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Abstract

This paper presents a model-checking method for linear-time tem-

poral logic that can avoid most of the state explosion due to the mod-

elling of concurrency by interleaving. The method relies on the concept

of Mazurkiewicz’s trace as a semantic basis and uses automata-theoretic

techniques, including automata that operate on words of ordinality higher

than ω.

1 Introduction

Model checking [CES86, LP85, QS81, VW86] is an effective and simple method

for verifying that a concurrent program satisfies a temporal logic formula. It

works on finite-state programs and proceeds by viewing the program as a struc-

ture for interpreting temporal logic and by evaluating the formula on that struc-

ture. It is much simpler than temporal deductive proofs and can be easily and

effectively implemented.

It has been intensively studied for linear-time temporal logic [LP85, VW86,

Var89], branching-time temporal logic [CES86, EL85b, EL85a, Bro86] and tem-

poral µ-calculi [EL86, Var88, Cle90, SW89]. It has been extended to prob-

abilistic [Var85, PZ86, VW86, CY90] as well as real-time programs and log-

ics [ACD90, AH90, HLP90]. It has been adapted to programs containing ar-

bitrary numbers of identical processes [CGB86, CG87, GS87, WL89, KM89].

Methods for making it applicable to very large systems have been investigated

∗This research was supported by the European Community ESPRIT BRA project SPEC

(3096).
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[BCM+90, CMB90, CVWY90, GS90]. Moreover, the results from its experi-

mental use have been very encouraging [RRSV87, BCD85]. What more can be

said about it?

In spite of all its success, almost all work around model checking is based on

a very wasteful idea: modelling concurrency by interleaving. Even if one is not

inclined to loose sleep about whether interleaving semantics are adequate for

concurrency, it remains unarguably silly to investigate the concurrent execution

of n events by exploring all n! interleavings of these events!

In this paper, we develop a simple method for applying model checking

without incurring most of the cost of modelling concurrency by interleaving.

Our method yields results identical to those of methods based on interleaving

semantics, it just avoids most of the associated combinatorial explosion. It is

quite orthogonal to model checking based on partial-order logics [PW84, KP86,

Pen90]. Indeed, these logics are designed to be semantically more powerful.

We are “only” more efficient. The idea that the cost of modelling concurrency

by interleaving can be avoided in finite-state verification already appears in

[PL90, Val91, Val90, God90]. We build upon this earlier work, specifically that

of [God90], and bring to it the full capabilities of model checking.

We study model checking for linear-time temporal logic and adopt the

automata-theoretic approach of [VW86, Var88, Wol89]. In this approach, the

program is viewed as a collection of communicating automata on infinite words

[Büc62]. It can thus include arbitrary fairness conditions. The negation of

the formula to be checked is then also converted to an automaton on infinite

words and the verification can be done by simply checking that the product of

the automata describing the program and the automaton corresponding to the

negation of the formula is nonempty. This is traditionally done by computing

the product automaton which is where the cost of modelling concurrency by

interleaving has to be paid.

In [God90] it is shown that the global behavior of a set of communicating

processes can be represented by an automaton which can be much smaller than

the usual product automaton. The basic idea is to build an automaton that

only accepts one interleaving of each concurrent execution. The method is jus-

tified by using partial-order semantics, namely the concept of Mazurkiewicz’s

trace [Maz86] and the automaton is thus called a trace automaton. A trace

automaton can be viewed as an automaton accepting at least one, but usu-

ally no more than one, interleaving for each trace (concurrent computation)
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of the concurrent program. Thus, together with the independence relation on

transitions, this automaton fully represents the concurrent executions of the

program. The practical benefit is that this automaton can be much smaller

than the automaton representing all interleavings.

The motivating idea behind the method presented here is that, in the

automata-theoretic approach to model checking, the trace automaton could

be used in place of the product automaton. Unfortunately, this is not directly

the case. However, we are able to obtain such a result by using a new type of

automaton.

We consider automata operating on infinite words of ordinality higher than

ω. Precisely, we define automata operating on words of length ω × n, n ∈ ω.1

We study these automata and show that their emptiness can be efficiently

decided. We then show how, when it is viewed as an ω × n-automaton, the

trace automaton can be used to improve the efficiency of model checking.

Finally, we conclude the paper with a comparison between our contributions

and related work.

2 Automata and Model Checking

We briefly recall the essential elements of the automata-theoretic approach to

model checking. More details can be found in [VW86, Wol89, ACW90] and in

Chapter 4 of [Tha89]. The problem we consider is the following. We are given

a concurrent program P composed of n processes Pi, each described by a finite

automaton Ai on countably infinite words over an alphabet Σi. We are also

given a linear-time propositional temporal logic formula f . The model-checking

problem is then to verify that all infinite behaviors of the program P satisfy

the temporal formula f .

The automata we use for describing the processes Pi are generalized Büchi

automata2, i.e. tuples A = (Σ, S,∆, s0,F), where

• Σ is a finite alphabet,

• S is a finite set of states,

1Interestingly, a related type of automata on ordinals was used by Büchi [Büc65b, Büc65a]

to study the decidability of the monadic theory of the ordinals.
2Generalized Büchi automata differ from Büchi automata [Büc62] in that they have a set

of sets of accepting states rather than just one set of accepting states.
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• ∆ ⊆ S × Σ× S is a transition relation,

• s0 ∈ S is the starting state, and

• F = {F1, . . . , Fk} ⊆ 2S is a set of sets of accepting states.

Generalized Büchi automata are used to define languages of ω-words, i.e.

functions from the ordinal ω to the alphabet Σ. Intuitively, a word is accepted

by a Generalized Büchi automaton if the automaton has an infinite execution

that intersects infinitely often each of the sets Fj ∈ F .

Formally, we define the concept of a computation of A over an ω-word, i.e.

a function from the ordinal ω to the alphabet Σ. A computation σ of A over

an ω-word w = a1a2 . . . is an ω-sequence σ = s0, s1, . . . (i.e. a function from

ω to S) where (si−1, ai, si) ∈ ∆, for all i ≥ 1. A computation σ = s0, s1, . . . is

accepting if, for each Fj ∈ F , there is some state in Fj that repeats infinitely

often, i.e. for some s ∈ Fj there are infinitely many i ∈ ω such that si = s.

The ω-word w is accepted by A if there is an accepting computation of A over

w. The set of ω-words accepted by A is denoted Lω(A).

An automaton AP representing the joint behavior of the processes Pi can

be computed by taking the product of the automata describing each process,

actions that appear in several processes are synchronized, others are interleaved.

Formally, the product (×) of two (generalization to the product of n automata

is immediate) generalized Büchi automata A1 = (Σ1, S1,∆1, s01,F1) and A2 =

(Σ2, S2,∆2, s02,F2) is the automaton A = (Σ, S,∆, s0,F) defined by

• Σ = Σ1 ∪ Σ2,

• S = S1 × S2, s0 = (s01, s02),

• F =
⋃

Fj∈F1
{Fj × S2} ∪

⋃
Fj∈F2

{S1 × Fj}

• ((s, t), a, (u, v)) ∈ ∆ when

– a ∈ Σ1 ∩ Σ2 and (s, a, u) ∈ ∆1 and (t, a, v) ∈ ∆2,

– a ∈ Σ1 \ Σ2 and (s, a, u) ∈ ∆1 and v = t,

– a ∈ Σ2 \ Σ1 and u = s and (t, a, v) ∈ ∆2.

Note that with this definition, the product automaton can have an infinite

accepting computation that corresponds to a finite computation of some (but

not all) of its components. Indeed, if a component i has a state s such that
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s ∈ Fj for all Fj ∈ Fi, then an infinite computation of the product in which

component i stays indefinitely in state s will appear as accepting. This is a

counterintuitive consequence of the straightforward definition we have chosen

for the product. To avoid this, we adopt the following restriction on the accep-

tance conditions of the generalized Büchi automata we will use.

• either the acceptance condition is vacuous (F = ∅), in which case the

automaton can have either finite or infinite computations, or

• the set F contains at least two disjoint components, in which case the

product automaton cannot have an accepting computation corresponding

to a finite computation of the automaton.

For a given generalized Büchi automaton, it is quite straightforward to construct

an equivalent automaton that satisfies this restriction. In programming terms,

the restriction is a form of fairness condition imposed on the processes with

nonvacuous acceptance conditions: their executions must be infinite (executions

that might legitimately not be infinite can be modelled by using an additional

“idling” action).

To obtain a model-checking procedure, the only fact we need about linear-

time temporal logic is that, for each formula f , it is possible to build a gen-

eralized Büchi automaton Af that accepts exactly the infinite words satisfying

the temporal formula f (the alphabet of this automaton is 2P where P is the

set of propositions appearing in the formula f) [WVS83, VW86, Wol89]. This

construction is exponential in the length of the formula, but this is usually not

a problem since the formulas to be checked are quite short and since the algo-

rithm often behaves much better than its upper bound. The model-checking

procedure is then the following:

1. Build the finite-automaton on infinite words for the negation of the for-

mula f (one uses the negation of the formula as this yields a more efficient

algorithm). The resulting automaton is A¬f .

2. Compute the product AG =
∏

1≤i≤nAi×A¬f (in practice only the reach-

able states of this product).

3. Check if the automaton AG is nonempty.

To check if the automaton AG is nonempty, it is sufficient to check that

its graph contains a strongly connected component that is reachable from the
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initial state and that includes a state from each of the sets Fj of its set F of

accepting sets. This can be done with a linear-time algorithm [AHU74]. The

complexity of this model-checking method is thus determined by the size of AG.

Note that model checking is often said to be of complexity “linear in the size

of the program” which is correct if one measures the size of the program as the

size of
∏

1≤i≤nAi. In practice, the limits of all model-checking methods come

from the often excessive size of this product. The frustrating fact is that a lot

of this excessive size is unnecessary: it is due to the modelling of concurrency

by interleaving. This is what we are tempting to eliminate. Let us therefore

turn to partial-order semantics.

3 Partial-Order Semantics and Trace Automata

In partial-order semantics, the possible behaviors of a concurrent system are

described in terms of partial orders instead of sequences. More precisely, we

use Mazurkiewicz’s traces [Maz86] as semantic model. We briefly recall some

basic notions of Mazurkiewicz’s trace theory.

Definition 3.1 A concurrent alphabet is a pair Σ = (A,D) where A is a finite

set of symbols, called the alphabet of Σ, and where D is a binary, symmetrical,

and reflexive relation on A called the dependency in Σ.

IΣ = A2 \D stands for the independency in Σ.

Definition 3.2 Let Σ = (A,D) be a concurrent alphabet, let A∗ represent the

set of all finite sequences (words) of symbols in A, let · stand for the concate-

nation operation, and let ε denote the empty word. We define the relation ≡Σ

as the least congruence in the monoid [A∗; ·, ε] such that

(a, b) ∈ IΣ ⇒ ab ≡Σ ba.

The relation ≡Σ is referred to as the trace equivalence over Σ.

Definition 3.3 Equivalence classes of ≡Σ are called traces over Σ.

The trace characterized by a word w and a concurrent alphabet Σ is denoted

by [w]Σ. Thus a trace over a concurrent alphabet Σ = (A,D) represents a set

of words defined over A that only differ by the order of adjacent symbols which
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are independent according to D. For instance, if a and b are two symbols of A

which are independent according to D, the trace [ab]Σ represents the two words

ab and ba. A trace is an equivalence class of words.

Let us now return to a concurrent program described as the composition

of n finite-state transition systems Ai and of a property f represented by the

automaton A¬f . From now on, A¬f will be denoted by An+1. Let ∆ ⊆ S×Σ×S
denote the transition relation of the product AG of these automata.

For each transition t = (s, a, s′) ∈ ∆ with s = (s1, s2, . . . , sn+1) and s′ =

(s′1, s
′
2, . . . , s

′
n+1), the sets (by extension, we consider the states of AG as sets

in the following definitions3)

- •t = {si ∈ s : (si, a, s
′
i) ∈ ∆i}

- t• = {s′i ∈ s′ : (si, a, s
′
i) ∈ ∆i}

- •t• = •t ∪ t•

are called respectively the preset , the postset and the proximity of the transition

t. Intuitively, the preset , resp. the postset , of a transition t = (s, a, s′) of AG

represents the states of the Ai’s that synchronize together on a, respectively

before and after this transition. We say that the Ai’s with a nonempty preset

and postset for a transition t are active for this transition.

Two transitions t1 = (s1, a1, s
′
1), t2 = (s2, a2, s

′
2) ∈ ∆ are said to be equiva-

lent (notation ≡) iff
•t1 = •t2 ∧ t•1 = t•2 ∧ a1 = a2.

Intuitively, two equivalent transitions represent the same transition but corre-

spond to distinct occurrences of this transition. These occurrences can only

differ by the states of the Ai’s that are not active for the transition. We denote

by T the set of equivalence classes defined over ∆ by ≡. By extension, we define

the preset, resp. the postset, of an element of set T as being the preset, resp.

the postset, of all transitions in the corresponding equivalence class. From now

on, “transition” will refer to an element of T rather than of ∆.

We define the dependency in AG as the relation DAG
⊆ T × T such that:

(t1, t2) ∈ DAG
⇔ •t•1 ∩ •t•2 6= ∅.

3We assume that the sets S1, . . . , Sn+1 (where Si is the set of states of Ai) are pairwise

disjoint.
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The complement of DAG
is called the independency in AG. If two independent

transitions occur next to each other in a computation, the order of their occur-

rences is irrelevant, since they occur concurrently in this execution. (Note that

there are other possible ways of defining the notion of dependency [GP93].)

Let ΣAG
= (T,DAG

) be the concurrent alphabet associated with AG and

let L(AG) be the language of finite words over T accepted by AG (all states of

AG considered accepting). In other words, L(AG) is the set of finite sequences

of transitions that the system AG can perform from its initial state. We define

the trace behavior of AG as the set of equivalence classes of L(AG) defined by

the relation ≡ΣAG
. These equivalence classes are called traces of AG. Such a

class (trace) corresponds to a partial order (i.e. a set of causality relations) and

represents all its linearizations (words).

To describe the behavior of AG by means of traces rather than sequences,

we need the dependency DAG
of AG and only one linearization for each trace of

AG. So, the behavior of AG is fully characterized by the dependency DAG
and

an automaton which generates (at least) one linearization for each trace. We

call such an automaton a trace automaton (denoted AT ) for AG [God90].

Formally, the language L(AT ) accepted by a trace automaton AT satisfies

the following relation:

L(AG) =
⋃

w∈L(AT )

Pref(lin([w]ΣAG
)) (1)

where lin([w]ΣAG
) denotes the set of linearizations (words) of the trace (equiv-

alence class) [w]ΣAG
and Pref(w) denotes the prefixes of w.

In [God90] an algorithm for constructing a trace automaton corresponding

to a concurrent program4 is given. To construct such an automaton AT , we

do not need to compute all the reachable states of AG: whenever several in-

dependent transitions are executable, we execute only one of these transitions

in order to generate only one interleaving (linearization) of these transitions.

By construction, AT is a “sub-automaton” of AG (i.e. the states of AT are

states of AG and the transitions of AT are transitions of AG). The order of the

time complexity for the algorithm presented in [God90] is given by the number

of transitions in AT times the maximum number of simultaneous executable

4In [God90] a concurrent program is represented by a contact-free one-safe P/T-net instead

of a parallel composition of sequential processes as defined here; since the former is a more

general formalism (it allows the modelling of process creation/deletion) than the latter, the

algorithm described in [God90] is still applicable in the context considered here.
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transitions. In practice it turns out that building AT often requires much less

time and memory than building AG.

For instance, the behavior of a simple protocol like the 5-dining-philosophers

problem (see [God90]) that would classically require the use of a state-graph

AG containing 2163 states and 8770 transitions can be represented by a trace

automaton AT containing only 72 states and 83 transitions.

4 Using Trace Automata for Model Checking

In order to use the results of Section 3 for doing model checking, we would like

to be able to proceed as follows.

1. Build the finite-automaton on infinite words for the negation of the for-

mula f . The resulting automaton is A¬f .

2. Compute the trace automaton AT corresponding to the concurrent exe-

cutions of the processes Ai, 1 ≤ i ≤ n, and of the automaton A¬f .

3. Check if the automaton AT is nonempty.

Unfortunately, this is incorrect. First, there is an obvious reason that makes this

incorrect which is that the trace automaton AT is not defined as an automaton

on infinite words and hence does not have a set F . However, this problem can

be easily solved. Let SG and ST respectively be the set of states of AG and

AT . By construction, ST ⊆ SG. Let FG = {F1, . . . , Fk} be the set of sets of

accepting states of AG. The set FT of sets of accepting states of AT is then

defined by FT = {F ′1, . . . , F ′k} with F ′i = Fi ∩ ST .

Even if we extend the definition of AT to include the set FT defined above

(let us call the result A∞T ), we still cannot use A∞T for model checking. Indeed

it is quite possible that the automaton AG obtained by the traditional computa-

tion of the product accepts some infinite word whereas A∞T does not accept any

infinite word. This might seem counter intuitive because one could expect that,

if AG accepts some word w, then by permuting independent transitions of the

computation accepting w, one would obtain an accepting computation of A∞T

which would then be nonempty. This is actually true for finite computations but

not for infinite computations. Indeed, consider two processes that are totally

independent (their alphabets are completely disjoint). The trace automaton for

these two processes can be one that allows any number of transitions of the first
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process followed by any number of transitions of the second process. This is is

fine for finite computations, but for infinite computations, one will be left with

either an infinite computation of the first process or one of the second process,

but not an infinite computation of both processes. One can summarize this by

saying that A∞T represents the infinite computations of all processes, but not the

joint infinite computations of unsynchronized processes. The following example

illustrates this situation. Consider the generalized Büchi automata A and A′ of

Figures 1 and 2 where F = {{s1}, {s2}} and F ′ = {{s′1}, {s′2}} respectively. A

possible trace automaton A∞T is given in Figure 3. Its set of sets of accepting

states is defined by FT = {{(s1, s
′
0), (s1, s

′
1), (s1, s

′
2)}, {(s2, s

′
0)}, {(s1, s

′
1)},

{(s1, s
′
2)}}. This automaton does not accept any word whereas there is a joint

infinite execution of the automata A and A′ that would be accepted by the

corresponding global automaton.

s1��
��

> s2��
��q

a1

i

a2

Figure 1: Generalized Büchi automaton A

We now formalize the above discussion. Let AG and A∞T be respectively

the product automaton and the trace automaton obtained by composing the

generalized Büchi automata Ai, 1 ≤ i ≤ n+ 1. Consider a computation of AG

or A∞T on an infinite word w. One can view this computation as an infinite

sequence of transitions, i.e., elements of set T defined in Section 3. For any

transition of AG or A∞T , one can identify the automata Ai that are active (as

defined in Section 3) for this transition. This enables us to define the restriction

of a computation of AG or A∞T to one of the components Ai.

Definition 4.1 Given a trace or product automaton A obtained by composing

the generalized Büchi automata Ai, 1 ≤ i ≤ n + 1, the restriction of a compu-

tation κ of A to the automaton Ai (denoted κ|Ai) is the subsequence of κ that

contains only the transitions for which Ai is active.
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s′1��
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��?
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q
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i

b2

Figure 2: Generalized Büchi automaton A′

s1,s
′
0��

��
> s2,s

′
0��

��q

a1

i

a2

s1,s
′
1��

��
s1,s
′
2��

��?

c

q

b1

i

b2

Figure 3: Trace automaton A∞T
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Note that the restriction of an infinite computation of AG or A∞T to an

automaton Ai can be finite. We have the following.

Theorem 4.1 Let κ be a computation (finite or ω-infinite) of the global au-

tomaton AG obtained by composing the automata Ai, 1 ≤ i ≤ n+ 1. Then, for

every Ai, there is a computation κi (finite or ω-infinite) of the trace automaton

A∞T such that κ|Ai = κi|Ai.

Proof: Consider a computation κ of AG. Consider then the computation κi of

A∞T which has the longest restriction κi|Ai that is a prefix of κ|Ai (if there are

several such computations, choose one of these arbitrarily). Let ti be the first

transition of Ai in κ that is not in this prefix. If there is no such transition, the

theorem holds. Else, let us consider the prefix of κ that ends with transition ti.

This finite computation is then the prefix of a trace of which, by definition of

AT , at least one linearization is generated by AT . The projection on Ai of any

of these linearizations is κi|Ai · ti, which is longer than what we have assumed

to be the longest projection on Ai of a computation of A∞T that is a prefix of

κ|Ai. Since computations of AT are trivially computations of A∞T , we have a

contradiction and the theorem follows.

Note that it is not true that there is a single computation κ′ of A∞T such

that κ|Ai = κ′|Ai for all Ai’s. In spite of this, Theorem 4.1 lets us obtain

an interesting result, namely that the trace automaton can be used for model

checking in cases where only one of the components is required to have an

infinite computation. This is the case if all but one of the automata Ai have a

vacuous accepting condition, i.e. have an empty set F . This is proved in the

following theorem.

Theorem 4.2 Let Ai, 1 ≤ i ≤ n+ 1 be generalized Büchi automata all but one

of which have a vacuous accepting condition. Let AG and A∞T be the product and

trace automata obtained by composing the automata Ai. Then, the automaton

AG is nonempty (has at least one infinite accepting computation) iff the trace

automaton A∞T is nonempty.

Proof: Assume AG has an infinite accepting computation κ and let Aj be

the generalized Büchi automaton that has a nonvacuous acceptance condition.

From Theorem 4.1, we know that there is a computation κj of A∞T such that

κ|Aj = κj |Aj . Since we have assumed in Section 2 that the product automaton
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AG cannot have an accepting computation corresponding to a finite computa-

tion of Aj , κ|Aj , and hence also κj |Aj , are infinite. Moreover, κ|Aj intersects

infinitely often each of the sets F ∈ Fj and, given that κj |Aj = κ|Aj , this is

also the case for κj . This proves that A∞T is nonempty.

The other direction of the theorem is directly obtained from the immediate

fact that all computations of the trace automaton are also computations of the

global automaton.

In practice, Theorem 4.2 enables us to use the trace automaton for model

checking in the cases where the program does not operate under some fairness

hypothesis, or when the fairness hypothesis is incorporated into the formula

to be verified. Indeed, in those circumstances, the automata representing the

program will have vacuous accepting conditions and the automaton obtained

from the formula to be checked will be the only one with a nonempty set F .

5 Automata on (ω × n)-words

Trace automata do not adequately represent the ω-computations of the com-

ponents from which they are built because infinite computations cannot be

concatenated. Actually, with the help of a little abstraction, infinite computa-

tions could very well be concatenated. One can simply think of computations

whose length is an ordinal larger than ω. Since we are only interested in the

concatenation of a finite number of infinite computations we will only study

computations of length ω× n where n ∈ ω. The definitions of Section 2 can be

quite naturally extended to words and computations of length ω× n (for other

definitions of automata on ordinals, see [Büc65b, Büc65a]).

A word of length ω×n over the alphabet Σ is a function w from the ordinal

ω × n to Σ. We use automata that are defined exactly as in Section 2 and

simply change the definition of a computation. A computation of an automaton

A = (Σ, S,∆, s0,F) on a word w of length ω × n is a function σ from ω × n to

S that satisfies the following conditions:

1. σ(0) = s0;

2. for each successor ordinal α+ 1 ∈ ω × n, (σ(α), w(α), σ(α+ 1)) ∈ ∆;

3. for each limit ordinal λ ∈ ω × n, there is an infinite sequence of ordinals

α whose limit is λ such that σ(α) = σ(λ).
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The notions of accepting computation and accepted word are essentially

unchanged. A computation σ is accepting if, for each Fj ∈ F , there is some

state in Fj that repeats infinitely often, i.e., for some s ∈ Fj there are infinitely

many i ∈ ω× n such that si = s. The ω× n-word w is accepted by A if there is

an accepting computation of A over w. The set of ω × n words accepted by A

is denoted Lω×n(A). Note that if an automaton accepts a word of length ω×n,

n ≥ 1, it also accepts a word of length ω × n′ for all n ≤ n′ < ω.

Checking that Lω×n(A) is nonempty can be done by computing the maximal

strongly connected components of A.

Theorem 5.1 Let A = (Σ, S,∆, s0,F) be an automaton. Then, Lω×n(A) 6= ∅
iff there is a sequence of nontrivial maximal strongly connected components

C1, . . . Cn in A such that

• C1 is accessible from s0 and Ci+1 is accessible from Ci, for 1 ≤ i < n and

• for each Fj ∈ F , there is some Ci such that Fj ∩ Ci 6= ∅.

Proof: Assume that A has an accepting computation κ of length ω × n.

Since A is finite state, the first ω-sequence of this computation must, from

some point on, have all its states included in a nontrivial maximal strongly

connected component C1 of A. Similarly, the second ω-sequence must start in

a state of C1 and must end in a component C2 accessible from C1 (it could

actually be C1 itself). Repeating the same line of thought for all ω sequences

in κ up to the nth, one concludes the existence of the sequence of maximal

strongly connected components Ci, 1 ≤ i ≤ n. Moreover, since κ is accepting,

κ contains at least one state of each set Fj ∈ F infinitely often. And, since

these states appear infinitely often, they must be in one of the components Ci.

This proves that the condition given in the theorem is necessary.

To prove that it is sufficient, let us assume the existence of the sequence

of connected components and construct an accepting computation. The first

ω-sequence in the computation starts in the initial state, has a finite prefix that

leads it to the component C1 and then goes infinitely often through all states of

C1. The second ω-sequence starts from any state in C1, has a finite prefix that

leads to C2 and then goes infinitely often through all states in C2. The following

ω-sequences in the computation up to the nth are defined similarly. Since it

goes through all states of all components Ci infinitely often, this computation
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is clearly accepting.

The interesting aspect of the definitions we have just given is that if we

consider the trace automaton as an automaton on words of length ω × n, then

it represents all infinite computations of the combined automata. To prove this,

we first establish a lemma.

Lemma 5.2 Let κ be a finite computation of the global automaton AG obtained

by composing the automata Ai, 1 ≤ i ≤ n+ 1. Then, there is a finite computa-

tion κ′ of AT such that for all 1 ≤ i ≤ n+ 1, κ|Ai is a prefix of κ′|Ai.

Proof: The lemma is a direct consequence of the definition of trace automata.

Indeed, if κ is a finite computation of AG, then there is a representative of a

trace that extends κ that is a computation κ′ of AT . Thus, since adjacent

transitions of a single process are never independent, we must have that κ|Ai

is a prefix of κ′|Ai.

If we extend the notion of computation used in Section 4 to sequences of

transitions of length ω × n, we have the following.

Theorem 5.3 Assume that the global automaton AG obtained by composing

the automata Ai, 1 ≤ i ≤ n + 1 has an accepting ω-computation κ. Then,

there is an accepting computation κ′ of length at most ω × (n+ 1) of the trace

automaton A∞T .

Proof: We use a pumping argument to prove this theorem. We start by

considering a finite prefix κf of κ that is long enough to satisfy the following

condition for each automaton Ai that has a nonvacuous accepting condition.

We describe the condition for a generic automaton Ai. Let F = {F1, . . . , Fk}
be the accepting condition of Ai. For each set Fj , 1 ≤ j ≤ k, there is thus at

least some state sj ∈ Fj that appears infinitely often in κ (more precisely, this

state appears in κ as the component of the global state corresponding to Ai).

This implies that by focusing on selected states of κ, one can identify infinitely

often the sequence s1, s2, . . . , sk (of Ai components of the global state). The

condition is that the sequence s1, s2, . . . , sk can be selected from κf at least as

many times as there are states in AT .

We then consider the computation κTf of A∞T that satisfies the condition

given in Lemma 5.2 for κf . This computation thus also satisfies the condition

we have imposed on κf . Moreover, since the sequence s1, s2, . . . , sk appears at
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least as many times as there are states in AT , each of the states sj must appear

at least twice as component of the same state of AT . Thus κTf contains, for

instance, a subsequence that starts in a global state s whose Ai component

is s1, that goes through at least one state of each of the accepting sets Fj of

Ai and that ends again in the state s. We call such a subsequence of κTf an

Ai-complete subsequence. Note moreover that our assumption that each set

F contains at least two components implies that Ai-complete subsequences are

nontrivial (contain at least one transition). We have thus established that κTf

contains at least one Ai-complete subsequence for each of the automata Ai with

nonvacuous accepting conditions.

The next step is to choose in κTf an Ai-complete subsequence for each

Ai with a nonvacuous accepting computation and to sort these by order of

appearance of their first state. Let σ1, σ2, . . . , σ`, ` ≤ n+ 1, be the Ai-complete

subsequences taken in this order and let s1, s2, . . . s` be their respective first

states (these states thus appear in κTf in that order) and let s0 be the first

state of κTf . Then, if we denote by [si, sj ] the portion of κTf that is included

between si and sj the following is an accepting computation of A∞T of length

ω × ` (wω represents an infinite repetition of the word w)

[s0, s1]σω1 [s1, s2]σω2 [s2, s3]σω3 · · · [s`−1, s`]σ
ω
` .

To use the trace automaton for model checking, we also need the converse

of Theorem 5.3. However, this does not hold in general since it requires that

a computation of length ω × (n + 1) be merged into a computation of length

ω which is not always possible since only independent transitions can be inter-

changed. More precisely, if A∞T is empty, Theorem 5.3 guaranties that AG is also

empty and hence that the program satisfies the property. If A∞T is nonempty

and has a computation of length ω, AG is also nonempty and the program does

not satisfy the property. The difficult case is when A∞T has an accepting compu-

tation of length greater than ω. A simple approach to deal with this situation

is to reconstruct part of AG in order to determine whether the computation of

A∞T that has been found is an artifact or actually corresponds to a computation

of AG. It might seem that reconstructing part of AG looses the advantage of

the partial order approach, but note that this need not be done in all cases,

and that the construction is limited to the accepting computation of A∞T that

has been found. Concretely, one can do the partial construction of AG from

the projections on the various processes of the sequence of strongly connected
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components of A∞T that defines an accepting computation.

The partial construction of AG can be avoided in even more cases if one

first checks whether the accepting computation of A∞T satisfies a “separability”

condition. Consider a computation of length ω × (n+ 1). For each ω-sequence

in this computation, i.e. part of the computation corresponding to an interval

[ω×j, ω×(j+1)[, we define the repeating part of this ω-sequence as its suffix that

only contains states that appear infinitely often. The rest of the ω-sequence is

then its finite prefix. We call a computation separable if for all 0 ≤ i < j ≤ n,

all transitions in the repeating part of [ω× i, ω× (i+ 1)[ are independent of all

transitions in the finite prefix of [ω× j, ω× (j+ 1)[. We can then show that the

converse of Theorem 5.3 holds for separable computations.

Theorem 5.4 Let Ai, 1 ≤ i ≤ n + 1 be generalized Büchi automata. Let AG

and A∞T be the product and trace automata obtained by composing the automata

Ai. Then, if the trace automaton A∞T has at least one separable accepting com-

putation of length at most ω × (n+ 1), the automaton AG is nonempty (has at

least one accepting computation).

Proof: Notice that if A∞T has a separable accepting computation of length

ω × (n+ 1), it has an accepting computation of the form

σ0σ
ω
0rσ1σ

ω
1r · · ·σnσωnr

where σi and σir are finite computations and where all transitions in σir are

independent with respect to all transitions in σj for 0 ≤ i < j ≤ n. As a

consequence the following is an accepting ω-computation of AG

σ0σ1 · · ·σn(σ0rσ1r · · ·σnr)ω.

A sufficient condition for A∞T to have a separable condition is that is has a

sequence of strongly connected components as in the condition of Theorem 5.1

and furthermore that for all 1 ≤ i < j ≤ (n + 1), the transitions appearing in

Ci are independent from those appearing in the path from Cj−1 to Cj . For in-

stance, the trace automaton in Figure 3 has a separable accepting computation

(a1a2)ωc(b1b2)ω of length ω × 2.

In summary, the procedure for checking whether A∞T has a computation

corresponding to a computation of AG is the following. We first determine if

A∞T has a sequence of strongly connected components that satisfy the condition
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of Theorem 5.1. If there is no such sequence, AG is empty. If there is such

sequence, we check whether it satisfies the separability condition above. If it

does, AG is nonempty. In the remaining cases, a partial search of AG is required

to obtain a definite answer. Finally, note that another possible approach would

be to guaranty the existence of a separable computation of A∞T whenever AG has

a computation by using a different construction of AT . Indeed, in all above, the

only property of trace automata we have used is property (1) given in Section 3.

Specific constructions of trace automata often have additional properties and

can be tailored to satisfy specific requirements.

6 Conclusions and Comparison with Other Work

The closest work to the one presented here is certainly that of Valmari [Val90].

His paper also addresses the problem of adapting to model checking a method

that avoids considering all interleavings of independent events while generating

the state space of a concurrent program. It is likewise based on linear-time

temporal logic, but uses a different strategy from the one we presented here.

In our approach, the fact that the order of actions that appear in the formula

cannot be ignored while constructing the trace automaton is handled by treating

the property as any other component of the concurrent program. In [Val90], the

problem is solved by a less discriminating approach. Precisely, the use of the

“next” temporal operator is disallowed and all transitions that can affect the

truth value of any state predicate appearing in the formula are considered as

dependent. Prohibiting “next” is indeed important in this approach since in the

presence of this operator all transition could potentially affect the truth value of

the formula and hence would have to be considered as dependent and this would

annihilate any benefit coming from the use of a partial-order approach. In our

paper, we do handle the full temporal logic, and, actually, we can also handle

extended temporal logics like that of [Wol83]. However, it should be noted

that our interpretation of “next” is different from the one that causes problems

in the method used by Valmari: we interpret “next” as meaning “next action

monitored by the formula” rather than “next state of the program”.

The treatment of fairness properties is also an important difference between

Valmari’s approach and ours. In Valmari’s approach, the only way to represent

fairness conditions would be to incorporate them in the formula (which hence

has the form fair ⊃ property) whereas we represent them as Büchi conditions on

the processes. The interaction of fairness conditions and partial-order methods
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is problematic since a fairness condition often concerns all processes involved

in the program and hence introduces many dependencies which can wipe out

the benefit of the approach. Our solution is to represent fairness assumptions

in a distributed way, by assigning progress conditions to individual processes

whenever possible. The drawback of this strategy is that it does not yield

naturally to the expression of some fairness constraints.

A final element of comparison is the algorithm for computing an automa-

ton that only represents “some” interleavings of concurrent events that lies at

the heart of both approaches. First, note that an important advantage of the

use of ω × n automata is that no modification of an algorithm suitable for fi-

nite computations is necessary. On the other hand, in [Val90] the algorithm

has to be modified, which increases the size of the state space that is gener-

ated. Furthermore, the technical ideas behind the constructions used in both

approaches differ. Valmari uses an algorithm based on “Stubborn Sets”, we use

the construction of the “Trace Automaton” given in [God90]. This difference

also influences the effectiveness of the model-checking methods. However, this

influence is not extremely clear cut and is orthogonal to that of the strategy

being used. It is quite possible that for some problems the “Trace Automaton”

algorithm is best whereas for others the “Stubborn Sets” one is preferable. It

is worth noticing that parts of both algorithms can be combined in order to

achieve better reductions [WG93].

How good really is our method? It is hard to give a precise answer since it

might be no better than interleaving methods when there is very tight coupling

between the processes and dramatically better when there is no coupling be-

tween the processes. In the latter case, we could claim as is done in [BCM+90]

that we can check systems with astronomical numbers of (interleaving seman-

tics) states. Of course this should be taken with a grain of salt since the fact

that checking only part of this enormous state space is sufficient indicates that

most of the interleaving-semantics states are uninteresting. In [BCM+90] a

similar phenomenon occurs, the difference being that the verification of large

systems is made possible not by ignoring an irrelevant part of their state space,

but by computing with an efficient symbolic representation of sets of states and

transition relations.

The construction of trace automata of [God90] has been implemented and

shows promising results which bodes well for the method described in this paper.

Other work on the implementation and use of trace-automata-like techniques
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has also appeared. In [GW91b], model checking restricted to safety properties

is considered. Several alternative “partial-order” verification algorithms are

presented in [HGP92] and their performance on real-protocols is evaluated.

Further results on the practicality of using trace-automata-like constructions

are presented in [GHP92].

Finally, note that our method has the advantages of “on the fly verification”

[CVWY90, JJ89, BFH90, HPOG89]. By this we mean that we build the au-

tomaton for the combination of the program and property without ever building

the automaton for the program. Maybe surprisingly, this automaton is often

smaller than the automaton for the program alone because the property acts

as a constraint on the behavior of the program. Our method thus has a head

start over methods that require the state graph of the program to be built.
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[Büc65b] J.R. Büchi. Transfinite automata recursions and weak second order theory

of ordinals. In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1964,

pages 2–23, Amsterdam, 1965. North Holland.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems, 8(2):244–263, Jan-

uary 1986.
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