#### Elsevier Editorial System(tm) for Biochimie Manuscript Draft

Manuscript Number: BIOCHI-D-13-00330R1

Title: Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review

Article Type: Review Article

Section/Category: Special issue

Keywords: Chlamydomonas; mitochondria; respiratory chain; respiratory-deficient mutants

Corresponding Author: Prof. Claire Remacle,

Corresponding Author's Institution: University of Liege

First Author: Thalia Salinas

Order of Authors: Thalia Salinas; Veronique Larosa; Pierre Cardol; Laurence Marechal-Drouard; Claire

Remacle

Manuscript Region of Origin: BELGIUM

Abstract: Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

**Opposed Reviewers:** 

October 7<sup>th</sup> 2013



Dr Buckingham
Editor of Biochimie

Ms. Ref. No.: BIOCHI-D-13-00330

Title: Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

Biochimie

Dear Dr. Buckingham,

Please find enclosed a revised version of our manuscript "Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review." (BIOCHI-D-13-00330).

First, we wish to thank the two anonymous reviewers for their constructive comments. We found their suggestions very helpful to improve the quality of our manuscript. We have addressed all the points they raised and have modified the text accordingly. A detailed response to reviewers' comments is included below.

We believe we have addressed all referees' comments and we hope this revised version is now suitable for publication in Biochimie.

We are looking forward to hearing from you,

With best regards,



#### **Response to reviewers**

#### Response to reviewer 1

1. Overall, the review is fine, but a bit too descriptive and I feel that more background detail could be given for the general reader on the methodology of how to create respiratory mutants (explanation of transformation methods and selection strategies for creating nuclear and mitochondrial mutants. The TTC-based screen and dark-dier/slow growth screens for different classes of mutant, etc.).

The text has been modified in order to give more background details on the methodology used to create and screen respiratory mutants in *Chlamydomonas*. The main modifications correspond to:

#### Paragraph 2.3:

- p8. A figure (Fig. 4) has been added in order to provide more information on dark-dier/slow growth screens for different classes of mutant.
- p9. The mitochondrial transformation method used in *Chlamydomonas* has been detailed.

#### Paragraph 2.4:

- p10. The TTC-based screen has been explained.

Finally, all along the text the methods used to create nuclear and mitochondrial mutants has been indicated.

2. Also, the text could benefit from being proof-read by a native English speaker as the grammar is a little awkward in places. I highlight a couple of points below, but there are a number of other places where the English could be improved for clarity.

The text has been proof-read by a good English speaker as requested and the text has been modified according to the comments.

#### Minor points:

- 1. Abstract, line 1: "the genetics" have been replaced by "genetic manipulation"
- 2. Abstract, line 1: "algae" have been replaced by "alga"
- 3. Page 6, line1: the sentence has been modified
- 4. Page 10, line 57: "that" have been deleted
- 5. Page 13, line 42: "mutant" have been deleted

#### Response to reviewer 4

- 1. It would be visually interesting to add a diagram like a histogram showing the number of structural and assembly components for each complex in each organism
- p7. Figure 2 showing the number of structural and assembly components for each complex in each organism has been added.
- 2. Cbp3 and Cbp6 are cited in Table 1 as assembly factors for complex III in yeast, however more precisely they are important for the stability of neo-synthetized cytochrome b as well as for optimal translation of the cytochrome b mRNA. Similarly Mss51, which is not cited in Table 1, is both a translation factor for the COX1 mRNA and an early assembly factor for the Cox1 protein, thus mediating a feedback regulation of COX1 translation. Since they have some post-transcriptional function but not only, the author should either cite all three factors in Table 1 or leave out all three, and explain in the legend what they decided to do for these dual function factors.

In Table 1, we did not include the factors that are exclusively involved in the expression of the OXPHOS subunits. However, proteins as Cbp3, Cbp6 and Mss51 that have a post-transcriptional function but have also a respiratory complex assembly function are cited. As pointed out by the reviewer, the Mss51 was not cited in Table 1 and this omission has been fixed.

3. Table 1 should be checked for errors inserted during the update of the 2012 paper. For example an alternative oxidase reference Q9Y711U is given for S. cerevisiae, which does not have any AOX. In the 2012 paper, the same reference is given as Q9Y711u, the u pointing to a note explaining that the sequence is from Pichia stipitis. In Pubmed, Q9Y711 actually refers to an Ajellomyces capsulatus AOX sequence. Please remove the U and cite the proper organism for this sequence.

Table 1 has been proofed in order to avoid these errors.

Concerning the AOX protein of yeast, the protein reference has been changed and replaced by the reference of the AOX of *Neurospora crassa* (accession AAC37481).

#### Reference:

[79]: Q. Li, R.G. Ritzel, L.L. McLean, L. McIntosh, T. Ko, H. Bertrand, F.E. Nargang, Cloning and analysis of the alternative oxidase gene of *Neurospora crassa*, Genetics 142 (1996) 129-140.

- 4. Page 6 lines 4-5, it is said that seven Chlamydomonas proteins are found in other eukaryotic complexes, where a seventh one encodes the homolog of COX5c. It would be "eighth" one and not "seventh" one, however I think that the confusion comes from the fact that Chlamydomonas COX2 is a split subunit, the N- and C-termini being encoded by two peptides. The authors should comment on that interesting feature and call the two COX2 proteins "a" and "b" in Table 1 (instead of COX2 and COX2a).
- p 6. In order to avoid the misleading, the particularity of the COX2 protein of *Chlamydomonas* has been commented in the text and the suggestion of the reviewer to call the two COX2 proteins "a" and "b" has been taken into account in Table 1.

5. In Table 1, COX4/5b from Chlamydomonas (XP\_001693699) is rather supposed to be the homolog of human COX5b and yeast COX4, it should be moved two lines up.

The modification has been done in Table 1.



Dear Dr Buckingham,

By this letter, I confirm that all the authors of the manuscript submitted agree with its content.

Sincerely yours,

Corresponding author

#### **Abstract**

Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratorydeficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

\*Highlights (for review)

# Respiratory-deficient mutants of Chlamydomonas: a review

Thalia Salinas, Véronique Larosa, Pierre Cardol, Laurence Maréchal-Drouard and Claire Remacle

# Highlights

- Chlamydomonas respiratory-deficient mutants can be isolated.
- They are mutated in mitochondrial or nuclear genes.
- Random insertional mutagenesis and RNA interference can be used to target nuclear genes.
- Random and site-directed mutagenesis can be used to target mitochondrial genes.

# Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review

Thalia Salinas<sup>a</sup>, Véronique Larosa<sup>b</sup>, Pierre Cardol<sup>b</sup>, Laurence Maréchal-Drouard<sup>a</sup> and Claire Remacle<sup>b</sup>

Corresponding author: Claire Remacle

Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgique

Phone: +3243663812, fax: +3243663840, e-mail: c.remacle@ulg.ac.be

<sup>&</sup>lt;sup>a</sup> Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, associated with Université de Strasbourg, 67084, Strasbourg Cedex, France

b Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgique

- 1. The mitochondrial respiratory chain of Chlamydomonas
- 1.1 Main components of the respiratory chain
- 1.2 Alternative enzymes
- 2. The respiratory-deficient mutants of Chlamydomonas
- 2.1 Phenotype of respiratory-deficient mutants
- 2.2 Genetics of Chlamydomonas to isolate respiratory-deficient mutants
- 2.3 Mutants affected in complex I or in complexes I and III
- 2.4 Mutants affected in complexes III and IV and associated revertants
- 2.5 Mutants affected in complex V
- 2.6 Mutants affected in alternative enzymes
- 2.7 Mutants affected in the mitochondrial codon usage
- 2.8 Mutants affected in the transcription of the mitochondrial genome
- 3. Conclusion

#### **Abstract**

Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratorydeficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

## **Highlights**

Chlamydomonas respiratory-deficient mutants can be isolated.

They are mutated in mitochondrial or nuclear genes.

Random insertional mutagenesis and RNA interference can be used to target nuclear genes

Random and site-directed mutagenesis can be used to target mitochondrial genes.

#### **Keywords (4)**

Chlamydomonas, mitochondria, respiratory chain, respiratory-deficient mutants

# 1. The mitochondrial respiratory chain of Chlamydomonas

Mitochondria are the site of oxidative phosphorylation (OXPHOS). This process comprises an electron-transfer chain that is driven by substrate oxidation and is coupled to the synthesis of ATP through an electrochemical transmembrane gradient. Therefore, the mitochondrial respiratory-chain proteome comprises protein components participating in this process (complexes I-V and additional oxidoreductases) and in its biogenesis (assembly factors).

The release of the complete genome sequence of the unicellular green alga *Chlamydomonas reinhardtii* allowed the construction of a comprehensive catalog of its OXPHOS components [1]. Here, we present as an introduction an update of the inventory set up in that review, with special focus on assembly factors that have been identified in mammals or fungi since that time.

## 1.1 Main components of the respiratory chain

In **Table 1** we provide a summary of the components of the respiratory chain in different organisms.

Mitochondrial complex I (NADH:ubiquinone reductase, EC 1.6.5.3) is one of the three energy-transducing enzymes of the electron transfer chain in mitochondria. Complex I is the main entry point of the electrons in the respiratory chain and catalyzes NADH oxidation and ubiquinone reduction. Coupled to electron transfer, protons are pumped from the matrix side into the intermembrane space. With an Lshape structure and an apparent molecular mass of ca. 1000 kDa, it comprises 44-45 subunits in Bos taurus [2, 3]. In Arabidopsis thaliana, 49 distinct subunits have been identified [4], 40 of which are homologous to mammal subunits [5]. In Chlamydomonas, the subunit composition is almost similar to the one described in A. thaliana [5, 6]. Five (e.g., in Chlamydomonas) to nine (e.g., in land plants) subunits (the ND or NAD subunits) are encoded in the mitochondrial genome, whereas the remaining subunits are nuclear gene products. The 14 conserved core subunits, homologous to the bacterial type enzyme subunits are sufficient for energy transduction while the supernumerary proteins are not required for catalysis and the reason of their presence is still matter of debate. Some supernumerary proteins have independent roles (like the B16.6 subunit in apoptosis) but others have nonspecific

roles in regulation, protection against reactive oxygen species, assembly and stability [7]. In Arabidopsis, green algae and amoebozoa, subunits structurally related to gamma carbonic anhydrases have been found [6, 8, 9]. Single particle electron microscopy analyzes of complex I from Polytomella (a chloroplast-less and close relative of Chlamydomonas), A. thaliana, Zea mays and Solanum tuberosum indicate that these  $\gamma$ -CA subunits could constitute a spherical domain attached to the central part of the membrane arm of complex I, and exposed to the matrix (**Fig. 1A**) [10-13]. In addition, nine chaperones (or assembly factors) that participate to the biogenesis of complex I have been identified in human and fungi. The first two assembly factors, CIA30 and CIA84, identified in the fungus Neurospora crassa, participate to the assembly of the membrane domain [14]. Of these two chaperones, only CIA30 is conserved in mammals and plants. Another chaperone, IND1, is participating in the assembly of Fe-S cofactors and subunits of complex I in yeast Yarrowia lipolytica [15] and is well conserved in human [16] and plants. In the past few years, the discovery of six assembly factors (C20ORF7, C8ORF38, FOXRED1, NDUFAF2, NDUFAF3, and NDUFAF4) provided a significant insight into the assembly process of human complex I (see [17] for a review). All of them are conserved in Chlamydomonas except B17.2L, a paralog of the B17.2 subunit.

Complex II or succinate:ubiquinone oxidoreductase (EC 1.3.99.1) is an enzyme involved both in the Krebs cycle and the respiratory chain. Complex II is composed by four distinct nucleus-encoded polypeptides, SDH1 (the flavoprotein subunit), SDH2 (the iron-sulfur subunit), and two hydrophobic membrane anchors, SDH3 (subunit III) and SDH4 (subunit IV). The genes encoding the corresponding subunits are all present in *Chlamydomonas* [1]. Of the four assembly factors identified to date, three assembly factors have homologs in *Chlamydomonas*, an assembly factor (SDHAF1), a membrane transporter (FLX1) and a flavinylation factor (SDH5).

The 10 classical eukaryotic subunits of complex III (ubiquinol:cytochrome c oxidoreductase, EC 1.10.2.2) are found in the genome of *Chlamydomonas* [1]. Amongst them, cytochrome b, cytochrome cI, and the Rieske iron-sulfur (Fe/S) protein, which all exhibit high sequence similarity to their bacterial counterparts, are essential for the catalytic activity while the other proteins are the so-called supernumerary ones. On the four assembly factors that participate to the formation of the mature and functional complex III enzyme, three have putative homologs in

Chlamydomonas. Cytochrome c is nucleus-encoded and the type-III maturation system is used, like in mammal and fungi [1].

The *Chlamydomonas* genome encodes six proteins found in other eukaryotic complexes IV (EC 1.9.3.1), whereas a seventh one encodes the homolog of the plant-specific COX5c subunit [18]. A *Chlamydomonas*-specific protein possibly involved in complex IV assembly and considered to belong to the enzyme complex, Cox90, is also found [19]. The COX catalytic core is formed by three subunits, COX1, COX2 and COX3, conserved in the bacterial enzyme. In *Chlamydomonas*, only COX1 is encoded in the mitochondrial genome while Cox2 and Cox3 are nucleus-encoded [20, 21]. A peculiar fact of the *Chlamydomonas* Cox2 protein is that it is a split subunit, the N- and C-termini being encoded by two proteins (Cox2a and Cox2b). These two proteins assemble with other complex IV subunits to form the mature complex [20]. Numerous factors involved in processes related to complex IV such as membrane insertion and processing, copper metabolism and insertion or heme A biosynthesis have been identified. Most of them have putative homologs in *Chlamydomonas*.

At last, the first factor implicated in the assembly of supercomplexes III and IV was recently described in yeast and humans [22]. No homolog was found in plants and *Chlamydomonas*.

Complex V or  $F_1F_0$ -ATP synthase (EC 3.6.3.14) works as a rotary motor driven by an electrochemical proton gradient [23]. Proton translocation through the  $F_0$  sector drives rotation of the central stalk (gamma subunit) that extends from the membrane-embedded c-ring into the center of the  $F_1$  sector. The conformational changes induced by rotation of gamma subunit in  $F_1$  allow the synthesis of ATP in the catalytic sites of the beta subunits [24]. Like other chlorophycean algae, *C. reinhardtii* exhibits a highly stable dimeric mitochondrial  $F_1F_0$ -ATP synthase with an apparent molecular mass of 1600 kDa [25]. This dimeric enzyme complex has a unique architecture with a robust peripheral stalk [26-29] (**Fig. 1B**). The functional core of the algal enzyme is formed by eight classical subunits [ $\alpha$  (encoded by ATP1),  $\beta$  (encoded by ATP2),  $\gamma$  (encoded by ATP3),  $\delta$  (encoded by ATP16),  $\varepsilon$  (encoded data ATP15),  $\delta$  (encoded by  $\delta$  concoded data ATP15),  $\delta$  (encoded by ATP16),  $\delta$  encoded data NTP15), and OSCP (encoded by ATP15) and nine atypical subunits (encoded by the ASA1-9 genes), exclusively present in the chlorophycean lineage, that constitute the robust peripheral stalk and seem to participate in the dimerization of the complex [25,

30, 31]. Factors involved in the  $F_0$  and  $F_1$  assembly have been identified in *S. cerevisiae* and four of them have putative homologs in *Chlamydomonas*.

In **Fig. 2** are presented histograms showing the number of components for each complex and the corresponding assembly factors identified. Although the number of subunits is the highest for complex I, one can notice that the number of assembly factors is very low compared, for example, to what is known for complex IV.

## 1.2 Alternative enzymes

The *Chlamydomonas* nuclear genome encodes six type II NAD(P)H dehydrogenases (Nda1, 2, 3, 5, 6, 7), and the localization of three of them has been determined: Nda2 and Nda3, are located in the chloroplast [32, 33] while Nda1 is located at the inner side of the inner mitochondrial membrane [34].

In addition, two nuclear genes encoding alternative oxidase enzymes (Aox1 and Aox2) are found, the *AOX1* gene being much more transcribed than *AOX2* [35]. The *AOX1* expression is strongly dependent on the nitrogen source, being down regulated by ammonium and stimulated by nitrate [36].

## 2. The respiratory-deficient mutants of *Chlamydomonas*

## 2.1 Phenotype of respiratory-deficient mutants

The unicellular green alga *Chlamydomonas* can grow photoautrophically using CO<sub>2</sub>, heterotrophically using acetate and mixotrophically using both carbon sources. Acetate is metabolized following its entry into the Krebs cycle, which feeds the respiratory chain with reducing equivalents. Therefore, *Chlamydomonas* respiratory-chain deficient mutants are easily identified by the null or slow growth in conditions where growth only relies on respiration, *e.g.* in the dark with acetate as carbon source (heterotrophic conditions).

# 2.2 Genetics of *Chlamydomonas* to isolate respiratory-deficient mutants

The first nuclear respiratory-deficient mutants were described in 1977 after mutagenic treatment with nitrosoguanidine by the group of Boynton and Gillham [37]. These mutants displayed slow or null growth in the dark (dk-dier or dk), they were defective for cytochrome c oxidase activity and exhibited altered mitochondrial structure. The growth phenotype was inherited in a Mendelian fashion demonstrating the nuclear location of the mutation. More recently, insertional mutagenesis (e.g., [38]) or RNA interference technique (e.g., [39], [40]) were used in order to target nuclear genes involved in respiration (see below for the description of the mutants).

The first mitochondrial mutants were isolated by random mutagenesis with the intercalating dyes acriflavine or ethidium bromide [41]. The null growth phenotype of these mutants under heterotrophic conditions was inherited by the mating type minus parent, a characteristic of a genetic lesion located in the mitochondrial genome [42]. The respiratory-deficient mutants affected in mitochondrial genes are thus called *dum*, standed for <u>dark uniparental minus</u>. More recently, mitochondrial transformation was set up with the aim of performing site-directed mutagenesis of the respiratory subunits encoded by the mitochondrial genome (*e.g.*, [43], [44]). Therefore *C. reinhardtii* is the only photosynthetic organism where reverse genetics is possible in mitochondria.

In **Table 2** are listed the different mutants described below and affected in the mitochondrial respiratory chain. This **Table 2** is completed with **Fig. 3** in which the position of mutations in mutants affected in subunits encoded by the mitochondrial genome are represented.

## 2.3 Mutants affected in complex I or in complexes I and III

Mutants deficient for complex I can be easily scored on the basis of their impaired growth in the dark (dk<sup>+/-</sup> phenotype) [45]. Indeed, contrary to complex III or complex IV mutants that do not grow in the dark because they lack two phosphorylation sites, complex I mutants are still able to grow in these conditions (**Fig. 4**). However, their growth is significantly slower than wild type because they only retain two of the three phosphorylation sites that are operational when electron transfer proceeds through the respiratory chain. Their oxygen consumption, which is mildly reduced compared to wild type and insensitive to rotenone, a complex I inhibitor, occurs via complex II and alternative type II NAD(P)H dehydrogenases

such as Nda1. Whatever the type of mutants considered (mitochondrial or nuclear), this growth selection proved to be successful, as shown below.

Complex I mutants affected in subunits encoded by the mitochondrial genome were mostly obtained by random mutagenesis with intercalating dyes [46-48]. They are affected in nd1 (dum20, dum25), nd5 (dum23, dum5) or nd6 (dum17) mitochondrial genes. In addition, mitochondrial transformation by biolistic device allowed obtaining mutants for the *nd4* gene (\(\Delta nd4\), L157P ND4) [43, 44]. The basis for the isolation of such transformants relies on the fact that, as stated before, complex I mutants are able to grow in the dark, albeit slower than the wild-type strain. Mutants deleted for the left part of the mitochondrial genome including the cob gene (e.g., dum11 mutant) and that are unable to grow in the dark are used as recipient strains for mitochondrial transformation. The biolistic transformation was realized with a fragment of the mitochondrial genome covering the deletion and containing the mutated nd4 gene. After a two-month selection in the dark, transformants were recovered: most of them harbored the wild-type mitochondrial genome but a few of them incorporated the alteration in the *nd4* gene [43, 44]. The possibility to perform site-directed mutagenesis in the Chlamydomonas mitochondrial genome is of particular interest since human mutations affecting mitochondria-encoded subunits of complex I cannot be reconstructed in the yeast S. cerevisiae. Therefore, C. reinhardtii represents an alternative model system as exemplified by the Leu<sub>157</sub>Pro substitution introduced in the ND4 subunit of complex I in the L157PND4 mutant [44]. This substitution is present in the heteroplasmic state (mix of wild-type and mutant copies mitochondria) in a patient presenting chronic progressive external ophthalmoplegia. When present in the homoplasmic state (only mutated copies in mitochondria) in *Chlamydomonas*, the mutation did not prevent the assembly of the 950 kDa whole complex I which conserves nearly all the NADH dehydrogenase activity of the peripheral arm. However, the NADH:duroquinone oxidoreductase activity was strongly reduced. Due to its nature, the introduced proline could disturb the organization of the transmembrane domain where the substitution is found and affect ubiquinone fixation to the membrane domain. The in vitro defects were correlated in vivo with decreased respiration and growth rates in heterotrophic conditions.

Seven complex I mutants affected in subunits encoded by the nuclear genome were isolated: four knock-down mutants corresponding to ND3, ND4L, ND7 and

ND9 subunits were obtained by RNA interference [39] and three knock-out mutants in the *NUOB10* (PDSW subunit), *NDUFS3* (ND9 subunit) and *NUOP4* genes by insertional mutagenesis [38].

Mitochondrial mutants affected in both complexes I and III could also be isolated by random mutagenesis. They are characterized by large deletions of the mitochondrial genome encompassing *cob* and *nd4* (*dum24*) or *cob*, *nd4* and *nd5* (*dum22*).

From the analysis of complex I assembly by Blue Native PAGE, we could propose a modular arrangement of the subunits which are concerned by the mutations, all highly hydrophobic and targeted to the inner mitochondrial membrane. While the wild-type complex I has a molecular weight of 950 kDa, the loss of ND4, ND5 or PDSW subunits leads to the assembly of a 700-kDa membrane-bound subcomplex. In contrast, the absence of intact ND1, ND3, ND4L or ND6 subunits totally prevents complex I assembly. This suggests that ND4, ND5 and PSDW, on one hand, and ND1, ND3, ND4L, and ND6, on the other hand, are located in two different membrane domains of the complex I membrane arm. This hypothesis is in good agreement with structural models proposed for the localization of these subunits within for example *Arabidopsis* [9] or bovine complex I [49].

#### 2.4 Mutants affected in complexes III or IV and associated revertants

Mutants affected in complex III or complex IV can be easily scored on the basis of their lack of growth in the dark (dk phenotype, see above). These dk mutants can also be identified when cultivated in the light, using an *in vivo* staining test directly performed on Petri dishes. In contrast to wild-type colonies which reduce 2,3,5 triphenyltetrazolium chloride (TTC) to Red Formazan and become purple, mutant colonies deprived of complex III or complex IV remain green when Petri dishes are incubated in the dark with TTC [50]. Mutants affected in complex III or complex IV are thus obligate photoautotrophs that are deprived of the cytochrome pathway of respiration. Their oxygen consumption, which is insensitive to cyanide, is reduced and occurs via the activity of the SHAM-sensitive alternative oxidase.

Mitochondrial mutants affected in complex III harbor mutation in the *cob* gene and those affected in complex IV harbor mutation in the *cox1* gene [46]. Many of the

mutants deprived of complex III have a terminal deletion of the left end of the mitochondrial genome including the *cob* gene (*e.g.*, *dum1* and *dum11*), leading to the absence of complex III activity. The deletion mutants exhibit complex mitochondrial genomes, deleted monomeric genomes always coexisting with dimers resulting from head-to-head fusions between deleted monomers. In addition, one point mutation affecting the *cob* gene has also been identified (*dum15*), consisting in a two base-pair substitution that transforms the TCT codon (Ser) into TAC codon (Tyr) at position 140. Mutants resistant to myxothiazol (and mucidin) have also been isolated: they show an A to T nucleotide substitution in the *cob* gene, leading to a change of a Phe codon to a Leu codon at position 129 (*MUD2* mutant). Two mutants affected in *cox1* (*dum18* and *dum19*) present frameshift mutations (deletion or addition of T in runs of Ts) in *cox1* and are deprived of complex IV activity and assembly.

In the course of the culturing of these frameshift mutants, revertants were isolated. A revertant of the *dum18* mutant (presenting a + 1 T addition in a run of four Ts, located at codon 145 of the mitochondrial *cox1* gene) was characterized. In addition to the + 1 T frameshift mutation still present at codon 145, an A to C nucleotide substitution was found at codon 146, leading to the replacement of a Glu amino acid by an Ala amino acid in the polypeptide chain. No other mutations were detected in the *cox1* coding sequence. As the new GCG codon (Ala) created at position 146 is very seldom used in the mitochondrial genome of *C. reinhardtii*, it was suggested that the partial frameshift suppression by the nearby substitution was due to an occasional abnormal translocation of the ribosome (+ 1 base shift) facilitated both by the run of Ts and the low level or weak interaction of alanyl-tRNA [51].

Similarly, a revertant of the dum19 mutant (presenting a -1T deletion in a run of 3 Ts at codon 152) was characterized. A genetic and molecular analysis demonstrated that the revertant phenotype is the consequence of two additional mutations that together act as a frameshift suppressor: an m mutation affecting a mitochondrial gene other than cox1 and an n mutation affecting an unknown nuclear gene. Sequencing analysis showed that the m mutation affects the GTPase-associated domain of the large subunit (LSU) of mitochondrial rRNA. To our knowledge, this was the first example of a mutation in the GTPase-associated domain acting as a suppressor of a frameshift mutation [52]. In order to analyze the impact of the m mutation on the mitochondrial translational machinery, a strain carrying the m

mutation but wild-type for the coxI gene was isolated. The growth and the respiratory rate of the m mutant were affected and the activities of complexes I, III, and IV, all containing mitochondria-encoded subunits, were lowered. In contrast the activities of complex II and of the alternative oxidase, both encoded exclusively by the nuclear genome, were not modified. The steady-state levels of complex I enzyme and of several components of the respiratory complexes I, III, and IV were also reduced in the mutant [53].

Nuclear mutants affected in the *COX3* and *COX17* genes of complex IV were isolated by RNA interference. The *COX3* gene encodes a core subunit of mitochondrial cytochrome *c* oxidase (complex IV) whereas the *COX17* gene encodes a chaperone delivering copper to the enzyme. The *COX3*-RNAi mutant behaved like a mitochondrial mutant affected in *cox1* and presented no activity and assembly of complex IV. Due to its reduced respiration, it produced less H<sub>2</sub>O<sub>2</sub> in the dark. The *COX17*-RNAi mutant presented a reduced activity of the cytochrome *c* oxidase, no modification of respiration and of H<sub>2</sub>O<sub>2</sub> production in the dark but a two to threefold increase of H<sub>2</sub>O<sub>2</sub> in the light compared to wild type and the *COX3*-RNAi mutant. The *COX17*-RNAi mutant was more sensitive to cadmium than the wild-type and *COX3*-RNAi strains. This suggested that besides its role in complex IV assembly, Cox17 could have additional functions in the cell such as metal detoxification or Reactive Oxygen Species protection or signaling [40].

#### 2.5 Mutants affected in complex V

The seventeen subunits that compose mitochondrial ATP synthase in *Chlamydomonas* are all nucleus-encoded. Nuclear mutants affected in the *ATP2* and *ASA7* genes were isolated by RNA interference. *ATP2* gene codes for the catalytic β subunit and in the corresponding *ATP2*-RNAi knock-down lines, complex V was not assembled, respiratory rate was decreased by half and ATP synthesis coupled to the respiratory activity was fully impaired [54]. Like complex III and IV mutants, the *ATP2*-RNAi knock-down mutant was an obligate photoautotroph. In addition, as observed in yeast mutants [55, 56] lack of ATP synthase in *Chlamydomonas* also affected the morphology of mitochondria, which were deprived of cristae. In contrast, the loss of Asa7 subunit had no impact on cell bioenergetics or mitochondrial structures [31]. In the *ASA7*-RNAi knock-down line, the loss of Asa7 rather

destabilizes the enzyme dimeric form *in vitro* and renders growth, respiration, and ATP level sensitive to oligomycin [31].

Oligomycin is a potent inhibitor of H<sup>+</sup> channeling through the F<sub>O</sub> moiety of mitochondrial ATP synthase, with no or only a weak effect on chloroplast photophosphorylation (reviewed in [57]). Growth, respiration, and ATP levels in *Chlamydomonas* and other relative species are however barely affected by oligomycin concentrations that affect other eukaryotes species. These observations led us to propose that the recruitment of novel ASA polypeptides and the massive modification of complex V stator might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel [31].

## 2.6 Mutants affected in alternative enzymes

A mutant defective for the alternative oxidase (Aox1) has been isolated by RNA interference [58]. This *AOX1*-RNAi knock-down mutant displays a doubling of the cell volume and biomass without alteration of the generation time or change in total respiratory rate, with a significantly higher ROS production. A comparative study of both the mitochondrial and the cellular soluble proteomes was undertaken and indicated a strong up-regulation of the ROS scavenging systems and important modifications of proteins involved in the primary metabolism, namely an increase of enzymes involved in anabolic pathways and a concomitant general down-regulation of enzymes of the main catabolic pathways [58].

A mutant defective for a mitochondrial type II NADH dehydrogenase (Nda1) has been isolated by RNA interference. The *NDA1*-RNAi knock-down mutant presents a very mild phenotype, with only a slight decrease of respiration and no growth defect in heterotrophic conditions. In contrast, a double mutant affected in both Nda1 and complex I displayed strong alteration of respiration and growth rates in heterotrophic conditions, suggesting that Nda1 plays a role in the oxidation of matrix NADH in the absence of complex I [34].

#### 2.7 Mutants affected in the mitochondrial codon usage

Two mutants with modified mitochondrial codon usage for the GGG codon were obtained by mitochondrial transformation [59]. In *Chlamydomonas*, the

mitochondrial codon usage is highly biased [60]. Some codons are more used than others and for example the 4 codons coding for the Gly amino acid (GGA, GGC, GGU and GGG) are not used with the same frequency. The GGT and GGC codons represent 5.9% and 1.4% of the mitochondrial codon population respectively whereas the GGA and GGG codons only represent 0.4% and 0.1% respectively. In the two mutants obtained, 10 GGT/GGC codons (e.g. T11-10 mutant) and 11 GGT/GGC codons (e.g. T22-11 mutant) were modified in GGG codons in the 3' end of the nd4 gene. Consequently, the percentage of GGG codons in the mitochondria of the two mutants increased from 0.1% in wild type to 0.42% in the T11-10 mutant and 0.45% in the T22-11 mutant. Northern blot analysis showed that nd4 gene expression was not affected in the mutants. However, physiological analysis showed that they were altered in respiration and in growth rate. Biochemical analysis on the T22-11 revealed reduced respiratory enzymes activities and reduced amounts of complexes I and IV. Thus, the codon modification on the nd4 gene not only affected the complex I that contains the ND4 protein but also affected the complex IV, a respiratory complex that contains a mitochondria-encoded subunit *i.e.* the COX1 protein. In contrast, complex V that did not bear any mitochondria-encoded subunit in Chlamydomonas was not affected. The general reduction of respiratory enzymes containing mitochondriaencoded subunits was explained by the decrease of mitochondrial translation detected by in organello protein synthesis. This effect was probably linked to the limitations of the pool of mitochondrial transfer RNAs (tRNA) that could not be adapted to the new needs of mitochondrial genome [59]. Indeed, the introduction of 11 GGG codons in the nd4 gene probably broke the established codon-tRNA balance causing the decrease of translational efficiency in mitochondria [61].

## 2.2.6 Mutants affected in the transcription of the mitochondrial genome

One mutant affected in the transcription of the mitochondrial genome has been described. This mutant named *stm6* was obtained by random insertional mutagenesis and is affected in the nuclear *MOC1* gene [62]. The Moc1 protein belongs to the mitochondrial transcription Termination Factor (mTERF) family. The knowledge about the function of these mTERF proteins in photosynthetic organisms is scarce but in metazoans, these proteins interact with the mitochondrial DNA and regulate transcriptional initiation and termination. Moc1 is targeted to mitochondria and is

essential for light acclimation. The loss of Moc1 in the *stm6* mutant indeed causes a pleiotropic phenotype characterized by sensitivity to high light, perturbed transcription profile of the respiratory complexes as well as reduced amounts of complex IV and rotenone-insensitive NAD(P)H dehydrogenase in light-grown cultures. A more detailed study of Moc1 showed that the protein binds specifically to an octanucleotide motif within the mitochondrial rRNA-coding module S3 (**Fig. 3**) and acts as a transcription terminator by blocking the transcription read-through of the leftward transcription unit of the genome [63].

## 3. Conclusion

The isolation and characterization of mutants affected in respiratory genes is useful to decipher the role of the numerous subunits that compose the respiratory-chain complexes, with special emphasis on subunits that are typical or specific to *Chlamydomonas*, like the Asa subunits of complex V, or the role of enzymes which regulate electron flow, such as type II NAD(P)H dehydrogenases. In addition, random mutagenesis can lead to the discovery of new genes involved in the assembly of the different complexes. This is especially relevant for complex I where the number of chaperones identified (9) is low compared to that of the other respiratory complexes, *e.g.* complex IV where 28 assembly factors have been identified to date. In addition, the availability of mitochondrial transformation opens the way to reverse genetics and a better knowledge of the small mitochondrial genome of *Chlamydomonas*.

At last, the availability of mutants affected to various extents in their ability to couple ATP synthesis to NADH oxidation is also a useful tool to study the relationship between the mitochondrial energetic status of the cell, hydrogen production, carbon metabolism, and ATP/NADPH adjustment for photosynthesis [62, 64-67].

**Table 1:** Protein components of mitochondrial respiratory complexes and assembly factors in *Chlamydomonas* 

The present table is an update of the data presented in [1]. For *C. reinhardtii* the Genbank accession number and the gene name are given. References for the new data are indicated. (a) [1], (b) [17], (c) [68], (d) [69], (e) [70], (f) [71], (g) [72], (h) [73], (i) [74], (j) [75], (k) [76], (l) [77], (m) [22], (n) [29], (o) [78], (p) [58], (q) [79], (r)[34]

((a) [48], (b) [45], (c) [47], (d) [43], (e) [44], (f) [39], (g) [38], (h) [46], (i) [80], (j) [41], (k) [50], (l) [81], (m) [82], (n) [40], (o) [54], (p) [31], (q) [58], (r) [34], (s) [59], (t) [62], (u) (Massoz S., Larosa V., Lapaille M., Remacle C., and Cardol P., unpublished data)

**Table 2**: List of respiratory-deficient mutants of *Chlamydomonas*.

#### Legends of figures

Fig. 1: Complex I and ATP synthase of *Chlamydomonas* 

A. Characteristic L-like shape structure of plant complex I. In addition to the two functional domains responsible for proton translocation (membrane arm) and for NADH oxidation (soluble arm), plant complex I possesses a globular matrix-exposed extra module composed of the gamma-type carbonic anhydrase subunits ( $\gamma$ -CA) attached to the central part of membrane arm [13]. In *Chlamydomonas* mutants, two subcomplexes of 700 kDa and 250 kDa have been identified [47].

B. Schematic representation of the dimeric ATP synthase supercomplex in *Chlamydomonas*. In dark-grey is represented the complex V with its  $F_1$  and  $F_0$  domains linked by the central stalk. In light-grey are represented the peripheral stalk and the dimerization module constituted of algal-specific subunits (ASA subunits) [29].

**Fig. 2:** Histogram showing the number of structural and assembly components for each complex in each organism.

Fig. 3: Physical map of the 15.8-kb mitochondrial genome of *C. reinhardtii*.

The rectangles represent protein-coding genes: *cob*, gene encoding apocytochrome *b* of complex III; *nd1*, 2, 4, 5, and 6, genes encoding the corresponding subunits of complex I; *cox1*, gene encoding the subunit 1 of complex IV, *rtl*: reverse transcriptase-like protein. L and S represent modules encoding segments of rRNA of the large and the small subunits, respectively. W, Q and M represent tRNAs for Tryptophane, Glutamine and Methionine, respectively. The inverted telomeric ends are represented by short arrows and the bidirectional origin of transcription between *nd5* and *cox1* is represented by longer arrows. Positions of the mitochondrial mutants listed in Table 2 are indicated: deleted fragments are indicated by tear lines, mutations are indicated by black spots and the region with modified Glycine codons is indicated with a hatched square.

**Fig. 4:** Growth of the wild type and the respiratory mutants in the light and in the dark.

The respiratory mutants can be divided into two phenotypic classes when cultivated under heterotrophic conditions. One class is composed of mutants of complex III and

complex IV which are unable to grow in the dark (dk<sup>-</sup> phenotype) and are thus obligate photoautotrophs, and another class is composed of mutants of complex I which grow in the dark but much more slowly than the wild-type strain (dark<sup>+/-</sup> phenotype). WT corresponds to the wild type strain; CI- corresponds to a complex I mutant; CIII-/CIV- corresponds to a complex III or complex IV mutant.

#### Acknowledgements

Work in the lab of CR is supported by 'Fonds de la Recherche Fondamentale Collective' (FRS-FNRS, CDR J.0138.13, 2.4597.11 and 2.4567.11) and by les 'Fonds spéciaux de l'Université de Liège'. PC is supported by an Incentive Grant for Scientific Research (FRS-FNRS F.4520) and University of Liège (SFRD-11/05). VL and PC are Postdoctoral Researcher and Research Associate of F.R.S.-FNRS, respectively. Work in the lab of L M-D is supported by the Centre National de la Recherche Scientifique, the French Agence Nationale de la Recherche (ANR)[ANR-09-BLAN-0240-01] and the French National Program "Investissement d'Avenir" (Labex MitoCross). TS is a Postdoctoral Researcher supported by the French National Program "Investissement d'Avenir" (Labex MitoCross).

#### References

- [1] P. Cardol, D. Gonzalez-Halphen, A. Reyes-Prieto, D. Baurain, R.F. Matagne, C. Remacle, The mitochondrial oxidative phosphorylation proteome of *Chlamydomonas reinhardtii* deduced from the Genome Sequencing Project, Plant Physiol. 137 (2005) 447-459.
- [2] J. Carroll, I.M. Fearnley, J.E. Walker, Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins, Proc. Natl. Acad. Sci. USA 103 (2006) 16170-16175.
- [3] E. Balsa, R. Marco, E. Perales-Clemente, R. Szklarczyk, E. Calvo, M.O. Landazuri, J.A. Enriquez, NDUFA4 is a subunit of complex IV of the mammalian electron transport chain, Cell Metabolism 16 (2012) 378-386.
- [4] K. Peters, K. Belt, H.P. Braun, 3D Gel Map of *Arabidopsis* Complex I, Front. Plant Sci. 4 (2013) 153.
- [5] P. Cardol, Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: A highly conserved subunit composition highlighted by mining of protein databases, Biochim. Biophys. Acta (2011).
- [6] P. Cardol, F. Vanrobaeys, B. Devreese, J. Van Beeumen, R.F. Matagne, C. Remacle, Higher plant-like subunit composition of mitochondrial complex I from *Chlamydomonas reinhardtii*: 31 conserved components among eukaryotes, Biochim. Biophys. Acta 1658 (2004) 212-224.
- [7] J. Hirst, Mitochondrial complex I, Annu. Rev. Biochem. 82 (2013) 551-575.
- [8] R.M. Gawryluk, M.W. Gray, Evidence for an early evolutionary emergence of gamma-type carbonic anhydrases as components of mitochondrial respiratory complex I, BMC Evol. Biol. 10 (2010) 176.

- [9] J. Klodmann, S. Sunderhaus, M. Nimtz, L. Jansch, H.P. Braun, Internal architecture of mitochondrial complex I from *Arabidopsis thaliana*, Plant Cell 22 (2010) 797-810.
- [10] J.B. Bultema, H.P. Braun, E.J. Boekema, R. Kouril, Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato, Biochim. Biophys. Acta 1787 (2009) 60-67.
- [11] M. Perales, H. Eubel, J. Heinemeyer, A. Colaneri, E. Zabaleta, H.P. Braun, Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in *Arabidopsis*, J. Mol. Biol. 350 (2005) 263-277.
- [12] K. Peters, N.V. Dudkina, L. Jansch, H.P. Braun, E.J. Boekema, A structural investigation of complex I and I+III2 supercomplex from *Zea mays* at 11-13 A resolution: assignment of the carbonic anhydrase domain and evidence for structural heterogeneity within complex I, Biochim. Biophys. Acta 1777 (2008) 84-93.
- [13] S. Sunderhaus, N.V. Dudkina, L. Jansch, J. Klodmann, J. Heinemeyer, M. Perales, E. Zabaleta, E.J. Boekema, H.P. Braun, Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants, J. Biol. Chem. 281 (2006) 6482-6488.
- [14] R. Kuffner, A. Rohr, A. Schmiede, C. Krull, U. Schulte, Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I), J. Mol. Biol. 283 (1998) 409-417.
- [15] K. Bych, S. Kerscher, D.J. Netz, A.J. Pierik, K. Zwicker, M.A. Huynen, R. Lill, U. Brandt, J. Balk, The iron-sulphur protein Ind1 is required for effective complex I assembly, EMBO J. 27 (2008) 1736-1746.
- [16] A.D. Sheftel, O. Stehling, A.J. Pierik, D.J. Netz, S. Kerscher, H.P. Elsasser, I. Wittig, J. Balk, U. Brandt, R. Lill, Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I, Mol. Cell. Biol. 29 (2009) 6059-6073.
- [17] C. Remacle, P. Hamel, V. Larosa, N. Subrahmanian, P. Cardol, Complexes I in the green lineage, in: L.A. Sazanov (Ed.), A structural perspective on respiratory complex I: structure and function of NADH:ubiquinone oxidoreductase, Springer, Dordrecht, 2012, pp. 219-244.
- [18] S. Hamanaka, K. Ohtsu, K. Kadowaki, M. Nakazono, A. Hirai, Identification of cDNA encoding cytochrome *c* oxidase subunit 5c (COX5c) from rice: comparison of its expression with nuclear-encoded and mitochondrial-encoded COX genes, Genes Genetics Syst.74 (1999) 71-75.
- [19] F.J. Lown, A.T. Watson, S. Purton, *Chlamydomonas* nuclear mutants that fail to assemble respiratory or photosynthetic electron transfer complexes, Biochem. Soc. Trans. 29 (2001) 452-455.
- [20] X. Perez-Martinez, A. Antaramian, M. Vazquez-Acevedo, S. Funes, E. Tolkunova, J. d'Alayer, M.G. Claros, E. Davidson, M.P. King, D. Gonzalez-Halphen, Subunit II of cytochrome *c* oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes, J. Biol. Chem. 276 (2001) 11302-11309.
- [21] X. Perez-Martinez, M. Vazquez-Acevedo, E. Tolkunova, S. Funes, M.G. Claros, E. Davidson, M.P. King, D. Gonzalez-Halphen, Unusual location of a mitochondrial gene. Subunit III of cytochrome *c* oxidase is encoded in the nucleus of Chlamydomonad algae, J. Biol. Chem. 275 (2000) 30144-30152.
- [22] Y.C. Chen, E.B. Taylor, N. Dephoure, J.M. Heo, A. Tonhato, I. Papandreou, N. Nath, N.C. Denko, S.P. Gygi, J. Rutter, Identification of a protein mediating respiratory supercomplex stability, Cell Metabolism 15 (2012) 348-360.

- [23] H. Seelert, N.A. Dencher, ATP synthase superassemblies in animals and plants: two or more are better, Biochim. Biophys. Acta 1807 (2011) 1185-1197.
- [24] W. Junge, H. Sielaff, S. Engelbrecht, Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase, Nature 459 (2009) 364-370.
- [25] M. Vazquez-Acevedo, P. Cardol, A. Cano-Estrada, M. Lapaille, C. Remacle, D. Gonzalez-Halphen, The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex, J. Bioenerg. Biomembr. 38 (2006) 271-282.
- [26] N.V. Dudkina, J. Heinemeyer, W. Keegstra, E.J. Boekema, H.P. Braun, Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane, FEBS Lett. 579 (2005) 5769-5772.
- [27] N.V. Dudkina, S. Sunderhaus, H.P. Braun, E.J. Boekema, Characterization of dimeric ATP synthase and cristae membrane ultrastructure from *Saccharomyces* and *Polytomella* mitochondria, FEBS Lett. 580 (2006) 3427-3432.
- [28] N.V. Dudkina, G.T. Oostergetel, D. Lewejohann, H.P. Braun, E.J. Boekema, Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography, Biochim. Biophys. Acta 1797 (2010) 272-277.
- [29] A. Cano-Estrada, M. Vazquez-Acevedo, A. Villavicencio-Queijeiro, F. Figueroa-Martinez, H. Miranda-Astudillo, Y. Cordeiro, J.A. Mignaco, D. Foguel, P. Cardol, M. Lapaille, C. Remacle, S. Wilkens, D. Gonzalez-Halphen, Subunit-subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of *Polytomella* sp, Biochim. Biophys. Acta 1797 (2010) 1439-1448.
- [30] A. Villavicencio-Queijeiro, M. Vazquez-Acevedo, A. Cano-Estrada, M. Zarco-Zavala, M. Tuena de Gomez, J.A. Mignaco, M.M. Freire, H.M. Scofano, D. Foguel, P. Cardol, C. Remacle, D. Gonzalez-Halphen, The fully-active and structurally-stable form of the mitochondrial ATP synthase of *Polytomella* sp. is dimeric, J. Bioenerg. Biomembr. 41 (2009) 1-13.
- [31] M. Lapaille, A. Escobar-Ramirez, H. Degand, D. Baurain, E. Rodriguez-Salinas, N. Coosemans, M. Boutry, D. Gonzalez-Halphen, C. Remacle, P. Cardol, Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme, Mol. Biol. Evol. 27 (2010) 1630-1644.
- [32] F. Jans, E. Mignolet, P.A. Houyoux, P. Cardol, B. Ghysels, S. Cuine, L. Cournac, G. Peltier, C. Remacle, F. Franck, A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of *Chlamydomonas*, Proc. Natl. Acad. Sci. USA 105 (2008) 20546-20551.
- [33] M. Terashima, M. Specht, B. Naumann, M. Hippler, Characterizing the anaerobic response of *Chlamydomonas reinhardtii* by quantitative proteomics, Mol. Cell. Proteomics 9 (2010) 1514-1532.
- [34] R. Lecler, H. Vigeolas, B. Emonds-Alt, P. Cardol, C. Remacle, Characterization of an internal type-II NADH dehydrogenase from *Chlamydomonas reinhardtii* mitochondria, Curr Genet 58 (2012) 205-216.
- [35] M. Dinant, D. Baurain, N. Coosemans, B. Joris, R.F. Matagne, Characterization of two genes encoding the mitochondrial alternative oxidase in *Chlamydomonas reinhardtii*, Curr. Genet. 39 (2001) 101-108.
- [36] D. Baurain, M. Dinant, N. Coosemans, R.F. Matagne, Regulation of the alternative oxidase Aox1 gene in *Chlamydomonas reinhardtii*. Role of the nitrogen

- source on the expression of a reporter gene under the control of the Aox1 promoter, Plant Physiol. 131 (2003) 1418-1430.
- [37] A. Wiseman, N.W. Gillham, J.E. Boynton, The mitochondrial genome of Chlamydomonas. II. Genetic analysis of non-mendelian obligate photautotrophic mutants, Mol. Gen. Genet. 150 (1977) 109-118.
- [38] M.R. Barbieri, V. Larosa, C. Nouet, N. Subrahmanian, C. Remacle, P.P. Hamel, A forward genetic screen identifies mutants deficient for mitochondrial complex I assembly in *Chlamydomonas reinhardtii*, Genetics 188 (2011) 349-358.
- [39] P. Cardol, M. Lapaille, P. Minet, F. Franck, R.F. Matagne, C. Remacle, ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in *Chlamydomonas reinhardtii*, are required for activity and assembly of the enzyme, Eukaryot. Cell 5 (2006) 1460-1467.
- [40] C. Remacle, N. Coosemans, F. Jans, M. Hanikenne, P. Motte, P. Cardol, Knock-down of the *COX3* and *COX17* gene expression of cytochrome c oxidase in the unicellular green alga *Chlamydomonas reinhardtii*, Plant Mol. Biol. 74 (2010) 223-233.
- [41] R.F. Matagne, M.R. Michel-Wolwertz, C. Munaut, C. Duyckaerts, F. Sluse, Induction and characterization of mitochondrial DNA mutants in *Chlamydomonas reinhardtii*, J. Cell Biol. 108 (1989) 1221-1226.
- [42] J.E. Boynton, E.H. Harris, B.D. Burkhart, P.M. Lamerson, N.W. Gillham, Transmission of mitochondrial and chloroplast genomes in crosses of *Chlamydomonas*, Proc. Natl. Acad. Sci. USA 84 (1987) 2391-2395.
- [43] C. Remacle, P. Cardol, N. Coosemans, M. Gaisne, N. Bonnefoy, High-efficiency biolistic transformation of *Chlamydomonas* mitochondria can be used to insert mutations in complex I genes, Proc. Natl. Acad. Sci. USA 103 (2006) 4771-4776.
- [44] V. Larosa, N. Coosemans, P. Motte, N. Bonnefoy, C. Remacle, Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga *Chlamydomonas*, Plant J. (2012).
- [45] C. Remacle, D. Baurain, P. Cardol, R.F. Matagne, Mutants of *Chlamydomonas reinhardtii* deficient in mitochondrial complex I: characterization of two mutations affecting the nd1 coding sequence, Genetics 158 (2001) 1051-1060.
- [46] C. Remacle, F. Duby, P. Cardol, R.F. Matagne, Mutations inactivating mitochondrial genes in *Chlamydomonas reinhardtii*, Biochem. Soc. Trans. 29 (2001) 442-446.
- [47] P. Cardol, L. Boutaffala, S. Memmi, B. Devreese, R.F. Matagne, C. Remacle, In *Chlamydomonas*, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex, Biochim. Biophys. Acta 1777 (2008) 388-396.
- [48] P. Cardol, R.F. Matagne, C. Remacle, Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in *Chlamydomonas*. Implication for the structural organization of the enzyme, J. Mol. Biol. 319 (2002) 1211-1221.
- [49] J. Carroll, I.M. Fearnley, R.J. Shannon, J. Hirst, J.E. Walker, Analysis of the subunit composition of complex I from bovine heart mitochondria, Mol. Cell. Proteomics 2 (2003) 117-126.
- [50] M.P. Dorthu, S. Remy, M.R. Michel-Wolwertz, L. Colleaux, D. Breyer, M.C. Beckers, S. Englebert, C. Duyckaerts, F.E. Sluse, R.F. Matagne, Biochemical, genetic and molecular characterization of new respiratory-deficient mutants in *Chlamydomonas reinhardtii*, Plant Mol. Biol. 18 (1992) 759-772.

- [51] C. Remacle, M. Colin, R.F. Matagne, Suppression of a +1 T mutation by a nearby substitution in the mitochondrial *cox1* gene of *Chlamydomonas reinhardtii*: a new type of frameshift suppression in an organelle genome, Mol. Gen. Genet. 259 (1998) 294-298.
- [52] R.F. Matagne, D. Baurain, A mutation in the GTPase domain of the large subunit rRNA is involved in the suppression of a -1T frameshift mutation affecting a mitochondrial gene in *Chlamydomonas reinhardtii*, Mol. Gen. Genomics 266 (2001) 103-108.
- [53] C. Remacle, G. Gloire, P. Cardol, R.F. Matagne, Impact of a mutation in the mitochondrial LSU rRNA gene from *Chlamydomonas reinhardtii* on the activity and the assembly of respiratory-chain complexes, Curr. Genet. 45 (2004) 323-330.
- [54] M. Lapaille, M. Thiry, E. Perez, D. Gonzalez-Halphen, C. Remacle, P. Cardol, Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in *Chlamydomonas*, Biochim. Biophys. Acta 1797 (2010) 1533-1539.
- [55] Y. Liang, S.H. Ackerman, Characterization of mutations in the beta subunit of the mitochondrial F1-ATPase that produce defects in enzyme catalysis and assembly, J. Biol. Chem. 271 (1996) 26522-26528.
- [56] L. Lefebvre-Legendre, B. Salin, J. Schaeffer, D. Brethes, A. Dautant, S.H. Ackerman, J.P. di Rago, Failure to assemble the alpha 3 beta 3 subcomplex of the ATP synthase leads to accumulation of the alpha and beta subunits within inclusion bodies and the loss of mitochondrial cristae in *Saccharomyces cerevisiae*, J. Biol. Chem. 280 (2005) 18386-18392.
- [57] S. Hong, P.L. Pedersen, ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas, Microbiol. Mol. Biol. Rev. 72 (2008) 590-641.
- [58] G. Mathy, P. Cardol, M. Dinant, A. Blomme, S. Gerin, M. Cloes, B. Ghysels, E. DePauw, P. Leprince, C. Remacle, C. Sluse-Goffart, F. Franck, R.F. Matagne, F.E. Sluse, Proteomic and functional characterization of a *Chlamydomonas reinhardtii* mutant lacking the mitochondrial alternative oxidase 1, J. Proteome Res. 9 (2010) 2825-2838.
- [59] T. Salinas, F. Duby, V. Larosa, N. Coosemans, N. Bonnefoy, P. Motte, L. Marechal-Drouard, C. Remacle, Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga *Chlamydomonas*, PLoS Genetics 8 (2012) e1002946.
- [60] G. Michaelis, C. Vahrenholz, E. Pratje, Mitochondrial DNA of *Chlamydomonas reinhardtii*: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA, Mol. Gen. Genet. 223 (1990) 211-216.
- [61] W. Qian, J.R. Yang, N.M. Pearson, C. Maclean, J. Zhang, Balanced codon usage optimizes eukaryotic translational efficiency, PLoS Genetics 8 (2012) e1002603.
- [62] C. Schonfeld, L. Wobbe, R. Borgstadt, A. Kienast, P.J. Nixon, O. Kruse, The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in *Chlamydomonas reinhardtii*, J. Biol. Chem. 279 (2004) 50366-50374.
- [63] L. Wobbe, P.J. Nixon, The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga *Chlamydomonas reinhardtii*, Nucleic Acids Res. (2013).
- [64] P. Cardol, J. Alric, J. Girard-Bascou, F. Franck, F.A. Wollman, G. Finazzi, Impaired respiration discloses the physiological significance of state transitions in *Chlamydomonas*, Proc. Natl. Acad. Sci. USA 106 (2009) 15979-15984.

- [65] P. Cardol, G. Gloire, M. Havaux, C. Remacle, R. Matagne, F. Franck, Photosynthesis and state transitions in mitochondrial mutants of *Chlamydomonas reinhardtii* affected in respiration, Plant Physiol. 133 (2003) 2010-2020.
- [66] R. Lecler, D. Godaux, H. Vigeolas, S. Hiligsmann, P. Thonart, F. Franck, P. Cardol, C. Remacle, Functional analysis of hydrogen photoproduction in respiratory-deficient mutants of *Chlamydomonas reinhardtii*, Int. J. Hyd. Energy 36 (2011) 9562-9570.
- [67] A.V. Nguyen, J. Toepel, S. Burgess, A. Uhmeyer, O. Blifernez, A. Doebbe, B. Hankamer, P. Nixon, L. Wobbe, O. Kruse, Time-course global expression profiles of *Chlamydomonas reinhardtii* during photo-biological H(2) production, PloS One 6 (2011) e29364.
- [68] H.J. Kim, D.R. Winge, Emerging concepts in the flavinylation of succinate dehydrogenase, Biochim. Biophys. Acta 1827 (2013) 627-636.
- [69] D. Ghezzi, P. Goffrini, G. Uziel, R. Horvath, T. Klopstock, H. Lochmuller, P. D'Adamo, P. Gasparini, T.M. Strom, H. Prokisch, F. Invernizzi, I. Ferrero, M. Zeviani, SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy, Nature Genetics 41 (2009) 654-656.
- [70] T.A. Giancaspero, R. Wait, E. Boles, M. Barile, Succinate dehydrogenase flavoprotein subunit expression in *Saccharomyces cerevisiae*--involvement of the mitochondrial FAD transporter, Flx1p, FEBS J. 275 (2008) 1103-1117.
- [71] H.X. Hao, O. Khalimonchuk, M. Schraders, N. Dephoure, J.P. Bayley, H. Kunst, P. Devilee, C.W. Cremers, J.D. Schiffman, B.G. Bentz, S.P. Gygi, D.R. Winge, H. Kremer, J. Rutter, SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma, Science 325 (2009) 1139-1142.
- [72] P.M. Smith, J.L. Fox, D.R. Winge, Biogenesis of the cytochrome bc(1) complex and role of assembly factors, Biochim. Biophys. Acta 1817 (2012) 276-286.
- [73] E. Sanchez, T. Lobo, J.L. Fox, M. Zeviani, D.R. Winge, E. Fernandez-Vizarra, LYRM7/MZM1L is a UQCRFS1 chaperone involved in the last steps of mitochondrial Complex III assembly in human cells, Biochim. Biophys. Acta 1827 (2013) 285-293.
- [74] P. Giege, J.M. Grienenberger, G. Bonnard, Cytochrome *c* biogenesis in mitochondria, Mitochondrion 8 (2008) 61-73.
- [75] I.C. Soto, F. Fontanesi, J. Liu, A. Barrientos, Biogenesis and assembly of eukaryotic cytochrome *c* oxidase catalytic core, Biochim. Biophys. Acta 1817 (2012) 883-897.
- [76] M.H. Barros, C.G. Carlson, D.M. Glerum, A. Tzagoloff, Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O, FEBS Lett. 492 (2001) 133-138.
- [77] M. Vukotic, S. Oeljeklaus, S. Wiese, F.N. Vogtle, C. Meisinger, H.E. Meyer, A. Zieseniss, D.M. Katschinski, D.C. Jans, S. Jakobs, B. Warscheid, P. Rehling, M. Deckers, Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex, Cell Metabolism 15 (2012) 336-347.
- [78] M. Rak, X. Zeng, J.J. Briere, A. Tzagoloff, Assembly of F0 in *Saccharomyces cerevisiae*, Biochim. Biophys. Acta 1793 (2009) 108-116.
- [79] Q. Li, R.G. Ritzel, L.L. McLean, L. McIntosh, T. Ko, H. Bertrand, F.E. Nargang, Cloning and analysis of the alternative oxidase gene of *Neurospora crassa*, Genetics 142 (1996) 129-140.
- [80] F. Duby, R.F. Matagne, Alteration of dark respiration and reduction of phototrophic growth in a mitochondrial DNA deletion mutant of *Chlamydomonas* lacking *cob*, *nd4*, and the 3' end of *nd5*, Plant Cell 11 (1999) 115-125.

- [81] M. Colin, M.P. Dorthu, F. Duby, C. Remacle, M. Dinant, M.R. Wolwertz, C. Duyckaerts, F. Sluse, R.F. Matagne, Mutations affecting the mitochondrial genes encoding the cytochrome oxidase subunit I and apocytochrome *b* of *Chlamydomonas reinhardtii*, Mol. Gen. Genet. 249 (1995) 179-184.
- [82] P. Bennoun, M. Delosme, U. Kuck, Mitochondrial genetics of *Chlamydomonas reinhardtii*: resistance mutations marking the cytochrome *b* gene, Genetics 127 (1991) 335-343.

Table 1

| H. sapiens/B. taurus       | N. crassa/Y. lipolytica | Arabidopsis thaliana | Chlamydomonas reinhardtii                               | References |
|----------------------------|-------------------------|----------------------|---------------------------------------------------------|------------|
| Complex I                  |                         |                      |                                                         |            |
| Bacterial core NDUFS7/PSST | NUO19.3/NUKM            | At5g11770            | VD 001700595 NUO10                                      | a b        |
| NDUFS8/TYKY                | NUO21.3c/NUIM           | At1g16700, At1g79010 | XP_001700585, <i>NUO10</i><br>XP_001702368, <i>NUO8</i> | a,b<br>a,b |
|                            |                         |                      | XP_001698508, NUO5                                      |            |
| NDUFV2/24 kD               | NUO24/NUHM              | At4g02580            |                                                         | a,b        |
| NDUFS3/30 kD               | NUO30.4 (31)/NUGM       | AtMg00070            | XP_001690652, NUO9/ND9                                  | a,b        |
| NDUFS2/49 kD               | NUO49/NUCM              | AtMg00510            | XP_001697607, NUO7/ND7                                  | a,b        |
| NDUFV1/51 kD               | 51/NUBM                 | At5g08530            | XP_001702590, NUO6                                      | a,b        |
| NDUFS1/75 kD               | NUO78/NUAM              | At5g37510            | XP_001692885, NUOS1                                     | a,b        |
| ND1                        | ND1/NU1M                | AtMg00516            | AAB93446, nd1                                           | a,b        |
| ND2                        | ND2/NU2M                | AtMg00285            | AAB93444, nd2                                           | a,b        |
| ND3                        | ND3/NU3M                | AtMg00990            | AAQ55461, <i>NUO3/</i> ND3                              | a,b        |
| ND4                        | ND4/NU4M                | AtMg00580            | AAB93441, nd4                                           | a,b        |
| ND4L                       | ND4L/NULM               | AtMg00650            | AAO61142, <i>NUO11</i> /ND4L                            | a,b        |
| ND5                        | ND5/NU5M                | AtMg00513            | AAB93442, nd5                                           | a,b        |
| ND6                        | ND6/NU6M                | AtMg00270            | AAB93445, nd6                                           | a,b        |
| Conserved surpernumerary   |                         |                      |                                                         |            |
| NDUFA1/MWFE                | NUO9.8/NIMM             | At3g08610            | XP_001698399, NUOA1                                     | a,b        |
| NDUFA2/B8                  | NUO10.5/NI8M            | At5g47890            | XP_001695875, NUOB8                                     | a,b        |
| NDUFB3/B12                 | NUO10.6/NB2M            | At2g02510            | XP_001700920, NUOB12                                    | a,b        |
| NDUFA5/B13                 | NUO29.9/NUFM            | At5g52840            | XP_001693453, NUOB13                                    | a,b        |
| NDUFS6/13 kD               | NUO18.4/NUMM            | At3g03070            | XP_001703419, NUOS6                                     | a,b        |
| NDUFA6/B14                 | NUO14.8/NB4M            | At3g12260            | XP_001694042, NUOB14                                    | a,b        |
| NDUFA11/B14.7              | NUO21.3b/NUJM           | At2g42210            | XP_001689829, TIM17                                     | a,b        |
| NDUFB11/ESSS               | NUO11.7/NUWM            | At3g57785, At2g42310 | XP_001697702, NUO17                                     | a,b        |
| NDUFS5/PFFD                | NUO11.5/NIPM            | At3g62790, At2g47690 | XP_001691060, NUOS5                                     | a,b        |
| NDUFB4/B15                 | NUO6.6/NUVM             | At2g31490            | XP_001693191, NUOB4                                     | a,b        |
| NDUFA12/B16.6              | NUO14 (13.5)/NB6M       | At1g04630, At2g33220 | XP_001701450, NUOB16                                    | a,b        |
| DAP13/B17.2                | NUO13.4/N7BM            | At3g03100            | XP_001699522, NUO13                                     | a,b        |
| NDUFB7/B18                 | NB8M                    | At2g02050            | XP_001698082, NUOB18                                    | a,b        |
| NDUFS4/AQDQ                | NUO21/NUYM              | At5g67590            | XP_001695601, NUOS4                                     | a,b        |
| NDUFA8/PGIV                | NUO20.8/NUPM            | At5g18800, At3g06310 | XP_001700114, NUOA8                                     | a,b        |
| NDUFB9/B22                 | NI2M                    | At4g34700            | XP_001698797, NUOB22                                    | a,b        |
| NDUFB10/PDSW               | NUO12.3/NIDM            | At1g49140, At3g18410 | XP_001694041, NUOB10                                    | a,b        |
| NDUFA9/39 kD               | NUO40/NUEM              | At2g20360            | XP_001702653, NUOA9                                     | a,b        |
| NDUFB8/ASHI                | NUO20.1/NIAM            | At5g47570            | XP_001700273, TEF29                                     | a,b        |
| NDUFB2/AGGG                | NCU01436                | At1g76200            | -                                                       | a,b        |
| NDUFB1/MNLL                | NUO20.9/NUXM            | At4g16450            | XP_001696533, NUO21                                     | a,b        |
| NDUFC2/B14.5B              | NUO10.4                 | At4g20150 (NDU9)     | XP_001693474, NUOP1                                     | a,b        |
| NDUFC1/KFYI                | NCU08300/NUUM           | At4g00585            | XP_001697243                                            | a,b        |
| NDUFA3/B9                  | NUO9.5/NI9M             | At2g46540            | XP_001692978                                            | a,b        |
| NDUFAB1/ACPM               | an in                   |                      | TTD 004 5000 TT 4 CD1                                   |            |
| TO CITIBITATE IN           | SDAP                    | AAM6246              | XP_001699275, ACP1                                      | a,b        |

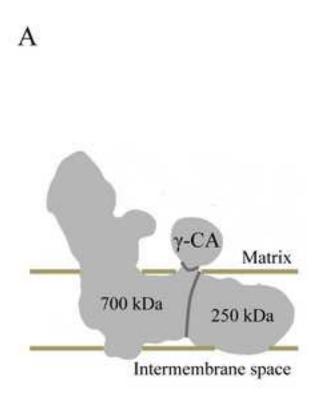
| NDUFA4/MLRQ                                                                                                                                              | NCU02016                                                       | At3g29970                                                                                                                                                                      | -                                                                                                                                                                                                                               | a,b                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| NDUFB5/SGDH                                                                                                                                              | NUO17.8                                                        | At1g67785                                                                                                                                                                      | -                                                                                                                                                                                                                               | a,b                          |
| NDUFA10/42 kD                                                                                                                                            | -                                                              | AAG51141                                                                                                                                                                       | -                                                                                                                                                                                                                               | a,b                          |
| XP_001253523                                                                                                                                             | NCU03188                                                       | At3g47930<br>L-galactono-1,4-lactone<br>dehydrogenase                                                                                                                          | XP_001693696, GLDH                                                                                                                                                                                                              | a,b                          |
| Plant specific                                                                                                                                           |                                                                |                                                                                                                                                                                |                                                                                                                                                                                                                                 |                              |
| -                                                                                                                                                        | -                                                              | γ carbonic anhydrase<br>At5g63510, At1g19580,<br>At3g48680, At1g47260,<br>At5g66510                                                                                            | XP_001703237, <i>CAG1</i> ,<br>XP_001701594, <i>CAG2</i> ,<br>XP_001696746, <i>CAG3</i>                                                                                                                                         | a,b                          |
| -                                                                                                                                                        | -                                                              | At3g07480                                                                                                                                                                      | XP_001699817, NUOP3                                                                                                                                                                                                             | a,b                          |
| -                                                                                                                                                        | -                                                              | At5g14105                                                                                                                                                                      | - /                                                                                                                                                                                                                             | a,b                          |
| -                                                                                                                                                        | -                                                              | At1g67350                                                                                                                                                                      | -                                                                                                                                                                                                                               | a,b                          |
| -                                                                                                                                                        | -                                                              | At1g68680                                                                                                                                                                      | -                                                                                                                                                                                                                               | a,b                          |
| -                                                                                                                                                        | -                                                              | At2g27730                                                                                                                                                                      | _                                                                                                                                                                                                                               | a,b                          |
| -                                                                                                                                                        | -                                                              | -                                                                                                                                                                              | AAS58503, <i>NUOP5</i>                                                                                                                                                                                                          | a,b                          |
| -                                                                                                                                                        | -                                                              | _                                                                                                                                                                              | AAS58498, <i>NUOP4</i>                                                                                                                                                                                                          | a,b                          |
| Assembly Factors                                                                                                                                         |                                                                |                                                                                                                                                                                | .11.1000170,110017                                                                                                                                                                                                              |                              |
| NDUFAF1                                                                                                                                                  | CIA30                                                          | At1g17350                                                                                                                                                                      | XP_001701850, NUOAF1                                                                                                                                                                                                            | a,b                          |
| -                                                                                                                                                        | CIA84                                                          | -                                                                                                                                                                              | -                                                                                                                                                                                                                               | a,b                          |
| NUBPL                                                                                                                                                    | IND1                                                           | At4g19540 (INDL)                                                                                                                                                               | XP_001702721                                                                                                                                                                                                                    | a,b                          |
| Foxred1                                                                                                                                                  | -                                                              | At2g24580, Sarcosine oxidase family protein                                                                                                                                    | XP_001692123, FAD-dependent oxidoreductase                                                                                                                                                                                      | a,b                          |
| C8ORF38                                                                                                                                                  | -                                                              | At1g62730                                                                                                                                                                      | XP_001693265                                                                                                                                                                                                                    | a,b                          |
| C20ORF7                                                                                                                                                  | -                                                              | At1g22800                                                                                                                                                                      | XP_001693605                                                                                                                                                                                                                    | a,b                          |
| NDUFAF2 (B17.2L)                                                                                                                                         | -                                                              | -                                                                                                                                                                              | -                                                                                                                                                                                                                               | a,b                          |
|                                                                                                                                                          |                                                                |                                                                                                                                                                                |                                                                                                                                                                                                                                 |                              |
| NDUFAF3                                                                                                                                                  | -                                                              | At3g60150                                                                                                                                                                      | XP_001702394                                                                                                                                                                                                                    | a,b                          |
|                                                                                                                                                          | -                                                              | At3g60150                                                                                                                                                                      | XP_001702394<br>XP_001701912                                                                                                                                                                                                    | a,b<br>a,b                   |
| NDUFAF4, (C6ORF66)                                                                                                                                       | -<br>-<br>Saccharomyces cerevisiae                             | -                                                                                                                                                                              |                                                                                                                                                                                                                                 |                              |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus                                                                                                                 | -<br>-<br>Saccharomyces cerevisiae                             | At3g60150 - Arabidopsis thaliana                                                                                                                                               | XP_001701912                                                                                                                                                                                                                    |                              |
| NDUFAF4, (C6ORF66)                                                                                                                                       | - Saccharomyces cerevisiae SDH1                                | -<br>Arabidopsis thaliana                                                                                                                                                      | XP_001701912                                                                                                                                                                                                                    |                              |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II                                                                                                     | ·                                                              | - Arabidopsis thaliana At2g18450, At5g66760                                                                                                                                    | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1                                                                                                                                                                     | a,b                          |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA SDHB                                                                                          | SDH1<br>SDH2                                                   | - Arabidopsis thaliana At2g18450, At5g66760 At5g40650, At3g27380                                                                                                               | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2                                                                                                                                                 | a,b<br>a<br>a                |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA SDHB SDHC (QPS1)                                                                              | SDH1<br>SDH2<br>SDH3                                           | - Arabidopsis thaliana At2g18450, At5g66760 At5g40650, At3g27380 At5g09600                                                                                                     | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3                                                                                                                             | a,b<br>a<br>a<br>a           |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA SDHB                                                                                          | SDH1<br>SDH2                                                   | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505                                                                                          | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2                                                                                                                                                 | a,b<br>a<br>a<br>a<br>a      |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)                                                                            | SDH1<br>SDH2<br>SDH3                                           | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420                                                                            | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3                                                                                                                             | a,b a a a a a                |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  -                                                                   | SDH1<br>SDH2<br>SDH3                                           | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505                                                                                          | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3                                                                                                                             | a,b<br>a<br>a<br>a<br>a      |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)                                                                            | SDH1 SDH2 SDH3 SDH4 -                                          | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480                                                                 | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  -                                                                                                      | a,b a a a a a                |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors                                                    | SDH1 SDH2 SDH3 SDH4 - TCM62                                    | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480                                                                 | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  -                                                                                                      | a,b  a a a a a a a           |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  -                                                                   | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A                            | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480                                                                 | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672                                                                                           | a,b  a a a a a a c,d         |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1                                           | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1                       | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505 At1g47420 At1g08480  - At2g39725 -                                                       | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258                                                                             | a,b  a a a a a c,d c,e       |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5                                    | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A                            | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480                                                                 | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672                                                                                           | a,b  a a a a a a c,d         |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III                       | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5                  | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505 At1g47420 At1g08480  - At2g39725 - At5g51040                                             | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005                                                               | a,b  a a a a a c,d c,e c,f   |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III  UQCRC1               | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5                  | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480  - At2g39725  - At5g51040  At3g02090                            | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005  XP_001697021, QCR1                                           | a,b  a a a a a c,d c,e       |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III                       | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5                  | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505 At1g47420 At1g08480  - At2g39725 - At5g51040                                             | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005  XP_001697021, QCR1  XP_001691043, QCR2                       | a,b  a a a a a c,d c,e c,f   |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III  UQCRC1               | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5                  | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480  - At2g39725  - At5g51040  At3g02090                            | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005  XP_001697021, QCR1                                           | a,b  a a a a a a c,d c,e c,f |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III  UQCRC1               | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5                  | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480  - At2g39725  - At5g51040  At3g02090                            | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005  XP_001697021, QCR1  XP_001691043, QCR2                       | a,b  a a a a a a c,d c,e c,f |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III  UQCRC1  UQCRC2       | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5  COR1 COR2 -     | - Arabidopsis thaliana  At2g18450, At5g66760  At5g40650, At3g27380  At5g09600  At2g46505  At1g47420  At1g08480  - At2g39725 - At5g51040  At3g02090  At3g16480, At1g51980 -     | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001701258  XP_001694005  XP_001697021, QCR1  XP_001691043, QCR2  XP_001697130, MPPA1  | a,b  a a a a a a c,d c,e c,f |
| NDUFAF4, (C6ORF66)  H. sapiens/B. taurus  Complex II  SDHA  SDHB  SDHC (QPS1)  SDHD  Assembly Factors - SDHAF1 - SDH5  Complex III  UQCRC1  UQCRC2 - CYB | SDH1 SDH2 SDH3 SDH4 TCM62 YDR379C-A FLX1 SDH5  COR1 COR2 - COB | - Arabidopsis thaliana  At2g18450, At5g66760 At5g40650, At3g27380 At5g09600 At2g46505 At1g47420 At1g08480  - At2g39725 - At5g51040  At3g02090 At3g16480, At1g51980 - AtMg00220 | XP_001701912  Chlamydomonas reinhardtii  XP_001689842, SDH1  XP_001696290, SDH2  XP_001689507, SDH3  XP_001689952, SDH4  XP_001693672  XP_001694005  XP_001697021, QCR1  XP_001691043, QCR2  XP_001697130, MPPA1  AAB93440, cob | a,b  a a a a a a c,d c,e c,f |

| UQCRQ         QCR7         A14g32470, A15g25450           UQCRB         QCR8         A13g10860, A15g05370           UQCRI         QCR6         A12g01090, A11g15120           UQCR10         QCR9         A13g52730           UQCR10         QCR10         A12g40765           UQCRS1         -         -           Assembly Factors           BCS1         A15g17760           ABC1         A14g01660           -         BCA1         -           CBP3         A15g51220           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZMIL         MZMI         -           CYCYC1         A11g22840, A14g10040           Assembly factors           CYCYCY         CYC1         A11g22840, A14g10040           Assembly factors           CYCYCY         CYC1         A11g22840, A14g10040           Assembly factors           CYCYCY         CYC1         A11g22840, A14g10040           Assembly factors <td< th=""><th>XP_001696308, QCR7<br/>XP_001697451, QCR8<br/>XP_001697864, QCR6</th><th>a<br/>a</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XP_001696308, QCR7<br>XP_001697451, QCR8<br>XP_001697864, QCR6 | a<br>a                              |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|---|
| UQCRH         QCR6         At2g01090, At1g15120           UQCR10         QCR9         At3g52730           UQCR10         QCR10         At2g40765           UQCRFSI         -         -           Assembly Factors           BCS1         At5g17760           ABC1         At4g01660           -         BCA1         -           CBP3         CBP3         At5g51220           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZMIL         MZM1         -           CYCCytC         CYC1         At1g22840, At4g10040           Assembly factors           CYCCytC         CYC1         At1g22840, At4g10040           Assembly factors           CYC2 -         -           -         CYC3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                                              | a                                   |   |
| UQCR10         QCR9         A13g52730           UQCR10         QCR10         A12g40765           UQCRFS1         -         -           Assembly Factors           BCS1         At5g17760           ABC1         A14g01660           -         BCA1         -           CBP3         At5g51220           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZMIL         MZM1         -           CYCCytC         CYC1         At1g22840, At4g10040           Assembly factors           CYCYCytC         CYC1         At1g22840, At4g10040           Assembly factors           UII         III         I           CCHL         CYC2         -           -         CYC2         -           -         CYC2         -           -         CYC2         -           -         AtMg00830, AtMg00900, AtMg00110, AtMg00100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XP 001697864. OCR6                                             |                                     |   |
| UQCRI0         QCRI0         At2g40765           UQCRIS1         -         -           Assembly Factors         BCS1         At5g17760           BBCS1         At4g01660         -           ABC1         At4g01660         -           CBP3         At5g51220         -           CBP3         At5g51220         -           CBP4         -         -           TC19         -         -           CYC2         CYC2         -           LYRM7/MZMIL         MZM1         -           CyCvcytc         CYC1         At1g22840, At4g10040           Assembly factors           CyCvcytc         CYC1         At1g22840, At4g10040           Assembly factors           CyCvcytc         CYC1         At1g22840, At4g10040           Assembly factors           CYC2 (CYC)         CYC2         -           CYC2 (CYC)         At1g22840, At4g10040           Assembly factors           CYC2 (CYC)         CYC2         -           CYC2 (CYC)         At1g22840, At4g10040         At1g22840, At4g10040           Assembly fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,                                                            | a                                   |   |
| UQCRI0         QCRI0         At2g40765           UQCRIS1         -         -           Assembly Factors         -         -           BCS1         At5g17760         -           ABC1         At4g01660         -           -         BCA1         -           CBP3         At5g51220         -           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZM1L         MZM1         -           Cytochrome c           UYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           CytCytCytC         CYC1         At1g22840, At4g10040           Assembly factors           CytCytCytC         CYC1         At1g22840, At4g10040           At1g22840, At4g10040           Assembly factors           CytCytCytCytCytCytCytCytCytCytCytCytCytC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XP_001696682, QCR9                                             | a                                   |   |
| UQCRFS1         -         -           Assembly Factors         BCS1         At5g17760           ABC1         At4g01660         -           -         BCA1         -           CBP3         At5g51220         -           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZM1L         MZM1         -           Cytochrome c           CYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           Cytochrome c maturation system           III         III         I           CCHL         CYC2         CYC3         -           -         CYC2         -         -           -         CYC2         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         -           -         -         -         - <th col<="" td=""><td>XP_001699549, QCR10</td><td>a</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <td>XP_001699549, QCR10</td> <td>a</td>                        | XP_001699549, QCR10                 | a |
| BCS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - , ~                                                          | a                                   |   |
| BCS1       AL5g17760         ABC1       AL4g01660         -       BCA1       -         CBP3       AL5g51220         -       CBP4       -         -       CBP6       -         TTC19       -       -         -       CYC2       -         LYRM7/MZMIL       MZM1       -         CYCytrocytc       CYC1       AL1g22840, AL4g10040         Assembly factors         CYCytrocytc       CYC1       AL1g22840, AL4g10040         Assembly factors         UII       III       III         CCHL       CYC2       -         -       CYC2       -         -       CYC3       -         -       CYC3       -         -       CYC3       -         -       -       -         -       -       -         Complex IV         WTCOXI (COXI)       COX1       AlMg00830, AlMg00900, AlMg00110, AlMg00180, Al1g80120, AlMg00160         MTCOXI (COXI)       COX2       AlMg00160         MTCOXI (COXI)       COX2       AlMg00730         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | u                                   |   |
| ABCI ABCI AI4g01660 - BCAI - CBP3 At5g51220 - CBP4 - CBP6 - CTC19 - CYC2 - CYC2  LYRM7/MZMIL MZMI - CYC1 At1g22840, At4g10040  Assembly factors  Cytochrome c maturation system  III III III III CCHL CYC2 - CYC2 - CYC2 - CYC2 - CYC3 - CYC4 - CYC5 - CYC5 - CYC5 - CYC5 - CYC5 - CYC6 - CYC6 - CYC6 - CYC6 - CYC6 - CYC6 - CYC7 -  | XP_001700670, <i>BCS1</i>                                      | g                                   |   |
| BCA1         -           CBP3         At5g51220           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZMIL         MZM1         -           Cytochrome c           CYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           Cytochrome c maturation system           III         III         I           CCHL         CYT2 (CCIHL)         -           -         CYC2         -           -         CYC3         -           -         CYC3         -           -         -         AtMg00830, AtMg00900, AtMg00100, AtMg00900, AtMg00110, AtMg00960, AtMg00110, AtMg00180, At1g15220, At3g1790           Comptex IV           MTCOXI (COXI)         COX2         AtMg00160           -         -         -           MTCOXII (COX1)         COX2         AtMg00730           COXVb (COX5b)         COX4         -           COXV-2 (COX4-2)         COX5b         At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XP_001702520, ABC1                                             |                                     |   |
| CBP3         At5g51220           -         CBP4         -           -         CBP6         -           TTC19         -         -           -         CYC2         -           LYRM7/MZM1L         MZM1         -           Cytochrome c           CYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           Cytochrome c maturation system           III         III         I           CCHL         CYC2 -         -           -         CYC2         -           -         CYC3         -           -         CYC3         -           -         -         AtMg00330, AtMg00900, AtMg00900, AtMg00910, AtMg00110, AtMg00180, At1g15220, At3g51790           Complex IV           MTCOXI (COX1)         COX1         AtMg01360           MTCOXI (COX1)         COX2         AtMg00160           -           MTCOXI (COX3)         COX3         AtMg00730           COXVb (COX5b)         COX5a         -           COXV-2 (COX4-2)         COX5b         At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | g<br>g                              |   |
| - CBP4         - CBP6         - CBP6           TTC19         - CYC2         - CAPCA           - CYC2         - CYCA         - CAPCA           LYRM7/MZM1L         MZM1         - CAPCA           CYtochrome c           CYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           Cytochrome c maturation system           III         III         I           CCHL         CYC2         -           -         CYC3         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           Complex IV         -         -           MTCOXI (COX1)         COX1         AtMg00160           -         -         -           MTCOXII (COX1)         COX2         AtMg00730           COXVb (COX5b)         COX4         -           COXV-2 (COX4-2)         COX5b         At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XP_001689784                                                   | g                                   |   |
| CBP6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AI _001009704                                                  | g                                   |   |
| TTC19 - CYC2 - CYC2 - LYRM7/MZM1L  MZM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                              | g                                   |   |
| - CYC2 - LYRM7/MZM1L MZM1 - CYtochrome c  CYC/CytC CYC1 At1g22840, At4g10040  Assembly factors  Cytochrome c maturation system  III III III III CCHL CYT2 (CC1HL) - CYC2 - CYC2 - CYC3 - | -                                                              | g                                   |   |
| LYRM7/MZM1L         MZM1         -           Cytochrome c         CYC/CytC         CYC1         At1g22840, At4g10040           Assembly factors           Cytochrome c maturation system           III         III         I           CCHL         CYT2 (CC1HL)         -           -         CYC2         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           Complex IV         -         -           MTCOXI (COX1)         COX1         AtMg00160           -         -         -           MTCOXII (COX1)         COX2         AtMg00160           -         -         -           MTCOIII (COX3)         COX3         AtMg00730           COXVb (COX5b)         COX4         -           COXIV-1 (COX4-1)         COX5b         At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                              | g                                   |   |
| Cytochrome c  CYC/CytC  CYC1  At1g22840, At4g10040  Assembly factors  Cytochrome c maturation system  III  III  CCHL  CYT2 (CC1HL)  -  CYC2  -  CYC3  -  -  AtMg00830, AtMg00900, AtMg00900, AtMg00960, AtMg00110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1)  COX2  AtMg00160  -  -  MTCOXII (COX3)  COX3  AtMg00730  COXVb (COX5b)  COX4  COXV-2 (COX4-1)  COX5a  -  At1g22840, At4g10040  I  At1g22840, At4g10040  At1g10040  At1g10040  At1g100900, AtMg00100  AtMg00900, AtMg00910, AtMg00900, AtMg00910, AtMg00160  -  AtMg00160  -  AtMg00160  -  AtMg00730  COXVb (COX5b)  COX4  -  COXYb (COX4-1)  COX5a  -  COXV-2 (COX4-2)  COX5b  At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VP 004 500 0                                                   | g<br>g,h                            |   |
| CYC/CytC CYC1 At1g22840, At4g10040  Assembly factors  Cytochrome c maturation system  III III III I I CCHL CYT2 (CC1HL) CYC2 CYC3 AtMg00830, AtMg00900, AtMg00900, AtMg009110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1) COX1 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XP_001690610                                                   | D)                                  |   |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                     |   |
| Cytochrome c maturation system  III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XP_001696912, CYC                                              | a,g                                 |   |
| III III III III III III III III III II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |                                     |   |
| CCHL CYT2 (CC1HL) - CYC2 - CYC3 CYC3 AtMg00830, AtMg00900, AtMg00900, AtMg00110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1) COX1 AtMg00160  MTCOXII (COX3) COX2 AtMg00160  MTCOIII (COX3) COX3 AtMg00730 COXVb (COX5b) COX4 - COXIV-1 (COX4-1) COX5a - COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                     |   |
| CYC2 - CYC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | III                                                            | a,g,i                               |   |
| - CYC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XP_001697002, HCS1                                             | a,g,i                               |   |
| AtMg00830, AtMg00900, AtMg00900, AtMg00110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1) COX1 AtMg01360  MTCOXII (COX1) COX2 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                              | a,g,i                               |   |
| AtMg00960, AtMg00110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1) COX1 AtMg01360  MTCOXII (COX1) COX2 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XP_001699246, HCS2                                             | a,g,i                               |   |
| AtMg00960, AtMg00110, AtMg00180, At1g15220, At3g51790  Complex IV  MTCOXI (COX1) COX1 AtMg01360  MTCOXII (COX1) COX2 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XP_001696883, HCS3                                             | a,g,i                               |   |
| MTCOXI (COX1) COX1 AtMg01360  MTCOXII (COX1) COX2 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | a,g,i                               |   |
| MTCOXII (COX1) COX2 AtMg00160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAB93443, cox1                                                 | a,j                                 |   |
| MTCOIII (COX3) COX3 AtMg00730  COXVb (COX5b) COX4 -  COXIV-1 (COX4-1) COX5a -  COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AAK30367, <i>COX2a</i>                                         | a,j                                 |   |
| COXVb (COX5b) COX4 - COXIV-1 (COX4-1) COX5a - COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AAK32117, <i>COX2b</i>                                         | a,j                                 |   |
| COXVb (COX5b) COX4 - COXIV-1 (COX4-1) COX5a - COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AAG17279, <i>COX3</i>                                          | a,j                                 |   |
| COXIV-1 (COX4-1) COX5a - COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XP_001693699, COX4/5b                                          | a,j                                 |   |
| COXV-2 (COX4-2) COX5b At3g15640, At1g80230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                              | a,j                                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                              |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XP_001697444, COX5c                                            |                                     |   |
| COXVa (COX5a) COX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,,                                                             |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                              |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                              |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                              |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                              |                                     |   |
| COXVIII (COX8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | a,j<br>a,j                          |   |
| COAVIII (COA0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | a, <sub>1</sub>                     |   |
| COXVa (COX5a)         COX6           COXVIIa (COX7a)         COX7         -           COXVIIc (COX7c)         COX8         -           COXVIc (COX6c)         COX9 (Cox7a)         -           COXVIIb(COX7b)         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - XP_001697444, COX5c                                          | a.; a.; a.; a.; a.; a.; a.; a.; a.; |   |

| COXVIa (COX6a)                       | COX13 (Cox10)              | At4g37830                         | XP_001692867, COX13                | a,j   |  |  |
|--------------------------------------|----------------------------|-----------------------------------|------------------------------------|-------|--|--|
| -                                    | -                          | -                                 | AAM88388, COX90                    | a,j   |  |  |
| Assembly Factors                     |                            |                                   |                                    |       |  |  |
| Membrane insertion and processing    | ng of the CIV subunits     |                                   |                                    |       |  |  |
| OXA1L, NP_005006                     | OXA1                       | At5g62050                         | XP_001693158 (partial), OXA1       | a,j   |  |  |
| COX20, NP_932342                     | COX20                      | -                                 | -                                  | a,j   |  |  |
| COX18, AAI43643                      | COX18                      | -                                 | ACM07437, COX18                    | a,j   |  |  |
| -                                    | MSS2                       | -                                 | -                                  | a,j   |  |  |
| -                                    | MSS51                      | -                                 | -                                  | a,j   |  |  |
| -                                    | PNT1                       | -                                 | -                                  | a,j   |  |  |
| -                                    | IMP1                       | -                                 | XP_001698755, IMP1                 | a,j   |  |  |
| IMMP2L                               | IMP2                       | At3g08980                         | XP_001689557, IMP2                 | a,j   |  |  |
| -                                    | SOM1                       | -                                 | -                                  | a,j   |  |  |
| Copper metabolism and insertion      | into the CIV               |                                   |                                    |       |  |  |
| COX17                                | COX17                      | At1g53030                         | AAF82382, COX17                    | a,j   |  |  |
| SCO1, SCO2                           | SCO1, SCO2                 | At3g08950, At4g39740              | XP_001701493, SCO1                 | a,j   |  |  |
| COX11                                | COX11                      | At1g02410                         | XP_001700235, COX11                | a,j   |  |  |
| COX19                                | COX19                      | At1g66590                         | XP_001698539, COX19                | a,j   |  |  |
| COX23                                | COX23                      | At1g02160                         | XP_001699418, COX23                | a,j   |  |  |
| PET191                               | PET191                     | At1g10865                         | XP_001700244, PET191               | a,j   |  |  |
| CMC1/ CMC2                           | CMC1/ CMC2                 | At2g07681<br>At2g07771            | -                                  | a,j   |  |  |
| Heme A biosynthesis                  |                            | C                                 |                                    |       |  |  |
| COX10                                | COX10                      | At2g44520                         | XP_001703217, COX10                | a,j   |  |  |
| COX15                                | COX15                      | At5g56090                         | XP_001701703 (partial), COX15      | a,j   |  |  |
| FDX2                                 | YAH1                       | At4g05450<br>At4g21090            | XP_001703155, MFDX                 | a,j,k |  |  |
| ADR                                  | ARH1                       | -                                 | XP_001693401, ARH1                 | a,j,k |  |  |
| Assembly                             |                            |                                   |                                    |       |  |  |
| -                                    | PET100                     | At4g14615, At1g52821              | -                                  | a,j   |  |  |
| SURF1                                | SHY1                       | At3g17910                         | XP_001701449, SUR1                 | a,j   |  |  |
| -                                    | COX14                      | -                                 | -                                  | a,j   |  |  |
| -                                    | COA1/2/3                   | -                                 | -                                  | a,j   |  |  |
| -                                    | COX25                      | -                                 | -                                  | a,j   |  |  |
| -                                    | CMC3                       | -                                 | -                                  | a,j   |  |  |
| -                                    | COA4                       | -                                 | -                                  | a,j   |  |  |
| Unknown function                     |                            | -                                 | -                                  | a,j   |  |  |
| COX16                                | COX16                      | At4g14145                         | XP_001703532, COX16                | a,j   |  |  |
| CSRP2BP                              | PET117                     | -                                 | -                                  | a,j   |  |  |
| Supercomplex III+IV assembly Factors |                            |                                   |                                    |       |  |  |
| HIG2A                                | RCF1 (YML030W)             | -                                 | -                                  | l,m   |  |  |
| -                                    | RCF2 (YNR018W)             | -                                 | -                                  | 1,m   |  |  |
| Complex V                            | , ,                        |                                   |                                    |       |  |  |
| Fo subcomplex                        |                            |                                   |                                    |       |  |  |
| ATP6/A                               | ATPA (ATP6)                | AtMg00410, AtMg01170              | XP_001689492, ATP6                 | a     |  |  |
| ATP5F1/B                             |                            |                                   | 711 _001007 <del>1</del> 72, 71110 |       |  |  |
| ATP5G3/C                             | ATPB (ATP4)<br>ATPC (ATP9) | AtMg00640<br>AtMg01080, At2g07671 | -<br>XP_001701531, <i>ATP9A</i>    | a     |  |  |
|                                      | •                          |                                   | XP_001701500, ATP9B                | a     |  |  |

| ATP5H/D                              | ATPD (ATP7)               | At3g52300                                                                                                                                      | _                                                                                                                                                                                                          | a       |
|--------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ATP5I/E                              | ATPE (ATP21)              | At5g15320                                                                                                                                      | -                                                                                                                                                                                                          | a       |
| ATP5J2/F                             | ATPF (ATP17)              | At4g30010                                                                                                                                      | -                                                                                                                                                                                                          | a       |
| ATP5L/G                              | ATPG (ATP20)              | At2g19680                                                                                                                                      | -                                                                                                                                                                                                          | a       |
| ATP5J/F6                             | ATPH (ATP14)              | -                                                                                                                                              | -                                                                                                                                                                                                          | a       |
| ATP8/A6L                             | ATP8                      | AtMg00480                                                                                                                                      | -                                                                                                                                                                                                          | a       |
| ATP5O/OSCP                           | ATP5                      | At5g13450                                                                                                                                      | XP_001695985, ATP5                                                                                                                                                                                         | a       |
| ATPI/IF1                             | INH1, STF1                | At5g04750                                                                                                                                      | -                                                                                                                                                                                                          | a       |
| AIIIII                               | STF2                      | At3g04730                                                                                                                                      | -                                                                                                                                                                                                          |         |
| -                                    | ATPJ/I (ATP18)            | -                                                                                                                                              | -                                                                                                                                                                                                          | a       |
| -<br>-                               | AIFJ/I (AIF10)            | -                                                                                                                                              | -                                                                                                                                                                                                          | a       |
| $F_1$ subcomplex<br>ATP5A1/ $\alpha$ | α (ATP1)                  | AtMg01190, At2g07698                                                                                                                           | XP_001699641, ATP1                                                                                                                                                                                         | a       |
| All JAI/u                            | α (A11 1)                 | Attvig01170, At2g07070                                                                                                                         | AI _001099041, AII I                                                                                                                                                                                       | a       |
| ATP5B/β                              | $\beta$ (ATP2)            | At5g08670, At5g08680,<br>At5g08690                                                                                                             | XP_001691632, ATP2                                                                                                                                                                                         | a       |
| ATP5C1/γ                             | γ (ATP3)                  | At2g33040                                                                                                                                      | XP_001700627, ATP3                                                                                                                                                                                         | a       |
| ATP5D/ $\delta$                      | $\delta$ (ATP16)          | At5g47030                                                                                                                                      | XP_001698736, ATP16                                                                                                                                                                                        | a       |
| ATP5E/ $\varepsilon$                 | $\varepsilon$ (ATP15)     | At1g51650                                                                                                                                      | XP_001702609, ATP15                                                                                                                                                                                        | a       |
| -                                    | ATPK (ATP19)              | -                                                                                                                                              | -                                                                                                                                                                                                          | a       |
| -                                    | -                         | At2g21870 (ATP7, F <sub>A</sub> d)                                                                                                             | -                                                                                                                                                                                                          | a       |
|                                      |                           |                                                                                                                                                | XP_001692395, ASAI (MASAP)<br>XP_001696742, ASA2<br>XP_001700079, ASA3<br>XP_001693576, ASA4<br>XP_001697115, ASA5<br>XP_001701878, ASA6<br>XP_001696750, ASA7<br>XP_001695222, ASA8<br>XM_001694550, ASA9 | a,n     |
| Assembly Factors                     |                           |                                                                                                                                                |                                                                                                                                                                                                            |         |
| $F_0$ subcomplex                     |                           |                                                                                                                                                |                                                                                                                                                                                                            |         |
| -                                    | ATP10                     | AAF18252                                                                                                                                       | -                                                                                                                                                                                                          | a,o     |
| NP_150592                            | ATP23                     | At3g03420.1                                                                                                                                    | XP_001691633                                                                                                                                                                                               | a,o     |
| -                                    | ATP25                     | -                                                                                                                                              | -                                                                                                                                                                                                          | a,o     |
| OXA1L                                | OXA1                      | At5g62050                                                                                                                                      | XP_001693158 (partial), OXA1                                                                                                                                                                               | a,o     |
| $F_1$ subcomplex                     |                           |                                                                                                                                                |                                                                                                                                                                                                            |         |
| ATPAF1                               | ATP11                     | At2g34050                                                                                                                                      | XP_001690396, ATP11                                                                                                                                                                                        | a,o     |
| ATPAF2                               | ATP12                     | At5g40660                                                                                                                                      | XP_001697254, ATP12                                                                                                                                                                                        | a,o     |
| -                                    | FMC1                      | -                                                                                                                                              | -                                                                                                                                                                                                          | a,o     |
| Alternative Oxidase Family           |                           |                                                                                                                                                |                                                                                                                                                                                                            |         |
| -                                    | AOX -AAC37481 (N. crassa) | At3g22370 (AOX1a),<br>At3g22360 (AOX1b),<br>At3g27620 (AOX1c),<br>At1g32350 (AOX1d),<br>At5g64210 (AOX2)                                       | XP_001694605, AOX1<br>XP_001703329, AOX2                                                                                                                                                                   | a, p, q |
| Type-II NAD(P)H Dehydrogena          | se Family                 | A41-07100 (ND A1)                                                                                                                              |                                                                                                                                                                                                            |         |
| -                                    | NDAe1, NDAe2, NDAi1       | At1g07180 (NDA1),<br>At2g29990 (NDA2),<br>At4g28220 (NDB1),<br>At4g05020 (NDB2),<br>At4g21490 (NDB3),<br>At2g20800 (NDB4),<br>At5g08740 (NDC1) | XP_001698901, NDA1<br>XP_001691969, NDA5<br>XP_001703055, NDA6<br>XP_001703056, NDA7                                                                                                                       | a,r     |

**Table 1:** Protein components of mitochondria respiratory complexes and assembly factors in *Chlamydomonas* 


Table 2

| Biochemical defect   | Mutant<br>name | Growth in the dark | Gene mutation                                                                                                   | Obtained by                                                        | References |
|----------------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|
|                      | dum5           | +/-                | 1T deletion in the 3' UTR of the mitochondrial <i>nd5</i> gene                                                  | acriflavine<br>treatment                                           | a          |
|                      | dum17          | +/-                | -1T at codon 143 of the mitochondrial <i>nd6</i> gene                                                           | acriflavine<br>treatment                                           | a          |
|                      | dum20          | +/-                | -1T at codon 243 of the mitochondrial <i>nd1</i> gene                                                           | acriflavine<br>treatment                                           | b          |
|                      | dum23          | +/-                | -1T at codon 145-146 of the mitochondrial <i>nd5</i> gene                                                       | acriflavine<br>treatment                                           | С          |
|                      | dum25          | +/-                | deletion of two of the codons 199–203 of the mitochondrial <i>nd1</i> gene                                      | acriflavine<br>treatment                                           | b          |
|                      | ∆nd4           | +/-                | deletion of codons 2-24 of the mitochondrial <i>nd4</i> gene                                                    | mitochondrial<br>transformation<br>with dum11 strain               | d          |
|                      | L157P<br>ND4   | +/-                | introduction of a Leu157Pro<br>substitution in the mitochondrial<br>nd4 gene                                    | mitochondrial<br>transformation with<br>dum11 and dum22<br>strains | е          |
| Complex I            | ND3-<br>RNAi   | +/-                | no transcript detected for the nuclear <i>NUO3</i> gene                                                         | RNAi                                                               | f          |
|                      | ND4L-<br>RNAi  | +/-                | reduction of the transcript steady-<br>state levels (98%) of the nuclear<br>NUO11 gene                          | RNAi                                                               | f          |
|                      | ND7-<br>RNAi   | +/-                | reduction of the transcript steady-<br>state levels (95%) of the nuclear<br>NUO7 gene                           | RNAi                                                               | u          |
|                      | ND9-<br>RNAi   | +/-                | no transcript detected for the nuclear <i>NUO9</i> gene                                                         | RNAi                                                               | u          |
|                      | amc 5/7        | +/-                | inactivation of the nuclear NUOB10 gene                                                                         | insertional<br>mutagenesis                                         | g          |
| Complex<br>I and III | amc14          | +/-                | partial inactivation of the of the nuclear <i>NUO9</i> gene expression                                          | insertional<br>mutagenesis                                         | u          |
|                      | amc15          | +/-                | partial inactivation of the nuclear NUOP4 gene expression                                                       | insertional<br>mutagenesis                                         | u          |
|                      | dum22          | -                  | 4.35 kb mitochondrial deletion encompassing the left telomere, <i>cob</i> , <i>nd4</i> and 3' end of <i>nd5</i> | acriflavine<br>treatment                                           | h          |
|                      | dum24          | -                  | 3.5 kb mitochondrial deletion<br>encompassing the left telomere, <i>cob</i><br>and 3' end of <i>nd4</i>         | acriflavine<br>treatment                                           | i          |
| Complex III          | dum1           | -                  | 1.7 kb mitochondrial deletion,<br>encompassing the left telomere and<br>the entire <i>cob</i> gene              | Acriflavine treatment                                              | j          |
|                      | dum11          | -                  | 1.2 kb mitochondrial deletion encompassing the left telomere and the end of <i>cob</i> gene                     | ethidium bromide<br>treatment                                      | k          |
|                      | dum15          |                    | introduction of a Ser140Tyr<br>substitution in the mitochondrial<br>cob gene                                    | ethidium bromide<br>treatment                                      | k,l        |
|                      | MUD2           |                    | introduction of a Phe129Pro<br>substitution in the mitochondrial<br><i>cob</i> gene                             | selection on mucidin                                               | m          |
|                      | dum18          | -                  | +1T at codon 145 of mitochondrial cox1 gene                                                                     | Acriflavine treatment                                              | 1          |
| Complex IV           | dum19          | -                  | -1T at codon 152 of mitochondrial cox1 gene                                                                     | Acriflavine treatment                                              | 1          |
| p                    | COX3-<br>RNAi  | -                  | no transcript detected for the nuclear <i>COX3</i> gene                                                         | RNAi                                                               | n          |
|                      | COX17-         | +                  | no transcript detected for the                                                                                  | RNAi                                                               | n          |

|                                             | RNAi          |     | nuclear COX17 gene after treatment with copper or cadmium                                         |                                                             |   |
|---------------------------------------------|---------------|-----|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|
| Complex V                                   | ATP2-<br>RNAi | -   | lack of the $\beta$ subunit protein as a result of the silencing of the nuclear $ATP2$ gene       | RNAi                                                        | 0 |
|                                             | ASA7-<br>RNAi | +   | lack of the Asa7 subunit protein as<br>a result of the silencing of the<br>nuclear ASA7 gene      | RNAi                                                        | р |
| SHAM-sensitive<br>pathway of<br>respiration | AOX-<br>RNAi  | +   | lack of the Aox1 protein as a result of the silencing of the nuclear AOX1 gene                    | RNAi                                                        | q |
|                                             | NDA1-<br>RNAi | +   | lack of the Nda1 protein as a result of the silencing of the nuclear NDA1 gene                    | RNAi                                                        | r |
| Compley Land IV                             | T11-10        | +/- | replacement of the 10 GGT/GGC codons by GGG codons in the 3' end of mitochondrial <i>nd4</i> gene | mitochondrial<br>transformation<br>with <i>dum11</i> strain | S |
| Complex I and IV                            | T22-11        | +/- | replacement of the 11 GGT/GGC codons by GGG codons in the 3' end of mitochondrial <i>nd4</i> gene | mitochondrial<br>transformation<br>with <i>dum22</i> strain | S |
| Mitochondrial transcription profile         | stm6          | +/- | inactivation of the nuclear MOC1 gene                                                             | insertional<br>mutagenesis                                  | t |

**Table 2**: List of respiratory-deficient mutants of *Chlamydomonas*

Figure 1 Click here to download high resolution image



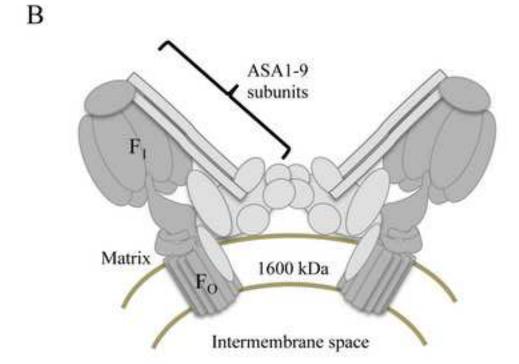



Figure 2
Click here to download high resolution image

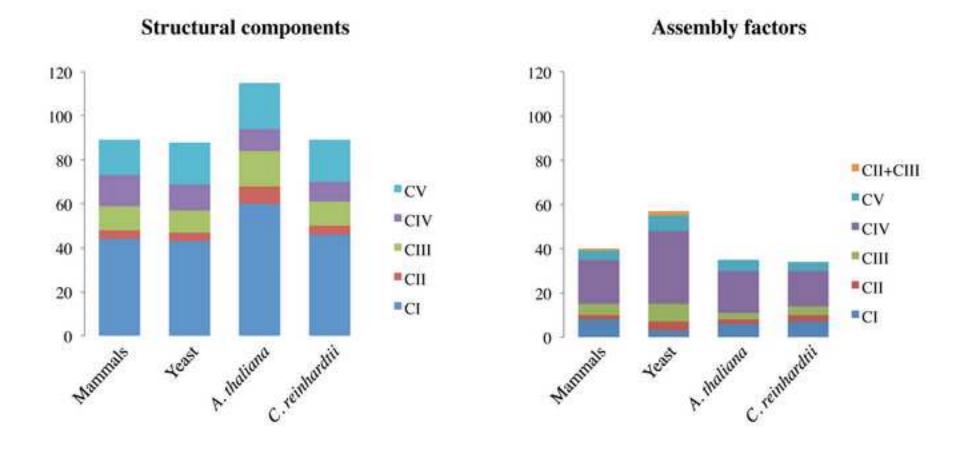
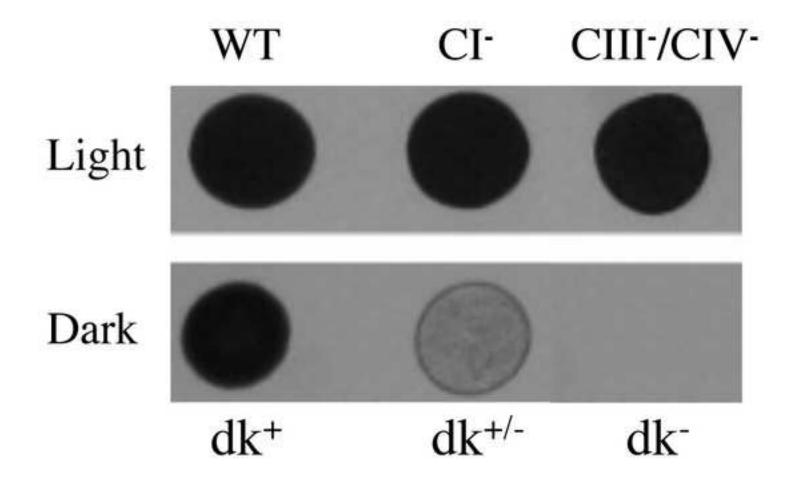




Figure 3
Click here to download high resolution image



Figure 4
Click here to download high resolution image

