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Abstract. This study addresses the mitigation of one problem nonlinear resonance of a mechanical system. In
view of the narrow bandwidth of the classical linear tuned vibration absorber, a new nonlinear absorber, termed
the nonlinear tuned vibration absorber (NLTVA), is introduced in this paper. One unconventional aspect of the
NLTVA is that the mathematical form of its restoring force is tailored according to the nonlinear restoring force
of the primary system. The NLTVA parameters are then determined using a nonlinear generalization of Den
Hartog’s equal-peak method. The mitigation of the resonant vibrations of a Duffing oscillator is considered to
illustrate the proposed developments.

1 Introduction

With continual interest in expanding the performance en-
velope of engineering systems, nonlinear components are
increasingly utilized in real-world applications. Mitigating
the resonant vibrations of nonlinear structures is therefore
becoming a problem of great practical significance; it is the
focus of the present study.

Nonlinear vibration absorbers, including the autopara-
metric vibration absorber [1], the nonlinear energy sink
(NES) [2–4] and other variants [5–7], can absorb distur-
bances in wide ranges of frequencies due to their increased
bandwidth. For instance, it was shown that an NES, i.e., an
essentially nonlinear absorber, can extract energy from vir-
tually any mode of a host structure [8]. The NES can also
carry out targeted energy transfer, which is an irreversible
channeling of vibrational energy from the host structure to
the absorber [9]. This makes nonlinear vibration absorbers
suitable candidates for vibration mitigation of nonlinear
primary structures. However, the performance of existing
nonlinear vibration absorbers is known to exhibit marked
sensitivity to motion amplitudes. For instance, there exists
a well-defined threshold of input energy below which no
significant energy dissipation can be induced in an NES
[3]. Likewise, the saturation phenomenon — characteristic
of autoparametric vibration absorbers — occurs only when
the forcing amplitude exceeds a certain threshold [1].

This paper builds upon previous developments [10,11]
to introduce a new nonlinear vibration absorber for mit-
igating the vibrations around one problem nonlinear res-
onance. The absorber is termed the nonlinear tuned vi-
bration absorber (NLTVA), because its nonlinear restoring
force is determined according to the nonlinear restoring
force of the host structure. In other words, we propose to
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synthesize the absorber’s load-deflection characteristic so
that the NLTVA can mitigate the considered nonlinear res-
onance in wide ranges of motion amplitudes.

Furthermore, a nonlinear generalization of Den Har-
tog’s equal-peak method for determining the NLTVA pa-
rameters is developed. The basic idea is to select the non-
linear coefficient of the absorber that ensures equal peaks
in the nonlinear receptance function for an as large as pos-
sible range of forcing amplitudes. We will show that this is
only feasible when the mathematical form of the NLTVA’s
restoring force is carefully chosen, which justifies the pro-
posed synthesis of the absorber’s load-deflection curve.

The paper is organized as follows. Sect. 2 briefly re-
views Den Hartog’s equal-peak method and revisits the dy-
namics of the classical linear tuned vibration absorber cou-
pled to a Duffing oscillator. Sect. 3 lays down the founda-
tions of the NLTVA by proposing a tuning rule for the ab-
sorber’s restoring force. The NLTVA parameters are then
determined using a nonlinear generalization of Den Har-
tog’s equal-peak method. The conclusions of the present
study are summarized in Sect. 4.

2 The linear tuned vibration absorber
(LTVA)

The steady-state response of an undamped mass-spring sys-
tem subjected to a harmonic excitation at a constant fre-
quency can be suppressed using an undamped linear tuned
vibration absorber (LTVA), as proposed by Frahm in 1909
[12]. However, the LTVA performance deteriorates signif-
icantly when the excitation frequency varies. To improve
the performance robustness, damping was introduced in
the absorber [13]; Den Hartog [14] and Brock [15] derived
approximate analytic formulas for the absorber stiffness
and damping in order to minimize the maximal response of
the system at the resonant frequencies, which is obtained
making the two resonant peaks have the same amplitude.
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Fig. 1. Frequency response of a Duffing oscillator with an at-
tached LTVA. q1 is the dimensionless amplitude (q1 = x1k1/F).
For the computation m1 = 1 kg, c1 = 0.002 N.s/m (µ1 = 0.001),
k1 = 1 N/m, knl1 = 1 N/m3 and ε = 0.05. For the different curves
F = 0.0115 N, F = 0.0258 N, F = 0.0365 N, F = 0.0577 N,
and F = 0.0816 N (α3 = 0.0001, α3 = 0.0005, α3 = 0.001,
α3 = 0.0025 and α3 = 0.005, see later), where F is the forcing
amplitude.

Interestingly, it is only recently that an exact closed-form
solution to this classic problem could be found [16]:
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where ωn1 and ωn2 are the natural frequencies of the pri-
mary system and of the absorber, respectively, ε = m2/m1
is the mass ratio, µ2 and c2 are the damping ratio and damp-
ing coefficient and k1 and k2 are the spring coefficients of
the primary system and of the absorber, respectively. This
tuning condition minimizes the maximum response ampli-
tude of the primary system.

The primary system considered throughout this paper
is a harmonically-forced, lightly-damped Duffing oscilla-
tor. Fig. 1 shows the displacement response of the primary
mass with an attached LTVA for various forcing ampli-
tudes F, whose equations of motion are

m1 ẍ1 + c1 ẋ1 + k1x1 + knl1x3
1 + c2(ẋ1 − ẋ2)

+k2(x1 − x2) = F cosωt
m2 ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0. (2)

The frequency response curves were computed using a path-
following algorithm combining shooting and pseudo-arcle-
ngth continuation. The algorithm is similar to that used in
[17]. In the figure it is visible that for low values of forcing
amplitude F, the two resonant peaks have similar ampli-
tude. However, increasing the forcing amplitude and prac-
tically activating the nonlinearity of the system, there is a
clear detuning of the LTVA, i.e. one resonant peak largely
increases its amplitude making the absorber ineffective.

3 The nonlinear tuned vibration absorber
(NLTVA)

In view of the results presented in the previous section, it
is meaningful to examine the performance of nonlinear ab-
sorbers for vibration mitigation of nonlinear primary struc-
tures. To mitigate a problem nonlinear resonance in an as
large as possible range of forcing amplitudes, we introduce
the nonlinear tuned vibration absorber (NLTVA). One un-
conventional feature of this absorber is that the mathemat-
ical form of its nonlinear restoring force is not imposed
a priori, as it is the case for most existing nonlinear ab-
sorbers. Instead, we propose to fully exploit the additional
design parameter offered by nonlinear devices and, hence,
to synthesize the absorber’s load-deflection curve accord-
ing to the nonlinear restoring force of the primary struc-
ture.

3.1 Synthesis of the nonlinear restoring force of the
absorber

The dynamics of a Duffing oscillator with an attached NL-
TVA is considered:

m1 ẍ1 + c1 ẋ1 + k1x1 + knl1x3
1 + c2(ẋ1 − ẋ2)

+g(x1 − x2) = F cosωt
m2 ẍ2 + c2(ẋ2 − ẋ1) − g(x1 − x2) = 0 (3)

where x1(t) and x2(t) are the displacements of the primary
system and of the NLTVA, respectively. The NLTVA is as-
sumed to have a generic smooth restoring force g (x1 − x2)
with g(0) = 0. We first define the dimensionless time τ =
ωn1t, where ωn1 =

√
k1/m1, and we apply the transfor-

mation r(t) = x1(t) − x2(t), then, expanding g(r) in Tay-
lor series around r = 0 and normalizing the system using
q1 = x1/ f and q2 = r/ f ( f = F/k1), we obtain
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where prime denotes differentiation with respect to τ, 2µ1 =
c1/(m1ωn1), α̃3 = 3/4knl1/k1, 2µ2 = c2/(m2ωn2), ε = m2/m1,
λ = ωn2/ωn1, γ = ω/ωn1 and ωn2 =

√
dg/dq2|q2=0/m2.

In Eqs. (4), the linear terms are independent of the forc-
ing amplitude f , which confirms that a purely linear ab-
sorber attached to a linear oscillator is effective irrespective
of the considered forcing amplitude. Focusing now on the
complete system, f appears in the nonlinear coefficients
of both the primary system and the absorber, which re-
minds that it is equivalent to consider the system strongly
nonlinear or strongly excited. Specifically, Eqs. (4) show
that the forcing amplitude modifies linearly the quadratic
terms, quadratically the cubic terms and so on. This sug-
gests that, if an optimal set of absorber parameters is cho-
sen for a specific value of f , variations of f will detune the
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nonlinear absorber, unless the nonlinear coefficients of the
primary system and of the absorber undergo a similar vari-
ation with f . According to Eqs. (4), this can be achieved by
selecting the same mathematical function for the absorber
as that of the primary system. When coupled to a Duff-
ing oscillator, the NLTVA should therefore possess a cubic
spring:

q′′1 + 2µ1q′1 + q1 +
4
3
α3q3

1 + 2µ2λεq′2 + λ2εq2

+
4
3
εβ3q3

2 = cos γτ

q′′2 + 2µ1q′1 + q1 +
4
3
α3q3

1 + 2µ2λ (ε + 1) q′2

+λ2 (ε + 1) q2 +
4
3

(ε + 1) β3q3
2 = cos γτ (5)

where α3 = α̃3 f 2 and β3 = 3 f 2g′′′(r)|r=0/(3!m2ω
2
n14). The

NLTVA should also possess a linear spring so that it is ef-
fective at low forcing amplitudes where the cubic spring of
the Duffing oscillator is not activated.

In summary, the proposed nonlinear tuning rule is to
choose the mathematical form of the NLTVA’s restoring
force so that it is a ‘mirror’ of the primary system.

3.2 Nonlinear generalization of the equal-peak
method

The next objective is to determine the NLTVA parameters,
namely ε, λ, µ2 and β3. The mass ratio ε is chosen accord-
ing to practical constraints. The linear parameters λ and µ2
are determined using Eqs. (1). Because an exact analytic
estimation of β3 is not within reach, an approximate solu-
tion is sought using the classic harmonic balance method
limited to one harmonic component. The system is solved
for fixed values of µ1 = 0.001, µ2 = 0.134, λ = 0.952,
for different values of ε and α3, and for a range of excita-
tion frequencies γ encompassing the system’s resonances.
Starting with weakly nonlinear regimes, i.e., α3 > 0, we
seek the value of β3, which gives two resonance peaks of
equal amplitude. The procedure is repeated for increas-
ing values of α3, which allows to consider stronger and
stronger nonlinear regimes of motion.

The outcome of this numerical procedure is displayed
in Fig. 2(a). This plot is interesting, because β3 is almost
linearly related to α3 for the different mass ratios consid-
ered, i.e., β3 � aα3. This linear relation implies that the
nonlinear coefficient of the NLTVA that realizes equal peaks
does not depend on forcing amplitude:

β3 � aα3 →
3
4

f 2g′′′(r)|r=0

3!m2ω
2
n1

� a
3
4

f 2knl1

k1
→ g′′′(r)|r=0 � 6aεknl1

(6)
The coefficient a is determined by representing β3 in func-
tion of ε for different values of α3, (Fig. 2(b)). It turns out
that the regression β3 = 2α3ε/(1+4ε) provides an excellent
approximation to the numerical results; so a = 2ε/(1+4ε).

Equations (5) are now solved considering this analytic
expression of β3 for different values of α3 and γ. We stress
that the results presented in Fig. 2(c) were not computed
using the one-term harmonic balance approximation but
rather using the previously path-following algorithm men-
tioned in Sect. 2. This algorithm provides a very accurate

numerical solution to the equations of motion. Fig. 2(c)
shows that the NLTVA can enforce equal peaks in the fre-
quency response q1 of the Duffing oscillator for values of
α3 ranging from 0.0001 to 0.005. This result is remark-
able in view of the variation of the resonance frequencies.
For instance, the first resonance peak occurs at γ = 0.9
for α3 = 0.0001 and beyond γ = 1 for α3 = 0.0075. An-
other interesting observation is that the amplitude of the
resonance peaks does not change substantially when α3 in-
creases, which means that the response of the coupled sys-
tem is almost proportional to the forcing amplitude, as it
would be the case for a linear system. Conversely, Fig. 1
illustrates that for the same parameter values the LTVA is
strongly detuned. All these results confirm the efficacy of
the proposed NLTVA design.

In summary, given m1, c1, k1 and knl1 for a Duffing os-
cillator and given a mass ratio ε, the NLTVA parameters
can be determined using the following analytic formulas:
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8εk1
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16 + 23ε + 9ε2 + 2(2 + ε)

√
4 + 3ε

]
3(1 + ε)2(64 + 80ε + 27ε2)
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k2m2(8 + 9ε − 4

√
4 + 3ε)

4(1 + ε)

knl2 =
2ε2knl1
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(7)

These formulas form the basis of a new tuning rule for non-
linear absorbers that can be considered as a nonlinear gen-
eralization of Den Hartog’s equal-peak method.

For a more global comparison between the two ab-
sorbers, Fig. 3 represents the amplitude of the resonance
peaks of the Duffing oscillator as a function of F. If the
LTVA gets rapidly detuned, the amplitude of the two res-
onance peaks for the NLTVA remains almost identical. In
addition, the amplitude is almost linearly related to forc-
ing amplitude, as if the system would obey the superpo-
sition principle. This result is unexpected in view of the
strongly nonlinear regimes investigated. It therefore seems
that adding a properly chosen nonlinearity to an already
nonlinear system can somehow linearize the dynamics of
the coupled system. On the contrary, the amplitude of the
resonance peaks for the LTVA exhibits a marked nonlinear
dependence with respect to forcing amplitude.

For higher values of α3 (α3 ≈ 0.025 for ε = 0.05), also
the NLTVA undergoes a detuning, qualitatively similar to
the one occurring to the LTVA. In spite of this, the perfor-
mances of the NLTVA are better than those of the LTVA
for any value of α3. A detailed analysis of the detuning
phenomenon is out of the scope of this paper.

Another phenomenon, not investigated in detail in this
paper, but experienced during the research, is the appear-
ance of quasiperiodic motions for certain values of α3 and
γ. However, the amplitude of these motions appear to be
not much larger than the predicted periodic solutions, thus
these motions are not detrimental with respect to the func-
tionality of the absorber.

4 Conclusion

Our purpose in this study is the development of a new non-
linear absorber, the NLTVA, for mitigating the vibrations
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Fig. 2. Nonlinear equal-peak method. (a) Values of β3 realizing equal peaks for increasing α3 and different ε; (b) values of β3 realizing
equal peaks for increasing ε and different α3; the solid line is the result of the numerical computations, and the dashed line is the
regression β3 = 2α3ε/(1 + 4ε). (c) Numerical solution of Eqs. (5) for ε = 0.05, µ1 = 0.001, µ2 = 0.134, λ = 0.952. Curves from let to
right: α3 = 0.0001, 0.0005, 0.001, 0.0025, 0.005, 0.0075.
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Fig. 3. Amplitude of the resonances peaks of the Duffing oscilla-
tor (solid lines: NLTVA, dashed lines: LTVA).

of a problem nonlinear resonance of a mechanical system.
A specific objective is to ensure the effectiveness of the
absorber in weakly as well as strongly nonlinear regimes
of motion for which the primary system’s resonance fre-
quency can undergo substantial variations.

To this end, the additional design parameter offered by
nonlinear devices, i.e., the mathematical form of the ab-
sorber’s restoring force, is exploited thereby synthesizing
nonlinearity for enhanced performance. We show that, if
the NLTVA is ‘a mirror’ of the primary system, a nonlin-
ear counterpart of Den Hartog’s equal-peak method can be
established. Simple analytic formulas, which are extremely
accurate, are derived for this nonlinear equal-peak method.
They lead to the design of an absorber with excellent per-
formance in a relatively large range of forcing amplitudes.
Interestingly, the coupled system Duffing-NLTVA exhibits
dynamics that resemble to that of a linear system.

For very strongly nonlinear regimes, inherently nonlin-
ear dynamical instabilities appear and detune the NLTVA.
Despite these instabilities, the performance of the NLTVA
remains always superior to the classical LTVA.
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