∧ (•tn ∩ •t′) 6= ∅.

Two cases can occur in the selection of transitions.

1. There is a transition that is only in conflict or indirect conflict with enabled transitions.

Then, this transition and all the transitions that are in conflict or indirect conflict with
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Initialize:Stack is empty; H is empty;

s0.Sleep = ∅;
push (s0) onto Stack;

Loop: while Stack 6= ∅ do {
pop (s) from Stack;

if s is NOT already in H then {
T = select transitions(s);

if T = ∅ ∧ s.Sleep = ∅ then print “Deadlock!”;

enter s in H

}
else {

T = {t′ | t′ ∈ H(s).Sleep ∧ t′ 6∈ s.Sleep};
s.Sleep = s.Sleep ∩H(s).Sleep;

H(s).Sleep = s.Sleep

}
for all t in T do {

s′ = succ(s) after t; /* execution of t */

s′.Sleep = {t′ | t′ ∈ s.Sleep ∧ •t′ ∩ •t = ∅};
push (s′) onto Stack;

s.Sleep = s.Sleep ∪ {t}
}

}

Figure 1: Deadlock Detection Algorithm

it are selected. Indeed, these transitions are independent with respect to the rest of the

system and their occurrence can not be influenced by it. An interesting special case is that

of an enabled transition that is not in conflict with any other transition. In this situation,

this transition alone is selected.

2. There is no transition that is only in conflict or indirect conflict with enabled transitions,

i.e. each transition is in conflict or indirect conflict with at least one disabled transition.

In this case all enabled transitions are explored. Indeed, let t be an enabled transition

that is in conflict with a transition x that is not enabled in the current state (this is a

situation of confusion [26]). It is possible that x will become enabled later because of the

execution of some other transitions independent with t. At that time, the execution of t

could be replaced by the execution of x. Thus when we select t, we also have to check

if the execution of t could be replaced by the execution of x after the execution of some

other enabled transitions independent with t (i.e. to check if the confusion actually leads

to a conflict): we thus have to select all enabled transitions that are dependent (as usual)

and independent with t, i.e. all enabled transitions.

The selection procedure we have given can lead to independent transitions simultaneously

being selected. This can cause the wasteful exploration of several interleavings of these transi-

tions, for instance when a case of confusion does not lead to a conflict. Sleep sets are introduced

to control this wastefulness. Imagine, for instance, that we have a situation of confusion with
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select transitions(s) {
T = enabled(s)\s.Sleep;
if ∃t ∈ T :conflict(t)⊆ enabled(s) then selection= {t} ∪ (conflict(t)∩T );

else selection= T ;

return(T )

}

Figure 2: Selection Amongst Enabled Transitions

two enabled independent transitions a and b, and that a is in conflict with only one disabled

transition c. We have to explore both the result of transition a and of transition b. Choosing

transition a amounts to choosing one interleaving of a and b to be explored. The purpose of

exploring the result of transition b is to check if it will eventually enable the transition c with

which a is in conflict. So, when doing this, there is no point in exploring the result of transi-

tion a. Thus, sleep sets are used to prevent the execution of a in the states reached after the

execution of transition b.

More precisely, a sleep set is a set of transitions. One sleep set is computed for each state

s reached during the search. The sleep set computed for a state s is a set of transitions that

are enabled in s but will not be executed from s. The sleep set associated with the initial state

s0 is the empty set. The sleep sets of the successors of a state s are then computed as follows.

Let us call t1 the first transition that is explored from s. The sleep set associated with the state

reached by t1 is the sleep set of s unmodified except for the elimination of transitions that are

dependent with t1. When the exploration of t1 is finished, it is added to the sleep set of s. Thus,

the transition t1 will also be added to the sleep set of the state reached by the next transition

(say t2) as long as it is not dependent with it. One then proceeds in a similar way with the

remaining transitions. The general rule is thus that the sleep set of a state s′ reached by a

transition t from a state s is the sleep set that was obtained when reaching s augmented with

all transitions already explored from s and purged of all transitions that are dependent with t.

Let us now see how the selection procedure we have described is implemented in the algorithm

of Figure 2. The function conflict(t) returns the transitions that are in conflict and indirect

conflict with t. The function enabled(s) returns all enabled transitions in state s. The first

step is to ignore the transitions that are in the sleep set s.Sleep associated with the current state

s. If there is a transition t among the remaining enabled transitions such that all transitions

in conflict(t) are enabled, then t and the transitions of conflict(t) that are not in the current

sleep set are selected (in practice, if there are several such enabled transitions, one chooses one

that minimizes the number of transitions in the selection set). The other remaining possibility

is that of a case of confusion in which all enabled transitions that are not in the sleep set are

selected.

The algorithm of Figure 1 includes all operations required to manipulate sleep sets. This al-

gorithm performs a call to the function select transitions each time a new state is encountered

during the search. If a state has already been visited with a sleep set H(s).Sleep containing

transitions that are not in the current sleep set s.Sleep, these transitions are explored (see
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Classical Algorithm New Algorithm

States Trans. States Trans.

rr4 144 368 20 24

rr5 360 1100 25 30

rr6 864 3072 30 36

rr7 2016 8176 35 42

Table 1: Analysis of the Round Robin Access Protocol

Appendix for details).

All this ensures that sufficient interleavings of the traces the system can perform are explored,

while still avoiding the construction of all possible interleavings of enabled independent transi-

tions. Proofs of the correctness of the algorithm can be found in Appendix A. The practical

advantage of the algorithm presented here is that, by construction, the state-graph G′ explored

by this algorithm is a “sub-graph” of the usual state-graph G representing all possible transition

sequences of the system. (By sub-graph, we mean that the states of G′ are states of G and the

transitions of G′ are transitions of G.) Moreover, the function select transitions required for

constructing G′ can be implemented in such a way that the order of its time complexity is the

same as the one of the function enabled that is used to construct G. Thus our algorithm never

uses more resources than (i.e. has the same worst-case asymptotic complexity as) the classical

state space exploration algorithm and is often much more efficient in practice. Of course, if no

simultaneous enabled independent transitions are encountered during the search, our method

becomes equivalent to the classical one.

Table 1 compares the performance of a classical depth-first search algorithm against the

deadlock detection algorithm presented in this section for analyzing the Round Robin Access

Protocol described in [27] for a ring of 4 (rr4) to 7 (rr7) participants. One clearly sees that our

method explores a much smaller number of states and transitions than the classical one. With

our method, the number of states and transitions that need to be explored to conclude that the

protocol is deadlock-free grows in a linear way with the number of participants in the protocol.

The algorithm presented in this paper is a simplified and improved version of the one pre-

sented in [16] that was designed to generate at least one interleaving for each possible trace of a

concurrent program. The simplification comes essentially from the fact that, when looking for

deadlocks, if the algorithm detects that one of the concurrent processes can loop in the current

trace being explored, the exploration of this trace can stop without generating the remainder

of this trace as it had to be done in [16]. Hence, the number of explored states and transitions

with the new algorithm presented here is always less than or equal to the number explored with

the algorithm described in [16].

4 Verifying Safety Properties

In this section, we show how the reachability of a global state, the reachability of a local state,

and finally the verification of a safety property can be reduced to deadlock detection. Note that
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we cannot directly use the algorithm of Section 3 to determine reachability since it usually does

not generate all reachable states.

The algorithm presented in the previous section can easily be used to check if a given global

state s = (s1, s2, . . . , sn) of a concurrent program P is reachable. This is done by adding

to all Ai’s a transition (si, δ, stopi) for si ∈ s. We call the modified system PM . Then, the

state s′ = (stop1, stop2, . . . , stopn) is a deadlock of PM iff the state s is reachable. Indeed, the

synchronization of all processes on the transition δ leading to s′ in PM is possible only if the

global state s is reachable. Hence checking the reachability of s amounts to checking if s′ is a

deadlock of the modified system PM .

Let us now turn to the problem of checking the reachability of a given local state `. A local

state is defined as an incompletely specified global state. In other words, it is a tuple of states

of some (but not all) processes. For convenience, we define a local state ` as a subset of
⋃

i Si
such that, for each 1 ≤ i ≤ n, |` ∩ Si| ≤ 1. Checking for the reachability of a local state `

means checking for the reachability of some global state s = (s1, s2, . . . , sn) such that ` ⊂ s.

One can reduce the problem of checking the reachability of a local state ` to that of checking the

reachability of global states (and hence to deadlock detection) by enumerating all global states

s such that ` ⊂ s and checking if at least one of these is reachable. Unfortunately, this approach

is not practical since the number of states s such that ` ⊂ s can be very large.

We need a more direct reduction. A first step is to apply the construction we used above for

transforming global reachability to deadlock detection. Specifically, we add to each automatonAi

that has a state si ∈ ` a transition (si, δ, stopi). Let the modified system be PM . Unfortunately,

the reachability of ` does not induce a deadlock in PM since processes that do not have a state

in ` can still be active. We thus have a form of livelock . To simplify the following discussion,

we denote by P` the processes that have a state in ` and by P¬` those that do not have such a

state.

The next step is to transform the system PM in such a way that a deadlock rather than

a livelock is reached if ` is reachable. The idea is to ensure that the processes in P¬` can be

blocked whenever the livelock of PM corresponding to ` is reached. For each process Pi ∈ P¬`,
we add a transition (sj , δi, stopi) to one state sj of each cycle occurring in the graph Ai of

Pi. Also, for each process Pi ∈ P`, we add the transition (stopi, δj , stopi) for each j such that

Pj ∈ P¬`. Let PM ′ denote the result of this transformation. It is easy to convince oneself that

this transformation does not modify the reachability of `.

The following theorem ensures that the reachability of ` can be determined by using our

deadlock detection algorithm.

Theorem 4.1 A local state ` of a system P is reachable iff there exists a deadlock s′ in PM ′

such that stopi ∈ s′ for all i corresponding to a process in P`.

Proof: First we use the fact that if ` is reachable in P it is reachable in PM ′ . Now, if ` is

reachable in PM ′ , there exists a global state s such that ` ⊂ s and s is reachable. When the

system reaches the state s, the processes in P` can execute the transition δ and reach their state

stopi. The other processes may still have the opportunity to evolve. Even if there are processes

Pj in P¬` that are able to remain active, by construction, we know that there exists at least

one execution for each of these Pj that will eventually lead to a state where a transition δj
is possible. This transition is synchronized with the processes in P` and can occur since the

processes in P` are in their state stopi where they are ready to synchronize on any transition
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δj . After this synchronization, the process Pj reaches its state stopj and is blocked for ever. For

the other processes in P¬l, either the same will happen, or they will be blocked because they

are attempting to synchronize with blocked processes. Hence we reach a global state where all

processes in P` are in their state stopi and all processes in P¬` are blocked. This is a deadlock

state. Indeed, in that state the only possible transitions for the processes in P` are δ-transitions

which are all disabled since they imply a synchronization with processes in P¬`, which are all

already blocked.

The other direction of the theorem is immediate to establish.

One may wonder if adding the states stopi could increase the number of reachable states of

the system. An analysis of our reduction shows that this is not the case if we stop the search

as soon as a state s such that ` ⊂ s is reached. Another way to state this is to say that the

δ-transitions are not there to be executed, but simply to guide the search. The drawback is that

the δ-transitions increase the number of conflicts and thus are likely to increase the number of

states that are actually explored with our partial-order method. The amount of this increase is,

however, very difficult to estimate.

We can now turn to the verification of safety properties. Safety properties can be represented

by prefix closed finite automata on finite words [28, 7]. We assume such a representation AS

and proceed as follows:

1. Build the automaton A¬S corresponding to the complement of AS . Since AS is prefix

closed, A¬S is naturally an automaton with only one accepting state (denoted X).

2. Check if the local state X is reachable in the concurrent system composed of the automata

Ai, 1 ≤ i ≤ n, and of the automaton A¬S .

Note that this framework is still applicable for safety properties represented by more than one

communicating automaton.

5 Comparison with Other Work and Conclusions

We have presented a new algorithm for detecting deadlocks. We have shown that this algorithm

can be much more efficient than the classical exploration of the whole state space of the system

being checked. This algorithm is a simplified and improved version of the one presented in [16].

The basic idea of the simplification is close to the one used in [20] where Valmari’s stubborn

set method is adapted to deadlock detection for Petri nets. Our method is also applicable to

many other representations of concurrent finite-state systems (e.g., various definitions of Petri

nets). Finally, our approach to verifying general safety properties by using a deadlock detection

algorithm is new.

Our method has the advantages of “on the fly verification”, i.e. we compose the program

and the property without ever building an automaton representing the global behavior of the

program. Maybe surprisingly, this automaton is often smaller than the automaton for the

program alone because the property acts as a constraint on the behavior of the program. Our

method thus has a head start over methods that require an explicit representation for the global

behavior of the program to be built. Note that our method is fully compatible with techniques

for compactly representing the state space as described in [29, 21].
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The method described in this paper has been implemented in an existing automated protocol

validation tools called SPIN [30]. Its implementation, and its performance on real-protocols are

presented in [31]. Further results on the practicality of this approach are presented in [32].

The main principles of our verification technique can also be profitably used for some appli-

cations in the field of Artificial Intelligence. In [33], it is shown that the algorithm presented

here can be used as a search method suitable for planning the reactions of an agent operating

in a highly unpredictable environment.
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A Correctness Proofs

To establish the correctness of our deadlock detection algorithm, we prove a series of lemmas

and theorems. The first lemma claims that, from a given state s, all sequences of transitions

belonging to the same equivalence class lead to the same state d. In what follows, we write

s
w⇒ s′ to mean that the sequence of transitions w leads from the state s to the state s′.

Lemma A.1 Assume that s
w⇒ d. Then ∀w′ ∈ [w] : s

w′⇒ d.

Proof: By definition, all w′ ∈ [w] can be obtained from w by successively permuting pairs of

adjacent independent transitions. It is thus sufficient to prove that, for any two words w and w′

that differ only by the order of two adjacent independent transitions, if s
w⇒ d then s

w′⇒ d.

Let us thus assume that w = t1t2 . . . ab . . . tn and w′ = t1t2 . . . ba . . . tn. We have

s
t1→ s1

t2→ s2 . . .
ti−1→ si−1

a→ si
b→ si+1 . . .

tn→ d

and

s
t1→ s1

t2→ s2 . . .
ti−1→ si−1

b→ s′i
a→ s′i+1 . . .

tn→ s′.

Also, we know that si = (si−1 \ •a) ∪ a• and that si+1 = (si \ •b) ∪ b•. Hence si+1 = (((si−1 \
•a) ∪ a•) \ •b) ∪ b• and, similarly, s′i+1 = (((si−1 \ •b) ∪ b•) \ •a) ∪ a•. Given that a and b are

independent, i.e. (•a•) ∩ (•b•) = ∅, it follows that si+1 = s′i+1 and thus, since the transitions

from si+1 and s′i+1 are identical, that s′ = d.

Lemma A.1 guarantees that in order to detect all deadlocks, it is sufficient to explore one

interleaving of each trace that leads to a deadlock. We thus now prove that our method indeed

explores enough interleavings to detect all deadlocks.

First, assume that all that concerns sleep sets is not implemented (or equivalently that the

sleep set associated to every state reached during the search is empty). We now prove that, under

this assumption, if a deadlock is reachable from a state s by a trace, then some interleaving of

that trace is explored. (A theorem from which this can be rather directly derived appears

in [18]. However, we prove the theorem in order to provide the reader with a direct proof and a

self-contained paper.)

Lemma A.2 Consider the algorithm of Figure 1 modified so that sleep sets are always empty.

Let s be a state reached by this algorithm and d be a deadlock. Then, if ∃w : s
w⇒ d, d will also

be reached.

Proof: The proof proceeds by induction on the length of w. For |w| = 0, the result is

immediate. Now, assume the lemma holds for a path w of length n ≥ 0 and let us prove that it

holds for a path tw of length n+ 1.

Given that s
tw⇒ d, there exists a state s′ such that s

t→ s′ and s′
w⇒ d. Now, if t ∈

select transitions(s), the inductive hypothesis directly implies the lemma. Let us thus assume

that t 6∈ select transitions(s).

By construction, all enabled transitions that are not in select transitions(s) are indepen-

dent with respect to all transitions that are in this set. Thus, in the word tw such that s
tw⇒ d,

t is independent with respect to all transitions in select transitions(s). Moreover, these tran-

sitions remain enabled in the state s′ reached after the execution of t. Thus the first transition
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of w is either one of these transitions or is independent with respect to these transitions (since

it is enabled in s′, it cannot be dependent with one transition in select transitions(s) without

being in conflict with this transition and hence included in the set). By repeating this argu-

ment, one comes to the conclusion that all transitions in w that precede the first transition in

select transitions(s) are independent with respect to this set. Moreover, w has to include a

transition in select transitions(s) since, if it does not, these transitions will still be enabled in

d which would then not be a deadlock.

Let thus t′ be the first transition in w that is in select transitions(s). We thus have

w = w1t
′w2 and t′ is independent with all transitions in w1 as well as with t. Consequently,

[tw1t
′] = [t′tw1] and, since s

tw1t′w2⇒ d, by Lemma A.1 we also have that s
t′tw1w2⇒ d. Since t′ is

in select transitions(s), it is explored from state s and a state from which a path of length n

leads to the deadlock d is reached by the search. This together with the inductive hypothesis

proves the lemma.

By applying Lemma A.2 to the initial state, we directly reach the conclusion that the algo-

rithm of Figure 1 used without sleep sets indeed reaches all deadlock states. Now we will show

that the use of sleep sets as given in the algorithm of Figure 1 does not affect the correctness of

the algorithm.

Theorem A.3 Let d be a deadlock reachable from the initial state s0. Then, there is a path

from s0 leading to d which is explored by the algorithm of Figure 1.

Proof:

Consider the algorithm of Figure 1. Let s be a state visited by this algorithm, s.Sleep be

the sleep set associated with this state and stored with it in the Stack, and d be a deadlock. We

first prove that, if ∃w : s
w⇒ d, and if, for all wi ∈ [w], the first transition of wi is not in s.Sleep,

then, if s is pushed on the Stack (i.e., is visited), d is visited.

The proof proceeds by induction on the length of w. For |w| = 0, the result is immediate.

Now, assume the proposition holds for paths of length n ≥ 0 and let us prove that it holds for a

path w of length n+1. Let s be a visited state such that ∃w : s
w⇒ d and ∀wi ∈ [w] : ti 6∈ s.Sleep,

where ti denotes the first transition of the path wi.

We first consider the case where s is not already in H. In this case, we know from

the proof of Lemma A.2 that at least one of the transitions ti is selected by the function

select transitions(s). Moreover, this transition is executed since it is not in s.Sleep. If there

are several such transitions, we consider the first of these, which we will call t1. Let s′ be the

successor of s reached by executing t1. We have w1 = t1w
′. By Lemma A.1, since w leads to d

in n+ 1 steps, w1 also leads to d in n+ 1 steps and, consequently, w′ also leads to d from s′ and

is of length n. Moreover, we can also show that for all w′i ∈ [w′], the first transition of w′i is not

in s′.Sleep.

Indeed, assume the opposite, i.e., there exists some transition t′i ∈ s′.Sleep such that t′i is

the first transition of a w′i ∈ [w′] leading to d. This implies that t′i and t1 (the transition leading

to s′) are independent, else t′i would not have been passed on to the sleep set associated to s′.

Since they are independent, t′i is enabled in s and is the first transition of a path wi leading

from s to d. Given that t′i is in s′.Sleep, either t′i was in the sleep set s.Sleep or was added after

being executed from s. The first possibility is in contradiction with the fact that t′i is also the

first transition of some wi ∈ [w] leading to d from s and thus is assumed not to be in s.Sleep.
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The second possibility is incompatible with the fact that t1 is the first such transition to be

executed from s. The inductive hypothesis can thus be used to establish that d is visited from

s′ and thus from s.

We now consider the case where the state s already appears in the table H. Let H(s).Sleep

be the sleep set stored with s in H (while s.Sleep represents the sleep set stored with s on

the Stack). There are two situations: either some of the ti transitions are in H(s).Sleep, or

none of them are. In the first situation, all the transitions in H(s).Sleep and not in s.Sleep are

executed. Thus, at least some ti transitions will be executed and, by an argument identical to

the one above, we can then establish that the first among these leads to a state s′ in which our

inductive hypothesis can be applied.

Let us now turn to the second situation in which none of the ti transitions are in H(s).Sleep.

This can be the case either because no ti transition was in the sleep set the very first time s

was introduced in H or because the ti transitions were all removed when s was reached again

later in the search. Under the first hypothesis, a state s′ in which the inductive hypothesis can

be applied was thus visited the first time transitions from s were explored. Under the second

hypothesis, consider the last visit of s where some of the ti transitions were executed from s, and

let t be the first transition among those; t leads to a successor state s′ in which the inductive

hypothesis can be applied.

We have just proved that, if ∃w : s
w⇒ d, and if, for all wi ∈ [w], the first transition of wi

is not in s.Sleep, then d is visited from s. By applying this result to the initial state s0, we

directly reach the conclusion that the algorithm of Figure 1 indeed reaches all deadlock states,

since the sleep set associated to the initial state is the empty set.
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